1
|
Chen S, Zhang M, Wu X, Bai F, Gao L, Shen Y, Dou S, Cai P, Zhou YJ. Promoter engineering for enhanced 3-hydroxypropionic acid production in Pichia pastoris. Synth Syst Biotechnol 2025; 10:916-924. [PMID: 40421287 PMCID: PMC12104163 DOI: 10.1016/j.synbio.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/09/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Enabling tools are essential for facilitating the methanol bioconversion in Pichia pastoris. However, there is still a relative lack of promoters that can stably express high levels without being affected by the carbon source, which hinders the construction and modification of cell factories containing long metabolic pathways. This study mapped a gene expression intensity library of central metabolic pathways in P. pastoris under methanol and glucose conditions. Through modification of the upstream sequences of promoters, an artificial promoter P S2 was developed with a strong intensity up to 90 % of P GAP . By using this promoter, we successfully constructed a hybrid pathway that integrates the β-alanine and malonyl-CoA pathways for the production of 3-hydroxypropionic acid. Further combining rational metabolic engineering strategies, such as optimizing gene copy numbers and blocking byproduct synthesis pathways, the engineered strains CHP9 and CHP20 achieved 3-HP titers of 23 g/L and 22 g/L by using methanol as the sole carbon source. These results indicate that adaptive strength of promoters can facilitate efficient chemical biosynthesis in methanol bioconversion by mitigating glucose repression effects. This work preliminarily explored the expression patterns of genes in the central metabolic pathways of P. pastoris, identified and characterized the intensities of various endogenous promoters, and extended the enabling toolbox for P. pastoris. This result also lays a foundation for the construction of microbial cell factories and the industrial production of 3-HP via methanol bioconversion.
Collapse
Affiliation(s)
- Shushu Chen
- College of Life and Health, Dalian University, Dalian, 116622, China
- Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian University, Dalian, 116622, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mengyao Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Bai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Linhui Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Shen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaohua Dou
- College of Life and Health, Dalian University, Dalian, 116622, China
- Liaoning Marine Microorganism Engineering and Technology Research Center, Dalian University, Dalian, 116622, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yongjin J. Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Yao C, Yin Y, Li Q, Zhang H, Zhang Y, Shao Q, Liu Q, Ren Y, Cai M. Nucleotide distribution analysis of 5'UTRs in genome-scale directs their redesign and expression regulation in yeast. Metab Eng 2025; 88:113-123. [PMID: 39733855 DOI: 10.1016/j.ymben.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Non-conventional yeasts have emerged as important sources of valuable products in bioindustries. However, tools for the control of expression are limited in these hosts. In this study, we aimed to excavate the tools for the regulation of translation that are often overlooked. 5'UTR analysis of genome-scale annotated genes of four yeast species revealed a distinct decreasing 'G' frequency in -100 ∼ -1 region from 5040 5'UTRs in Komagataella phaffii. New 5'UTRs were regenerated by base substitutions in defined regions, and replacement of 'G' by 'A' or 'T' in the -50 ∼ -1 region highly facilitated gene expression. Preference analysis of all nucleotide triplets in 5'UTRs revealed a KZ3 (-3 ∼ -1) that dominantly affected gene expression. A total of 128 KZ3 variants were constructed to work with promoters of methanol-inducible PAOX1 and constitutive PGAP, of which 58 KZ3 variants increased gene expression and maximum difference in strength was 15-fold among all variants. Polysome profiling analysis clarified that 5'UTR-KZ3 enhanced gene expression at translational but not transcriptional levels. Finally, improved production of three industrial proteins and one platform compound were achieved by ready-made 5'UTR-KZ3 or in situ modification of the 5'UTR. This study provides new references and tools for the fine-tuning of translational regulation in yeast and other fungi.
Collapse
Affiliation(s)
- Chaoying Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu Yin
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qingyang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanqi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yilun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qianqian Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
3
|
Liu Q, Li YH, Tao LF, Yang JY, Zhang YL, Cai MH. Rational design and characterization of enhanced alcohol-inducible synthetic promoters in Pichia pastoris. Appl Environ Microbiol 2025; 91:e0219124. [PMID: 39699198 PMCID: PMC11784102 DOI: 10.1128/aem.02191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The C1 and C2 alcohols hold great promise as substrates for biomanufacturing due to their low cost and rich resources. Pichia pastoris is considered a preferred host for methanol and ethanol bioconversion due to its natural utilization of methanol and ethanol. However, the scarcity of strong and tightly regulated alcohol-inducible promoters limits its extended use. This study aimed to develop enhanced methanol- and ethanol-inducible promoters capable of improving gene expression in P. pastoris. Rational design strategies were employed to rewire the upstream regulatory sequence of the methanol-inducible PAOX1, generating several high-strength methanol-inducible promoters with a stringent regulatory pattern. Eleven strong promoters were identified from 36 endogenous ethanol-inducible candidates recognized from transcriptome analysis. Core promoter regions, the crucial element influencing transcriptional strength, were also characterized. Five high-activity core promoters were then combined with four upstream regulatory sequences of high-strength promoters, resulting in four groups of synthetic promoters. Ultimately, the highly active methanol-inducible PA13 and ethanol-inducible P0688 and PsynIV-5 were selected for the expression of an α-amylase and yielded enzyme activity 1.6, 2.6, and 4.5 times higher as compared to that of PAOX1. This work expands the genetic toolkit available for P. pastoris, providing more precise and efficient options for regulating gene expression. It benefits the use of P. pastoris as an efficient platform for the C1 and C2 alcohol-based biotransformation in industrial biotechnology.IMPORTANCEP. pastoris represents a preferred microbial host for the bio-utilization of C1 and C2 alcohols that are regarded as renewable carbon sources based on clean energy. However, lack of efficient and regulated expression tools highly limits the C1 and C2 alcohols based bioproduction. By exploring high-strength and strictly regulated alcohol-inducible promoters, this study expands the expression toolkit for P. pastoris on C1 and C2 alcohols. The newly developed methanol-inducible PA13 and ethanol-inducible PsynIV-5 demonstrate significantly higher expression levels than the commercial PAOX1 system. The endogenous and synthetic promoter series established in this study provides new construction references and alternative tools for expression control in P. pastoris for C1 and C2 alcohols based biomanufacturing.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yun-hao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-fei Tao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jia-yi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-lun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meng-hao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| |
Collapse
|
4
|
Nguyen L, Schmelzer B, Wilkinson S, Mattanovich D. From natural to synthetic: Promoter engineering in yeast expression systems. Biotechnol Adv 2024; 77:108446. [PMID: 39245291 DOI: 10.1016/j.biotechadv.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Synthetic promoters are particularly relevant for application not only in yeast expression systems designed for high-level heterologous protein production but also in other applications such as metabolic engineering, cell biological research, and stage-specific gene expression control. By designing synthetic promoters, researcher can create customized expression systems tailored to specific needs, whether it is maximizing protein production or precisely controlling gene expression at different stages of a process. While recognizing the limitations of endogenous promoters, they also provide important information needed to design synthetic promoters. In this review, emphasis will be placed on some key approaches to identify endogenous, and to generate synthetic promoters in yeast expression systems. It shows the connection between endogenous and synthetic promoters, highlighting how their interplay contributes to promoter development. Furthermore, this review illustrates recent developments in biotechnological advancements and discusses how this field will evolve in order to develop custom-made promoters for diverse applications. This review offers detailed information, explores the transition from endogenous to synthetic promoters, and presents valuable perspectives on the next generation of promoter design strategies.
Collapse
Affiliation(s)
- Ly Nguyen
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | - Bernhard Schmelzer
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | | | - Diethard Mattanovich
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria.
| |
Collapse
|
5
|
Krappinger JC, Aguilar Gomez CM, Hoenikl A, Schusterbauer V, Hatzl AM, Feichtinger J, Glieder A. dMAD7 is a promising tool for targeted gene regulation in the methylotrophic yeast Komagataella phaffii. N Biotechnol 2024; 83:110-120. [PMID: 38960022 DOI: 10.1016/j.nbt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.
Collapse
Affiliation(s)
- Julian C Krappinger
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Carla M Aguilar Gomez
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Andrea Hoenikl
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Anna-Maria Hatzl
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Julia Feichtinger
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| | - Anton Glieder
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
6
|
Lin X, Ding W, Zheng S, Wu L, Chen X, Xie C, Liu D, Yao D. Novel transcriptional regulation of the GAP promoter in Pichia pastoris towards high expression of heterologous proteins. Microb Cell Fact 2024; 23:206. [PMID: 39044288 PMCID: PMC11267847 DOI: 10.1186/s12934-024-02435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Pichia pastoris (Komagataella phaffii) is a promising production host, but the usage of methanol limits its application in the medicine and food industries. RESULTS To improve the constitutive expression of heterologous proteins in P. pastoris, four new potential transcription regulators (Loc1p, Msn2p, Gsm1p, Hot1p) of the glyceraldehyde triphosphate dehydrogenase promoter (pGAP) were revealed in this study by using cellulase E4 as reporter gene. On this basis, a series of P. pastoris strains with knockout or overexpression of transcription factors were constructed and the deletion of transcription factor binding sites on pGAP was confirmed. The results showed that Loc1p and Msn2p can inhibit the activity of pGAP, while Gsm1p and Hot1p can enhance the activity of pGAP; Loc1p, Gsm1p and Hot1p can bind directly to pGAP, while Msn2p must be treated to expose the C-terminal domain to bind to pGAP. Moreover, manipulating a single transcription factor led to a 0.96-fold to 2.43-fold increase in xylanase expression. In another model protein, aflatoxin oxidase, knocking out Loc1 based on AFO-∆Msn2 strain resulted in a 0.63-fold to 1.4-fold increase in expression. It can be demonstrated that the combined use of transcription factors can further improve the expression of exogenous proteins in P. pastoris. CONCLUSION These findings will contribute to the construction of pGAP-based P. pastoris systems towards high expression of heterologous proteins, hence improving the application potential of yeast.
Collapse
Affiliation(s)
- Xiangna Lin
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Weiqiu Ding
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Shaoyan Zheng
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Lianna Wu
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Xue Chen
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Chunfang Xie
- Department of Bioengineering, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Daling Liu
- Department of Bioengineering, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Dongsheng Yao
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China.
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China.
| |
Collapse
|
7
|
Tsuda M, Nonaka K. Recent progress on heterologous protein production in methylotrophic yeast systems. World J Microbiol Biotechnol 2024; 40:200. [PMID: 38730212 PMCID: PMC11087369 DOI: 10.1007/s11274-024-04008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.
Collapse
Affiliation(s)
- Masashi Tsuda
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan.
| | - Koichi Nonaka
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan
| |
Collapse
|
8
|
Arjmand S. Promoters in Pichia pastoris: A Toolbox for Fine-Tuned Gene Expression. Methods Mol Biol 2024; 2844:159-178. [PMID: 39068339 DOI: 10.1007/978-1-0716-4063-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This chapter reviews the different promoters used to control gene expression in the yeast Pichia pastoris, mainly for recombinant protein production. It covers natural inducible, derepressed, and constitutive promoters, as well as engineered synthetic/hybrid promoters, orthologous promoters from related yeasts, and emerging bidirectional promoters. Key examples, characteristics, and regulatory mechanisms are discussed for each promoter class. Recent efforts in promoter engineering through rational design, mutagenesis, and computational approaches are also highlighted. Looking ahead, we anticipate further developments that will enhance promoter design for Pichia pastoris. Overall, this comprehensive overview underscores the importance of promoter choice and engineering for fully harnessing Pichia pastoris biotechnological potential.
Collapse
Affiliation(s)
- Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
9
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Current achievements, strategies, obstacles, and overcoming the challenges of the protein engineering in Pichia pastoris expression system. World J Microbiol Biotechnol 2023; 40:39. [PMID: 38062216 DOI: 10.1007/s11274-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Yeasts serve as exceptional hosts in the manufacturing of functional protein engineering and possess industrial or medical utilities. Considerable focus has been directed towards yeast owing to its inherent benefits and recent advancements in this particular cellular host. The Pichia pastoris expression system is widely recognized as a prominent and widely accepted instrument in molecular biology for the purpose of generating recombinant proteins. The advantages of utilizing the P. pastoris system for protein production encompass the proper folding process occurring within the endoplasmic reticulum (ER), as well as the subsequent secretion mediated by Kex2 as a signal peptidase, ultimately leading to the release of recombinant proteins into the extracellular environment of the cell. In addition, within the P. pastoris expression system, the ease of purifying recombinant protein arises from its restricted synthesis of endogenous secretory proteins. Despite its achievements, scientists often encounter persistent challenges when attempting to utilize yeast for the production of recombinant proteins. This review is dedicated to discussing the current achievements in the usage of P. pastoris as an expression host. Furthermore, it sheds light on the strategies employed in the expression system and the optimization and development of the fermentative process of this yeast. Finally, the impediments (such as identifying high expression strains, improving secretion efficiency, and decreasing hyperglycosylation) and successful resolution of certain difficulties are put forth and deliberated upon in order to assist and promote the expression of complex proteins in this prevalent recombinant host.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
10
|
Jun JS, Jeong HE, Hong KW. Exploring and Engineering Novel Strong Promoters for High-Level Protein Expression in Bacillus subtilis DB104 through Transcriptome Analysis. Microorganisms 2023; 11:2929. [PMID: 38138072 PMCID: PMC10745405 DOI: 10.3390/microorganisms11122929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus subtilis is widely employed for recombinant protein expression. B. subtilis DB104 offers a distinct advantage as a protein expression host because it is an extracellular protease-deficient derivative of B. subtilis 168. We have conducted a time-course transcriptome analysis of B. subtilis DB104 in a prior study. In the present study, we identified 10 genes that exhibited strong expression at each time point or all, based on transcriptome data. Subsequently, we assessed the strength of 12 promoters that transcribe these genes using enhanced green fluorescent protein (eGFP) as a reporter. Among these promoters, Psdp and PskfA had the highest expression levels. At 24 h, these two promoters exhibited 34.5- and 38.8-fold higher strength, respectively, than the strength of P43, the control promoter. Consequently, these two promoters were selected for further development. We enhanced these promoters by optimizing spacer length, promoter sequence, Shine-Dalgarno sequence, regulator binding sites, and terminator sequences. As a result, we successfully engineered the most potent protein expression cassette, Psdp-4, which exhibited a 3.84-fold increase in strength compared to the original Psdp promoter. Furthermore, we constructed an expression cassette for a human epidermal growth factor (hEGF) using Psdp-4 to evaluate its general application. The expression level of His tagged hEGF, quantified using ImageJ analysis and applied to SDS-PAGE, reached the highest yield of 103.9 μg/mL under the control of Psdp-4 at 24 h. The expressed hEGF protein was purified, and its bioactivity was confirmed through a cell proliferation assay using HT-29 cells. Our work demonstrates the construction of a highly efficient expression system for B. subtilis DB104 based on transcriptome data and promoter engineering. This system enables rapid, inducer-free protein expression within 24 h. It can be used as a valuable tool for various industrial applications.
Collapse
Affiliation(s)
| | | | - Kwang-Won Hong
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang-si 10326, Republic of Korea; (J.-S.J.); (H.-E.J.)
| |
Collapse
|
11
|
Wu X, Cai P, Yao L, Zhou YJ. Genetic tools for metabolic engineering of Pichia pastoris. ENGINEERING MICROBIOLOGY 2023; 3:100094. [PMID: 39628915 PMCID: PMC11611016 DOI: 10.1016/j.engmic.2023.100094] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 12/06/2024]
Abstract
The methylotrophic yeast Pichia pastoris (also known as Komagataella phaffii) is widely used as a yeast cell factory for producing heterologous proteins. Recently, it has gained attention for its potential in producing chemicals from inexpensive feedstocks, which requires efficient genetic engineering platforms. This review provides an overview of the current advances in developing genetic tools for metabolic engineering of P. pastoris. The topics cover promoters, terminators, plasmids, genome integration sites, and genetic editing systems, with a special focus on the development of CRISPR/Cas systems and their comparison to other genome editing tools. Additionally, this review highlights the prospects of multiplex genome integration, fine-tuning gene expression, and single-base editing systems. Overall, the aim of this review is to provide valuable insights into current genetic engineering and discuss potential directions for future efforts in developing efficient genetic tools in P. pastoris.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
12
|
Pan Y, Yang J, Wu J, Yang L, Fang H. Current advances of Pichia pastoris as cell factories for production of recombinant proteins. Front Microbiol 2022; 13:1059777. [PMID: 36504810 PMCID: PMC9730254 DOI: 10.3389/fmicb.2022.1059777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Pichia pastoris (syn. Komagataella spp.) has attracted extensive attention as an efficient platform for recombinant protein (RP) production. For obtaining a higher protein titer, many researchers have put lots of effort into different areas and made some progress. Here, we summarized the most recent advances of the last 5 years to get a better understanding of its future direction of development. The appearance of innovative genetic tools and methodologies like the CRISPR/Cas9 gene-editing system eases the manipulation of gene expression systems and greatly improves the efficiency of exploring gene functions. The integration of novel pathways in microorganisms has raised more ideas of metabolic engineering for enhancing RP production. In addition, some new opportunities for the manufacture of proteins have been created by the application of novel mathematical models coupled with high-throughput screening to have a better overview of bottlenecks in the biosynthetic process.
Collapse
Affiliation(s)
- Yingjie Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiao Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianping Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lirong Yang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
13
|
Liu B, Zhao Y, Zhou H, Zhang J. Enhancing xylanase expression of Komagataella phaffii induced by formate through Mit1 co-expression. Bioprocess Biosyst Eng 2022; 45:1515-1525. [PMID: 35881246 DOI: 10.1007/s00449-022-02760-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Komagataella phaffii (K. phaffii) is a famous microbial cell of heterologous protein and value-added chemicals production because of its strict and strong promoter (alcohol oxidase 1 promoter, PAOX1). Formate is an attractive substitute of traditional inducer methanol because methanol is toxic and explosive. To obtain high level of Aspergillus niger ATCC1015 xylanase as a model of heterologous protein by K. phaffii at formate induction, insertion of three-copy cis-acting element W3A into PAOX1 additionally, and co-expression of transcription factor Mit1 under another PAOX1 were carried out separately and simultaneously. The yield of xylanase increased by 41% at formate induction when Mit1 was co-expressed. Furtherly, the yield of xylanase increased by 42% using sorbitol as supplemental carbon source with the result of 408.3 × 103 U‧L-1 xylanase. Therefore, a non-methanol needed and inducible heterologous protein expression system of Komagataella phaffii was developed successfully.
Collapse
Affiliation(s)
- Bing Liu
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Yixin Zhao
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Hualan Zhou
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Jianguo Zhang
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093.
| |
Collapse
|
14
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
15
|
Liu Q, Song L, Peng Q, Zhu Q, Shi X, Xu M, Wang Q, Zhang Y, Cai M. A programmable high-expression yeast platform responsive to user-defined signals. SCIENCE ADVANCES 2022; 8:eabl5166. [PMID: 35148182 PMCID: PMC8836803 DOI: 10.1126/sciadv.abl5166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rapidly growing yeasts with appropriate posttranslational modifications are favored hosts for protein production in the biopharmaceutical industry. However, limited production capacity and intricate transcription regulation restrict their application and adaptability. Here, we describe a programmable high-expression yeast platform, SynPic-X, which responds to defined signals and is broadly applicable. We demonstrated that a synthetic improved transcriptional signal amplification device (iTSAD) with a bacterial-yeast transactivator and bacterial-yeast promoter markedly increased expression capacity in Pichia pastoris. CRISPR activation and interference devices were designed to strictly regulate iTSAD in response to defined signals. Engineered switches were then constructed to exemplify the response of SynPic-X to exogenous signals. Expression of α-amylase by SynPic-R, a specific SynPic-X, in a bioreactor proved a methanol-free high-production process of recombinant protein. Our SynPic-X platform provides opportunities for protein production in customizable yeast hosts with high expression and regulatory flexibility.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lili Song
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiangqiang Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiaoyun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingqiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Corresponding author.
| |
Collapse
|
16
|
Wang Y, Li J, Zhao F, Zhang Y, Yang X, Lin Y, Han S. Methanol oxidase from Hansenula polymorpha shows activity in peroxisome-deficient Pichia pastoris. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Gasset A, Garcia-Ortega X, Garrigós-Martínez J, Valero F, Montesinos-Seguí JL. Innovative Bioprocess Strategies Combining Physiological Control and Strain Engineering of Pichia pastoris to Improve Recombinant Protein Production. Front Bioeng Biotechnol 2022; 10:818434. [PMID: 35155391 PMCID: PMC8826567 DOI: 10.3389/fbioe.2022.818434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
The combination of strain and bioprocess engineering strategies should be considered to obtain the highest levels of recombinant protein production (RPP) while assuring product quality and process reproducibility of heterologous products. In this work, two complementary approaches were investigated to improve bioprocess efficiency based on the yeast P. pastoris. Firstly, the performance of two Candida rugosa lipase 1 producer clones with different gene dosage under the regulation of the constitutive PGAP were compared in chemostat cultures with different oxygen-limiting conditions. Secondly, hypoxic conditions in carbon-limited fed-batch cultures were applied by means of a physiological control based on the respiratory quotient (RQ). Stirring rate was selected to maintain RQ between 1.4 and 1.6, since it was found to be the most favorable in chemostat. As the major outcome, between 2-fold and 4-fold higher specific production rate (qP) values were observed when comparing multicopy clone (MCC) and single-copy clone (SCC), both in chemostat and fed-batch. Additionally, when applying oxygen limitation, between 1.5-fold and 3-fold higher qP values were obtained compared with normoxic conditions. Thus, notable increases of up to 9-fold in the production rates were reached. Furthermore, transcriptional analysis of certain key genes related to RPP and central carbon metabolism were performed. Results seem to indicate the presence of a limitation in post-transcriptional protein processing steps and a possible transcription attenuation of the target gene in the strains with high gene dosage. The entire approach, including both strain and bioprocess engineering, represents a relevant novelty involving physiological control in Pichia cell factory and is of crucial interest in bioprocess optimization, boosting RPP, allowing bioproducts to be economically competitive in the market, and helping develop the bioeconomy.
Collapse
Affiliation(s)
- Arnau Gasset
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Garcia-Ortega
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- QuBi Lab, Department of Biosciences, Faculty of Sciences and Technology, Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Javier Garrigós-Martínez
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- *Correspondence: Francisco Valero,
| | - José Luis Montesinos-Seguí
- Department of Chemical, Biological and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
18
|
Rinnofner C, Felber M, Pichler H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods Mol Biol 2022; 2513:79-112. [PMID: 35781201 DOI: 10.1007/978-1-0716-2399-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
Affiliation(s)
- Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
- Bisy GmbH, Hofstaetten/Raab, Austria.
| | - Michael Felber
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
19
|
Abstract
The availability of exceptionally strong and tightly regulated promoters is a key feature of Komagataella phaffii (syn. Pichia pastoris), a widely applied yeast expression system for heterologous protein production. Most commonly, the methanol-inducible promoter of the alcohol oxidase 1 gene (PAOX1) and the constitutive promoter of the glyceraldehyde 3 phosphate dehydrogenase gene (PGAP) have been used. Recently, also promising novel constitutive (PGCW14), regulated (PGTH1, PCAT1), and bidirectional promoters (histone promoters and synthetic hybrid variants) have been reported.As natural promoters showed so far limited tunability of expression levels and regulatory profiles, various promoter engineering efforts have been undertaken for P. pastoris . PAOX1, PDAS2, PGAP, and PGCW14 have been engineered by systematic deletion studies or random mutagenesis of upstream regulatory sequences. New engineering strategies have focused on PAOX1 core promoter modifications by random or rational approaches and transcriptional regulatory circuits to render PAOX1 independent of methanol induction. These promoter engineering efforts in P. pastoris have resulted in improved, sequence-diversified synthetic promoter variants allowing coordinated fine-tuning of gene expression for a multitude of biotechnological applications.
Collapse
Affiliation(s)
- Thomas Vogl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria.
| |
Collapse
|
20
|
Dou W, Zhu Q, Zhang M, Jia Z, Guan W. Screening and evaluation of the strong endogenous promoters in Pichia pastoris. Microb Cell Fact 2021; 20:156. [PMID: 34372831 PMCID: PMC8351359 DOI: 10.1186/s12934-021-01648-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/31/2021] [Indexed: 01/29/2023] Open
Abstract
Background Due to its ability to perform fast and high-density fermentation, Pichia pastoris is not only used as an excellent host for heterologous protein expression but also exhibits good potential for efficient biosynthesis of small-molecule compounds. However, basic research on P. pastoris lags far behind Saccharomyces cerevisiae, resulting in a lack of available biological elements. Especially, fewer strong endogenous promoter elements available for foreign protein expression or construction of biosynthetic pathways were carefully evaluated in P. pastoris. Thus, it will be necessary to identify more available endogenous promoters from P. pastoris. Results Based on RNA-seq and LacZ reporter system, eight strong endogenous promoters contributing to higher transcriptional expression levels and β-galactosidase activities in three frequently-used media were screened out. Among them, the transcriptional expression level contributed by P0019, P0107, P0230, P0392, or P0785 was basically unchanged during the logarithmic phase and stationary phase of growth. And the transcriptional level contributed by P0208 or P0627 exhibited a growth-dependent characteristic (a lower expression level during the logarithmic phase and a higher expression level during the stationary phase). After 60 h growth, the β-galactosidase activity contributed by P0208, P0627, P0019, P0407, P0392, P0230, P0785, or P0107 was relatively lower than PGAP but higher than PACT1. To evaluate the availability of these promoters, several of them were randomly applied to a heterogenous β-carotene biosynthetic pathway in P. pastoris, and the highest yield of β-carotene from these mutants was up to 1.07 mg/g. In addition, simultaneously using the same promoter multiple times could result in a notable competitive effect, which might significantly lower the transcriptional expression level of the target gene. Conclusions The novel strong endogenous promoter identified in this study adds to the number of promoter elements available in P. pastoris. And the competitive effect observed here suggests that a careful pre-evaluation is needed when simultaneously and multiply using the same promoter in one yeast strain. This work also provides an effective strategy to identify more novel biological elements for engineering applications in P. pastoris. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01648-6.
Collapse
Affiliation(s)
- Weiwang Dou
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Quanchao Zhu
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meihua Zhang
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Zuyuan Jia
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenjun Guan
- Institute of Pharmaceutical Biotechnology and The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Established tools and emerging trends for the production of recombinant proteins and metabolites in Pichia pastoris. Essays Biochem 2021; 65:293-307. [PMID: 33956085 DOI: 10.1042/ebc20200138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/31/2022]
Abstract
Besides bakers' yeast, the methylotrophic yeast Komagataella phaffii (also known as Pichia pastoris) has been developed into the most popular yeast cell factory for the production of heterologous proteins. Strong promoters, stable genetic constructs and a growing collection of freely available strains, tools and protocols have boosted this development equally as thorough genetic and cell biological characterization. This review provides an overview of state-of-the-art tools and techniques for working with P. pastoris, as well as guidelines for the production of recombinant proteins with a focus on small-scale production for biochemical studies and protein characterization. The growing applications of P. pastoris for in vivo biotransformation and metabolic pathway engineering for the production of bulk and specialty chemicals are highlighted as well.
Collapse
|
22
|
Sun W, Jiang B, Zhao D, Pu Z, Bao Y. Integration of metabolic pathway manipulation and promoter engineering for the fine-tuned biosynthesis of malic acid in Bacillus coagulans. Biotechnol Bioeng 2021; 118:2597-2608. [PMID: 33829485 DOI: 10.1002/bit.27780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Bacillus coagulans, a thermophilic facultative anaerobe, is a favorable chassis strain for the biosynthesis of desired products. In this study, B. coagulans was converted into an efficient malic acid producer by metabolic engineering and promoter engineering. Promoter mapping revealed that the endogenous promoter Pldh was a tandem promoter. Accordingly, a promoter library was developed, covering a wide range of relative transcription efficiencies with small increments. A reductive tricarboxylic acid pathway was established in B. coagulans by introducing the genes encoding pyruvate carboxylase (pyc), malate dehydrogenase (mdh), and phosphoenolpyruvate carboxykinase (pckA). Five promoters of various strengths within the library were screened to fine-tune the expression of pyc to improve the biosynthesis of malic acid. In addition, genes involved in the competitive metabolic pathways were deleted to focus the substrate and energy flux toward malic acid. Dual-phase fed-batch fermentation was performed to increase the biomass of the strain, further improving the titer of malic acid to 25.5 g/L, with a conversion rate of 0.3 g/g glucose. Our study is a pioneer research using promoter engineering and genetically modified B. coagulans for the biosynthesis of malic acid, providing an effective approach for the industrialized production of desired products using B. coagulans.
Collapse
Affiliation(s)
- Wenhui Sun
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Bo Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Dongying Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.,School of Ocean Science and Technology, Dalian University of Technology, Panjin, Liaoning, China
| |
Collapse
|
23
|
Bioprocess performance analysis of novel methanol-independent promoters for recombinant protein production with Pichia pastoris. Microb Cell Fact 2021; 20:74. [PMID: 33757505 PMCID: PMC7986505 DOI: 10.1186/s12934-021-01564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Abstract
Background Pichia pastoris is a powerful and broadly used host for recombinant protein production (RPP), where past bioprocess performance has often been directed with the methanol regulated AOX1 promoter (PAOX1), and the constitutive GAP promoter (PGAP). Since promoters play a crucial role in an expression system and the bioprocess efficiency, innovative alternatives are constantly developed and implemented. Here, a thorough comparative kinetic characterization of two expression systems based on the commercial PDF and UPP promoters (PPDF, PUPP) was first conducted in chemostat cultures. Most promising conditions were subsequently tested in fed-batch cultivations. These new alternatives were compared with the classical strong promoter PGAP, using the Candida antarctica lipase B (CalB) as model protein for expression system performance. Results Both the PPDF and PUPP-based expression systems outperformed similar PGAP-based expression in chemostat cultivations, reaching ninefold higher specific production rates (qp). CALB transcription levels were drastically higher when employing the novel expression systems. This higher expression was also correlated with a marked upregulation of unfolded protein response (UPR) related genes, likely from an increased protein burden in the endoplasmic reticulum (ER). Based on the chemostat results obtained, best culture strategies for both PPDF and PUPP expression systems were also successfully implemented in 15 L fed-batch cultivations where qp and product to biomass yield (YP/X*) values were similar than those obtained in chemostat cultivations. Conclusions As an outcome of the macrokinetic characterization presented, the novel PPDF and PUPP were observed to offer much higher efficiency for CalB production than the widely used PGAP-based methanol-free alternative. Thus, both systems arise as highly productive alternatives for P. pastoris-based RPP bioprocesses. Furthermore, the different expression regulation patterns observed indicate the level of gene expression can be adjusted, or tuned, which is interesting when using Pichia pastoris as a cell factory for different products of interest. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01564-9.
Collapse
|
24
|
Patra P, Das M, Kundu P, Ghosh A. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. Biotechnol Adv 2021; 47:107695. [PMID: 33465474 DOI: 10.1016/j.biotechadv.2021.107695] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Microbial bioproduction of chemicals, proteins, and primary metabolites from cheap carbon sources is currently an advancing area in industrial research. The model yeast, Saccharomyces cerevisiae, is a well-established biorefinery host that has been used extensively for commercial manufacturing of bioethanol from myriad carbon sources. However, its Crabtree-positive nature often limits the use of this organism for the biosynthesis of commercial molecules that do not belong in the fermentative pathway. To avoid extensive strain engineering of S. cerevisiae for the production of metabolites other than ethanol, non-conventional yeasts can be selected as hosts based on their natural capacity to produce desired commodity chemicals. Non-conventional yeasts like Kluyveromyces marxianus, K. lactis, Yarrowia lipolytica, Pichia pastoris, Scheffersomyces stipitis, Hansenula polymorpha, and Rhodotorula toruloides have been considered as potential industrial eukaryotic hosts owing to their desirable phenotypes such as thermotolerance, assimilation of a wide range of carbon sources, as well as ability to secrete high titers of protein and lipid. However, the advanced metabolic engineering efforts in these organisms are still lacking due to the limited availability of systems and synthetic biology methods like in silico models, well-characterised genetic parts, and optimized genome engineering tools. This review provides an insight into the recent advances and challenges of systems and synthetic biology as well as metabolic engineering endeavours towards the commercial usage of non-conventional yeasts. Particularly, the approaches in emerging non-conventional yeasts for the production of enzymes, therapeutic proteins, lipids, and metabolites for commercial applications are extensively discussed here. Various attempts to address current limitations in designing novel cell factories have been highlighted that include the advances in the fields of genome-scale metabolic model reconstruction, flux balance analysis, 'omics'-data integration into models, genome-editing toolkit development, and rewiring of cellular metabolisms for desired chemical production. Additionally, the understanding of metabolic networks using 13C-labelling experiments as well as the utilization of metabolomics in deciphering intracellular fluxes and reactions have also been discussed here. Application of cutting-edge nuclease-based genome editing platforms like CRISPR/Cas9, and its optimization towards efficient strain engineering in non-conventional yeasts have also been described. Additionally, the impact of the advances in promising non-conventional yeasts for efficient commercial molecule synthesis has been meticulously reviewed. In the future, a cohesive approach involving systems and synthetic biology will help in widening the horizon of the use of unexplored non-conventional yeast species towards industrial biotechnology.
Collapse
Affiliation(s)
- Pradipta Patra
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pritam Kundu
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
25
|
Ethanol fed-batch bioreactor operation to enhance therapeutic protein production in Pichia pastoris under hybrid-architectured ADH2 promoter. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Demir İ, Çalık P. Hybrid-architectured double-promoter expression systems enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media. Appl Microbiol Biotechnol 2020; 104:8381-8397. [DOI: 10.1007/s00253-020-10796-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
|
27
|
Prattipati M, Ramakrishnan K, Sankaranarayanan M. Pichia pastoris Protein Disulfide Isomerase (PDI1) promoter for heterologous protein production and its sequence characterization. Enzyme Microb Technol 2020; 140:109633. [PMID: 32912692 DOI: 10.1016/j.enzmictec.2020.109633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) expression system has been widely used in heterologous protein production. PDI1 is the structural gene for Protein Disulfide Isomerase (PDI) and one of the main proteins in the endoplasmic reticulum (ER). It serves as a chaperone and helps in the formation, restoration and isomerization of disulfide bonds in nascent proteins. Overexpression of chaperone genes like PDI1, is one of the approaches to alleviate unfolded protein response (UPR) in multicopy clones of P. pastoris. However, it is not in a general scheme and these approaches are protein specific. The complete understanding of promoter region of PDI1 can give insights for better regulation of UPR. The aim of our work was to characterize promoter region of PDI1 gene and evaluate the possibility of their use for efficient expression of heterologous proteins. For this purpose, we used a reporter system based on the Candida antarctica lipase B (CalB) gene. The efficiency of PDI1 promoter was also compared with that of inducible promoter, AOX1, and the constitutive promoter, GAP, under different carbon sources like glucose, glycerol and methanol. The results appear that the PDI1 promoter may act as an UPR inducible promoter at high copy numbers of target gene. Therefore, we propose that the PDI1 promoter can be used for moderate expression of heterologous proteins in pathway engineering applications and also for overexpression of molecular chaperones.
Collapse
|
28
|
Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:7273-7311. [PMID: 32651601 DOI: 10.1007/s00253-020-10680-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/21/2023]
Abstract
System-wide interactions in living cells and discovery of the diverse roles of transcriptional regulatory proteins that are mediator proteins with catalytic domains and regulatory subunits and transcription factors in the cellular pathways have become crucial for understanding the cellular response to environmental conditions. This review provides information for future metabolic engineering strategies through analyses on the highly interconnected regulatory networks in Saccharomyces cerevisiae and Pichia pastoris and identifying their components. We discuss the current knowledge on the carbon catabolite repression (CCR) mechanism, interconnecting regulatory system of the central metabolic pathways that regulate cell metabolism based on nutrient availability in the industrial yeasts. The regulatory proteins and their functions in the CCR signalling pathways in both yeasts are presented and discussed. We highlight the importance of metabolic signalling networks by signifying ways on how effective engineering strategies can be designed for generating novel regulatory circuits, furthermore to activate pathways that reconfigure the network architecture. We summarize the evidence that engineering of multilayer regulation is needed for directed evolution of the cellular network by putting the transcriptional control into a new perspective for the regulation of central carbon metabolism of the industrial yeasts; furthermore, we suggest research directions that may help to enhance production of recombinant products in the widely used, creatively engineered, but relatively less studied P. pastoris through de novo metabolic engineering strategies based on the discovery of components of signalling pathways in CCR metabolism. KEY POINTS: • Transcriptional regulation and control is the key phenomenon in the cellular processes. • Designing de novo metabolic engineering strategies depends on the discovery of signalling pathways in CCR metabolism. • Crosstalk between pathways occurs through essential parts of transcriptional machinery connected to specific catalytic domains. • In S. cerevisiae, a major part of CCR metabolism is controlled through Snf1 kinase, Glc7 phosphatase, and Srb10 kinase. • In P. pastoris, signalling pathways in CCR metabolism have not yet been clearly known yet. • Cellular regulations on the transcription of promoters are controlled with carbon sources.
Collapse
|
29
|
Wen J, Tian L, Xu M, Zhou X, Zhang Y, Cai M. A Synthetic Malonyl-CoA Metabolic Oscillator in Komagataella phaffii. ACS Synth Biol 2020; 9:1059-1068. [PMID: 32227991 DOI: 10.1021/acssynbio.9b00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Malonyl-CoA is a key metabolic molecule that participates in a diverse range of physiological responses and can act as a building block for a variety of value-added pharmaceuticals and chemicals. The cytosolic malonyl-CoA concentration is usually very low, and thus dynamic metabolic control of malonyl-CoA variation will aid its stable formation and efficient consumption. We developed a synthetic malonyl-CoA metabolic oscillator in yeast. A synthetic regulatory protein, Prm1-FapR, was constructed by fusing a yeast transcriptional activator, Prm1, with a bacterial malonyl-CoA-sensitive transcription repressor, FapR. Two oppositely regulated biosensors were then engineered. A total of 18 hybrid promoter variants were designed, each carrying the operator sequence (fapO) of FapR and the core promoter of PAOX1 (cPAOX1), which is naturally regulated by Prm1. The promoter activities of these variants, regulated by Prm1-FapR, were tested. Through this process, a sensor for Prm1-FapR/(-52)fapO-PAOX1 carrying an activation/deactivation regulation module was built. Meanwhile, 24 promoter variants of PGAP with fapO inserted were designed and tested using the fusion regulator, giving a sensor for Prm1-FapR/PGAP-(+22) fapO that contained a repression/derepression regulation module. Both sensors were subsequently integrated into a single cell, which exhibited correct metabolic switching of eGFP and mCherry reporters following manipulation of cytosolic malonyl-CoA levels. The Prm1-FapR/(-52)fapO-PAOX1 and the Prm1-FapR/PGAP-(+22)fapO were also used to control the malonyl-CoA source and sink pathways, respectively, for the synthesis of 6-methylsalicylic acid. This finally led to an oscillatory metabolic mode of cytosolic malonyl-CoA. Such a metabolator is useful in exploring potential industrial and biomedical applications not limited by natural cellular behavior.
Collapse
Affiliation(s)
- Jiao Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lin Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingqiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
30
|
Zhang C, Ma Y, Miao H, Tang X, Xu B, Wu Q, Mu Y, Huang Z. Transcriptomic Analysis of Pichia pastoris ( Komagataella phaffii) GS115 During Heterologous Protein Production Using a High-Cell-Density Fed-Batch Cultivation Strategy. Front Microbiol 2020; 11:463. [PMID: 32265887 PMCID: PMC7098997 DOI: 10.3389/fmicb.2020.00463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
Pichia pastoris (Komagataella phaffii) is a methylotrophic yeast that is widely used in industry as a host system for heterologous protein expression. Heterologous gene expression is typically facilitated by strongly inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters. However, protein production is usually accomplished by a fed-batch induction process, which is known to negatively affect cell physiology, resulting in limited protein yields and quality. To assess how yields of exogenous proteins can be increased and to further understand the physiological response of P. pastoris to the carbon conversion of glycerol and methanol, as well as the continuous induction of methanol, we analyzed recombinant protein production in a 10,000-L fed-batch culture. Furthermore, we investigated gene expression during the yeast cell culture phase, glycerol feed phase, glycerol-methanol mixture feed (GM) phase, and at different time points following methanol induction using RNA-Seq. We report that the addition of the GM phase may help to alleviate the adverse effects of methanol addition (alone) on P. pastoris cells. Secondly, enhanced upregulation of the mitogen-activated protein kinase (MAPK) signaling pathway was observed in P. pastoris following methanol induction. The MAPK signaling pathway may be related to P. pastoris cell growth and may regulate the alcohol oxidase1 (AOX1) promoter via regulatory factors activated by methanol-mediated stimulation. Thirdly, the unfolded protein response (UPR) and ER-associated degradation (ERAD) pathways were not significantly upregulated during the methanol induction period. These results imply that the presence of unfolded or misfolded phytase protein did not represent a serious problem in our study. Finally, the upregulation of the autophagy pathway during the methanol induction phase may be related to the degradation of damaged peroxisomes but not to the production of phytase. This work describes the metabolic characteristics of P. pastoris during heterologous protein production under high-cell-density fed-batch cultivation. We believe that the results of this study will aid further in-depth studies of P. pastoris heterologous protein expression, regulation, and secretory mechanisms.
Collapse
Affiliation(s)
- Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Yu Ma
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yuelin Mu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
- School of Life Sciences, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| |
Collapse
|
31
|
Ergün BG, Demir İ, Özdamar TH, Gasser B, Mattanovich D, Çalık P. Engineered Deregulation of Expression in Yeast with Designed Hybrid-Promoter Architectures in Coordination with Discovered Master Regulator Transcription Factor. ACTA ACUST UNITED AC 2020; 4:e1900172. [PMID: 32293158 DOI: 10.1002/adbi.201900172] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/05/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
Engineered promoters are key components in the cell-factory design, allowing precise and enhanced expression of genes. Promoters having exceptional strength are attractive candidates for designing metabolic engineering strategies for tailoring de novo production strategies that require directed evolution methods by engineering with de novo synthetic biology tools. Here, the custom-designed AOX1 hybrid-promoter architectures in coordination with targeted transcription factors are shown, transcriptionally rewired the expression over methanol-free substrate-utilization pathway(s) and converted methanol-dependent Pichia pastoris alcohol oxidase 1(AOX1) promoter (PAOX1 ) expression into a non-toxic carbon-source-regulated system. AOX1 promoter variants are engineered by replacing specified cis-regulatory DNA elements with synthetic Adr1, Cat8, and Aca2 cis-acting DNA elements for Mxr1, Cat8, and Aca1 binding, respectively. Applications of the engineered-promoters are validated for eGFP expression and extracellular human serum albumin production. The hybrid-promoter architecture designed with single Cat8 cis-acting DNA element deregulates the expression on ethanol. Compared with PAOX1 on methanol, the expression on ethanol is increased with i) PAOX1/Cat8-L3 (designed with single Cat8 cis-acting element) to 74%, ii) PAOX1/Adr1-L3/Cat8-L3 (designed with single- Cat8 and Adr1 cis-acting elements) to 85%, and for further consolidation of deregulated expression iii) PeAOX1 (designed with triplet- Cat8 and Adr1 cis-acting elements) 1.30-fold, at t = 20 h of batch cultivations.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Department of Chemical Engineering, Biochemical Reaction Engineering Laboratory, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biotechnology, Industrial Biotechnology and Metabolic Engineering Laboratory, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - İrem Demir
- Department of Chemical Engineering, Biochemical Reaction Engineering Laboratory, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biotechnology, Industrial Biotechnology and Metabolic Engineering Laboratory, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Tunçer H Özdamar
- Biochemical Reaction Engineering Laboratory, Chemical Engineering Department, Ankara University, Tandoğan, Ankara, 06100, Turkey
| | - Brigitte Gasser
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Vienna, 1190, Austria
| | - Pınar Çalık
- Department of Chemical Engineering, Biochemical Reaction Engineering Laboratory, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biotechnology, Industrial Biotechnology and Metabolic Engineering Laboratory, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
32
|
de Jongh RP, van Dijk AD, Julsing MK, Schaap PJ, de Ridder D. Designing Eukaryotic Gene Expression Regulation Using Machine Learning. Trends Biotechnol 2020; 38:191-201. [DOI: 10.1016/j.tibtech.2019.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
|
33
|
Decoene T, De Maeseneire SL, De Mey M. Modulating transcription through development of semi-synthetic yeast core promoters. PLoS One 2019; 14:e0224476. [PMID: 31689317 PMCID: PMC6830820 DOI: 10.1371/journal.pone.0224476] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023] Open
Abstract
Altering gene expression regulation by promoter engineering is a very effective way to fine-tune heterologous pathways in eukaryotic hosts. Typically, pathway building approaches in yeast still use a limited set of long, native promoters. With the today’s introduction of longer and more complex pathways, an expansion of this synthetic biology toolbox is necessary. In this study we elucidated the core promoter structure of the well-characterized yeast TEF1 promoter and determined the minimal length needed for sufficient protein expression. Furthermore, this minimal core promoter sequence was used for the creation of a promoter library covering different expression strengths. This resulted in a group of short, 69 bp promoters with an 8.0-fold expression range. One exemplar had a two and four times higher expression compared to the native CYC1 and ADH1 promoter, respectively. Additionally, as it was described that the protein expression range could be broadened by upstream activating sequences (UASs), we integrated earlier described single and multiple short, synthetic UASs in front of the strongest yeast core promoter. This approach resulted to further variation in protein expression and an overall promoter library spanning a 20-fold activity range and covering a length from 69 bp to maximally 129 bp. Furthermore, the robustness of this library was assessed on three alternative carbon sources besides glucose. As such, the suitability of short yeast core promoters for metabolic engineering applications on different media, either in an individual context or combined with UAS elements, was demonstrated.
Collapse
Affiliation(s)
- Thomas Decoene
- Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Sofie L. De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Coupure links, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
34
|
Promoter engineering strategies for the overproduction of valuable metabolites in microbes. Appl Microbiol Biotechnol 2019; 103:8725-8736. [PMID: 31630238 DOI: 10.1007/s00253-019-10172-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
Promoter engineering is an enabling technology in metabolic engineering and synthetic biology. As an indispensable part of synthetic biology, the promoter is a key factor in regulating genetic circuits and in coordinating multi-gene biosynthetic pathways. In this review, we summarized the recent progresses in promoter engineering in microbes. Specifically, the endogenous promoters are firstly discussed, followed by the statement of the influence of nucleotides exchange on the strength of promoters explored by site-selective mutagenesis. We then introduced the promoter libraries with a wide range of strength, which are constructed focusing on core promoter regions and upstream activating sequences by rational designs. Finally, the application of promoter libraries in the optimization of multi-gene metabolic pathways for high-yield production of metabolites was illustrated with a couple of recent examples.
Collapse
|
35
|
Fischer JE, Glieder A. Current advances in engineering tools for Pichia pastoris. Curr Opin Biotechnol 2019; 59:175-181. [DOI: 10.1016/j.copbio.2019.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
|
36
|
Ergün BG, Gasser B, Mattanovich D, Çalık P. Engineering of
alcohol dehydrogenase 2
hybrid‐promoter architectures in
Pichia pastoris
to enhance recombinant protein expression on ethanol. Biotechnol Bioeng 2019; 116:2674-2686. [DOI: 10.1002/bit.27095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| | - Brigitte Gasser
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Vienna Austria
| | - Diethard Mattanovich
- Department of BiotechnologyUniversity of Natural Resources and Life Sciences Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB) Vienna Austria
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| |
Collapse
|
37
|
Liu Y, Bai C, Liu Q, Xu Q, Qian Z, Peng Q, Yu J, Xu M, Zhou X, Zhang Y, Cai M. Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast. Metab Eng 2019; 54:275-284. [PMID: 31077813 DOI: 10.1016/j.ymben.2019.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 01/17/2023]
Abstract
Many natural drugs use acetyl-CoA as the key biosynthetic precursor. While in eukaryotic chassis host like yeast, efficient biosynthesis of these drugs is often hampered by insufficient acetyl-CoA supply because of its compartmentalized metabolism. Reported acetyl-CoA engineering commonly modifies central carbon metabolism to pull and push acetyl-CoA into cytosol from sugars or redirects biosynthetic pathways in organelles, involving complicated metabolic engineering strategies. We constructed a new biosynthetic system based on a Crabtree-negative yeast, which grew exceptionally on ethanol and assimilated ethanol directly in cytosol to acetyl-CoA (3 steps). A glucose-repressed and ethanol-induced transcriptional signal amplification device (ESAD) with 20-fold signal increase was constructed by rewiring native transcriptional regulation circuits. This made ethanol the sole and fast-growing substrate, acetyl-CoA precursor, and strong biosynthetic pathway inducer simultaneously. The ESAD was used for biosynthesis of a commercial hypolipidemic drug intermediate, monacolin J. A strain producing dihydromonacolin L was firstly constructed and systematically engineered. We further developed a coculture system equipped with this upstream strain and a downstream strain with dihydromonacolin L-to-monacolin J module controlled by a synthetic constitutive transcriptional signal amplification device (CSAD). It produced a high monacolin J titre of 2.2 g/L on ethanol in bioreactor. Engineering glucose-supported and ethanol-repressed fatty acids biosynthesis in the upstream strain contributed more acetyl-CoA for monacolin J and improved its titre to 3.2 g/L, far surpassing other reported productions in yeasts. This study provides a new paradigm for facilitating the high-yield production of acetyl-CoA derived pharmaceuticals and value-added molecules.
Collapse
Affiliation(s)
- Yiqi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chenxiao Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qin Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhilan Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiangqiang Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahui Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingqiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
38
|
Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 2019; 39:258-271. [DOI: 10.1080/07388551.2018.1554620] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Sarah Inwood
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ashish Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Li-Yan Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
39
|
Wang Y, Liu Q, Weng H, Shi Y, Chen J, Du G, Kang Z. Construction of Synthetic Promoters by Assembling the Sigma Factor Binding -35 and -10 Boxes. Biotechnol J 2018; 14:e1800298. [PMID: 30457214 DOI: 10.1002/biot.201800298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Promoter is one of the key elements in regulating gene expression. Many natural or synthetic promoters have been modulated by their cis- or tans-regulatory elements to confer instant gene expression change in responding to designated stimuli. In addition, bacterial cells also engage different sigma factors to control the gene expression network at different growth phases or in response to the changing environment and external stresses. In this study, a set of promoters that assimilate the endogenous regulation of different sigma factors σ70 , σ38 , σ32 , and σ24 are synthesized. Promoters are designed to contain two or more kinds of interlocking sigma factor binding sites. The most competitive sigma factors will be automatically selected by the cell to take over the synthetic promoters during the cell growth course. Some of the synthetic promoters exhibit very strong strengths under different conditions, including stationary phase, low temperature, acidic pH, and high osmotic pressure. Comparing to the T7 promoter, synthetic promoter P21285 achieved higher yields of L-asparaginase and acid urease in Escherichia coli. The research not only expands the synthetic biology toolbox but also provide another strategy to design and construct synthetic promoters in prokaryotes.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Qingtao Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Huanjiao Weng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanan Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
40
|
Vogl T, Kickenweiz T, Pitzer J, Sturmberger L, Weninger A, Biggs BW, Köhler EM, Baumschlager A, Fischer JE, Hyden P, Wagner M, Baumann M, Borth N, Geier M, Ajikumar PK, Glieder A. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 2018; 9:3589. [PMID: 30181586 DOI: 10.1038/s41467-018-0591-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/25/2018] [Indexed: 05/22/2023] Open
Abstract
Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature's use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, β-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Thomas Kickenweiz
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Julia Pitzer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | - Lukas Sturmberger
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | - Astrid Weninger
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Bradley W Biggs
- Manus Biosynthesis, 1030 Massachusetts Avenue, Suite 300, Cambridge, MA, 02138, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Eva-Maria Köhler
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Armin Baumschlager
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Jasmin Elgin Fischer
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Patrick Hyden
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Marlies Wagner
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, 8010, Graz, Austria
| | | | - Anton Glieder
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
41
|
Engineered bidirectional promoters enable rapid multi-gene co-expression optimization. Nat Commun 2018; 9:3589. [PMID: 30181586 PMCID: PMC6123417 DOI: 10.1038/s41467-018-05915-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023] Open
Abstract
Numerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization. Here, motivated by nature’s use of bidirectional promoters (BDPs) as a solution for efficient gene co-expression, we generate a library of 168 synthetic BDPs in the yeast Komagataella phaffii (syn. Pichia pastoris), leveraging naturally occurring BDPs as a parts repository. This library of synthetic BDPs allows for rapid screening of diverse expression profiles and ratios to optimize gene co-expression, including for metabolic pathways (taxadiene, β-carotene). The modular design strategies applied for creating the BDP library could be relevant in other eukaryotic hosts, enabling a myriad of metabolic engineering and synthetic biology applications. Classic monodirectional promoters are of limited use for multiple gene co-expression. Here the authors generate a library of 168 bidirectional promoters for the yeast K. phaffii (syn. P. pastoris) with diverse expression profiles to optimize metabolic pathway design.
Collapse
|