1
|
Weiler J, Edel M, Gescher J. Biofilms for Production of Chemicals and Energy. Annu Rev Chem Biomol Eng 2024; 15:361-387. [PMID: 38382126 DOI: 10.1146/annurev-chembioeng-100522-110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The twenty-first century will be the century of biology. This is not only because of breakthrough advances in molecular biology tools but also because we need to reinvent our economy based on the biological principles of energy efficiency and sustainability. Consequently, new tools for production routines must be developed to help produce platform chemicals and energy sources based on sustainable resources. In this context, biofilm-based processes have the potential to impact future production processes, because they can be carried out continuously and with robust stationary biocatalysts embedded in an extracellular matrix with different properties. We review productive biofilm systems used for heterotrophic and lithoautotrophic production and attempt to identify fundamental reasons why they may be particularly suitable as future production systems.
Collapse
Affiliation(s)
- Janek Weiler
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany;
| |
Collapse
|
2
|
Patel A, Carlson RP, Henson MA. In silico analysis of synthetic multispecies biofilms for cellobiose-to-isobutanol conversion reveals design principles for stable and productive communities. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Jiang Y, Liu Y, Zhang X, Gao H, Mou L, Wu M, Zhang W, Xin F, Jiang M. Biofilm application in the microbial biochemicals production process. Biotechnol Adv 2021; 48:107724. [PMID: 33640404 DOI: 10.1016/j.biotechadv.2021.107724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Biofilms can be naturally formed through the attachment of microorganisms on the supporting materials. However, natural biofilms formed in the environment may cause some detrimental effects, such as the equipment contamination and food safety issues et al. On the contrary, biofilms mediated microbial fermentation provides a promising approach for the efficient biochemicals production owing to the properties of self-immobilization, high resistance to toxic reactants and maintenance of long-term cells activity. While few reviews have specifically addressed the biological application of biofilms in the microbial fermentation process. Accordingly, this review will comprehensively summarize the biofilms formation mechanism and potential functions in the microbial fermentation process. Furthermore, the construction strategies for the formation of stable biofilms through synthetic biology technology or the modification of suitable supporting materials will be also discussed. The application of biofilms mediated fermentation will provide an outlook for the biorefinery platform in the future.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiaoyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
4
|
The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain. World J Microbiol Biotechnol 2019; 35:189. [PMID: 31748890 DOI: 10.1007/s11274-019-2769-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/13/2019] [Indexed: 02/02/2023]
Abstract
Fossil fuels consumption impacts the greenhouse gas emissions. Biofuels are considered as alternative renewable energy sources to reduce the fossil fuels dependency. Bioethanol produced by recombinant microorganisms is a widely suggested alternative to increase the yield in fermentation processes. However, ethanol and acetate accumulation under the fermentation process had been described as important stressors for the metabolic capabilities of the microorganisms, stopping the fermentation process and affecting the ethanol yield. Ethanol tolerance is a determining factor in the improvement of fermentative properties of microorganisms; however understanding of ethanol tolerance is limited. The engineered Escherichia coli KO11 strain has been studied in detail and used as an ethanologenic bacteria model. The strain is capable of using glucose and xylose for an efficient ethanol yield. In the current work, the effect of the iron-sulfur cluster (ISC) over-expression in the KO11 strain, on its tolerance and ethanol yield, was evaluated. Fatty acids profiles of membrane phospholipids in the E. coli KO11 were modified under ethanol addition, but not due to the hscA mutation. The hscA mutation provoked a decrease in ethanol tolerance in the Kmp strain when was grown with 2% ethanol, in comparison to KO11 parent strain. Ethanol tolerance was improved in the mutant Kmp complemented with the recombinant isc gene cluster (pJC10 plasmid) from LD50 2.16% to LD50 3.8% ethanol. In batch fermentation on 1 L bioreactor using mineral medium with glucose (120 g/L), the KO11 strain showed ethanol production efficiencies of ~ 76.9%, while the hscA mutant (Kmp) ~ 75.4% and the transformed strain Kmp(pJC10) showed ~ 92.4% efficiency. Ethanol amount increase in the engineered Kmp(pJC10) strain was correlated with less organic acids (such as acetate and lactate) production in the fermentation medium (2.3 g/L), compared to that in the KO11 (17.05 g/L) and the Kmp (16.62 g/L). Alcohol dehydrogenase (ADH) activity was increased ~ 350% in the transformed Kmp(pJC10) strain, whereas in the Kmp mutant, the phosphoglycerate kinase (PGK), pyruvate kinase (PYK), and ADH activities were diminished, comparing to KO11. The results suggest that the isc system over-expression in the ethanologenic E. coli KO11 strain, increases ethanol yield mainly by improving ethanol tolerance and ADH activity, and by redirecting the metabolic flux from acetate synthesis to ethanol.
Collapse
|
5
|
Fernández-Sandoval MT, Galíndez-Mayer J, Bolívar F, Gosset G, Ramírez OT, Martinez A. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions. Microb Cell Fact 2019; 18:145. [PMID: 31443652 PMCID: PMC6706898 DOI: 10.1186/s12934-019-1191-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background Simultaneous co-fermentation of mixed sugars is an important feature to consider in the production of ethanol from lignocellulosic biomass hydrolysates because it enhances the overall ethanol yield and volumetric productivity during fermentation. Continuous cultures can be used during ethanol production from lignocellulosic hydrolysates to prevent catabolite repression by glucose on other sugars, such as xylose, and thus promote the simultaneous and total consumption of sugars and reduce fermentation time. The use of single- and two-stage continuous cultures under micro-aerated conditions for simultaneous consumption of xylose and glucose, and fermentation to ethanol by ethanologenic Escherichia coli strain MS04 was studied. Mineral medium supplemented with glucose, xylose and sodium acetate, was used to compare continuous cultures performance to batch cultures. Results Single-stage continuous cultures under micro-aerated conditions allowed the total co-consumption of a mixture of glucose and xylose (7.5 and 42.5 g/L, respectively) in mineral medium, with steady state ethanol production of 18 g/L, and a volumetric ethanol productivity of 0.9 g/L h, when low dilution rates (0.05 h−1) were used. However, the volumetric productivity was lower than the batch process under similar conditions (1.3 g/L h). Conversely, micro-aerated two-stage continuous culture enhanced the volumetric productivity up to 1.6 g/L h at a dilution rate of 0.15 h−1, with a total consumption of sugars and a slight reduction of the overall ethanol yield. Conclusions The total and simultaneous consumption of glucose and xylose by the ethanologenic E. coli strain MS04 was accomplished by using two-stage continuous culture under micro-aerated conditions with an increase in the volumetric ethanol productivity of 23% and 78% when compared to batch and single-stage continuous cultures, respectively. Multi-stage continuous cultivation can be used to promote the simultaneous consumption of all sugars contained in biomass hydrolysates, and thus increase the volumetric ethanol productivity of the fermentation process.
Collapse
Affiliation(s)
- Marco T Fernández-Sandoval
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Juvencio Galíndez-Mayer
- Laboratorio de Bioingeniería, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Col. Santo Tomás, CP 11340, Mexico, D.F., Mexico
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Zhu Z, Zhang B, Chen B, Ling J, Cai Q, Husain T. Fly ash based robust biocatalyst generation: a sustainable strategy towards enhanced green biosurfactant production and waste utilization. RSC Adv 2019; 9:20216-20225. [PMID: 35514694 PMCID: PMC9065571 DOI: 10.1039/c9ra02784j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Biosurfactants have been well recognized as an environmentally friendly alternative to chemical surfactants. However, their production remains challenging due to low productivity, short-term microbe stability and the potentially toxic by-products generated in the growth media. To overcome these challenges, the emerging biofilm-based biosynthesis was investigated in this study. A fresh insight into the biosynthesis process was provided through using waste fly ash as a carrier material. The biofilm produced by biosurfactant producer B. subtilis N3-1P attached onto the surface of fly ash acted as a robust and effective biocatalyst. Zeta potential analysis and scanning electron microscope (SEM) characterization were conducted to help unravel the biocatalyst formation. High-value biosurfactant products were then produced in an efficient and sustainable manner. Stimulation by a fly ash assisted biocatalyst on biosurfactant production was confirmed. The biosurfactant yield was boosted over ten times after 24 hours, at a fly ash dosage of 0.5%. The highest biosurfactant yield was achieved after five days, with a final productivity of 305 critical micelle dilution. The underlying mechanism of fly ash assisted biosurfactant production was tracked through it exerting an effect on the quorum sensing system. Fourier-transform infrared (FTIR) spectroscopy and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis demonstrated that the final biosurfactant product belonged to the lipopeptides. This research output is expected to accelerate the development of more effective bioreactors, and make a continuous contribution to high-value product generation and waste reduction. Biosurfactants have been well recognized as an environmentally friendly alternative to chemical surfactants.![]()
Collapse
Affiliation(s)
- Zhiwen Zhu
- NRPOP Laboratory
- Faculty of Engineering and Applied Science
- Memorial University
- St. John's
- Canada
| | - Baiyu Zhang
- NRPOP Laboratory
- Faculty of Engineering and Applied Science
- Memorial University
- St. John's
- Canada
| | - Bing Chen
- NRPOP Laboratory
- Faculty of Engineering and Applied Science
- Memorial University
- St. John's
- Canada
| | - Jingjing Ling
- NRPOP Laboratory
- Faculty of Engineering and Applied Science
- Memorial University
- St. John's
- Canada
| | - Qinghong Cai
- Biotechnology Research Institute of the National Research Council of Canada
- Montreal
- Canada
- Department of Natural Resource Sciences
- Faculty of Agricultural and Environmental Sciences
| | - Tahir Husain
- NRPOP Laboratory
- Faculty of Engineering and Applied Science
- Memorial University
- St. John's
- Canada
| |
Collapse
|
7
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Kim M, Liang M, He Q, Wang J. A novel bioreactor to study the dynamics of co-culture systems. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Zhang Y, Niu X, Shi M, Pei G, Zhang X, Chen L, Zhang W. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2015; 6:487. [PMID: 26052317 PMCID: PMC4440267 DOI: 10.3389/fmicb.2015.00487] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria have been engineered to produce ethanol through recent synthetic biology efforts. However, one major challenge to the cyanobacterial systems for high-efficiency ethanol production is their low tolerance to the ethanol toxicity. With a major goal to identify novel transporters involved in ethanol tolerance, we constructed gene knockout mutants for 58 transporter-encoding genes of Synechocystis sp. PCC 6803 and screened their tolerance change under ethanol stress. The efforts allowed discovery of a mutant of slr0982 gene encoding an ATP-binding cassette transporter which grew poorly in BG11 medium supplemented with 1.5% (v/v) ethanol when compared with the wild type, and the growth loss could be recovered by complementing slr0982 in the Δslr0982 mutant, suggesting that slr0982 is involved in ethanol tolerance in Synechocystis. To decipher the tolerance mechanism involved, a comparative metabolomic and network-based analysis of the wild type and the ethanol-sensitive Δslr0982 mutant was performed. The analysis allowed the identification of four metabolic modules related to slr0982 deletion in the Δslr0982 mutant, among which metabolites like sucrose and L-pyroglutamic acid which might be involved in ethanol tolerance, were found important for slr0982 deletion in the Δslr0982 mutant. This study reports on the first transporter related to ethanol tolerance in Synechocystis, which could be a useful target for further tolerance engineering. In addition, metabolomic and network analysis provides important findings for better understanding of the tolerance mechanism to ethanol stress in Synechocystis.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiangfeng Niu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Xiaoqing Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University Tianjin, China ; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University Tianjin, China ; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin, China
| |
Collapse
|
10
|
Todhanakasem T, Narkmit T, Areerat K, Thanonkeo P. Fermentation of rice bran hydrolysate to ethanol using Zymomonas mobilis biofilm immobilization on DEAE-cellulose. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
11
|
Sun J, Alper HS. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. ACTA ACUST UNITED AC 2015; 42:423-36. [DOI: 10.1007/s10295-014-1539-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Abstract
A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5–50 g/L), and lab-scale (0–5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.
Collapse
Affiliation(s)
- Jie Sun
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
| | - Hal S Alper
- grid.89336.37 0000000419369924 McKetta Department of Chemical Engineering The University of Texas at Austin 200 E Dean Keeton St. Stop C0400 78712 Austin TX USA
- grid.89336.37 0000000419369924 Institute for Cellular and Molecular Biology The University of Texas at Austin 2500 Speedway Avenue 78712 Austin TX USA
| |
Collapse
|
12
|
Impact of pseudo-continuous fermentation on the ethanol tolerance of Scheffersomyces stipitis. J Biosci Bioeng 2013; 116:319-26. [DOI: 10.1016/j.jbiosc.2013.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/05/2013] [Accepted: 03/23/2013] [Indexed: 11/18/2022]
|
13
|
Ishikawa M, Shigemori K, Hori K. Application of the adhesive bacterionanofiber AtaA to a novel microbial immobilization method for the production of indigo as a model chemical. Biotechnol Bioeng 2013; 111:16-24. [PMID: 23893702 DOI: 10.1002/bit.25012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/06/2013] [Accepted: 07/15/2013] [Indexed: 11/09/2022]
Abstract
The toluene-degrading bacterium Acinetobacter sp. Tol 5 shows high adhesiveness mediated by the bacterionanofiber protein AtaA, which is a new member of the trimeric autotransporter adhesin (TAA) family. In contrast to other reported TAAs, AtaA mediates the adhesion of Tol 5 to various abiotic surfaces ranging from hydrophobic plastics to hydrophilic glass and stainless steel. The expression of ataA in industrially relevant bacteria improves their adhesiveness and enables immobilization directly onto support materials. This represents a new method that can be alternated with conventional immobilization via gel entrapment and chemical bonding. In this study, we demonstrate the feasibility of this immobilizing method by utilizing AtaA. As a model case for this method, the indigo producer Acinetobacter sp. ST-550 was transformed with ataA and immobilized on a polyurethane support. The immobilized ST-550 cells were transferred directly to a reaction solution containing indole as the substrate. The immobilized ST-550 cells showed a faster indigo production rate at high concentrations of indole compared with planktonic ST-550 not expressing the ataA gene, implying that immobilization enhanced the tolerance of ST-550 to the substrate indole. As a result, the immobilized ST-550 produced fivefold higher levels of indigo than planktonic ST-550. These results proved that AtaA is useful for bacterial immobilization.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | |
Collapse
|
14
|
Chong H, Huang L, Yeow J, Wang I, Zhang H, Song H, Jiang R. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One 2013; 8:e57628. [PMID: 23469036 PMCID: PMC3585226 DOI: 10.1371/journal.pone.0057628] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol tolerant CRP mutants (E1- E3) were identified from error-prone PCR libraries. The best ethanol-tolerant strain E2 (M59T) had the growth rate of 0.08 h(-1) in 62 g/L ethanol, higher than that of the control at 0.06 h(-1). The M59T mutation was then integrated into the genome to create variant iE2. When exposed to 150 g/l ethanol, the survival of iE2 after 15 min was about 12%, while that of BW25113 was <0.01%. Quantitative real-time reverse transcription PCR analysis (RT-PCR) on 444 CRP-regulated genes using OpenArray® technology revealed that 203 genes were differentially expressed in iE2 in the absence of ethanol, whereas 92 displayed differential expression when facing ethanol stress. These genes belong to various functional groups, including central intermediary metabolism (aceE, acnA, sdhD, sucA), iron ion transport (entH, entD, fecA, fecB), and general stress response (osmY, rpoS). Six up-regulated and twelve down-regulated common genes were found in both iE2 and E2 under ethanol stress, whereas over one hundred common genes showed differential expression in the absence of ethanol. Based on the RT-PCR results, entA, marA or bhsA was knocked out in iE2 and the resulting strains became more sensitive towards ethanol.
Collapse
Affiliation(s)
- Huiqing Chong
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Lei Huang
- Institute of Biological Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Jianwei Yeow
- System Engineering, Life Technologies, Singapore
| | - Ivy Wang
- System Engineering, Life Technologies, Singapore
| | - Hongfang Zhang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Hao Song
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore
- * E-mail:
| |
Collapse
|
15
|
Zajkoska P, Rebroš M, Rosenberg M. Biocatalysis with immobilized Escherichia coli. Appl Microbiol Biotechnol 2013; 97:1441-55. [DOI: 10.1007/s00253-012-4651-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 11/30/2022]
|
16
|
Loftie-Eaton W, Taylor M, Horne K, Tuffin MI, Burton SG, Cowan DA. Balancing redox cofactor generation and ATP synthesis: key microaerobic responses in thermophilic fermentations. Biotechnol Bioeng 2012; 110:1057-65. [PMID: 23124997 DOI: 10.1002/bit.24774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 12/22/2022]
Abstract
Geobacillus thermoglucosidasius is a Gram-positive, thermophilic bacterium capable of ethanologenic fermentation of both C5 and C6 sugars and may have possible use for commercial bioethanol production [Tang et al., 2009; Taylor et al. (2009) Trends Biotechnol 27(7): 398-405]. Little is known about the physiological changes that accompany a switch from aerobic (high redox) to microaerobic/fermentative (low redox) conditions in thermophilic organisms. The changes in the central metabolic pathways in response to a switch in redox potential were analyzed using quantitative real-time PCR and proteomics. During low redox (fermentative) states, results indicated that glycolysis was uniformly up-regulated, the Krebs (tricarboxylic acid or TCA) cycle non-uniformly down-regulated and that there was little to no change in the pentose phosphate pathway. Acetate accumulation was accounted for by strong down-regulation of the acetate CoA ligase gene (acs) in addition to up-regulation of the pta and ackA genes (involved in acetate production), thus conserving ATP while reducing flux through the TCA cycle. Substitution of an NADH dehydrogenase (down-regulated) by an up-regulated NADH:FAD oxidoreductase and up-regulation of an ATP synthase subunit, alongside the observed shifts in the TCA cycle, suggested that an oxygen-scavenging electron transport chain likely remained active during low redox conditions. Together with the observed up-regulation of a glyoxalase and down-regulation of superoxide dismutase, thought to provide protection against the accumulation of toxic phosphorylated glycolytic intermediates and reactive oxygen species, respectively, the changes observed in G. thermoglucosidasius NCIMB 11955 under conditions of aerobic-to-microaerobic switching were consistent with responses to low pO(2) stress.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Modderdam Road, Bellville, Cape Town, South Africa
| | | | | | | | | | | |
Collapse
|
17
|
Fernández-Sandoval MT, Huerta-Beristain G, Trujillo-Martinez B, Bustos P, González V, Bolivar F, Gosset G, Martinez A. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium. Appl Microbiol Biotechnol 2012; 96:1291-300. [DOI: 10.1007/s00253-012-4177-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 11/28/2022]
|
18
|
Ethanol and furfural production from corn stover using a hybrid fractionation process with zinc chloride and simultaneous saccharification and fermentation (SSF). Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Winn M, Foulkes JM, Perni S, Simmons MJH, Overton TW, Goss RJM. Biofilms and their engineered counterparts: A new generation of immobilised biocatalysts. Catal Sci Technol 2012. [DOI: 10.1039/c2cy20085f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010; 28:817-30. [DOI: 10.1016/j.biotechadv.2010.07.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 11/27/2022]
|
21
|
Unrean P, Srienc F. Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J Biotechnol 2010; 150:215-23. [PMID: 20699108 DOI: 10.1016/j.jbiotec.2010.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
We have developed highly efficient ethanologenic Escherichia coli strains that selectively consume pentoses and/or hexoses. Mixed cultures of these strains can be used to selectively adjust the sugar utilization kinetics in ethanol fermentations. Based on the kinetics of sugar utilization, we have designed and implemented an immobilized cell system for the optimized continuous conversion of sugars into ethanol. The results confirm that immobilized mixed cultures support a simultaneous conversion of hexoses and pentoses into ethanol at high yield and at a faster rate than immobilized homogenous cells. Continuous ethanol production has been maintained for several weeks at high productivity with near complete sugar utilization. The control of sugar utilization using immobilized mixed cultures can be adapted to any composition of hexoses and pentoses by adjusting the strain distribution of immobilized cells. The approach, therefore, holds promise for ethanol fermentation from lignocellulosic hydrolysates where the feedstock varies in sugar composition.
Collapse
Affiliation(s)
- Pornkamol Unrean
- Department of Chemical Engineering and Materials Science, and BioTechnology Institute, University of Minnesota, 240 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | | |
Collapse
|
22
|
Hong S, Lee H, Park H, Hong Y, Rhee I, Lee W, Choi S, Lee O, Park H. Degradation of malic acid in wine by immobilizedIssatchenkia orientaliscells with oriental oak charcoal and alginate. Lett Appl Microbiol 2010; 50:522-9. [DOI: 10.1111/j.1472-765x.2010.02833.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Govindaswamy S, Vane LM. Multi-stage continuous culture fermentation of glucose-xylose mixtures to fuel ethanol using genetically engineered Saccharomyces cerevisiae 424A. BIORESOURCE TECHNOLOGY 2010; 101:1277-1284. [PMID: 19811910 DOI: 10.1016/j.biortech.2009.09.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 08/10/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
Multi-stage continuous (chemostat) culture fermentation (MCCF) with variable fermentor volumes was carried out to study the utilization of glucose and xylose for ethanol production via mixed sugar fermentation (MSF). Variable fermentor volumes were used to enable enhanced sugar utilization, accounting for differences in glucose and xylose utilization rates. Saccharomyces cerevisiae 424A-LNH-ST was used for fermentation of glucose-xylose mixtures. The dilution rates employed for continuous fermentation were based on earlier batch kinetic studies of ethanol production and sugar utilization. With a feed containing approximately 30 g L(-1) glucose and 15 g L(-1) xylose, cell washout was observed at a dilution rate of 0.8 h(-1). At dilution rates below 0.5 h(-1), complete glucose utilization was observed. Xylose consumption in the first-stage 1 L reactor was only 37% at the lowest dilution rate studied, 0.0 5h(-1). At this same flow rate, xylose consumption rose to 69% after subsequently passing through 3 and 1 L reactors in series, primarily due to the longer residence time in the 3 L reactor (0.0167 h(-1) dilution rate).
Collapse
Affiliation(s)
- Shekar Govindaswamy
- c/o Lakeshore Engineering Services, U.S. EPA Test and Evaluation Facility, 1600 Gest Street, Cincinnati, OH 45204, USA
| | | |
Collapse
|
24
|
Rosche B, Li XZ, Hauer B, Schmid A, Buehler K. Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 2009; 27:636-43. [PMID: 19783314 DOI: 10.1016/j.tibtech.2009.08.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/13/2009] [Accepted: 08/14/2009] [Indexed: 11/18/2022]
Abstract
Biofilm reactors have long been commercially used in the treatment of wastewater and off-gas. New opportunities are arising with the rapid expansion of our understanding of biofilm biology over the last few years. Biofilms have great potential as industrial workhorses for the sustainable production of chemicals because of their inherent characteristics of self-immobilization, high resistance to reactants and long-term activity, which all facilitate continuous processing. A variety of biofilm reactor configurations have been explored for productive catalysis and some reactors have been operated continuously for months. Sectors that might particularly benefit from this biofilm approach include synthetic chemistry (ranging from specialty to bulk chemicals), bioenergy, biologics and the food industry.
Collapse
Affiliation(s)
- Bettina Rosche
- The University of New South Wales, School of Biotechnology and Biomolecular Sciences, Sydney, NSW 2052, Australia.
| | | | | | | | | |
Collapse
|
25
|
Zhou B, Martin GJO, Pamment NB. A novel assay for rapid in vivo determination of phenotypic stability of recombinant ethanol-producing microorganisms. BIORESOURCE TECHNOLOGY 2009; 100:2823-2827. [PMID: 19232490 DOI: 10.1016/j.biortech.2009.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 01/08/2009] [Accepted: 01/11/2009] [Indexed: 05/27/2023]
Abstract
A rapid empirical assay is presented for assessing the phenotypic stability of continuous cultures of recombinant bacteria containing transposed pdc and adh genes for ethanol production. The method measures spectrophotometrically the rate of colour formation when cells oxidize added ethanol to acetaldehyde in the presence of Schiff's reagent. During chemostat cultures of the recombinant ethanologen Escherichia coli KO11 on 20 g/l glucose, assay activities were stable and high at ca 8 x 10(-4) DeltaOD(540)/(s.OD(550)), reflecting the high, stable ethanol yield (ca 95%). On 20 g/l and 50 g/l xylose, ethanol yields declined rapidly to about 60% and this was closely mirrored by the assay activities which fell to ca 1.5 DeltaOD(540)/(s.OD(550)), only slightly higher than those measured for the parent strain. Typically taking only about an hour to perform, the assay provides a faster means of gauging the phenotypic stability of ethanol production than is possible by conventional methods.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
26
|
Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 2009; 83:1-18. [PMID: 19300995 DOI: 10.1007/s00253-009-1940-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 01/09/2023]
Abstract
Biofilm technology has been extensively applied to wastewater treatment, but its potential application in biofuel production has not been explored. Current technologies of converting lignocellulose materials to biofuel are hampered by costly processing steps in pretreatment, saccharification, and product recovery. Biofilms may have a potential to improve efficiency of these processes. Advantages of biofilms include concentration of cell-associated hydrolytic enzymes at the biofilm-substrate interface to increase reaction rates, a layered microbial structure in which multiple species may sequentially convert complex substrates and coferment hexose and pentose as hydrolysates diffuse outward, and the possibility of fungal-bacterial symbioses that allow simultaneous delignification and saccharification. More importantly, the confined microenvironment within a biofilm selectively rewards cells with better phenotypes conferred from intercellular gene or signal exchange, a process which is absent in suspended cultures. The immobilized property of biofilm, especially when affixed to a membrane, simplifies the separation of biofuel from its producer and promotes retention of biomass for continued reaction in the fermenter. Highly consolidated bioprocessing, including delignification, saccharification, fermentation, and separation in a single reactor, may be possible through the application of biofilm technology. To date, solid-state fermentation is the only biofuel process to which the advantages of biofilms have been applied, even though it has received limited attention and improvements. The transfer of biofilm technology from environmental engineering has the potential to spur great innovations in the optimization of biofuel production.
Collapse
|