1
|
Pezzotti G, Ohgitani E, Imamura H, Ikegami S, Shin-Ya M, Adachi T, Adachi K, Yamamoto T, Kanamura N, Marin E, Zhu W, Higasa K, Yasukochi Y, Okuma K, Mazda O. Raman Multi-Omic Snapshot and Statistical Validation of Structural Differences between Herpes Simplex Type I and Epstein-Barr Viruses. Int J Mol Sci 2023; 24:15567. [PMID: 37958551 PMCID: PMC10647490 DOI: 10.3390/ijms242115567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Raman spectroscopy was applied to study the structural differences between herpes simplex virus Type I (HSV-1) and Epstein-Barr virus (EBV). Raman spectra were first collected with statistical validity on clusters of the respective virions and analyzed according to principal component analysis (PCA). Then, average spectra were computed and a machine-learning approach applied to deconvolute them into sub-band components in order to perform comparative analyses. The Raman results revealed marked structural differences between the two viral strains, which could mainly be traced back to the massive presence of carbohydrates in the glycoproteins of EBV virions. Clear differences could also be recorded for selected tyrosine and tryptophan Raman bands sensitive to pH at the virion/environment interface. According to the observed spectral differences, Raman signatures of known biomolecules were interpreted to link structural differences with the viral functions of the two strains. The present study confirms the unique ability of Raman spectroscopy for answering structural questions at the molecular level in virology and, despite the structural complexity of viral structures, its capacity to readily and reliably differentiate between different virus types and strains.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Saki Ikegami
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Keiji Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto 602-8566, Japan; (K.A.); (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-Ku, Matsugasaki, Kyoto 606-8585, Japan; (H.I.); (S.I.); (W.Z.)
| | - Koichiro Higasa
- Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-3-1 Shinmachi, Hirakata 573-1191, Japan; (K.H.); (Y.Y.)
| | - Yoshiki Yasukochi
- Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-3-1 Shinmachi, Hirakata 573-1191, Japan; (K.H.); (Y.Y.)
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, 465 Kajii-Cho, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.); (O.M.)
| |
Collapse
|
2
|
Brüggemann J, Chekmeneva M, Wolter M, Jacob CR. Structural Dependence of Extended Amide III Vibrations in Two-Dimensional Infrared Spectra. J Phys Chem Lett 2023; 14:9257-9264. [PMID: 37812580 PMCID: PMC10591501 DOI: 10.1021/acs.jpclett.3c02662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Two-dimensional infrared (2D-IR) spectroscopy is a powerful experimental method for probing the structure and dynamics of proteins in aqueous solution. So far, most experimental studies have focused on the amide I vibrations, for which empirical vibrational exciton models provide a means of interpreting such experiments. However, such models are largely lacking for other regions of the vibrational spectrum. To close this gap, we employ an efficient quantum-chemical methodology for the calculation of 2D-IR spectra, which is based on anharmonic theoretical vibrational spectroscopy with localized modes. We apply this approach to explore the potential of 2D-IR spectroscopy in the extended amide III region. Using calculations for a dipeptide model as well as alanine polypeptides, we show that distinct 2D-IR cross-peaks in the extended amide III region can potentially be used to distinguish α-helix and β-strand structures. We propose that the extended amide III region could be a promising target for future 2D-IR experiments.
Collapse
Affiliation(s)
- Julia Brüggemann
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Maria Chekmeneva
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Mario Wolter
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Xie C, Shi BB, Liu GH, Li SH, Kang ZL. Using Potassium Bicarbonate to Improve the Water-Holding Capacity, Gel and Rheology Characteristics of Reduced-Phosphate Silver Carp Batters. Molecules 2023; 28:5608. [PMID: 37513480 PMCID: PMC10386509 DOI: 10.3390/molecules28145608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
To study the use of partial or total potassium bicarbonate (PBC) to replace sodium tripolyphosphate (STPP) on reduced-phosphate silver carp batters, all the batters were composed of silver carp surimi, pork back fat, ice water, spices, sugar, and sodium chloride. Therein, the sample of T1 contained 4 g/kg STPP; T2 contained 1 g/kg PBC, 3 g/kg STPP; T3 contained 2 g/kg PBC, 2 g/kg STPP; T4 contained 3 g/kg PBC, 1 g/kg STPP; T5 contained 4 g/kg PBC, and they were all produced using a bowl chopper. The changes in pH, whiteness, water- and oil-holding capacity, gel and rheological properties, as well as protein conformation were investigated. The pH, cooking yield, water- and oil-holding capacity, texture properties, and the G' values at 90 °C of the reduced-phosphate silver carp batters with PBC significantly increased (p < 0.05) compared to the sample without PBC. Due to the increasing pH and enhanced ion strength, more β-sheet and β-turns structures were formed. Furthermore, by increasing PBC, the pH significantly increased (p < 0.05) and the cooked silver carp batters became darkened. Meanwhile, more CO2 was generated, which destroyed the gel structure, leading the water- and oil-holding capacity, texture properties, and G' values at 90 °C to be increased and then decreased. Overall, using PBC partial as a substitute of STPP enables reduced-phosphate silver carp batter to have better gel characteristics and water-holding capacity by increasing its pH and changing its rheology characteristic and protein conformation.
Collapse
Affiliation(s)
- Chun Xie
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China
| | - Bei-Bei Shi
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China
| | - Guang-Hui Liu
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China
| | - Si-Han Li
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China
| | - Zhuang-Li Kang
- Engineering Research Center for Huaiyang Cuisin of Jiangsu Province, College of Tourism and Culinary, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
4
|
Shukla MK, Wilkes P, Bargary N, Meagher K, Khamar D, Bailey D, Hudson SP. Identification of monoclonal antibody drug substances using non-destructive Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122872. [PMID: 37209478 DOI: 10.1016/j.saa.2023.122872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Monoclonal antibodies provide highly specific and effective therapies for the treatment of chronic diseases. These protein-based therapeutics, or drug substances, are transported in single used plastic packaging to fill finish sites. According to good manufacturing practice guidelines, each drug substance needs to be identified before manufacturing of the drug product. However, considering their complex structure, it is challenging to correctly identify therapeutic proteins in an efficient manner. Common analytical techniques for therapeutic protein identification are SDS-gel electrophoresis, enzyme linked immunosorbent assays, high performance liquid chromatography and mass spectrometry-based assays. Although effective in correctly identifying the protein therapeutic, most of these techniques need extensive sample preparation and removal of samples from their containers. This step not only risks contamination but the sample taken for the identification is destroyed and cannot be re-used. Moreover, these techniques are often time consuming, sometimes taking several days to process. Here, we address these challenges by developing a rapid and non-destructive identification technique for monoclonal antibody-based drug substances. Raman spectroscopy in combination with chemometrics were used to identify three monoclonal antibody drug substances. This study explored the impact of laser exposure, time out of refrigerator and multiple freeze thaw cycles on the stability of monoclonal antibodies. and demonstrated the potential of using Raman spectroscopy for the identification of protein-based drug substances in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Mahendra K Shukla
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Philippa Wilkes
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland
| | - Norma Bargary
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland
| | - Katherine Meagher
- Manufacturing Science and Technology, Sanofi Ireland, Old Kilmeaden Road, Waterford, Ireland
| | - Dikshitkumar Khamar
- Manufacturing Science and Technology, Sanofi Ireland, Old Kilmeaden Road, Waterford, Ireland
| | - Donal Bailey
- Manufacturing Science and Technology, Sanofi Ireland, Old Kilmeaden Road, Waterford, Ireland
| | - Sarah P Hudson
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals & Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland; Department of Mathematics and Statistics, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
5
|
Rohmer M, Freudenberg J, Binder WH. Secondary Structures in Synthetic Poly(Amino Acids): Homo- and Copolymers of Poly(Aib), Poly(Glu), and Poly(Asp). Macromol Biosci 2022; 23:e2200344. [PMID: 36377468 DOI: 10.1002/mabi.202200344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The secondary structure of poly(amino acids) is an excellent tool for controlling and understanding the functionality and properties of proteins. In this perspective article the secondary structures of the homopolymers of oligo- and poly-glutamic acid (Glu), aspartic acid (Asp), and α-aminoisobutyric acid (Aib) are discussed. Information on external and internal factors, such as the nature of side groups, interactions with solvents and interactions between chains is reviewed. A special focus is directed on the folding in hybrid-polymers consisting of oligo(amino acids) and synthetic polymers. Being part of the SFB TRR 102 "Polymers under multiple constraints: restricted and controlled molecular order and mobility" this overview is embedded into the cross section of protein fibrillation and supramolecular polymers. As polymer- and amino acid folding is an important step for the utilization and design of future biomolecules these principles guide to a deeper understanding of amyloid fibrillation.
Collapse
Affiliation(s)
- Matthias Rohmer
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Jan Freudenberg
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | | |
Collapse
|
6
|
Pezzotti G, Ohgitani E, Fujita Y, Imamura H, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Nishimura I, Mazda O. Raman Fingerprints of the SARS-CoV-2 Delta Variant and Mechanisms of Its Instantaneous Inactivation by Silicon Nitride Bioceramics. ACS Infect Dis 2022; 8:1563-1581. [PMID: 35819780 PMCID: PMC9305655 DOI: 10.1021/acsinfecdis.2c00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 02/06/2023]
Abstract
Raman spectroscopy uncovered molecular scale markers of the viral structure of the SARS-CoV-2 Delta variant and related viral inactivation mechanisms at the biological interface with silicon nitride (Si3N4) bioceramics. A comparison of Raman spectra collected on the TY11-927 variant (lineage B.1.617.2; simply referred to as the Delta variant henceforth) with those of the JPN/TY/WK-521 variant (lineage B.1.617.1; referred to as the Kappa variant or simply as the Japanese isolate henceforth) revealed the occurrence of key mutations of the spike receptor together with profound structural differences in the molecular structure/symmetry of sulfur-containing amino acid and altered hydrophobic interactions of the tyrosine residue. Additionally, different vibrational fractions of RNA purines and pyrimidines and dissimilar protein secondary structures were also recorded. Despite mutations, hydrolytic reactions at the surface of silicon nitride (Si3N4) bioceramics induced instantaneous inactivation of the Delta variant at the same rate as that of the Kappa variant. Contact between virions and micrometric Si3N4 particles yielded post-translational deimination of arginine spike residues, methionine sulfoxidation, tyrosine nitration, and oxidation of RNA purines to form formamidopyrimidines. Si3N4 bioceramics proved to be a safe and effective inorganic compound for instantaneous environmental sanitation.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo
Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo,
Japan
- Center for Advanced Medical Engineering and
Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka
565-0854, Japan
- Institute of Biomaterials and Bioengineering,
Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai,
Chiyoda-ku, Tokyo 101-0062, Japan
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
- Biomedical Research Center, Kyoto Institute
of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| | - Yuki Fujita
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
- Department of Dental Medicine, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto
Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585,
Japan
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and
Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of
Dentistry, Los Angeles, California 90095, United
States
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical
Science, Kyoto Prefectural University of Medicine, Kamigyo-ku,
465 Kajii-cho, Kyoto 602-8566, Japan
| |
Collapse
|
7
|
Xu P, Wang L, Zhang X, Yan J, Liu W. High-Performance Smart Hydrogels with Redox-Responsive Properties Inspired by Scallop Byssus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:214-224. [PMID: 34935338 DOI: 10.1021/acsami.1c18610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart hydrogels with versatile properties, including a tunable gelation time, nonswelling attributes, and biocompatibility, are in great need in the biomedical field. To meet this urgent demand, we explored novel biomaterials with the desired properties from sessile marine organisms. To this end, a novel protein, Sbp9, derived from scallop byssus was extensively investigated, which features typical epidermal growth factor-like (EGFL) multiple repetitive motifs. Our current work demonstrated that the key fragment of Sbp9 (calcium-binding domain (CBD) and 4 EGFL repeats (CE4)) was able to form a smart hydrogel driven by noncovalent interactions and facilitated by disulfide bonds. More importantly, this smart hydrogel demonstrates several desirable and beneficial features, which could offset the drawbacks of typical protein-based hydrogels, including (1) a redox-responsive gelation time (from <1 to 60 min); (2) tunable mechanical properties, nonswelling abilities, and an appropriate microstructure; and (3) good biocompatibility and degradability. Furthermore, proof-of-concept demonstrations showed that the newly discovered hydrogel could be used for anticancer drug delivery and cell encapsulation. Taken together, a smart hydrogel inspired by marine sessile organisms with desirable properties was generated and characterized and demonstrated to have extensive applicability potential in biomedical applications, including tissue engineering and drug release.
Collapse
Affiliation(s)
- Pingping Xu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lulu Wang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaokang Zhang
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jicheng Yan
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Weizhi Liu
- Sars-Fang Centre, MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Song T, Lei H, Cai F, Kang Y, Yu H, Zhang L. Supramolecular Cation-π Interaction Enhances Molecular Solar Thermal Fuel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1940-1949. [PMID: 34928571 DOI: 10.1021/acsami.1c19819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular solar thermal fuels (MOSTs), especially azobenzene-based MOSTs (Azo-MOSTs), have been considered as ideal energy-storage and conversion systems in outer or confined space because of their "closed loop" properties. However, there are two main obstacles existing in practical applications of Azo-MOSTs: the solvent-assistant charging process and the high molar extinction coefficient of chromophores, which are both closely related to the π-π stacking. Here, we report one efficient strategy to improve the energy density by introducing a supramolecular "cation-π" interaction into one phase-changeable Azo-MOST system. The energy density is increased by 24.7% (from 164.3 to 204.9 J/g) in Azo-MOST with a small loading amount of cation (2.0 mol %). Upon light triggering, the cation-π-enhanced Azo-MOST demonstrates one gravimetric energy density of about 56.9 W h/kg and a temperature increase of 8 °C in ambient conditions. Then the enhanced mechanism is revealed in both molecular and crystalline scales. This work demonstrates the huge potential of supramolecular interaction in the development of Azo-MOST systems, which could not only provide a universal method for enhancing the energy density of solar energy storage but also balance the conflicts between molecular design and the condensed state for phase-changeable materials.
Collapse
Affiliation(s)
- Tianfu Song
- School of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Huanyu Lei
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Feng Cai
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Yu Kang
- Analysis and Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Liqun Zhang
- School of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Pezzotti G, Zhu W, Chikaguchi H, Marin E, Boschetto F, Masumura T, Sato YI, Nakazaki T. Raman Molecular Fingerprints of Rice Nutritional Quality and the Concept of Raman Barcode. Front Nutr 2021; 8:663569. [PMID: 34249986 PMCID: PMC8260989 DOI: 10.3389/fnut.2021.663569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
The nutritional quality of rice is contingent on a wide spectrum of biochemical characteristics, which essentially depend on rice genome, but are also greatly affected by growing/environmental conditions and aging during storage. The genetic basis and related identification of genes have widely been studied and rationally linked to accumulation of micronutrients in grains. However, genetic classifications cannot catch quality fluctuations arising from interannual, environmental, and storage conditions. Here, we propose a quantitative spectroscopic approach to analyze rice nutritional quality based on Raman spectroscopy, and disclose analytical algorithms for the determination of: (i) amylopectin and amylose concentrations, (ii) aromatic amino acids, (iii) protein content and structure, and (iv) chemical residues. The proposed Raman algorithms directly link to the molecular composition of grains and allow fast/non-destructive determination of key nutritional parameters with minimal sample preparation. Building upon spectroscopic information at the molecular level, we newly propose to represent the nutritional quality of labeled rice products with a barcode specially tailored on the Raman spectrum. The Raman barcode, which can be stored in databases promptly consultable with barcode scanners, could be linked to diet applications (apps) to enable a rapid, factual, and unequivocal product identification based on direct molecular screening.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Orthopedic Surgery, Tokyo Medical University, Tokyo, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Haruna Chikaguchi
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan.,Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Kyoto Prefectural University, Kyoto, Japan
| | - Yo-Ichiro Sato
- Research Center for Japanese Food Culture, Kyoto Prefectural University, Kyoto, Japan
| | - Tetsuya Nakazaki
- Experimental Farm, Graduate School of Agriculture, Kyoto University, Kizugawa, Japan
| |
Collapse
|
10
|
The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins. Int J Mol Sci 2020; 21:ijms21228776. [PMID: 33233627 PMCID: PMC7699789 DOI: 10.3390/ijms21228776] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tryptophan (Trp) holds a unique place in biology for a multitude of reasons. It is the largest of all twenty amino acids in the translational toolbox. Its side chain is indole, which is aromatic with a binuclear ring structure, whereas those of Phe, Tyr, and His are single-ring aromatics. In part due to these elaborate structural features, the biosynthetic pathway of Trp is the most complex and the most energy-consuming among all amino acids. Essential in the animal diet, Trp is also the least abundant amino acid in the cell, and one of the rarest in the proteome. In most eukaryotes, Trp is the only amino acid besides Met, which is coded for by a single codon, namely UGG. Due to the large and hydrophobic π-electron surface area, its aromatic side chain interacts with multiple other side chains in the protein, befitting its strategic locations in the protein structure. Finally, several Trp derivatives, namely tryptophylquinone, oxitriptan, serotonin, melatonin, and tryptophol, have specialized functions. Overall, Trp is a scarce and precious amino acid in the cell, such that nature uses it parsimoniously, for multiple but selective functions. Here, the various aspects of the uniqueness of Trp are presented in molecular terms.
Collapse
|
11
|
Pezzotti G, Adachi T, Miyamoto N, Yamamoto T, Boschetto F, Marin E, Zhu W, Kanamura N, Ohgitani E, Pizzi M, Sowa Y, Mazda O. Raman Probes for In Situ Molecular Analyses of Peripheral Nerve Myelination. ACS Chem Neurosci 2020; 11:2327-2339. [PMID: 32603086 DOI: 10.1021/acschemneuro.0c00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The myelinating activity of living Schwann cells in coculture with neuronal cells was examined in situ in a Raman microprobe spectroscope. The Raman label-free approach revealed vibrational fingerprints directly related to the activity of Schwann cells' metabolites and identified molecular species peculiar to myelinating cells. The identified chemical species included antioxidants, such as hypotaurine and glutathione, and compartmentalized water, in addition to sphingolipids, phospholipids, and nucleoside triphosphates also present in neuronal and nonmyelinating Schwann cells. Raman maps at specific frequencies could be collected, which clearly visualized the myelinating action of Schwann cells and located the demyelinated ones. An important finding was the spectroscopic visualization of confined water in the myelin structure, which exhibited a quite pronounced Raman signal at ∼3470 cm-1. This peculiar signal, whose spatial location precisely corresponded to a low-frequency fingerprint of hypotaurine, was absent in unmyelinating cells and in bulk water. Raman enhancement was attributed to frustration in the hydrogen-bond network as induced by interactions with lipids in the myelin sheaths. According to a generally accepted morphological model of myelin, an explanation was offered of the peculiar Raman scattering of water confined in intraperiod lines, according to an ordered hydrogen bonding structure. The possibility of concurrently mapping antioxidant molecules and compartmentalized water structure with high spectral accuracy and microscopic spatial resolution enables probing myelinating activity and might play a key-role in future studies of neuronal pathologies. Compatible with life, Raman microprobe spectroscopy with the newly discovered probes could be suitable for developing advanced strategies in the reconstruction of injured nerves and nerve terminals at neuromuscular junctions.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
12
|
Harnessing desktop computers for ab initio calculation of vibrational IR/Raman spectra of large molecules. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1568-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Kuhar N, Sil S, Verma T, Umapathy S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv 2018; 8:25888-25908. [PMID: 35541973 PMCID: PMC9083091 DOI: 10.1039/c8ra04491k] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Raman spectroscopy has become an essential tool for chemists, physicists, biologists and materials scientists. In this article, we present the challenges in unravelling the molecule-specific Raman spectral signatures of different biomolecules like proteins, nucleic acids, lipids and carbohydrates based on the review of our work and the current trends in these areas. We also show how Raman spectroscopy can be used to probe the secondary and tertiary structural changes occurring during thermal denaturation of protein and lysozyme as well as more complex biological systems like bacteria. Complex biological systems like tissues, cells, blood serum etc. are also made up of such biomolecules. Using mice liver and blood serum, it is shown that different tissues yield their unique signature Raman spectra, owing to a difference in the relative composition of the biomolecules. Additionally, recent progress in Raman spectroscopy for diagnosing a multitude of diseases ranging from cancer to infection is also presented. The second part of this article focuses on applications of Raman spectroscopy to materials. As a first example, Raman spectroscopy of a melt cast explosives formulation was carried out to monitor the changes in the peaks which indicates the potential of this technique for remote process monitoring. The second example presents various modern methods of Raman spectroscopy such as spatially offset Raman spectroscopy (SORS), reflection, transmission and universal multiple angle Raman spectroscopy (UMARS) to study layered materials. Studies on chemicals/layered materials hidden in non-metallic containers using the above variants are presented. Using suitable examples, it is shown how a specific excitation or collection geometry can yield different information about the location of materials. Additionally, it is shown that UMARS imaging can also be used as an effective tool to obtain layer specific information of materials located at depths beyond a few centimeters. This paper reviews various facets of Raman spectroscopy. This encompasses biomolecule fingerprinting and conformational analysis, discrimination of healthy vs. diseased states, depth-specific information of materials and 3D Raman imaging.![]()
Collapse
Affiliation(s)
- Nikki Kuhar
- Department of Inorganic & Physical Chemistry
- Indian Institute of Science
- Bangalore
- India-560012
| | - Sanchita Sil
- Defence Bioengineering & Electromedical Laboratory
- DRDO
- Bangalore
- India-560093
| | - Taru Verma
- Centre for Biosystems Science and Engineering
- Indian Institute of Science
- Bangalore
- India-560012
| | - Siva Umapathy
- Department of Inorganic & Physical Chemistry
- Indian Institute of Science
- Bangalore
- India-560012
- Department of Instrumentation & Applied Physics
| |
Collapse
|
14
|
Machová I, Hubálek M, Lepšík M, Bednárová L, Pazderková M, Kopecký V, Snášel J, Dostál J, Pichová I. The Role of Cysteine Residues in Catalysis of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis. PLoS One 2017; 12:e0170373. [PMID: 28135343 PMCID: PMC5279734 DOI: 10.1371/journal.pone.0170373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis (MTb), the causative agent of tuberculosis, can persist in macrophages for decades, maintaining its basic metabolic activities. Phosphoenolpyruvate carboxykinase (Pck; EC 4.1.1.32) is a key player in central carbon metabolism regulation. In replicating MTb, Pck is associated with gluconeogenesis, but in non-replicating MTb, it also catalyzes the reverse anaplerotic reaction. Here, we explored the role of selected cysteine residues in function of MTb Pck under different redox conditions. Using mass spectrometry analysis we confirmed formation of S–S bridge between cysteines C391 and C397 localized in the C-terminal subdomain. Molecular dynamics simulations of C391-C397 bridged model indicated local conformation changes needed for formation of the disulfide. Further, we used circular dichroism and Raman spectroscopy to analyze the influence of C391 and C397 mutations on Pck secondary and tertiary structures, and on enzyme activity and specificity. We demonstrate the regulatory role of C391 and C397 that form the S–S bridge and in the reduced form stabilize Pck tertiary structure and conformation for gluconeogenic and anaplerotic reactions.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Tomas M, Tinti A, Bofill R, Capdevila M, Atrian S, Torreggiani A. Comparative Raman study of four plant metallothionein isoforms: Insights into their Zn(II) clusters and protein conformations. J Inorg Biochem 2016; 156:55-63. [DOI: 10.1016/j.jinorgbio.2015.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/17/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023]
|
16
|
Biophysical Methods to Investigate Intrinsically Disordered Proteins: Avoiding an “Elephant and Blind Men” Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:215-60. [DOI: 10.1007/978-3-319-20164-1_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Boga C, Taddei P, Micheletti G, Ascari F, Ballarin B, Morigi M, Galli S. Formaldehyde replacement with glyoxylic acid in semipermanent hair straightening: a new and multidisciplinary investigation. Int J Cosmet Sci 2014; 36:459-70. [PMID: 24962464 DOI: 10.1111/ics.12148] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/08/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Formaldehyde is an effective and popular semipermanent hair straightener, but the severe consequences for human health due to its toxicity have prompted the search for safer alternatives. Different carbonyl compounds, including glyoxylic acid, have recently been proposed as promising candidates. Despite the interest in this topic, there is a lack of information about the interactions between hair keratin and straightener agents. This study addresses this issue to gain new insights useful in the development of new products for safe, semipermanent hair deformation. METHODS The possible reactions occurring between carbonyl groups and nucleophilic sites on amino acid residues belonging to the keratin were investigated using as model compounds some aldehydes and amino acid derivatives. Raman and IR analyses on yak hair subjected to the straightening treatment with glyoxylic acid in different conditions were carried out. Scanning electron microscope (SEM) analyses were carried out on yak and curly human hair after each step of the straightening procedure. RESULTS The reactions between aldehydes and N-α-acetyl-L-lysine revealed the importance of the carbonyl electrophilicity and temperature to form imines. Raman and IR analyses on yak hair subjected to the straightening treatment evidenced rearrangements in the secondary structure distribution, conformational changes to the disulphide bridges, a decrease of the serine residues and formation of imines. It was also indicated that straightening produced major conformational rearrangements within the hair fibre rather than on the cuticle. CONCLUSION This investigation revealed the role played by the electrophilicity of the carbonyl on the straightener agent and of the temperature, closely related to the dehydration process. Raman and IR studies indicated the involvement of imine bonds and the occurrence of a sequence of conformational modifications during the straightening procedure. SEM analyses showed the effectiveness of the treatment at the cuticular level.
Collapse
Affiliation(s)
- C Boga
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum- University of Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Sjöberg B, Foley S, Cardey B, Enescu M. An experimental and theoretical study of the amino acid side chain Raman bands in proteins. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 128:300-11. [PMID: 24681316 DOI: 10.1016/j.saa.2014.02.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/04/2014] [Accepted: 02/07/2014] [Indexed: 05/15/2023]
Abstract
The Raman spectra of a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was tryptophan, tyrosine, phenylalanine, glycine, methionine, histidine, lysine and leucine were measured in H2O. The theoretical Raman spectra obtained using density functional theory (DFT) calculations at the B3LYP/6-311+G(2df,2pd) level of theory allows a precise attribution of the vibrational bands. The experimental results show that there is a blue shift in the frequencies of several bands of the amino acid side chains in tripeptides compared to free amino acids, especially in the case of AAs containing aromatic rings. On the other hand, a very good agreement was found between the Raman bands of AA residues in tripeptides and those measured on three model proteins: bovine serum albumin, β-lactoglobulin and lysozyme. The present analysis contributes to an unambiguous interpretation of the protein Raman spectra that is useful in monitoring the biological reactions involving AA side chains alteration.
Collapse
Affiliation(s)
- Béatrice Sjöberg
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France
| | - Sarah Foley
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France.
| | - Bruno Cardey
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France
| | - Mironel Enescu
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France
| |
Collapse
|
19
|
Taddei P, Chiono V, Anghileri A, Vozzi G, Freddi G, Ciardelli G. Silk Fibroin/Gelatin Blend Films Crosslinked with Enzymes for Biomedical Applications. Macromol Biosci 2013; 13:1492-510. [DOI: 10.1002/mabi.201300156] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/11/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Paola Taddei
- Dipartimento di Scienze Biomediche e Neuromotorie; Università di Bologna Via Belmeloro 8/2; Bologna I-40126 Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| | - Anna Anghileri
- Innovhub - Stazioni Sperimentali per l'Industria; Div. Stazione Sperimentale per la Seta; Via G. Colombo 83 20133 Milano Italy
| | - Giovanni Vozzi
- Research Center “E. Piaggio”; University of Pisa; Largo Lucio Lazzarino 2 56126 Pisa Italy
- Dipartimento di Ingegneria dell'Informazione; University of Pisa; Via Caruso 1 56126 Pisa Italy
| | - Giuliano Freddi
- Innovhub - Stazioni Sperimentali per l'Industria; Div. Stazione Sperimentale per la Seta; Via G. Colombo 83 20133 Milano Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering; Politecnico di Torino; Corso Duca degli Abruzzi 24 10129 Torino Italy
| |
Collapse
|
20
|
Tozzi S, Zanna N, Taddei P. Study on the interaction between gliadins and a coumarin as molecular model system of the gliadins-anthocyanidins complexes. Food Chem 2013; 141:3586-97. [PMID: 23993525 DOI: 10.1016/j.foodchem.2013.05.136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/20/2013] [Accepted: 05/30/2013] [Indexed: 11/26/2022]
Abstract
To clarify the conformational changes of gliadins (Glia) upon complexation with anthocyanidins (in particular cyanidin, Cya), the interaction of Glia with a coumarin derivative (3-ethoxycarbonylcoumarin, 3-EcC), having a benzocondensed structure similar to that of Cya, has been investigated by NMR, IR, and Raman spectroscopy under acidic and neutral conditions. Raman spectra showed that both molecules produce a similar effect on the Glia structure, i.e. an increase in the α-helix conformation and a decrease in β-sheet and β-turns content. In the presence of both molecules, this effect is more marked; the spectroscopic results showed that both Cya and 3-EcC interact with Glia and 3-EcC favors the complex formation with Glia. The results obtained in this study provide new insights into anthocyanidins-Glia interactions and may have relevance to human health, in the field of the attempts to modify gluten proteins to decrease allergen immunoreactivity.
Collapse
Affiliation(s)
- Silvia Tozzi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Via Belmeloro 8/2, 40126 Bologna, Italy.
| | | | | |
Collapse
|
21
|
Moretti M, Proietti Zaccaria R, Descrovi E, Das G, Leoncini M, Liberale C, De Angelis F, Di Fabrizio E. Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes. PLASMONICS (NORWELL, MASS.) 2013; 8:25-33. [PMID: 23504187 PMCID: PMC3597279 DOI: 10.1007/s11468-012-9385-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 05/23/2012] [Indexed: 05/26/2023]
Abstract
Tip-enhanced Raman spectroscopy provides chemical information while raster scanning samples with topographical detail. The coupling of atomic force microscopy and Raman spectroscopy in top illumination optical setup is a powerful configuration to resolve nanometer structures while collecting reflection mode backscattered signal. Here, we theoretically calculate the field enhancement generated by TER spectroscopy with top illumination geometry and we apply the technique to the characterization of insulin amyloid fibrils. We experimentally confirm that this technique is able to enhance the Raman signal of the polypeptide chain by a factor of 105, thus revealing details down to few molecules resolution.
Collapse
Affiliation(s)
- Manola Moretti
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | | | - Gobind Das
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Leoncini
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Carlo Liberale
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Enzo Di Fabrizio
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BIONEM Lab, University of Magna Graecia, Campus S. Venuta, Germaneto, viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Lu Q, Oh DX, Lee Y, Jho Y, Hwang DS, Zeng H. Nanomechanics of Cation-π Interactions in Aqueous Solution. Angew Chem Int Ed Engl 2013; 52:3944-8. [DOI: 10.1002/anie.201210365] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Indexed: 02/06/2023]
|
23
|
|
24
|
Fraqueza G, Batista de Carvalho LAE, Marques MPM, Maia L, Ohlin CA, Casey WH, Aureliano M. Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca(2+)-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibition. Dalton Trans 2012; 41:12749-12758. [PMID: 22968713 DOI: 10.1039/c2dt31688a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently we demonstrated that the decavanadate (V(10)) ion is a stronger Ca(2+)-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V(10) interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb(10) = Nb(10)O(28)](6-), is a useful tool in deducing the interaction and the non-competitive Ca(2+)-ATPase inhibition by the decavanadate ion [V(10) = V(10)O(28)](6-). Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca(2+)-ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V(10), Nb(10) and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V(10) and Nb(10) decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V(10) to inhibit the Ca(2+)-ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.
Collapse
Affiliation(s)
- Gil Fraqueza
- ISE and CCmar, University of Algarve, 8005-139 Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
25
|
Beattie RJ, Bell SJ, Farmer LJ, Moss BW, Patterson D. Preliminary investigation of the application of Raman spectroscopy to the prediction of the sensory quality of beef silverside. Meat Sci 2012; 66:903-13. [PMID: 22061024 DOI: 10.1016/j.meatsci.2003.08.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2003] [Revised: 08/27/2003] [Accepted: 08/27/2003] [Indexed: 11/17/2022]
Abstract
The potential of Raman spectroscopy for the determination of meat quality attributes has been investigated using data from a set of 52 cooked beef samples, which were rated by trained taste panels. The Raman spectra, shear force and cooking loss were measured and PLS used to correlate the attributes with the Raman data. Good correlations and standard errors of prediction were found when the Raman data were used to predict the panels' rating of acceptability of texture (R(2)=0.71, Residual Mean Standard Error of Prediction (RMSEP)% of the mean (μ)=15%), degree of tenderness (R(2)=0.65, RMSEP% of μ=18%), degree of juiciness (R(2)=0.62, RMSEP% of μ=16%), and overall acceptability (R(2)=0.67, RMSEP% of μ=11%). In contrast, the mechanically determined shear force was poorly correlated with tenderness (R(2)=0.15). Tentative interpretation of the plots of the regression coefficients suggests that the α-helix to β-sheet ratio of the proteins and the hydrophobicity of the myofibrillar environment are important factors contributing to the shear force, tenderness, texture and overall acceptability of the beef. In summary, this work demonstrates that Raman spectroscopy can be used to predict consumer-perceived beef quality. In part, this overall success is due to the fact that the Raman method predicts texture and tenderness, which are the predominant factors in determining overall acceptability in the Western world. Nonetheless, it is clear that Raman spectroscopy has considerable potential as a method for non-destructive and rapid determination of beef quality parameters.
Collapse
Affiliation(s)
- Rene J Beattie
- School of Chemistry, Queens University of Belfast, Northern Ireland, UK
| | | | | | | | | |
Collapse
|
26
|
Ahijado-Guzmán R, Gómez-Puertas P, Alvarez-Puebla RA, Rivas G, Liz-Marzán LM. Surface-Enhanced Raman scattering-based detection of the interactions between the essential cell division FtsZ protein and bacterial membrane elements. ACS NANO 2012; 6:7514-7520. [PMID: 22823235 DOI: 10.1021/nn302825u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has been applied to detect the interaction of the FtsZ protein from Escherichia coli, an essential component of the bacterial division machinery, with either a soluble variant of the ZipA protein (that provides membrane tethering to FtsZ) or the bacterial membrane (containing the full-length ZipA naturally incorporated), on silver-coated polystyrene micrometer-sized beads. The engineered microbeads were used not only to support the bilayers but also to offer a stable support with a high density of SERS hot spots, allowing the detection of ZipA structural changes linked to the binding of FtsZ. These changes were different upon incubating the coated beads with FtsZ polymers (GTP form) as compared to oligomers (GDP form) and more pronounced when the plasmonic sensors were coated with natural bacterial membranes.
Collapse
Affiliation(s)
- Rubén Ahijado-Guzmán
- Centro de Investigaciones Biológicas, CSIC, c/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Protein Interactions Investigated by the Raman Spectroscopy for Biosensor Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/462901] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interaction and surface binding characteristics of staphylococcal protein A (SpA) and an anti-Escherichia coli immunoglobulin G (IgG) were studied using the Raman spectroscopy. The tyrosine amino acid residues present in the α-helix structure of SpA were found to be involved in interaction with IgG. In bulk interaction condition the native structure of proteins was almost preserved where interaction-related changes were observed in the overall secondary structure (α-helix) of SpA. In the adsorbed state, the protein structure was largely modified, which allowed the identification of tyrosine amino acids involved in SpA and IgG interaction. This study constitutes a direct Raman spectroscopic investigation of SpA and IgG (receptor-antibody) interaction mechanism in the goal of a future biosensor application for detection of pathogenic microorganisms.
Collapse
|
28
|
Poowakanjana S, Mayer SG, Park JW. Optimum Chopping Conditions for Alaska Pollock, Pacific Whiting, and Threadfin Bream Surimi Paste and Gel based on Rheological and Raman Spectroscopic Analysis. J Food Sci 2012; 77:E88-97. [DOI: 10.1111/j.1750-3841.2011.02608.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Jacob CR. Theoretical Study of the Raman Optical Activity Spectra of 310-Helical Polypeptides. Chemphyschem 2011; 12:3291-306. [DOI: 10.1002/cphc.201100593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Indexed: 11/06/2022]
|
30
|
Bieler NS, Haag MP, Jacob CR, Reiher M. Analysis of the Cartesian Tensor Transfer Method for Calculating Vibrational Spectra of Polypeptides. J Chem Theory Comput 2011; 7:1867-81. [DOI: 10.1021/ct2001478] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Noah S. Bieler
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Moritz P. Haag
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Christoph R. Jacob
- Karlsruhe Institute of Technology (KIT), Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| | - Markus Reiher
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Weymuth T, Jacob CR, Reiher M. A Local-Mode Model for Understanding the Dependence of the Extended Amide III Vibrations on Protein Secondary Structure. J Phys Chem B 2010; 114:10649-60. [DOI: 10.1021/jp104542w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas Weymuth
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, and Karlsruhe Institute of Technology (KIT), Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| | - Christoph R. Jacob
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, and Karlsruhe Institute of Technology (KIT), Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| | - Markus Reiher
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland, and Karlsruhe Institute of Technology (KIT), Center for Functional Nanostructures, Wolfgang-Gaede-Str. 1a, 76131 Karlsruhe, Germany
| |
Collapse
|
32
|
Rossi B, Giarola M, Mariotto G, Ambrosi E, Monaco HL. Vibrational and structural investigation of SOUL protein single crystals by using micro-Raman spectroscopy. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Torreggiani A, Tinti A. Raman spectroscopy a promising technique for investigations of metallothioneins. Metallomics 2010; 2:246-60. [DOI: 10.1039/b922526a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Jacob C, Luber S, Reiher M. Understanding the Signatures of Secondary-Structure Elements in Proteins with Raman Optical Activity Spectroscopy. Chemistry 2009; 15:13491-508. [DOI: 10.1002/chem.200901840] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Jurasekova Z, Marconi G, Sanchez-Cortes S, Torreggiani A. Spectroscopic and molecular modeling studies on the binding of the flavonoid luteolin and human serum albumin. Biopolymers 2009; 91:917-27. [DOI: 10.1002/bip.21278] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Jacob CR, Luber S, Reiher M. Analysis of Secondary Structure Effects on the IR and Raman Spectra of Polypeptides in Terms of Localized Vibrations. J Phys Chem B 2009; 113:6558-73. [DOI: 10.1021/jp900354g] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph R. Jacob
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Sandra Luber
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Markus Reiher
- ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
37
|
Herrero AM, Jiménez-Colmenero F, Carmona P. Elucidation of structural changes in soy protein isolate upon heating by Raman spectroscopy. Int J Food Sci Technol 2009. [DOI: 10.1111/j.1365-2621.2008.01880.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
|
39
|
Herrero AM. Raman spectroscopy for monitoring protein structure in muscle food systems. Crit Rev Food Sci Nutr 2008; 48:512-23. [PMID: 18568857 DOI: 10.1080/10408390701537385] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Raman spectroscopy offers structural information about complex solid systems such as muscle food proteins. This spectroscopic technique is a powerful and a non-invasive method for the study of protein changes in secondary structure, mainly quantified, analysing the amide I (1650-1680 cm(- 1)) and amide III (1200-1300 cm(- 1)) regions and C-C stretching band (940 cm(- 1)), as well as modifications in protein local environments (tryptophan residues, tyrosil doublet, aliphatic aminoacids bands) of muscle food systems. Raman spectroscopy has been used to determine structural changes in isolated myofibrillar and connective tissue proteins by the addition of different compounds and by the effect of the conservation process such as freezing and frozen storage. It has been also shown that Raman spectroscopy is particularly useful for monitoring in situ protein structural changes in muscle food during frozen storage. Besides, the possibilities of using protein structural changes of intact muscle to predict the protein functional properties and the sensory attributes of muscle foods have been also investigated. In addition, the application of Raman spectroscopy to study changes in the protein structure during the elaboration of muscle food products has been demonstrated.
Collapse
Affiliation(s)
- Ana M Herrero
- Departamento Nutrición, Bromatologia y Tecnologia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
40
|
Torreggiani A, Domènech J, Atrian S, Capdevila M, Tinti A. Raman study of in vivo synthesized Zn(II)-metallothionein complexes: Structural insight into metal clusters and protein folding. Biopolymers 2008; 89:1114-24. [DOI: 10.1002/bip.21063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Preliminary investigations on the effects of ageing and cooking on the Raman spectra of porcine longissimus dorsi. Meat Sci 2008; 80:1205-11. [PMID: 22063858 DOI: 10.1016/j.meatsci.2008.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/13/2008] [Accepted: 05/15/2008] [Indexed: 11/22/2022]
Abstract
The influence of ageing and cooking on the Raman spectrum of porcine longissimus dorsi was investigated. The rich information contained in the Raman spectrum was highlighted, with numerous changes attributed to changes in the environment and conformations of the myofibrillar proteins. Predictions equations for shear force and cooking loss were developed from the Raman spectra of both raw and cooked pork. Good correlations and standard errors of prediction were obtained for both WB shear force and cooking loss, with the raw and the cooked samples showing almost identical results R(2)=0.77, root mean standard error of prediction (RMSEP)% of mean=12% for shear force; R(2)=0.71, RMSEP% of mean=10% for cooking loss. The Raman spectra were also able to predict the extent of cooking that occurred within the pork (R(2)(val)=0.94, RMSEP% of range=5.5%). Raman spectroscopy has considerable potential as a method for non-destructive and rapid determination of pork quality parameters such as tenderness. Raman spectroscopy may provide a means of determining changes during cooking and the extent to which foods have been cooked.
Collapse
|
42
|
Barth A. Infrared spectroscopy of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1073-101. [PMID: 17692815 DOI: 10.1016/j.bbabio.2007.06.004] [Citation(s) in RCA: 3014] [Impact Index Per Article: 167.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 12/12/2022]
Abstract
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.
Collapse
Affiliation(s)
- Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
43
|
Monti P, Freddi G, Arosio C, Tsukada M, Arai T, Taddei P. Vibrational spectroscopic study of sulphated silk proteins. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Taddei P, Arosio C, Monti P, Tsukada M, Arai T, Freddi G. Chemical and physical properties of sulfated silk fabrics. Biomacromolecules 2007; 8:1200-8. [PMID: 17338562 DOI: 10.1021/bm061017y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fabrics were treated with chlorosulphonic acid in pyridine for different times. The amount of sulfur bound to silk increased during the first 2 h of reaction and then reached a plateau. The amino acidic pattern of sulfated silk remained essentially unchanged for short reaction times (< or =2 h). Longer reaction times resulted in drastic changes in the concentration of Asp, Glu, and Tyr. Surface morphology and texture of silk fabrics changed upon sulfation. Warp and weft yarns became progressively thinner, and deposits of foreign material appeared on the fiber surface. Changes were more evident at longer reaction times (> or =2 h). Spectroscopic analyses performed by FT-IR and FT-Raman showed the appearance of new bands attributable to various vibrations of sulfated groups. The IR bands at 1049 and 1014 cm-1, due to organic sulfate salts, were particularly intense. Bands assigned to alkyl sulfates and sulfonamides appeared in the 1300-1180 cm-1 range. Organic covalent sulfates displayed a weak but distinct IR band at 1385 cm-1. Both IR and Raman spectra revealed that silk fibroin mainly bound sulfates through the hydroxyl groups of Ser and Tyr, while involvement of amines could not be proved. Changes observed in the amide I and II range indicated an increase of the degree of molecular disorder of sulfated silk. Accordingly, the I850/I830 intensity ratio between the two Tyr bands at 850-830 cm-1 increased from 1.41 to 1.52, indicating a more exposed state of Tyr residues in sulfated silk. TGA, DSC, and TG analyses showed that sulfated silk attained a higher thermal stability. A thermal transition attributable to sulfated silk fibroin fractions appeared at about 260 degrees C in the DSC thermograms.
Collapse
Affiliation(s)
- P Taddei
- Centro di Studio sulla Spettroscopia Raman, Dipartimento di Biochimica G. Moruzzi, Università di Bologna, via Belmeloro 8/2, Bologna 40126, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: Grafting of chitosan under heterogeneous reaction conditions. J Biotechnol 2006; 125:281-94. [PMID: 16621091 DOI: 10.1016/j.jbiotec.2006.03.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 02/14/2006] [Accepted: 03/03/2006] [Indexed: 10/24/2022]
Abstract
The capability of mushroom tyrosinase to catalyze the oxidation of tyrosine residues of Bombyx mori silk fibroin was studied under heterogeneous reaction conditions, by using a series of silk substrates differing in surface and bulk morphology and structure, i.e. hydrated and insoluble gels, mechanically generated powder and fibre. Tyrosinase was able to oxidize 10-11% of the tyrosine residues of silk gels. The yield of the reaction was very low for the powder and undetectable for fibres. FT-Raman spectroscopy gave evidence of the oxidation reaction. New bands attributable to vibrations of oxidized tyrosine species (o-quinone) appeared, and the value of the I853/I829 intensity ratio of the tyrosine doublet changed following oxidation of tyrosine. The thermal behaviour of SF substrates was not affected by enzymatic oxidation. o-Quinones formed by tyrosinase onto gels and powder were able to undergo non-enzymatic coupling with chitosan. FT-IR and FT-Raman spectroscopy provided clear evidence of the formation of silk-chitosan bioconjugates under heterogeneous reaction conditions. Chitosan grafting caused a beta-sheet --> random coil conformational transition of silk fibroin and significant changes in the thermal behaviour. Chitosan grafting did not occur, or occurred at an undetectable level on silk fibres. The results reported in this study show the potential of the enzymatically initiated protein-polysaccharide grafting for the production of a new range of bio-based, environmentally friendly polymers.
Collapse
Affiliation(s)
- Giuliano Freddi
- Stazione Sperimentale per la Seta, via Giuseppe Colombo 83, Milano, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Taddei P, Arai T, Boschi A, Monti P, Tsukada M, Freddi G. In Vitro Study of the Proteolytic Degradation ofAntheraea pernyiSilk Fibroin. Biomacromolecules 2006; 7:259-67. [PMID: 16398523 DOI: 10.1021/bm0506290] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, Antheraea pernyi silk fibroin (Ap-SF) films were incubated with Protease Type XXI from Streptomyces griseus, at 37 degrees C, to investigate the degradation behavior in an in vitro model system. The enzyme-resistant fractions of Ap-SF films and the soluble peptides formed by proteolytic degradation were collected at specified times, from 1 to 17 days, and analyzed by high performance liquid chromatography, differential scanning calorimetry, FT-Raman, and FT-IR spectroscopy. Proteolysis resulted in extensive weight loss and progressive fragmentation of films, especially at long degradation times. A range of soluble peptides was formed by proteolysis. By high performance-size exclusion chromatography it was found that their average molecular weight changed with the time of incubation. The chemical analysis of the enzyme-resistant fraction of Ap-SF films at different times of degradation indicated that the proteolytic attack preferentially occurred in the less ordered Gly rich sequences and that the contribution of the Ala rich crystalline regions to the composition of biodegraded films became progressively larger. Accordingly, DSC and spectroscopic results showed an enhancement of the crystalline character of the biodegraded films. From the behavior of the most important thermal transitions, it was deduced that the alpha-helix domains probably represent the most enzyme-resistant fraction. The in vitro approach used in the present study seems to be a valid tool for studying the rate and mechanism of degradation of Ap-SF films and of other biopolymers of potential biomedical utility.
Collapse
Affiliation(s)
- Paola Taddei
- Dipartimento di Biochimica G. Moruzzi, Sezione di Chimica e Propedeutica Biochimica, Centro di Studio sulla Spettroscopia Raman, Università di Bologna, via Belmeloro 8/2, 40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE. Secondary structure of alpha-synuclein oligomers: characterization by raman and atomic force microscopy. J Mol Biol 2005; 355:63-71. [PMID: 16303137 DOI: 10.1016/j.jmb.2005.10.071] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 09/20/2005] [Accepted: 10/26/2005] [Indexed: 10/25/2022]
Abstract
Formation of alpha-synuclein aggregates is proposed to be a crucial event in the pathogenesis of Parkinson's disease. Large soluble oligomeric species are observed as probable intermediates during fibril formation and these, or related aggregates, may constitute the toxic element that triggers neurodegeneration. Unfortunately, there is a paucity of information regarding the structure and composition of these oligomers. Here, the morphology and the conformational characteristics of the oligomers and filaments are investigated by a combined atomic force microscopy (AFM) and Raman microscopic approach on a common mica surface. AFM showed that in vitro early stage oligomers were globular with variable heights, while prolonged incubation caused the oligomers to become elongated as protofilaments. The height of the subsequently formed alpha-synuclein filaments was similar to that of the protofilaments. Analysis of the Raman amide I band profiles of the different alpha-synuclein oligomers establishes that the spheroidal oligomers contain a significant amount of alpha-helical secondary structure (47%), which decreases to about 37% in protofilaments. At the same time, when protofilaments form, beta-sheet structure increases to about 54% from the approximately 29% observed in spheroidal oligomers. Upon filament formation, the major conformation is beta-sheet (66%), confirmed by narrowing of the amide I band and the profile maximum shifting to 1667 cm(-1). The accumulation of spheroidal oligomers of increasing size but unchanged vibrational spectra during the fibrillization process suggests that a cooperative conformational change may contribute to the kinetic control of fibrillization.
Collapse
Affiliation(s)
- Mihaela M Apetri
- Department of Chemistry Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Koljenović S, Bakker Schut TC, Wolthuis R, de Jong B, Santos L, Caspers PJ, Kros JM, Puppels GJ. Tissue characterization using high wave number Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:031116. [PMID: 16229641 DOI: 10.1117/1.1922307] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Raman spectroscopy is a powerful diagnostic tool, enabling tissue identification and classification. Mostly, the so-called fingerprint (approximately 400-1800 cm(-1)) spectral region is used. In vivo application often requires small flexible fiber-optic probes, and is hindered by the intense Raman signal that is generated in the fused silica core of the fiber. This necessitates filtering of laser light, which is guided to the tissue, and of the scattered light collected from the tissue, leading to complex and expensive designs. Fused silica has no Raman signal in the high wave number region (2400-3800 cm(-1)). This enables the use of a single unfiltered fiber to guide laser light to the tissue and to collect scattered light in this spectral region. We show, by means of a comparison of in vitro Raman microspectroscopic maps of thin tissue sections (brain tumors, bladder), measured both in the high wave number region and in the fingerprint region, that essentially the same diagnostic information is obtained in the two wave number regions. This suggests that for many clinical applications the technological hurdle of designing and constructing suitable fiber-optic probes may be eliminated by using the high wave number region and a simple piece of standard optical fiber.
Collapse
Affiliation(s)
- S Koljenović
- Erasmus Medical Center, Center for Optical Diagnostics and Therapy, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Combs A, McCann K, Autrey D, Laane J, Overman SA, Thomas GJ. Raman signature of the non-hydrogen-bonded tryptophan side chain in proteins: experimental and ab initio spectra of 3-methylindole in the gas phase. J Mol Struct 2005. [DOI: 10.1016/j.molstruc.2004.11.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|