1
|
Chen X, Li F, Li X, Otto M, Chen Y, Siewers V. Model-assisted CRISPRi/a library screening reveals central carbon metabolic targets for enhanced recombinant protein production in yeast. Metab Eng 2025; 88:1-13. [PMID: 39615667 DOI: 10.1016/j.ymben.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Production of recombinant proteins is regarded as an important breakthrough in the field of biomedicine and industrial biotechnology. Due to the complexity of the protein secretory pathway and its tight interaction with cellular metabolism, the application of traditional metabolic engineering tools to improve recombinant protein production faces major challenges. A systematic approach is required to generate novel design principles for superior protein secretion cell factories. Here, we applied a proteome-constrained genome-scale protein secretory model of the yeast Saccharomyces cerevisiae (pcSecYeast) to simulate α-amylase production under limited secretory capacity and predict gene targets for downregulation and upregulation to improve α-amylase production. The predicted targets were evaluated using high-throughput screening of specifically designed CRISPR interference/activation (CRISPRi/a) libraries and droplet microfluidics screening. From each library, 200 and 190 sorted clones, respectively, were manually verified. Out of them, 50% of predicted downregulation targets and 34.6% predicted upregulation targets were confirmed to improve α-amylase production. By simultaneously fine-tuning the expression of three genes in central carbon metabolism, i.e. LPD1, MDH1, and ACS1, we were able to increase the carbon flux in the fermentative pathway and α-amylase production. This study exemplifies how model-based predictions can be rapidly validated via a high-throughput screening approach. Our findings highlight novel engineering targets for cell factories and furthermore shed light on the connectivity between recombinant protein production and central carbon metabolism.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Feiran Li
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
| | - Xiaowei Li
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Maximilian Otto
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Verena Siewers
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
de la Cruz M, Kunert F, Taymaz-Nikerel H, Sigala JC, Gosset G, Büchs J, Lara AR. Increasing the Pentose Phosphate Pathway Flux to Improve Plasmid DNA Production in Engineered E. coli. Microorganisms 2024; 12:150. [PMID: 38257977 PMCID: PMC10820320 DOI: 10.3390/microorganisms12010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The demand of plasmid DNA (pDNA) as a key element for gene therapy products, as well as mRNA and DNA vaccines, is increasing together with the need for more efficient production processes. An engineered E. coli strain lacking the phosphotransferase system and the pyruvate kinase A gene has been shown to produce more pDNA than its parental strain. With the aim of improving pDNA production in the engineered strain, several strategies to increase the flux to the pentose phosphate pathway (PPP) were evaluated. The simultaneous consumption of glucose and glycerol was a simple way to increase the growth rate, pDNA production rate, and supercoiled fraction (SCF). The overexpression of key genes from the PPP also improved pDNA production in glucose, but not in mixtures of glucose and glycerol. Particularly, the gene coding for the glucose 6-phosphate dehydrogenase (G6PDH) strongly improved the SCF, growth rate, and pDNA production rate. A linear relationship between the G6PDH activity and pDNA yield was found. A higher flux through the PPP was confirmed by flux balance analysis, which also estimates relevant differences in fluxes of the tricarboxylic acid cycle. These results are useful for developing further cell engineering strategies to increase pDNA production and quality.
Collapse
Affiliation(s)
- Mitzi de la Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
| | - Flavio Kunert
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, 34060 Istanbul, Turkey
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
| | - Guillermo Gosset
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jochen Büchs
- Chair of Biochemical Engineering (AVT.BioVT), RWTH Aachen University, 52074 Aachen, Germany
| | - Alvaro R. Lara
- Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
García-Calvo L, Rane DV, Everson N, Humlebrekk ST, Mathiassen LF, Mæhlum AHM, Malmo J, Bruheim P. Central carbon metabolite profiling reveals vector-associated differences in the recombinant protein production host Escherichia coli BL21. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The Gram-negative bacterium Escherichia coli is the most widely used host for recombinant protein production, both as an industrial expression platform and as a model system at laboratory scale. The recombinant protein production industry generates proteins with direct applications as biopharmaceuticals and in technological processes central to a plethora of fields. Despite the increasing economic significance of recombinant protein production, and the importance of E. coli as an expression platform and model organism, only few studies have focused on the central carbon metabolic landscape of E. coli during high-level recombinant protein production. In the present work, we applied four targeted CapIC- and LC-MS/MS methods, covering over 60 metabolites, to perform an in-depth metabolite profiling of the effects of high-level recombinant protein production in strains derived from E. coli BL21, carrying XylS/Pm vectors with different characteristics. The mass-spectrometric central carbon metabolite profiling was complemented with the study of growth kinetics and protein production in batch bioreactors. Our work shows the robustness in E. coli central carbon metabolism when introducing increased plasmid copy number, as well as the greater importance of induction of recombinant protein production as a metabolic challenge, especially when strong promoters are used.
Collapse
|
4
|
Sheng Q, Yi L, Zhong B, Wu X, Liu L, Zhang B. Shikimic acid biosynthesis in microorganisms: Current status and future direction. Biotechnol Adv 2023; 62:108073. [PMID: 36464143 DOI: 10.1016/j.biotechadv.2022.108073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Shikimic acid (SA), a hydroaromatic natural product, is used as a chiral precursor for organic synthesis of oseltamivir (Tamiflu®, an antiviral drug). The process of microbial production of SA has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Corynebacterium glutamicum (141.2 g/L) and Escherichia coli (87 g/L) laid a solid foundation for the microbial fermentation production of SA. However, its industrial application is restricted by limitations such as the lack of fermentation tests for industrial-scale and the requirement of growth-limiting factors, antibiotics, and inducers. Therefore, the development of SA biosensors and dynamic molecular switches, as well as genetic modification strategies and optimization of the fermentation process based on omics technology could improve the performance of SA-producing strains. In this review, recent advances in the development of SA-producing strains, including genetic modification strategies, metabolic pathway construction, and biosensor-assisted evolution, are discussed and critically reviewed. Finally, future challenges and perspectives for further reinforcing the development of robust SA-producing strains are predicted, providing theoretical guidance for the industrial production of SA.
Collapse
Affiliation(s)
- Qi Sheng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxin Yi
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhong
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang 330045, China; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Genome-scale metabolic model-based engineering of Escherichia coli enhances recombinant single-chain antibody fragment production. Biotechnol Lett 2022; 44:1231-1242. [PMID: 36074282 DOI: 10.1007/s10529-022-03301-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Escherichia coli is an attractive and cost-effective cell factory for producing recombinant proteins such as single-chain variable fragments (scFvs). AntiEpEX-scFv is a small antibody fragment that has received considerable attention for its ability to target the epithelial cell adhesion molecule (EpCAM), a cancer-associated biomarker of solid tumors. Due to its metabolic burden, scFv recombinant expression causes a remarkable decrease in the maximum specific growth rate of the scFv-producing strain. In the present study, a genome-scale metabolic model (GEM)-guided engineering strategy is proposed to identify gene targets for improved antiEpEX-scFv production in E. coli. METHODS In this study, a genome-scale metabolic model of E. coli (iJO1366) and a metabolic modeling tool (FVSEOF) were employed to find appropriate genes to be amplified in order to improve the strain for incresed production of antiEpEX-scFv. To validate the model predictions, one target gene was overexpressed in the parent strain Escherichia coli BW25113 (DE3). RESULTS For improving scFv production, we applied the FVSEOF method to identify a number of potential genetic engineering targets. These targets were found to be localized in the glucose uptake system and pentose phosphate pathway. From the predicted targets, the glk gene encoding glucokinase was chosen to be overexpressed in the parent strain Escherichia coli BW25113 (DE3). By overexpressing glk, the growth capacity of the recombinant E. coli strain was recovered. Moreover, the engineered strain with glk overexpression successfully led to increased scFv production. CONCLUSION The genome-scale metabolic modeling can be considered for the improvement of the production of other recombinant proteins.
Collapse
|
6
|
Enhancing microaerobic plasmid DNA production by chromosomal expression of Vitreoscilla hemoglobin in E. coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Sun XM, Zhang ZX, Wang LR, Wang JG, Liang Y, Yang HF, Tao RS, Jiang Y, Yang JJ, Yang S. Downregulation of T7 RNA polymerase transcription enhances pET-based recombinant protein production in Escherichia coli BL21 (DE3) by suppressing autolysis. Biotechnol Bioeng 2020; 118:153-163. [PMID: 32897579 DOI: 10.1002/bit.27558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Escherichia coli BL21 (DE3) is an excellent and widely used host for recombinant protein production. Many variant hosts were developed from BL21 (DE3), but improving the expression of specific proteins remains a major challenge in biotechnology. In this study, we found that when BL21 (DE3) overexpressed glucose dehydrogenase (GDH), a significant industrial enzyme, severe cell autolysis was induced. Subsequently, we observed this phenomenon in the expression of 10 other recombinant proteins. This precludes a further increase of the produced enzyme activity by extending the fermentation time, which is not conducive to the reduction of industrial enzyme production costs. Analysis of membrane structure and messenger RNA expression analysis showed that cells could underwent a form of programmed cell death (PCD) during the autolysis period. However, blocking three known PCD pathways in BL21 (DE3) did not completely alleviate autolysis completely. Consequently, we attempted to develop a strong expression host resistant to autolysis by controlling the speed of recombinant protein expression. To find a more suitable protein expression rate, the high- and low-strength promoter lacUV5 and lac were shuffled and recombined to yield the promoter variants lacUV5-1A and lac-1G. The results showed that only one base in lac promoter needs to be changed, and the A at the +1 position was changed to a G, resulting in the improved host BL21 (DE3-lac1G), which resistant to autolysis. As a consequence, the GDH activity at 43 h was greatly increased from 37.5 to 452.0 U/ml. In scale-up fermentation, the new host was able to produce the model enzyme with a high rate of 89.55 U/ml/h at 43 h, compared to only 3 U/ml/h achieved using BL21 (DE3). Importantly, BL21 (DE3-lac1G) also successfully improved the production of 10 other enzymes. The engineered E. coli strain constructed in this study conveniently optimizes recombinant protein overexpression by suppressing cell autolysis, and shows great potential for industrial applications.
Collapse
Affiliation(s)
- Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, China
| | | | - Yan Liang
- HuaRui Biotechnology Company, Huzhou, Zhejiang, China
| | - Hai-Feng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rong-Sheng Tao
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| | - Jun-Jie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Huzhou, Zhejiang, China
| |
Collapse
|
8
|
Chiang CJ, Hu MC, Chao YP. A Strategy to Improve Production of Recombinant Proteins in Escherichia coli Based on a Glucose-Glycerol Mixture and Glutamate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8883-8889. [PMID: 32806130 DOI: 10.1021/acs.jafc.0c03671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enzymes have a wide range of applications in many sectors of the industry, and the market value has skyrocketed in recent years. Glucose and glycerol are two renewable carbon sources of importance. Therefore, it is appealing to produce recombinant enzymes with these carbon substrates on the basis of economic viability. In this study, glycerol metabolism and glucose metabolism in Escherichia coli (E. coli) were manipulated in a systematic way. In addition, glutamate (Glu) was used for replacement of yeast extract to reduce the cost and the quality-variation problem. A strategy was further developed to incorporate Glu into the central metabolism. The engineered E. coli strain finally enabled efficient co-utilization of glucose and glycerol and improved biomass and protein production by 4.3 and 8.2-folds, respectively. The result illustrates that this proposed approach is promising for effective production of recombinant proteins.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Mu-Chen Hu
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 40724, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
9
|
Gulli J, Kroll E, Rosenzweig F. Encapsulation enhances protoplast fusant stability. Biotechnol Bioeng 2020; 117:1696-1709. [PMID: 32100874 PMCID: PMC7318116 DOI: 10.1002/bit.27318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/13/2023]
Abstract
A barrier to cost‐efficient biomanufacturing is the instability of engineered genetic elements, such as plasmids. Instability can also manifest at the whole‐genome level, when fungal dikaryons revert to parental species due to nuclear segregation during cell division. Here, we show that by encapsulating Saccharomyces cerevisiae‐Pichia stipitis dikaryons in an alginate matrix, we can limit cell division and preserve their expanded metabolic capabilities. As a proxy to cellulosic ethanol production, we tested the capacity of such cells to carry out ethanologenic fermentation of glucose and xylose, examining substrate use, ploidy, and cell viability in relation to planktonic fusants, as well as in relation to planktonic and encapsulated cell cultures consisting of mixtures of these species. Glucose and xylose consumption and ethanol production by encapsulated dikaryons were greater than planktonic controls. Simultaneous co‐fermentation did not occur; rather the order and kinetics of glucose and xylose catabolism by encapsulated dikaryons were similar to cultures where the two species were encapsulated together. Over repeated cycles of fed‐batch culture, encapsulated S. cerevisiae‐P. stipitis fusants exhibited a dramatic increase in genomic stability, relative to planktonic fusants. Encapsulation also increased the stability of antibiotic‐resistance plasmids used to mark each species and preserved a fixed ratio of S. cerevisiae to P. stipitis cells in mixed cultures. Our data demonstrate how encapsulating cells in an extracellular matrix restricts cell division and, thereby, preserves the stability and biological activity of entities ranging from genomes to plasmids to mixed populations, each of which can be essential to cost‐efficient biomanufacturing.
Collapse
Affiliation(s)
- Jordan Gulli
- School of Biological Sciences, College of Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Eugene Kroll
- School of Biological Sciences, College of Science, Georgia Institute of Technology, Atlanta, Georgia
| | - Frank Rosenzweig
- School of Biological Sciences, College of Science, Georgia Institute of Technology, Atlanta, Georgia.,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
10
|
Folarin O, Nesbeth D, Ward JM, Keshavarz-Moore E. Application of Plasmid Engineering to Enhance Yield and Quality of Plasmid for Vaccine and Gene Therapy. Bioengineering (Basel) 2019; 6:bioengineering6020054. [PMID: 31248216 PMCID: PMC6631426 DOI: 10.3390/bioengineering6020054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/19/2022] Open
Abstract
There is an increased interest in plasmid DNA as therapeutics. This is evident in the number of ongoing clinical trials involving the use of plasmid DNA. In order to be an effective therapeutic, high yield and high level of supercoiling are required. From the bioprocessing point of view, the supercoiling level potentially has an impact on the ease of downstream processing. We approached meeting these requirements through plasmid engineering. A 7.2 kb plasmid was developed by the insertion of a bacteriophage Mu strong gyrase-binding sequence (Mu-SGS) to a 6.8 kb pSVβ-Gal and it was used to transform four different E. coli strains, and cultured in order to investigate the Mu-SGS effect and dependence on strain. There was an increase of over 20% in the total plasmid yield with pSVβ-Gal398 in two of the strains. The supercoiled topoisomer content was increased by 5% in both strains leading to a 27% increase in the overall yield. The extent of supercoiling was examined using superhelical density (σ) quantification with pSVβ-Gal398 maintaining a superhelical density of −0.022, and pSVβ-Gal −0.019, in both strains. This study has shown that plasmid modification with the Mu-phage SGS sequence has a beneficial effect on improving not only the yield of total plasmid but also the supercoiled topoisomer content of therapeutic plasmid DNA during bioprocessing.
Collapse
Affiliation(s)
- Olusegun Folarin
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Darren Nesbeth
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - John M Ward
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| | - Eli Keshavarz-Moore
- Advanced Center for Biochemical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Li J, Tian C, Xia Y, Mutanda I, Wang K, Wang Y. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metab Eng 2018; 52:124-133. [PMID: 30496827 DOI: 10.1016/j.ymben.2018.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023]
Abstract
Baicalein and scutellarein are bioactive flavones found in the medicinal plant Scutellaria baicalensis Georgi, used in traditional Chinese medicine. Extensive previous work has demonstrated the broad biological activity of these flavonoids, such as antifibrotic, antiviral and anticancer properties. However, their supply from plant material is insufficient to meet demand. Here, to provide an alternative production source and increase production levels of these flavones, we engineered an artificial pathway in an Escherichia coli cell factory for the first time. By first reconstructing the plant flavonoid biosynthetic pathway genes from five different species: phenylalanine ammonia lyase from Rhodotorula toruloides (PAL), 4-coumarate-coenzyme A ligase from Petroselinum crispum (4CL), chalcone synthase from Petunia hybrida (CHS), chalcone isomerase from Medicago sativa (CHI) and an oxidoreductase flavone synthase I from P. crispum (FNSI), production of the intermediates chrysin and apigenin was achieved by feeding phenylalanine and tyrosine as precursors. By comparative analysis of various versions of P450s, a construction expressing 2B1 incorporated with a 22-aa N-terminal truncated flavone C-6 hydroxylase from S. baicalensis (F6H) and partner P450 reductase from Arabidopsis thaliana (AtCPR) was found most effective for production of both baicalein (8.5 mg/L) and scutellarein (47.1 mg/L) upon supplementation with 0.5 g/L phenylalanine and tyrosine in 48 h of fermentation. Finally, optimization of malonyl-CoA availability further increased the production of baicalein to 23.6 mg/L and scutellarein to 106.5 mg/L in a flask culture. This report presents a significant advancement of flavone synthetic production and provides foundation for production of other flavones in microbial hosts.
Collapse
Affiliation(s)
- Jianhua Li
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenfei Tian
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuhui Xia
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ishmael Mutanda
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kaibo Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; He'nan Key Laboratory of Plant Stress Biology, He'nan University, Kaifeng 475004, China
| | - Yong Wang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
12
|
Serrano-Maldonado CE, Quirasco M. Enhancement of the antibacterial activity of an E. faecalis strain by the heterologous expression of enterocin A. J Biotechnol 2018; 283:28-36. [PMID: 30006300 DOI: 10.1016/j.jbiotec.2018.06.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/31/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
The genus Enterococcus occurs as native microbiota of fermented products due to its broad environmental distribution and its resistance to salt concentrations. Enterococcus faecalis F, a non-pathogenic strain isolated from a ripened cheese, has demonstrated useful enzymatic capabilities, a probiotic behavior and antibacterial activity against some food-borne pathogens, mainly due to peptidoglycan hydrolase activity. Its use as a natural pathogen-control agent could be further enhanced through the production of a bacteriocin, e.g. Enterocin A, because of its remarkable antilisterial activity. In this work, a markerless allelic insertion method was used to obtain an enterococcal strain capable of producing a functional enterocin. Agar diffusion tests showed that the recombinant strain was active against Staphylococcus aureus, Listeria monocytogenes and the pathogenic strain E. faecalis V583. When grown in liquid culture together with L. monocytogenes, it attained a two-log reduction of the pathogen counts in lesser time relative to the native strain. Because the DNA construction is integrated into the chromosome, the improved strain avoids the use of antibiotics as selective pressure; besides, it does not require an inductor because of the inclusion of a constitutive promoter in the construction. Its technological and antibacterial capabilities make the improved E. faecalis strain a potential culture for use in the food industry.
Collapse
Affiliation(s)
- Carlos Eduardo Serrano-Maldonado
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, Mexico
| | - Maricarmen Quirasco
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, Mexico.
| |
Collapse
|
13
|
Jaén KE, Sigala JC, Olivares-Hernández R, Niehaus K, Lara AR. Heterogeneous oxygen availability affects the titer and topology but not the fidelity of plasmid DNA produced by Escherichia coli. BMC Biotechnol 2017; 17:60. [PMID: 28676110 PMCID: PMC5496438 DOI: 10.1186/s12896-017-0378-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. Results Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. Conclusions DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0378-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karim E Jaén
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolita-Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, 05348, Mexico City, Mexico
| | - Juan-Carlos Sigala
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, 05348, Mexico City, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, 05348, Mexico City, Mexico
| | - Karsten Niehaus
- Abteilung für Proteom- und Metabolomforschung, Fakultät für Biologie & CeBiTec, Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Alvaro R Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, 05348, Mexico City, Mexico.
| |
Collapse
|
14
|
Gomes L, Mergulhão F. Heterologous protein production in Escherichia coli biofilms: A non-conventional form of high cell density cultivation. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Efficient genetic approaches for improvement of plasmid based expression of recombinant protein in Escherichia coli : A review. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Rodriguez A, Martínez JA, Millard P, Gosset G, Portais JC, Létisse F, Bolivar F. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineeredEscherichia colistrain. Biotechnol Bioeng 2017; 114:1319-1330. [DOI: 10.1002/bit.26264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Alberto Rodriguez
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | - Juan A. Martínez
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | - Pierre Millard
- LISBP, Université de Toulouse, CNRS, INRA; INSA; Toulouse France
| | - Guillermo Gosset
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| | | | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA; INSA; Toulouse France
| | - Francisco Bolivar
- Instituto de Biotecnología; Universidad Nacional Autónoma de México (UNAM); Cuernavaca Morelos Mexico
| |
Collapse
|
17
|
Sieben M, Steinhorn G, Müller C, Fuchs S, Ann Chin L, Regestein L, Büchs J. Testing plasmid stability ofEscherichia coliusing the Continuously Operated Shaken BIOreactor System. Biotechnol Prog 2016; 32:1418-1425. [DOI: 10.1002/btpr.2341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/11/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Michaela Sieben
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Gregor Steinhorn
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Carsten Müller
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Simone Fuchs
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
- Department of Chemical Engineering; Hochschule Ostwestfalen-Lippe; Lemgo Germany
| | - Laura Ann Chin
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
- University of Arizona; Tucson AZ USA
| | - Lars Regestein
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering; RWTH Aachen University; Aachen D-52074 Germany
| |
Collapse
|
18
|
Calero P, Jensen SI, Nielsen AT. Broad-Host-Range ProUSER Vectors Enable Fast Characterization of Inducible Promoters and Optimization of p-Coumaric Acid Production in Pseudomonas putida KT2440. ACS Synth Biol 2016; 5:741-53. [PMID: 27092814 DOI: 10.1021/acssynbio.6b00081] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pseudomonas putida KT2440 has gained increasing interest as a host for the production of biochemicals. Because of the lack of a systematic characterization of inducible promoters in this strain, we generated ProUSER broad-host-expression plasmids that facilitate fast uracil-based cloning. A set of ProUSER-reporter vectors was further created to characterize different inducible promoters. The PrhaB and Pm promoters were orthogonal and showed titratable, high, and homogeneous expression. To optimize the production of p-coumaric acid, P. putida was engineered to prevent degradation of tyrosine and p-coumaric acid. Pm and PrhaB were used to control the expression of a tyrosine ammonia lyase or AroG* and TyrA* involved in tyrosine production, respectively. Pathway expression was optimized by modulating inductions, resulting in small-scale p-coumaric acid production of 1.2 mM, the highest achieved in Pseudomonads under comparable conditions. With broad-host-range compatibility, the ProUSER vectors will serve as useful tools for optimizing gene expression in a variety of bacteria.
Collapse
Affiliation(s)
- Patricia Calero
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, 2970 Hørsholm, Denmark
| | - Sheila I. Jensen
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, 2970 Hørsholm, Denmark
| | - Alex T. Nielsen
- Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Kogle Allé
6, 2970 Hørsholm, Denmark
| |
Collapse
|
19
|
Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol 2016; 100:5955-63. [PMID: 27020289 PMCID: PMC4909809 DOI: 10.1007/s00253-016-7363-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/13/2016] [Accepted: 01/30/2016] [Indexed: 12/26/2022]
Abstract
Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of 13C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production.
Collapse
|
20
|
Guo L, Chen X, Li LN, Tang W, Pan YT, Kong JQ. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microb Cell Fact 2016; 15:27. [PMID: 26846670 PMCID: PMC4743118 DOI: 10.1186/s12934-016-0424-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
Abstract
Background (2S)-Pinocembrin is a chiral flavanone with versatile pharmacological and biological activities. Its health-promoting effects have spurred on research effects on the microbial production of (2S)-pinocembrin. However, an often-overlooked salient feature in the analysis of microbial (2S)-pinocembrin is its chirality. Results Here, we presented a full characterization of absolute configuration of microbial (2S)-pinocembrin from engineered Escherichia coli. Specifically, a transcriptome-wide search for genes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum, a plant rich in flavonoids, was first performed in the present study. A total of 104,180 unigenes were finally generated with an average length of 520 bp. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping assigned 26 unigenes, representing three enzyme families of 4-coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS) and chalcone isomerase(CHI), onto (2S)-pinocembrin biosynthetic pathway. A total of seven, three and one full-length candidates encoding 4CL, CHS and CHI were then verified by reverse transcription polymerase chain reaction, respectively. These candidates were screened by functional expression in E. coli individual or coupled multienzyme reaction systems based on metabolic engineering processes. Oc4CL1, OcCHS2 and OcCHI were identified to be bona fide genes encoding respective pathway enzymes of (2S)-pinocembrin biosynthesis. Then Oc4CL1, OcCHS2 and MsCHI from Medicago sativa, assembled as artificial gene clusters in different organizations, were used for fermentation production of (2S)-pinocembrin in E. coli. The absolute configuration of the resulting microbial pinocembrin at C-2 was assigned to be 2S-configured by combination of retention time, UV spectrum, LC–MS, NMR, optical rotation and circular dichroism spectroscopy. Improvement of (2S)-pinocembrin titres was then achieved by optimization of gene organizations, using of codon-optimized pathway enzymes and addition of cerulenin for increasing intracellular malonyl CoA pools. Overall, the optimized strain can produce (2S)-pinocembrin of 36.92 ± 4.1 mg/L. Conclusions High titre of (2S)-pinocembrin can be obtained from engineered E. coli by an efficient method. The fermentative production of microbial (2S)-pinocembrin in E. coli paved the way for yield improvement and further pharmacological testing. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0424-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Xi Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China. .,School of Medicine of Wuhan University, Wuhan, China.
| | - Li-Na Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| | - Wei Tang
- School of Medicine of Wuhan University, Wuhan, China.
| | - Yi-Ting Pan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| |
Collapse
|
21
|
Saini M, Li SY, Wang ZW, Chiang CJ, Chao YP. Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:69. [PMID: 26997975 PMCID: PMC4799531 DOI: 10.1186/s13068-016-0467-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/19/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Microbes have been extensively explored for production of environment-friendly fuels and chemicals. The microbial fermentation pathways leading to these commodities usually involve many redox reactions. This makes the fermentative production of highly reduced products challenging, because there is a limited NADH output from glucose catabolism. Microbial production of n-butanol apparently represents one typical example. RESULTS In this study, we addressed the issue by adjustment of the intracellular redox state in Escherichia coli. This was initiated with strain BuT-8 which carries the clostridial CoA-dependent synthetic pathway. Three metabolite nodes in the central metabolism of the strain were targeted for engineering. First, the pyruvate node was manipulated by enhancement of pyruvate decarboxylation in the oxidative pathway. Subsequently, the pentose phosphate (PP) pathway was amplified at the glucose-6-phosphate (G6P) node. The pathway for G6P isomerization was further blocked to force the glycolytic flux through the PP pathway. It resulted in a growth defect, and the cell growth was later recovered by limiting the tricarboxylic acid cycle at the acetyl-CoA node. Finally, the resulting strain exhibited a high NADH level and enabled production of 6.1 g/L n-butanol with a yield of 0.31 g/g-glucose and a productivity of 0.21 g/L/h. CONCLUSIONS The production efficiency of fermentative products in microbes strongly depends on the intracellular redox state. This work illustrates the flexibility of pyruvate, G6P, and acetyl-CoA nodes at the junction of the central metabolism for engineering. In principle, high production of reduced products of interest can be achieved by individual or coordinated modulation of these metabolite nodes.
Collapse
Affiliation(s)
- Mukesh Saini
- />Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan Republic of China
| | - Si-Yu Li
- />Department of Chemical Engineering, National Chung Hsing University, Taichung, 402 Taiwan Republic of China
| | - Ze Win Wang
- />Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan Republic of China
| | - Chung-Jen Chiang
- />Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402 Taiwan Republic of China
| | - Yun-Peng Chao
- />Department of Chemical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung, 40724 Taiwan Republic of China
- />Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354 Taiwan Republic of China
- />Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan Republic of China
| |
Collapse
|
22
|
Leiser OP, Merkley ED, Clowers BH, Deatherage Kaiser BL, Lin A, Hutchison JR, Melville AM, Wagner DM, Keim PS, Foster JT, Kreuzer HW. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach. PLoS One 2015; 10:e0142997. [PMID: 26599979 PMCID: PMC4658026 DOI: 10.1371/journal.pone.0142997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.
Collapse
Affiliation(s)
- Owen P. Leiser
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Eric D. Merkley
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99354, United States of America
| | - Brooke L. Deatherage Kaiser
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Andy Lin
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Janine R. Hutchison
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - Angela M. Melville
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Paul S. Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Jeffrey T. Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86001, United States of America
| | - Helen W. Kreuzer
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fehér T, Libis V, Carbonell P, Faulon JL. A Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli. Front Bioeng Biotechnol 2015; 3:46. [PMID: 25905101 PMCID: PMC4389729 DOI: 10.3389/fbioe.2015.00046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/23/2015] [Indexed: 01/26/2023] Open
Abstract
Production of value-added chemicals in microorganisms is regarded as a viable alternative to chemical synthesis. In the past decade, several engineered pathways producing such chemicals, including plant secondary metabolites in microorganisms have been reported; upscaling their production yields, however, was often challenging. Here, we analyze a modular device designed for sensing malonyl-CoA, a common precursor for both fatty acid and flavonoid biosynthesis. The sensor can be used either for high-throughput pathway screening in synthetic biology applications or for introducing a feedback circuit to regulate production of the desired chemical. Here, we used the sensor to compare the performance of several predicted malonyl-CoA-producing pathways, and validated the utility of malonyl-CoA reductase and malonate-CoA transferase for malonyl-CoA biosynthesis. We generated a second-order dynamic linear model describing the relation of the fluorescence generated by the sensor to the biomass of the host cell representing a filter/amplifier with a gain that correlates with the level of induction. We found the time constants describing filter dynamics to be independent of the level of induction but distinctively clustered for each of the production pathways, indicating the robustness of the sensor. Moreover, by monitoring the effect of the copy-number of the production plasmid on the dose–response curve of the sensor, we managed to coarse-tune the level of pathway expression to maximize malonyl-CoA synthesis. In addition, we provide an example of the sensor’s use in analyzing the effect of inducer or substrate concentrations on production levels. The rational development of models describing sensors, supplemented with the power of high-throughput optimization provide a promising potential for engineering feedback loops regulating enzyme levels to maximize productivity yields of synthetic metabolic pathways.
Collapse
Affiliation(s)
- Tamás Fehér
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences , Szeged , Hungary
| | - Vincent Libis
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; Paris Diderot University , Paris , France
| | - Pablo Carbonell
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra , Barcelona , Spain ; SYNBIOCHEM Center, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester , Manchester , UK
| | - Jean-Loup Faulon
- Institute of Systems and Synthetic Biology, University of Evry Val d'Essonne , Evry , France ; SYNBIOCHEM Center, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester , Manchester , UK
| |
Collapse
|
24
|
Meade J, Bartlow P, Trivedi RN, Akhtar P, Ataai MM, Khan SA, Domach MM. Effect of plasmid replication deregulation via inc mutations on E. coli proteome & simple flux model analysis. Microb Cell Fact 2015; 14:31. [PMID: 25890349 PMCID: PMC4357208 DOI: 10.1186/s12934-015-0212-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/19/2015] [Indexed: 11/26/2022] Open
Abstract
When the replication of a plasmid based on sucrose selection is deregulated via the inc1 and inc2 mutations, high copy numbers (7,000 or greater) are attained while the growth rate on minimal medium is negligibly affected. Adaptions were assumed to be required in order to sustain the growth rate. Proteomics indicated that indeed a number of adaptations occurred that included increased expression of ribosomal proteins and 2-oxoglutarate dehydrogenase. The operating space prescribed by a basic flux model that maintained phenotypic traits (e.g. growth, byproducts, etc.) within typical bounds of resolution was consistent with the flux implications of the proteomic changes.
Collapse
Affiliation(s)
- Jonathan Meade
- Department Chemical Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA.
| | - Patrick Bartlow
- Department Chemical Engineering, University of Pittsburgh, 15219, Pittsburgh, PA, USA.
| | - Ram Narayan Trivedi
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Parvez Akhtar
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Mohammad M Ataai
- Department Chemical Engineering, University of Pittsburgh, 15219, Pittsburgh, PA, USA.
| | - Saleem A Khan
- Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
| | - Michael M Domach
- Department Chemical Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Rahmen N, Fulton A, Ihling N, Magni M, Jaeger KE, Büchs J. Exchange of single amino acids at different positions of a recombinant protein affects metabolic burden in Escherichia coli. Microb Cell Fact 2015; 14:10. [PMID: 25612616 PMCID: PMC4307990 DOI: 10.1186/s12934-015-0191-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Background Escherichia coli is commonly used in academia and industry for expressing recombinant proteins because of its well-characterized molecular genetics and the availability of numerous expression vectors and strains. One important issue during recombinant protein production is the so-called ‘metabolic burden’: the material and energy normally reserved for microbial metabolism which is sapped from the bacterium to produce the recombinant protein. This material and energy drain harms biomass formation and modifies respiration. To the best of our knowledge, no research has investigated so far whether a single amino acid exchange in a recombinant protein affects the metabolic burden phenomenon. Thus, in this study, 15 E. coli BL21(DE3) clones expressing either the fusion tags, a recombinant wild type lipase, or 13 different lipase variants are investigated to quantitatively analyze the respective effects of single amino acid exchanges at different positions on respiration, biomass and protein production of each clone. Therefore, two small-scale online monitoring systems, namely a Respiration Activity MOnitoring System (RAMOS) and a microtiter plate based cultivation system (BioLector) are applied. Results Upon expression of all enzyme variants, strong variations were found in the Oxygen Transfer Rate (OTR), biomass and protein (lipase) production of the respective E. coli clones. Two distinct patterns of respiration behavior were observed and, so, the clones could be classified into two groups (Type A and B). Potential factors to explain these patterns were evaluated (e.g. plasmid copy number, inclusion body formation). However, no decisive factor could yet be identified. Five distinct cultivation phases could be determined from OTR curves which give real-time information about carbon source consumption, biomass and protein production. In general, it was found that the quantity of product increased with the duration of active respiration. Conclusions This work demonstrates that single amino acid exchanges in a recombinant protein influence the metabolic burden during protein production. The small-scale online monitoring devices RAMOS and BioLector enable the real-time detection of even smallest differences in respiration behavior, biomass and protein production in the E. coli clones investigated. Hence, this study underscores the importance of parallel online monitoring systems to unveil the relevance of single amino acid exchanges for the recombinant protein production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0191-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalie Rahmen
- AVT - Biochemical Engineering, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| | - Alexander Fulton
- Institute for Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52426, Jülich, Germany.
| | - Nina Ihling
- AVT - Biochemical Engineering, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| | - Marzio Magni
- AVT - Biochemical Engineering, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| | - Karl-Erich Jaeger
- Institute for Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, D-52426, Jülich, Germany. .,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, D-52426, Jülich, Germany.
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Worringerweg 1, D-52074, Aachen, Germany.
| |
Collapse
|
26
|
Mahalik S, Sharma AK, Mukherjee KJ. Genome engineering for improved recombinant protein expression in Escherichia coli. Microb Cell Fact 2014; 13:177. [PMID: 25523647 PMCID: PMC4300154 DOI: 10.1186/s12934-014-0177-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
A metabolic engineering perspective which views recombinant protein
expression as a multistep pathway allows us to move beyond vector design and
identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level
and the supply of precursors in the form of energy, amino acids and nucleotides.
Further recombinant protein production triggers a global cellular stress response
which feedback inhibits both growth and product formation. Countering this requires
a system level analysis followed by a rational host cell engineering to sustain
expression for longer time periods. Another strategy to increase protein yields
could be to divert the metabolic flux away from biomass formation and towards
recombinant protein production. This would require a growth stoppage mechanism which
does not affect the metabolic activity of the cell or the transcriptional or
translational efficiencies. Finally cells have to be designed for efficient export
to prevent buildup of proteins inside the cytoplasm and also simplify downstream
processing. The rational and the high throughput strategies that can be used for the
construction of such improved host cell platforms for recombinant protein expression
is the focus of this review.
Collapse
Affiliation(s)
- Shubhashree Mahalik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ashish K Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Krishna J Mukherjee
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
27
|
High-Level Production of Plasmid DNA by Escherichia coli DH5α ΩsacB by Introducing inc Mutations. Appl Environ Microbiol 2014; 80:7154-60. [PMID: 25217014 DOI: 10.1128/aem.02445-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/05/2014] [Indexed: 11/20/2022] Open
Abstract
For small-copy-number pUC-type plasmids, the inc1 and inc2 mutations, which deregulate replication, were previously found to increase the plasmid copy number 6- to 7-fold. Because plasmids can exert a growth burden, it was not clear if further amplification of copy number would occur due to inc mutations when the starting point for plasmid copy number was orders of magnitude higher. To investigate further the effects of the inc mutations and the possible limits of plasmid synthesis, the parent plasmid pNTC8485 was used as a starting point. It lacks an antibiotic resistance gene and has a copy number of ~1,200 per chromosome. During early stationary-phase growth in LB broth at 37°C, inc2 mutants of pNTC8485 exhibited a copy number of ~7,000 per chromosome. In minimal medium at late log growth, the copy number was found to be significantly increased, to approximately 15,000. In an attempt to further increase the plasmid titer (plasmid mass/culture volume), enzymatic hydrolysis of the selection agent, sucrose, at late log growth extended growth and tripled the total plasmid amount such that an approximately 80-fold gain in total plasmid was obtained compared to the value for typical pUC-type vectors. Finally, when grown in minimal medium, no detectable impact on the exponential growth rate or the fidelity of genomic or plasmid DNA replication was found in cells with deregulated plasmid replication. The use of inc mutations and the sucrose degradation method presents a simplified way for attaining high titers of plasmid DNA for various applications.
Collapse
|
28
|
Chen X, Li M, Zhou L, Shen W, Algasan G, Fan Y, Wang Z. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. BIORESOURCE TECHNOLOGY 2014; 166:64-71. [PMID: 24905044 DOI: 10.1016/j.biortech.2014.05.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/10/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
Shikimate is a key intermediate for the synthesis of the neuraminidase inhibitors. Microbial production of shikimate and related derivatives has the benefit of cost reduction when compared to traditional methods. In this study, an overproducing shikimate Escherichia coli strain was developed by rationally engineering certain metabolic pathways. To achieve this, the shikimate pathway was blocked by deletion of shikimate kinases and quinic acid/shikimate dehydrogenase. EIICB(glc) protein involved in the phosphotransferase system, and acetic acid pathway were also removed to increase the amount of available phosphoenolpyruvate and decrease byproduct formation, respectively. Thereafter, three critical enzymes of mutated 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP) synthase (encoded by aroG(fbr)), PEP synthase (encoded by ppsA), and transketolase A (encoded by tktA) were modularly overexpressed and the resulting recombinant strain produced 1207 mg/L shikimate in shake flask cultures. Using the fed-batch process, 14.6g/L shikimate with a yield of 0.29 g/g glucose was generated in a 7-L bioreactor.
Collapse
Affiliation(s)
- Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Mingming Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Govender Algasan
- Department of Biotechnology & Food Technology, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - You Fan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhengxiang Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
29
|
Ip K, Donoghue N, Kim MK, Lun DS. Constraint-based modeling of heterologous pathways: Application and experimental demonstration for overproduction of fatty acids inEscherichia coli. Biotechnol Bioeng 2014; 111:2056-66. [DOI: 10.1002/bit.25261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Kuhn Ip
- Phenomics and Bioinformatics Research Centre; School of Information Technology and Mathematical Sciences, and Australian Centre for Plant Functional Genomics; University of South Australia; Mawson Lakes SA 5095 Australia
- Center for Computational and Integrative Biology and Department of Computer Science; Rutgers University; Camden New Jersey 08102
| | - Neil Donoghue
- Phenomics and Bioinformatics Research Centre; School of Information Technology and Mathematical Sciences, and Australian Centre for Plant Functional Genomics; University of South Australia; Mawson Lakes SA 5095 Australia
| | - Min Kyung Kim
- Center for Computational and Integrative Biology and Department of Computer Science; Rutgers University; Camden New Jersey 08102
| | - Desmond S. Lun
- Phenomics and Bioinformatics Research Centre; School of Information Technology and Mathematical Sciences, and Australian Centre for Plant Functional Genomics; University of South Australia; Mawson Lakes SA 5095 Australia
- Center for Computational and Integrative Biology and Department of Computer Science; Rutgers University; Camden New Jersey 08102
| |
Collapse
|
30
|
Baig F, Fernando LP, Salazar MA, Powell RR, Bruce TF, Harcum SW. Dynamic transcriptional response of Escherichia coli to inclusion body formation. Biotechnol Bioeng 2014; 111:980-99. [PMID: 24338599 DOI: 10.1002/bit.25169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 01/27/2023]
Abstract
Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses.
Collapse
Affiliation(s)
- Faraz Baig
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, South Carolina, 29634
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
32
|
Rodriguez A, Martínez JA, Báez-Viveros JL, Flores N, Hernández-Chávez G, Ramírez OT, Gosset G, Bolivar F. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb Cell Fact 2013; 12:86. [PMID: 24079972 PMCID: PMC3852013 DOI: 10.1186/1475-2859-12-86] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the last two decades many efforts have been directed towards obtaining efficient microbial processes for the production of shikimic acid (SA); however, feeding high amounts of substrate to increase the titer of this compound has invariably rendered low conversion yields, leaving room for improvement of the producing strains. In this work we report an alternative platform to overproduce SA in a laboratory-evolved Escherichia coli strain, based on plasmid-driven constitutive expression of six genes selected from the pentose phosphate and aromatic amino acid pathways, artificially arranged as an operon. Production strains also carried inactivated genes coding for phosphotransferase system components (ptsHIcrr), shikimate kinases I and II (aroK and aroL), pyruvate kinase I (pykF) and the lactose operon repressor (lacI). RESULTS The strong and constitutive expression of the constructed operon permitted SA production from the beginning of the cultures, as evidenced in 1 L batch-mode fermentors starting with high concentrations of glucose and yeast extract. Inactivation of the pykF gene improved SA production under the evaluated conditions by increasing the titer, yield and productivity of this metabolite compared to the isogenic pykF+ strain. The best producing strain accumulated up to 43 g/L of SA in 30 h and relatively low concentrations of acetate and aromatic byproducts were detected, with SA accounting for 80% of the produced aromatic compounds. These results were consistent with high expression levels of the glycolytic pathway and synthetic operon genes from the beginning of fermentations, as revealed by transcriptomic analysis. Despite the consumption of 100 g/L of glucose, the yields on glucose of SA and of total aromatic compounds were about 50% and 60% of the theoretical maximum, respectively. The obtained yields and specific production and consumption rates proved to be constant with three different substrate concentrations. CONCLUSIONS The developed production system allowed continuous SA accumulation until glucose exhaustion and eliminated the requirement for culture inducers. The obtained SA titers and yields represent the highest reported values for a high-substrate batch process, postulating the strategy described in this report as an interesting alternative to the traditionally employed fed-batch processes for SA production.
Collapse
Affiliation(s)
- Alberto Rodriguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo, Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 2013; 16:48-55. [DOI: 10.1016/j.ymben.2012.11.009] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 11/26/2012] [Accepted: 11/30/2012] [Indexed: 12/29/2022]
|
34
|
Metabolic responses to recombinant bioprocesses in Escherichia coli. J Biotechnol 2012; 164:396-408. [PMID: 23022453 DOI: 10.1016/j.jbiotec.2012.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 07/09/2012] [Accepted: 08/08/2012] [Indexed: 01/13/2023]
Abstract
Escherichia coli has been widely used for the production of recombinant proteins. However, the unbalances between host metabolism and recombinant biosynthesis continue to hamper the efficiency of these recombinant bioprocesses. The additional drainage of biosynthetic precursors toward recombinant processes burdens severely the metabolism of cells that, ultimately, elicits a series of stress responses, reducing biomass growth and recombinant protein production. Several strategies to overcome these metabolic limitations have been implemented; however, in most cases, improvements in recombinant protein expression were achieved at the expense of biomass growth arrest, which significantly hampers the efficiency of recombinant bioprocesses. With the advent of high throughput techniques and modelling approaches that provide a system-level understanding of the cellular systems, it is now expected that new advances in recombinant bioprocesses are achieved. By providing means to deal with these systems, our understanding on the metabolic behaviour of recombinant cells will advance and can be further explored to the design of suitable hosts and more efficient and cost-effective bioprocesses. Here, we review the major metabolic responses associated with recombinant processes and the engineering strategies relevant to overcome these stresses. Moreover, the advantages of applying systems levels engineering strategies to enhance recombinant protein production in E. coli cells are discussed and future perspectives on the advances of mathematical modelling approaches to study these systems are exposed.
Collapse
|
35
|
De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production. Appl Microbiol Biotechnol 2012; 97:611-20. [PMID: 22885693 DOI: 10.1007/s00253-012-4308-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 12/20/2022]
Abstract
The interest in plasmid DNA (pDNA) as a biopharmaceutical has been increasing over the last several years, especially after the approval of the first DNA vaccines. New pDNA production strains have been created by rationally mutating genes selected on the basis of Escherichia coli central metabolism and plasmid properties. Nevertheless, the highly mutagenized genetic background of the strains used makes it difficult to ascertain the exact impact of those mutations. To explore the effect of strain genetic background, we investigated single and double knockouts of two genes, pykF and pykA, which were known to enhance pDNA synthesis in two different E. coli strains: MG1655 (wild-type genetic background) and DH5α (highly mutagenized genetic background). The knockouts were only effective in the wild-type strain MG1655, demonstrating the relevance of strain genetic background and the importance of designing new strains specifically for pDNA production. Based on the obtained results, we created a new pDNA production strain starting from MG1655 by knocking out the pgi gene in order to redirect carbon flux to the pentose phosphate pathway, enhance nucleotide synthesis, and, consequently, increase pDNA production. GALG20 (MG1655ΔendAΔrecAΔpgi) produced 25-fold more pDNA (19.1 mg/g dry cell weight, DCW) than its parental strain, MG1655ΔendAΔrecA (0.8 mg/g DCW), in glucose. For the first time, pgi was identified as an important target for constructing a high-yielding pDNA production strain.
Collapse
|
36
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
37
|
Abskharon RNN, Ramboarina S, El Hassan H, Gad W, Apostol MI, Giachin G, Legname G, Steyaert J, Messens J, Soror SH, Wohlkonig A. A novel expression system for production of soluble prion proteins in E. coli. Microb Cell Fact 2012; 11:6. [PMID: 22233534 PMCID: PMC3283519 DOI: 10.1186/1475-2859-11-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/10/2012] [Indexed: 11/16/2022] Open
Abstract
Expression of eukaryotic proteins in Escherichia coli is challenging, especially when they contain disulfide bonds. Since the discovery of the prion protein (PrP) and its role in transmissible spongiform encephalopathies, the need to obtain large quantities of the recombinant protein for research purposes has been essential. Currently, production of recombinant PrP is achieved by refolding protocols. Here, we show that the co-expression of two different PrP with the human Quiescin Sulfhydryl OXidase (QSOX), a human chaperone with thiol/disulfide oxidase activity, in the cytoplasm of E. coli produces soluble recombinant PrP. The structural integrity of the soluble PrP has been confirmed by nuclear magnetic resonance spectroscopy, demonstrating that properly folded PrP can be easily expressed in bacteria. Furthermore, the soluble recombinant PrP produced with this method can be used for functional and structural studies.
Collapse
|
38
|
Meier S, Jensen PR, Duus JØ. Direct observation of metabolic differences in living Escherichia coli strains K-12 and BL21. Chembiochem 2011; 13:308-10. [PMID: 22190455 DOI: 10.1002/cbic.201100654] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Indexed: 01/02/2023]
Affiliation(s)
- Sebastian Meier
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark.
| | | | | |
Collapse
|
39
|
Gonçalves GAL, Bower DM, Prazeres DMF, Monteiro GA, Prather KLJ. Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing. Biotechnol J 2011; 7:251-61. [PMID: 21913330 DOI: 10.1002/biot.201100062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/10/2011] [Accepted: 07/08/2011] [Indexed: 01/08/2023]
Abstract
Plasmid DNA (pDNA) has become very attractive as a biopharmaceutical, especially for gene therapy and DNA vaccination. Currently, there are a few products licensed for veterinary applications and numerous plasmids in clinical trials for use in humans. Recent work in both academia and industry demonstrates a need for technological and economical improvement in pDNA manufacturing. Significant progress has been achieved in plasmid design and downstream processing, but there is still a demand for improved production strains. This review focuses on engineering of Escherichia coli strains for plasmid DNA production, understanding the differences between the traditional use of pDNA for recombinant protein production and its role as a biopharmaceutical. We will present recent developments in engineering of E. coli strains, highlight essential genes for improvement of pDNA yield and quality, and analyze the impact of various process strategies on gene expression in pDNA production strains.
Collapse
Affiliation(s)
- Geisa A L Gonçalves
- Department of Bioengineering, Instituto Superior Técnico (IST), Lisbon, Portugal
| | | | | | | | | |
Collapse
|
40
|
Paramanik V, Thakur MK. Overexpression of mouse estrogen receptor-β decreases but its transactivation and ligand binding domains increase the growth characteristics of E. coli. Mol Biotechnol 2011; 47:26-33. [PMID: 20589455 DOI: 10.1007/s12033-010-9308-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli is one of the most common and widely used prokaryotic hosts for the expression of recombinant proteins. The overexpression of recombinant proteins occasionally increases bacterial growth but sometimes reduces it and becomes lethal to the host cells. Here, we report the overexpression of mouse ER-β and its domains in the prokaryotic expression system and its opposite effect on the growth characteristics of E. coli. ER-β protein was immunologically detected as a 53 kDa his-tag protein in the pellet of the bacterial lysate. Its overexpression, as reflected by the total protein content and expression pattern, resulted in the decrease of bacterial growth. However, the overexpression of ER-β transactivation domain (TAD) using pIVEX and ligand binding domain (LBD) using pRSETA in E. coli BL21 (DE3) show opposite pattern. TAD was immunologically detected as 20 kDa and LBD as 22 kDa protein in the supernatant of the bacterial lysate and their overexpression increased the bacterial growth.
Collapse
Affiliation(s)
- Vijay Paramanik
- Biochemistry and Molecular Biology Laboratory Centre of Advanced Study, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
41
|
Chin JW, Cirino PC. Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 2011; 27:333-41. [PMID: 21344680 DOI: 10.1002/btpr.559] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Indexed: 11/08/2022]
Abstract
Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG.
Collapse
Affiliation(s)
- Jonathan W Chin
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
42
|
Seghezzi N, Amar P, Koebmann B, Jensen PR, Virolle MJ. The construction of a library of synthetic promoters revealed some specific features of strong Streptomyces promoters. Appl Microbiol Biotechnol 2011; 90:615-23. [PMID: 21243353 DOI: 10.1007/s00253-010-3018-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 02/01/2023]
Abstract
Streptomyces are bacteria of industrial interest whose genome contains more than 73% of bases GC. In order to define, in these GC-rich bacteria, specific sequence features of strong promoters, a library of synthetic promoters of various sequence composition was constructed in Streptomyces. To do so, the sequences located upstream, between and downstream of the -35 and -10 consensus promoter sequences were completely randomized and some variability was introduced in the -35 (position 6) and -10 (positions 3, 4 and 5) hexamers recognized by the major vegetative sigma factor HrdB. The synthetic promoters were cloned into the promoter-probe plasmid pIJ487 just upstream of the promoter-less aphII gene that confers resistance to neomycin. This synthetic promoter library was transformed into Streptomyces lividans, and the resulting transformants were screened for their ability to grow in the presence of different concentrations of neomycin (20, 50, and 100 μgml(-1)). Promoter strengths varied up to 12-fold, in small increments of activity increase, as determined by reverse transcriptase-PCR. This collection of promoters of various strengths can be useful for the fine-tuning of gene expression in genetic engineering projects. Thirty-eight promoters were sequenced, and the sequences of the 14 weakest and 14 strongest promoters were compared using the WebLogo software with small sample correction. This comparison revealed that the -10 box, the -10 extended motif as well as the spacer of the strong Streptomyces promoters are more G rich than those of the weak promoters.
Collapse
Affiliation(s)
- Nicolas Seghezzi
- Institut de Génétique et Microbiologie, UMR8621 CNRS Université Paris Sud, 91405, Orsay, France
| | | | | | | | | |
Collapse
|
43
|
Ceroni F, Furini S, Giordano E, Cavalcanti S. Rational design of modular circuits for gene transcription: A test of the bottom-up approach. J Biol Eng 2010; 4:14. [PMID: 21070658 PMCID: PMC2993646 DOI: 10.1186/1754-1611-4-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most of synthetic circuits developed so far have been designed by an ad hoc approach, using a small number of components (i.e. LacI, TetR) and a trial and error strategy. We are at the point where an increasing number of modular, inter-changeable and well-characterized components is needed to expand the construction of synthetic devices and to allow a rational approach to the design. RESULTS We used interchangeable modular biological parts to create a set of novel synthetic devices for controlling gene transcription, and we developed a mathematical model of the modular circuits. Model parameters were identified by experimental measurements from a subset of modular combinations. The model revealed an unexpected feature of the lactose repressor system, i.e. a residual binding affinity for the operator site by induced lactose repressor molecules. Once this residual affinity was taken into account, the model properly reproduced the experimental data from the training set. The parameters identified in the training set allowed the prediction of the behavior of networks not included in the identification procedure. CONCLUSIONS This study provides new quantitative evidences that the use of independent and well-characterized biological parts and mathematical modeling, what is called a bottom-up approach to the construction of gene networks, can allow the design of new and different devices re-using the same modular parts.
Collapse
Affiliation(s)
- Francesca Ceroni
- Laboratory of Cellular and Molecular Engineering, University of Bologna, I-47521 Cesena, Italy.,Department of Electronics, Computer Science and Systems, University of Bologna, I-47521 Cesena, Italy
| | - Simone Furini
- Department of Medical Surgery and Bioengineering, University of Siena, I-53100 Siena, Italy
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering, University of Bologna, I-47521 Cesena, Italy.,Department of Biochemistry "G. Moruzzi", University of Bologna, I-40126 Bologna, Italy
| | - Silvio Cavalcanti
- Laboratory of Cellular and Molecular Engineering, University of Bologna, I-47521 Cesena, Italy.,Department of Electronics, Computer Science and Systems, University of Bologna, I-47521 Cesena, Italy
| |
Collapse
|
44
|
Williams JA, Luke J, Langtry S, Anderson S, Hodgson CP, Carnes AE. Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol Bioeng 2009; 103:1129-43. [PMID: 19408315 PMCID: PMC2735187 DOI: 10.1002/bit.22347] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA vaccines have tremendous potential for rapid deployment in pandemic applications, wherein a new antigen is "plugged" into a validated vector, and rapidly produced in a validated, fermentation-purification process. For this application, it is essential that the vector and fermentation process function with a variety of different antigen genes. However, many antigen genes are unpredictably "toxic" or otherwise low yielding in standard fermentation processes. We report cell bank and fermentation process unit operation innovations that reduce plasmid-mediated metabolic burden, enabling successful production of previously known toxic influenza hemagglutinin antigen genes. These processes, combined with vector backbone modifications, doubled fermentation productivity compared to existing high copy vectors, such as pVAX1 and gWiz, resulting in high plasmid yields (up to 2,220 mg/L, 5% of total dry cell weight) even with previously identified toxic or poor producing inserts.
Collapse
Affiliation(s)
| | - Jeremy Luke
- Nature Technology Corporation, Lincoln, NE, USA
| | | | | | | | | |
Collapse
|
45
|
Cunningham DS, Koepsel RR, Ataai MM, Domach MM. Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb Cell Fact 2009; 8:27. [PMID: 19463175 PMCID: PMC2702362 DOI: 10.1186/1475-2859-8-27] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 05/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmids are being reconsidered as viable vector alternatives to viruses for gene therapies and vaccines because they are safer, non-toxic, and simpler to produce. Accordingly, there has been renewed interest in the production of plasmid DNA itself as the therapeutic end-product of a bioprocess. Improvement to the best current yields and productivities of such emerging processes would help ensure economic feasibility on the industrial scale. Our goal, therefore, was to develop a stoichiometric model of Escherichia coli metabolism in order to (1) determine its maximum theoretical plasmid-producing capacity, and to (2) identify factors that significantly impact plasmid production. RESULTS Such a model was developed for the production of a high copy plasmid under conditions of batch aerobic growth on glucose minimal medium. The objective of the model was to maximize plasmid production. By employing certain constraints and examining the resulting flux distributions, several factors were determined that significantly impact plasmid yield. Acetate production and constitutive expression of the plasmid's antibiotic resistance marker exert negative effects, while low pyruvate kinase (Pyk) flux and the generation of NADPH by transhydrogenase activity offer positive effects. The highest theoretical yield (592 mg/g) resulted under conditions of no marker or acetate production, nil Pyk flux, and the maximum allowable transhydrogenase activity. For comparison, when these four fluxes were constrained to wild-type values, yields on the order of tens of mg/g resulted, which are on par with the best experimental yields reported to date. CONCLUSION These results suggest that specific plasmid yields can theoretically reach 12 times their current experimental maximum (51 mg/g). Moreover, they imply that abolishing Pyk activity and/or transhydrogenase up-regulation would be useful strategies to implement when designing host strains for plasmid production; mutations that reduce acetate production would also be advantageous. The results further suggest that using some other means for plasmid selection than antibiotic resistance, or at least weakening the marker's expression, would be beneficial because it would allow more precursor metabolites, energy, and reducing power to be put toward plasmid production. Thus far, the impact of eliminating Pyk activity has been explored experimentally, with significantly higher plasmid yields resulting.
Collapse
Affiliation(s)
- Drew S Cunningham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Richard R Koepsel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammad M Ataai
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael M Domach
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Pyruvate kinase-deficient Escherichia coli exhibits increased plasmid copy number and cyclic AMP levels. J Bacteriol 2009; 191:3041-9. [PMID: 19251844 DOI: 10.1128/jb.01422-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously established consequences of abolishing pyruvate kinase (Pyk) activity in Escherichia coli during aerobic growth on glucose include reduced acetate production, elevated hexose monophosphate (HMP) pathway flux, elevated phosphoenolpyruvate carboxylase (Ppc) flux, and an increased ratio of phosphoenolpyruvate (PEP) to pyruvate. These traits inspired two hypotheses. First, the mutant (PB25) may maintain more plasmid than the wild type (JM101) by combining traits reported to facilitate plasmid DNA synthesis (i.e., decreased Pyk flux and increased HMP pathway and Ppc fluxes). Second, PB25 likely possesses a higher level of cyclic AMP (cAMP) than JM101. This is based on reports that connect elevated PEP/pyruvate ratios to phosphotransferase system signaling and adenylate cyclase activation. To test the first hypothesis, the strains were transformed with a pUC-based, high-copy-number plasmid (pGFPuv), and copy numbers were measured. PB25 exhibited a fourfold-higher copy number than JM101 when grown at 37 degrees C. At 42 degrees C, its plasmid content was ninefold higher than JM101 at 37 degrees C. To test the second hypothesis, cAMP was measured, and the results confirmed it to be higher in PB25 than JM101. This elevation was not enough to elicit a strong regulatory effect, however, as indicated by the comparative expression of the pGFPuv-based reporter gene, gfp(uv), under the control of the cAMP-responsive lac promoter. The elevated cAMP in PB25 suggests that Pyk may participate in glucose catabolite repression by serving among all of the factors that tighten gene expression.
Collapse
|
47
|
Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 2009; 27:353-70. [PMID: 19233255 DOI: 10.1016/j.biotechadv.2009.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/02/2009] [Accepted: 02/07/2009] [Indexed: 10/21/2022]
Abstract
Critical molecular and cellular biological factors impacting design of licensable DNA vaccine vectors that combine high yield and integrity during bacterial production with increased expression in mammalian cells are reviewed. Food and Drug Administration (FDA), World Health Organization (WHO) and European Medical Agencies (EMEA) regulatory guidance's are discussed, as they relate to vector design and plasmid fermentation. While all new vectors will require extensive preclinical testing to validate safety and performance prior to clinical use, regulatory testing burden for follow-on products can be reduced by combining carefully designed synthetic genes with existing validated vector backbones. A flowchart for creation of new synthetic genes, combining rationale design with bioinformatics, is presented. The biology of plasmid replication is reviewed, and process engineering strategies that reduce metabolic burden discussed. Utilizing recently developed low metabolic burden seed stock and fermentation strategies, optimized vectors can now be manufactured in high yields exceeding 2 g/L, with specific plasmid yields of 5% total dry cell weight.
Collapse
|
48
|
Sousa F, Passarinha L, Queiroz J. Biomedical application of plasmid DNA in gene therapy: A new challenge for chromatography. Biotechnol Genet Eng Rev 2009. [DOI: 10.5661/bger-26-83] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab Eng 2008; 11:13-9. [PMID: 18775787 DOI: 10.1016/j.ymben.2008.07.007] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 04/24/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
The introduction or creation of metabolic pathways in microbial hosts has allowed for the production of complex chemicals of therapeutic and industrial importance. However, these pathways rarely function optimally when first introduced into the host organism and can often deleteriously affect host growth, resulting in suboptimal yields of the desired product. Common methods used to improve production from engineered biosynthetic pathways include optimizing codon usage, enhancing production of rate-limiting enzymes, and eliminating the accumulation of toxic intermediates or byproducts to improve cell growth. We have employed these techniques to improve production of amorpha-4,11-diene (amorphadiene), a precursor to the anti-malarial compound artemisinin, by an engineered strain of Escherichia coli. First we developed a simple cloning system for expression of the amorphadiene biosynthetic pathway in E. coli, which enabled the identification of two rate-limiting enzymes (mevalonate kinase (MK) and amorphadiene synthase (ADS)). By optimizing promoter strength to balance expression of the encoding genes we alleviated two pathway bottlenecks and improved production five fold. When expression of these genes was further increased by modifying plasmid copy numbers, a seven-fold increase in amorphadiene production over that from the original strain was observed. The methods demonstrated here are applicable for identifying and eliminating rate-limiting steps in other constructed biosynthetic pathways.
Collapse
Affiliation(s)
- Jennifer R Anthony
- California Institute for Quantitative Biomedical Research, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
50
|
Yakandawala N, Romeo T, Friesen AD, Madhyastha S. Metabolic engineering of Escherichia coli to enhance phenylalanine production. Appl Microbiol Biotechnol 2007; 78:283-91. [PMID: 18080813 DOI: 10.1007/s00253-007-1307-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 11/15/2007] [Accepted: 11/28/2007] [Indexed: 11/29/2022]
Abstract
The global regulatory system of Escherichia coli, carbon storage regulator (Csr), was engineered to increase the intracellular concentration of phosphoenolpyruvate. We examined the effects of csrA and csrD mutations and csrB overexpression on phenylalanine production in E. coli NST37 (NST). Overexpression of csrB led to significantly greater phenylalanine production than csrA and csrD mutations (2.33 vs 1.67 and 1.61 g l(-1), respectively; P < 0.01). Furthermore, the overexpression of csrB was confirmed by the observed increase in csrB transcription level. We also determined the effect of overexpressing transketolase A (TktA) or glucose-6-phosphate dehydrogenase (Zwf) in NST and the csrA mutant of NST (NSTCSRA) on phenylalanine production. The NSTCSRA strain overexpressing TktA (NSTCSRA [pTktA]) produced significantly more phenylalanine than that of Zwf (2.39 vs 1.61 g l(-1); P > 0.01). Furthermore, we examined the effect of overexpressing TktA, 3-deoxy-D: -arabino-heptulosonate-7-phosphate synthase (AroF(FR)), and chorismate mutase/prephenate dehydratase (PheA(FR)) together in NSTCSRA (NSTCSRA [pTkaFpA]). It is interesting to note that NSTCSRA [pTkaFpA] produced significantly less phenylalanine than both NSTCSRA [pTktA] and NST overexpressing csrB (NST [pCsrB]) (1.84 vs 2.39 and 2.33 g l(-1), respectively; P < 0.01). Thus, csrB overexpression or csrA mutation in combination with tktA overexpression was more effective than previous approaches that targeted the glycolytic or aromatic pathway enzymes for enhancing phenylalanine production.
Collapse
Affiliation(s)
- N Yakandawala
- Kane Biotech Inc., 5-1250 Waverley Street, Winnipeg, MB, Canada, R3T 6C6
| | | | | | | |
Collapse
|