1
|
Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, Midford PE, Moore LR, Subhraveti P, Gama-Castro S, Tierrafria VH, Lara P, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Sun G, Ahn-Horst TA, Choi H, Juenemann R, Knudsen CNM, Covert MW, Collado-Vides J, Paulsen I. The EcoCyc database (2025). EcoSal Plus 2025:eesp00192024. [PMID: 40304522 DOI: 10.1128/ecosalplus.esp-0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/18/2025] [Indexed: 05/02/2025]
Abstract
EcoCyc is a bioinformatics database (DB) available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project was to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc is also available. This review outlines the data content of EcoCyc and the procedures by which this content is generated.
Collapse
Affiliation(s)
- Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Ron Caspi
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Anamika Kothari
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Markus Krummenacker
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Peter E Midford
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Lisa R Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Pallavi Subhraveti
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H Tierrafria
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Paloma Lara
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - César Bonavides-Martinez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Amanda Mackie
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gwanggyu Sun
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Travis A Ahn-Horst
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Heejo Choi
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Riley Juenemann
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Cyrus N M Knudsen
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ian Paulsen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Ding Q, Ji M, Yao B, Sheng K, Wang Y. Recent advances in biological synthesis of food additive succinate. Crit Rev Biotechnol 2025:1-14. [PMID: 40107767 DOI: 10.1080/07388551.2025.2472636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 03/22/2025]
Abstract
Succinate, a crucial bio-based chemical building block, has already found extensive applications in fields such as food additives, pharmaceutical intermediates, and the chemical materials industry. To efficiently and economically synthesize succinate, substantial endeavors have been executed to optimize fermentation processes and downstream operations. Nonetheless, there is still a need to enhance cost-effectiveness and competitiveness while considering environmental concerns, particularly in light of the escalating demands and challenges posed by global warming. This article primarily focuses on the application of metabolic engineering strategies to strengthen succinate biosynthesis. These strategies encompass fermentation regulation, metabolic regulation, cellular regulation, and model guidance. By leveraging advanced synthetic biology techniques, this review highlights the potential for developing robust microbial cell factories and shaping the future directions for the integration of microbes in industrial applications.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Mengqi Ji
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Buhan Yao
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| |
Collapse
|
3
|
Congthai W, Phosriran C, Chou S, Onsanoi K, Gosalawit C, Cheng KC, Jantama K. Exploiting Mixed Waste Office Paper Containing Lignocellulosic Fibers for Alternatively Producing High-Value Succinic Acid by Metabolically Engineered Escherichia coli KJ122. Int J Mol Sci 2025; 26:982. [PMID: 39940754 PMCID: PMC11817568 DOI: 10.3390/ijms26030982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Succinic acid is applied in many chemical industries in which it can be produced through microbial fermentation using lignocellulosic biomasses. Mixed-waste office paper (MWOP) containing lignocellulosic fibers is enormously generated globally. MWOP is recycled into toilet paper and cardboard, but the recovery process is costly. The reuse of MWOP to alternatively produce succinic acid is highly attractive. In this study, pretreatment of MWOPs with 1% (v/v) H2SO4 at 121 °C for 20 min was found to be optimal. The optimal conditions for the enzymatic hydrolysis of H2SO4-pretreated MWOP (AP-MWOP) were at 50 °C, with cellulase loading at 80 PCU/g AP-MWOP. This resulted in the highest glucose (22.46 ± 0.15 g/L) and xylose (5.11 ± 0.32 g/L). Succinic acid production via separate hydrolysis and fermentation (SHF) by Escherichia coli KJ122 reached 28.19 ± 0.98 g/L (productivity of 1.17 ± 0.04 g/L/h). For simultaneous saccharification and fermentation (SSF), succinic acid was produced at 24.58 ± 2.32 g/L (productivity of 0.82 ± 0.07 g/L/h). Finally, succinic acid at 51.38 ± 4.05 g/L with yield and productivity of 0.75 ± 0.05 g/g and 1.07 ± 0.08 g/L/h was achieved via fed-batch pre-saccharified SSF. This study not only offers means to reuse MWOP for producing succinic acid but also provides insights for exploiting other wastes to high-value succinic acid, supporting environmental sustainability and zero-waste society.
Collapse
Affiliation(s)
- Walainud Congthai
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Socheata Chou
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Kanyarat Onsanoi
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Chotika Gosalawit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40447, Taiwan
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Subdistrict, Muang District, Nakhon Ratchasima 30000, Thailand; (W.C.); (C.P.); (S.C.); (K.O.); (C.G.)
| |
Collapse
|
4
|
Zhou HY, Chen YH, Chen DD, Wang ZW, Jin LQ, Liu ZQ, Zheng YG. Metabolically Modifying the Central and Competitive Metabolic Pathways for Enhanced D-Pantoic Acid Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2077-2087. [PMID: 39772599 DOI: 10.1021/acs.jafc.4c10512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
D-Pantoic acid is an essential precursor for the synthesis of vitamin B5. However, the microbial synthesis of D-pantoic acid suffers from a low yield. Herein, to improve D-pantoic acid biosynthesis in Escherichia coli, the central metabolic and byproduct-forming pathways were first engineered, increasing the D-pantoic acid titer to 1.55 g/L from 0.75 g/L. Subsequently, the modification was focused on preventing the accumulation of α-ketoglutarate (α-KG). Six genes (ppc, mdh, icd, sucA, kgtP, and dcuA) related to α-KG metabolism and transport were screened by the CRISPRi system and further genetically manipulated. Ultimately, significantly improved D-pantoic acid biosynthesis (2.03 g/L in a shake flask and 14.78 g/L in a 5-L bioreactor) with dramatically reduced formation of byproducts was achieved. To our best knowledge, this is the first attempt to modify the key metabolic targets related to α-KG accumulation for enhanced D-pantoic acid biosynthesis. These findings would also offer valuable insights into the metabolic regulation of other related metabolites.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yi-Hong Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dou-Dou Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zi-Wen Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Li-Qun Jin
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
5
|
Gindt ME, Lück R, Deppenmeier U. Genetic optimization of the human gut bacterium Phocaeicola vulgatus for enhanced succinate production. Appl Microbiol Biotechnol 2024; 108:465. [PMID: 39283347 PMCID: PMC11405475 DOI: 10.1007/s00253-024-13303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
The demand for sustainably produced bulk chemicals is constantly rising. Succinate serves as a fundamental component in various food, chemical, and pharmaceutical products. Succinate can be produced from sustainable raw materials using microbial fermentation and enzyme-based technologies. Bacteroides and Phocaeicola species, widely distributed and prevalent gut commensals, possess enzyme sets for the metabolization of complex plant polysaccharides and synthesize succinate as a fermentative end product. This study employed novel molecular techniques to enhance succinate yields in the natural succinate producer Phocaeicola vulgatus by directing the metabolic carbon flow toward succinate formation. The deletion of the gene encoding the methylmalonyl-CoA mutase (Δmcm, bvu_0309-0310) resulted in a 95% increase in succinate production, as metabolization to propionate was effectively blocked. Furthermore, deletion of genes encoding the lactate dehydrogenase (Δldh, bvu_2499) and the pyruvate:formate lyase (Δpfl, bvu_2880) eliminated the formation of fermentative end products lactate and formate. By overproducing the transketolase (TKT, BVU_2318) in the triple deletion mutant, succinate production increased from 3.9 mmol/g dry weight in the wild type to 10.9 mmol/g dry weight. Overall, succinate yield increased by 180% in the new mutant strain P. vulgatus Δmcm Δldh Δpfl pG106_tkt relative to the parent strain. This approach is a proof of concept, verifying the genetic accessibility of P. vulgatus, and forms the basis for targeted genetic optimization. The increase of efficiency highlights the huge potential of P. vulgatus as a succinate producer with applications in sustainable bioproduction processes. KEY POINTS: • Deleting methylmalonyl-CoA mutase gene in P. vulgatus doubled succinate production • Triple deletion mutant with transketolase overexpression increased succinate yield by 180% • P. vulgatus shows high potential for sustainable bulk chemical production via genetic optimization.
Collapse
Affiliation(s)
- Mélanie E Gindt
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Rebecca Lück
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Fordjour E, Liu CL, Yang Y, Bai Z. Recent advances in lycopene and germacrene a biosynthesis and their role as antineoplastic drugs. World J Microbiol Biotechnol 2024; 40:254. [PMID: 38916754 DOI: 10.1007/s11274-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of β-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Jiang J, Luo Y, Fei P, Zhu Z, Peng J, Lu J, Zhu D, Wu H. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. BIORESOUR BIOPROCESS 2024; 11:34. [PMID: 38647614 PMCID: PMC10997558 DOI: 10.1186/s40643-024-00749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Escherichia coli MLB (MG1655 ΔpflB ΔldhA), which can hardly grow on glucose with little succinate accumulation under anaerobic conditions. Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production. The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation. Then, the adaptive laboratory evolution (ALE) of growing on acetate was applied here. We assumed that the activities of succinate production related enzymes might be further improved in this study. E. coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate. Interestingly, in MLB46-05, the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly. According to transcriptome analysis, upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield. And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate. Finally, strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose. SYNOPSIS.
Collapse
Affiliation(s)
- Jiaping Jiang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhengtong Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jing Peng
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Du Zhu
- Key Lab of Bioprocess Engineering of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
8
|
Liu A, Machas M, Mhatre A, Hajinajaf N, Sarnaik A, Nichols N, Frazer S, Wang X, Varman AM, Nielsen DR. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli. Biotechnol Bioeng 2024; 121:784-794. [PMID: 37926950 DOI: 10.1002/bit.28585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Efficient co-utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose-xylose mixtures. This study focuses on enhancing phenylalanine production by engineering Escherichia coli to efficiently co-utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose-to-glucose flux ratio. A mutant copy of the xylose-specific activator (XylR) was then introduced into the phenylalanine-overproducing E. coli NST74, which relieved carbon catabolite repression and enabled efficient glucose-xylose co-utilization. Carbon contribution analysis through 13 C-fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose-xylose mixture; a threefold increase over NST74. Then, using biomass-derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9-fold increase over NST74. Notably, and consistent with the carbon contribution analysis, the xylR* mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L-h). This study presents a novel strategy for enhancing phenylalanine production through the co-utilization of glucose and xylose in aerobic E. coli cultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products.
Collapse
Affiliation(s)
- Arren Liu
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Michael Machas
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Nima Hajinajaf
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Aditya Sarnaik
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Nancy Nichols
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, Illinois, USA
| | - Sarah Frazer
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, Illinois, USA
| | - Xuan Wang
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Arul M Varman
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - David R Nielsen
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Godar AG, Chase T, Conway D, Ravichandran D, Woodson I, Lai YJ, Song K, Rittmann BE, Wang X, Nielsen DR. 'Dark' CO 2 fixation in succinate fermentations enabled by direct CO 2 delivery via hollow fiber membrane carbonation. Bioprocess Biosyst Eng 2024; 47:223-233. [PMID: 38142425 DOI: 10.1007/s00449-023-02957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
Anaerobic succinate fermentations can achieve high-titer, high-yield performance while fixing CO2 through the reductive branch of the tricarboxylic acid cycle. To provide the needed CO2, conventional media is supplemented with significant (up to 60 g/L) bicarbonate (HCO3-), and/or carbonate (CO32-) salts. However, producing these salts from CO2 and natural ores is thermodynamically unfavorable and, thus, energetically costly, which reduces the overall sustainability of the process. Here, a series of composite hollow fiber membranes (HFMs) were first fabricated, after which comprehensive CO2 mass transfer measurements were performed under cell-free conditions using a novel, constant-pH method. Lumen pressure and total HFM surface area were found to be linearly correlated with the flux and volumetric rate of CO2 delivery, respectively. Novel HFM bioreactors were then constructed and used to comprehensively investigate the effects of modulating the CO2 delivery rate on succinate fermentations by engineered Escherichia coli. Through appropriate tuning of the design and operating conditions, it was ultimately possible to produce up to 64.5 g/L succinate at a glucose yield of 0.68 g/g; performance approaching that of control fermentations with directly added HCO3-/CO32- salts and on par with prior studies. HFMs were further found to demonstrate a high potential for repeated reuse. Overall, HFM-based CO2 delivery represents a viable alternative to the addition of HCO3-/CO32- salts to succinate fermentations, and likely other 'dark' CO2-fixing fermentations.
Collapse
Affiliation(s)
- Amanda G Godar
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Timothy Chase
- School for Engineering of Matter, Transport and Energy, Arizona State University, BDC C499C, Tempe, AZ, 85282, USA
| | - Dalton Conway
- School for Engineering of Matter, Transport and Energy, Arizona State University, BDC C499C, Tempe, AZ, 85282, USA
| | | | - Isaiah Woodson
- School for Engineering of Matter, Transport and Energy, Arizona State University, BDC C499C, Tempe, AZ, 85282, USA
| | - Yen-Jung Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Kenan Song
- School of Manufacturing Systems and Networks, Arizona State University, Tempe, AZ, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - David R Nielsen
- School for Engineering of Matter, Transport and Energy, Arizona State University, BDC C499C, Tempe, AZ, 85282, USA.
| |
Collapse
|
10
|
Phosriran C, Wong N, Jantama K. An efficient production of bio-succinate in a novel metabolically engineered Klebsiella oxytoca by rational metabolic engineering and evolutionary adaptation. BIORESOURCE TECHNOLOGY 2024; 393:130045. [PMID: 38006983 DOI: 10.1016/j.biortech.2023.130045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Klebsiella oxytoca KC004 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflB) was engineered to enhance succinate production. The strain exhibited poor growth without succinate production due to its deficiencies in ATP production and NADH reoxidation. To overcome obstacles, evolutionary adaptation with over 6,000 generations of growth-based selection was conducted. Under anaerobic conditions, enhanced productions of ATP for growth and succinate for NADH reoxidation by the evolved KC004-TF160 strain were coupled to an increased transcript of PEP carboxykinase (pck) while those of genes in the oxidative branch of TCA cycle (gltA, acnAB, and icd), and pyruvate and acetate metabolisms (pykA, acs, poxB and tdcD) were alleviated. The expression of pyruvate dehydrogenase repressor (pdhR) decreased whereas threonine decarboxylase (tdcE) increased. KC004-TF160 produced succinate at 84 g/L (0.84 g/g, 79 % theoretical maximum). KC004-TF160 produced succinate at 0.87 g/g non-pretreated sugarcane molasses without addition of nutrients and buffers. KC004-TF160 may be a microbial platform for commercial production of bio-succinate.
Collapse
Affiliation(s)
- Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
11
|
Karp PD, Paley S, Caspi R, Kothari A, Krummenacker M, Midford PE, Moore LR, Subhraveti P, Gama-Castro S, Tierrafria VH, Lara P, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Sun G, Ahn-Horst TA, Choi H, Covert MW, Collado-Vides J, Paulsen I. The EcoCyc Database (2023). EcoSal Plus 2023; 11:eesp00022023. [PMID: 37220074 PMCID: PMC10729931 DOI: 10.1128/ecosalplus.esp-0002-2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 01/28/2024]
Abstract
EcoCyc is a bioinformatics database available online at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on the regulation of gene expression, E. coli gene essentiality, and nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for the analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed online. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. Data generated from a whole-cell model that is parameterized from the latest data on EcoCyc are also available. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
Collapse
Affiliation(s)
- Peter D. Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Ron Caspi
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Anamika Kothari
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Markus Krummenacker
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Peter E. Midford
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Pallavi Subhraveti
- Bioinformatics Research Group, SRI International, Menlo Park, California, USA
| | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Victor H. Tierrafria
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Paloma Lara
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - César Bonavides-Martinez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gwanggyu Sun
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Travis A. Ahn-Horst
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Heejo Choi
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Markus W. Covert
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ian Paulsen
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Fordjour E, Liu CL, Hao Y, Sackey I, Yang Y, Liu X, Li Y, Tan T, Bai Z. Engineering Escherichia coli BL21 (DE3) for high-yield production of germacrene A, a precursor of β-elemene via combinatorial metabolic engineering strategies. Biotechnol Bioeng 2023; 120:3039-3056. [PMID: 37309999 DOI: 10.1002/bit.28467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
β-elemene is one of the most commonly used antineoplastic drugs in cancer treatment. As a plant-derived natural chemical, biologically engineering microorganisms to produce germacrene A to be converted to β-elemene harbors great expectations since chemical synthesis and plant isolation methods come with their production deficiencies. In this study, we report the design of an Escherichia coli cell factory for the de novo production of germacrene A to be converted to β-elemene from a simple carbon source. A series of systematic approaches of engineering the isoprenoid and central carbon pathways, translational and protein engineering of the sesquiterpene synthase, and exporter engineering yielded high-efficient β-elemene production. Specifically, deleting competing pathways in the central carbon pathway ensured the availability of acetyl-coA, pyruvate, and glyceraldehyde-3-phosphate for the isoprenoid pathways. Adopting lycopene color as a high throughput screening method, an optimized NSY305N was obtained via error-prone polymerase chain reaction mutagenesis. Further overexpression of key pathway enzymes, exporter genes, and translational engineering produced 1161.09 mg/L of β-elemene in a shake flask. Finally, we detected the highest reported titer of 3.52 g/L of β-elemene and 2.13 g/L germacrene A produced by an E. coli cell factory in a 4-L fed-batch fermentation. The systematic engineering reported here generally applies to microbial production of a broader range of chemicals. This illustrates that rewiring E. coli central metabolism is viable for producing acetyl-coA-derived and pyruvate-derived molecules cost-effectively.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Isaac Sackey
- Department of Biological Sciences, Faculty of Biosciences, University for Development Studies, Tamale, Ghana
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Tianwei Tan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Putri DN, Pratiwi SF, Perdani MS, Rosarina D, Utami TS, Sahlan M, Hermansyah H. Utilizing rice straw and sugarcane bagasse as low-cost feedstocks towards sustainable production of succinic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160719. [PMID: 36481134 DOI: 10.1016/j.scitotenv.2022.160719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/14/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Succinic acid (SA) has been produced from rice straw (RS) and sugarcane bagasse (SB) as low-cost feedstocks in this study through sequential peracetic acid (PA) and alkaline peroxide (AP) pretreatment assisted by ultrasound and pre-hydrolysis followed by simultaneous saccharification and fermentation (PSSF). The effect of yeast extract (YE) concentration, inoculum concentration, and biomass type on SA production was investigated. The results showed that SA production from RS and SB was significantly affected by the YE concentration. Final concentration and yield of SA produced were significantly increased along with the increasing of YE concentration. Moreover, inoculum concentration significantly affected the SA production from SB. Higher inoculum concentration led to higher SA production. On the other hand, SA production from RS was not significantly affected by the inoculum concentration. Using RS as the feedstock, the highest SA production was achieved on the medium containing 15 g/L YE with 5 % v/v inoculum, obtaining SA concentration and yield of 3.64 ± 0.1 g/L and 0.18 ± 0.05 g/g biomass, respectively. Meanwhile, the highest SA production from SB was acquired on the medium containing 10 g/L YE with 7.5 % v/v inoculum, resulting SA concentration and yield of 5.1 ± 0.1 g/L and 0.25 ± 0.05 g/g biomass, respectively. This study suggested that RS and SB are potential to be used as low-cost feedstocks for sustainable and environmentally friendly SA production through ultrasonic-assisted PA and AP pretreatment and PSSF.
Collapse
Affiliation(s)
- Dwini Normayulisa Putri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | | | - Meka Saima Perdani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Singaperbangsa Karawang, Karawang 41361, Indonesia
| | - Desy Rosarina
- Department of Industrial Engineering, Faculty of Engineering, Universitas Muhammadiyah Tangerang, Tangerang 15118, Indonesia
| | - Tania Surya Utami
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Heri Hermansyah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| |
Collapse
|
14
|
Wu N, Zhang J, Chen Y, Xu Q, Song P, Li Y, Li K, Liu H. Recent advances in microbial production of L-malic acid. Appl Microbiol Biotechnol 2022; 106:7973-7992. [PMID: 36370160 DOI: 10.1007/s00253-022-12260-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Over the last few decades, increasing concerns regarding fossil fuel depletion and excessive CO2 emissions have led to extensive fundamental studies and industrial trials regarding microbial chemical production. As an additive or precursor, L-malic acid has been shown to exhibit distinctive properties in the food, pharmaceutical, and daily chemical industries. L-malic acid is currently mainly fabricated through a fumarate hydratase-based biocatalytic conversion route, wherein petroleum-derived fumaric acid serves as a substrate. In this review, for the first time, we comprehensively describe the methods of malic acid strain transformation, raw material utilization, malic acid separation, etc., especially recent progress and remaining challenges for industrial applications. First, we summarize the various pathways involved in L-malic acid biosynthesis using different microorganisms. We also discuss several strain engineering strategies for improving the titer, yield, and productivity of L-malic acid. We illustrate the currently available alternatives for reducing production costs and the existing strategies for optimizing the fermentation process. Finally, we summarize the present challenges and future perspectives regarding the development of microbial L-malic acid production. KEY POINTS: • A range of wild-type, mutant, laboratory-evolved, and metabolically engineered strains which could produce L-malic acid were comprehensively described. • Alternative raw materials for reducing production costs and the existing strategies for optimizing the fermentation were sufficiently summarized. • The present challenges and future perspectives regarding the development of microbial L-malic acid production were elaboratively discussed.
Collapse
Affiliation(s)
- Na Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiahui Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yaru Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China.
| | - Hao Liu
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, China.
| |
Collapse
|
15
|
Gao S, Lu J, Wang T, Xu S, Wang X, Chen K, Ouyang P. A novel co-production of cadaverine and succinic acid based on a thermal switch system in recombinant Escherichia coli. Microb Cell Fact 2022; 21:248. [DOI: 10.1186/s12934-022-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Polyamide (nylon) is an important material, which has aroused plenty of attention from all aspects. PA 5.4 is one kind of nylon with excellent property, which consists of cadaverine and succinic acid. Due to the environmental pollution, bio-production of cadaverine and succinic acid has been more attractive due to the less pollution and environmental friendliness. Microbes, like Escherichia coli, has been employed as cell factory to produce cadaverine and succinic acid. However, the accumulation of cadaverine will cause severe damage on cells resulting in inhibition on cell growth and cadaverine production. Herein, a novel two stage co-production of succinic acid and cadaverine was designed based on an efficient thermos-regulated switch to avoid the inhibitory brought by cadaverine.
Results
The fermentation process was divided into two phase, one for cell growth and lysine production and the other for cadaverine and succinic acid synthesis. The genes of ldhA and ackA were deleted to construct succinic acid pathway in cadaverine producer strain. Then, a thermal switch system based on pR/pL promoter and CI857 was established and optimized. The fermentation conditions were investigated that the optimal temperature for the first stage was determined as 33 ℃ and the optimal temperature for the second stage was 39 ℃. Additionally, the time to shifting temperature was identified as the fermentation anaphase. For further enhance cadaverine and succinic acid production, a scale-up fermentation in 5 L bioreactor was operated. As a result, the titer, yield and productivity of cadaverine was 55.58 g/L, 0.38 g/g glucose and 1.74 g/(L·h), respectively. 28.39 g/L of succinic acid was also obtained with yield of 0.19 g/g glucose.
Conclusion
The succinic acid metabolic pathway was constructed into cadaverine producer strain to realize the co-production of succinic acid and cadaverine. This study provided a novel craft for industrial co-production of cadaverine and succinic acid.
Collapse
|
16
|
Miao Y, Liu J, Wang X, Liu B, Liu W, Tao Y. Fatty acid feedstocks enable a highly efficient glyoxylate-TCA cycle for high-yield production of β-alanine. MLIFE 2022; 1:171-182. [PMID: 38817673 PMCID: PMC10989975 DOI: 10.1002/mlf2.12006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/01/2024]
Abstract
Metabolic engineering to produce tricarboxylic acid (TCA) cycle-derived chemicals is usually associated with problems of low production yield and impaired cellular metabolism. In this work, we found that fatty acid (FA) feedstocks could enable high-yield production of TCA cycle-derived chemicals, while maintaining an efficient and balanced metabolic flux of the glyoxylate-TCA cycle, which is favorable for both product synthesis and cell growth. Here, we designed a novel synthetic pathway for production of β-alanine, an important TCA cycle-derived product, from FAs with a high theortecial yield of 1.391 g/g. By introducing panD, improving aspA, and knocking out iclR, glyoxylate shunt was highly activated in FAs and the yield of β-alanine reached 0.71 g/g from FAs, much higher than from glucose. Blocking the TCA cycle at icd/sucA/fumAC nodes could increase β-alanine yield in a flask cultivation, but severely reduced cell growth and FA utilization during fed-batch processes. Replenishing oxaloacetate by knocking out aspC and recovering fumAC could restore the growth and lead to a titer of 35.57 g/l. After relieving the oxidative stress caused by FA metabolism, β-alanine production could reach 72.05 g/l with a maximum yield of 1.24 g/g, about 86% of the theoretical yield. Our study thus provides a promising strategy for the production of TCA cycle-derived chemicals.
Collapse
Affiliation(s)
- Yingchun Miao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Jiao Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Xuanlin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Bo Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- Microcyto Co. Ltd.BeijingChina
| | - Weifeng Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Jiang S, Otero-Muras I, Banga JR, Wang Y, Kaiser M, Krasnogor N. OptDesign: Identifying Optimum Design Strategies in Strain Engineering for Biochemical Production. ACS Synth Biol 2022; 11:1531-1541. [PMID: 35389631 PMCID: PMC9016760 DOI: 10.1021/acssynbio.1c00610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Computational
tools have been widely adopted for strain optimization
in metabolic engineering, contributing to numerous success stories
of producing industrially relevant biochemicals. However, most of
these tools focus on single metabolic intervention strategies (either
gene/reaction knockout or amplification alone) and rely on hypothetical
optimality principles (e.g., maximization of growth) and precise gene
expression (e.g., fold changes) for phenotype prediction. This paper
introduces OptDesign, a new two-step strain design strategy. In the
first step, OptDesign selects regulation candidates that have a noticeable
flux difference between the wild type and production strains. In the
second step, it computes optimal design strategies with limited manipulations
(combining regulation and knockout), leading to high biochemical production.
The usefulness and capabilities of OptDesign are demonstrated for
the production of three biochemicals in Escherichia
coli using the latest genome-scale metabolic model
iML1515, showing highly consistent results with previous studies while
suggesting new manipulations to boost strain performance. The source
code is available at https://github.com/chang88ye/OptDesign.
Collapse
Affiliation(s)
- Shouyong Jiang
- Department of Computing Science, University of Aberdeen, Aberdeen AB24 3FX, U.K
| | - Irene Otero-Muras
- Institute for Integrative Systems Biology, UV-CSIC, Valencia 46980, Spain
| | - Julio R. Banga
- Computational Biology Lab, MBG-CSIC, Pontevedra 36143, Spain
| | - Yong Wang
- School of Automation, Central South University, Changsha 410083, China
| | - Marcus Kaiser
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K
| | | |
Collapse
|
18
|
Jarboe LR, Khalid A, Rodriguez Ocasio E, Noroozi KF. Extrapolation of design strategies for lignocellulosic biomass conversion to the challenge of plastic waste. J Ind Microbiol Biotechnol 2022; 49:kuac001. [PMID: 35040946 PMCID: PMC9119000 DOI: 10.1093/jimb/kuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
The goal of cost-effective production of fuels and chemicals from biomass has been a substantial driver of the development of the field of metabolic engineering. The resulting design principles and procedures provide a guide for the development of cost-effective methods for degradation, and possibly even valorization, of plastic wastes. Here, we highlight these parallels, using the creative work of Lonnie O'Neal (Neal) Ingram in enabling production of fuels and chemicals from lignocellulosic biomass, with a focus on ethanol production as an exemplar process.
Collapse
Affiliation(s)
- Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ammara Khalid
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Efrain Rodriguez Ocasio
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kimia Fashkami Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
19
|
Wong N, Jantama K. Engineering Escherichia coli for a high yield of 1,3-propanediol near the theoretical maximum through chromosomal integration and gene deletion. Appl Microbiol Biotechnol 2022; 106:2937-2951. [PMID: 35416488 DOI: 10.1007/s00253-022-11898-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Glycerol dehydratase (gdrAB-dhaB123) operon from Klebsiella pneumoniae and NADPH-dependent 1,3-propanediol oxidoreductase (yqhD) from Escherichia coli were stably integrated on the chromosomal DNA of E. coli under the control of the native-host ldhA and pflB constitutive promoters, respectively. The developed E. coli NSK015 (∆ldhA::gdrAB-dhaB123 ∆ackA::FRT ∆pflB::yqhD ∆frdABCD::cat-sacB) produced 1,3-propanediol (1,3-PDO) at the level of 36.8 g/L with a yield of 0.99 mol/mol of glycerol consumed when glucose was used as a co-substrate with glycerol. Co-substrate of glycerol and cassava starch was also utilized for 1,3-PDO production with the concentration and yield of 31.9 g/L and 0.84 mol/mol of glycerol respectively. This represents a work for efficient 1,3-PDO production in which the overexpression of heterologous genes on the E. coli host genome devoid of plasmid expression systems. Plasmids, antibiotics, IPTG, and rich nutrients were omitted during 1,3-PDO production. This may allow a further application of E. coli NSK015 for the efficient 1,3-PDO production in an economically industrial scale. KEY POINTS: • gdrAB-dhaB123 and yqhD were overexpressed in E. coli devoid of a plasmid system • E. coli NSK015 produced a high yield of 1,3-PDO at 99% theoretical maximum • Cassava starch was alternatively used as substrate for economical 1,3-PDO production.
Collapse
Affiliation(s)
- Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
20
|
Abstract
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global oil use by 2050. Bioplastics currently represent less than one percent of total plastic produced, but they are expected to increase in the coming years, due to rising demand. The usage of bioplastics would allow the dependence on fossil fuels to be reduced and could represent an opportunity to add some interesting functionalities to the materials. Moreover, the plastics derived from bio-based resources are more carbon-neutral and their manufacture generates a lower amount of greenhouse gasses. The substitution of conventional plastic with renewable plastic will therefore promote a more sustainable economy, society, and environment. Consequently, more and more studies have been focusing on the production of interesting bio-based building blocks for bioplastics. However, a coherent review of the contribution of fermentation technology to a more sustainable plastic production is yet to be carried out. Here, we present the recent advancement in bioplastic production and describe the possible integration of bio-based monomers as renewable precursors. Representative examples of both published and commercial fermentation processes are discussed.
Collapse
|
21
|
Tafur Rangel AE, Oviedo AG, Mojica FC, Gómez JM, Gónzalez Barrios AF. Development of an integrating systems metabolic engineering and bioprocess modeling approach for rational strain improvement. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
23
|
Shi A, Broach JR. Microbial adaptive evolution. J Ind Microbiol Biotechnol 2021; 49:6407523. [PMID: 34673973 PMCID: PMC9118994 DOI: 10.1093/jimb/kuab076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/27/2021] [Indexed: 01/08/2023]
Abstract
Bacterial species can adapt to significant changes in their environment by mutation followed by selection, a phenomenon known as “adaptive evolution.” With the development of bioinformatics and genetic engineering, research on adaptive evolution has progressed rapidly, as have applications of the process. In this review, we summarize various mechanisms of bacterial adaptive evolution, the technologies used for studying it, and successful applications of the method in research and industry. We particularly highlight the contributions of Dr. L. O. Ingram. Microbial adaptive evolution has significant impact on our society not only from its industrial applications, but also in the evolution, emergence, and control of various pathogens.
Collapse
Affiliation(s)
- Aiqin Shi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - James R Broach
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
24
|
Stylianou E, Pateraki C, Ladakis D, Damala C, Vlysidis A, Latorre-Sánchez M, Coll C, Lin CSK, Koutinas A. Bioprocess development using organic biowaste and sustainability assessment of succinic acid production with engineered Yarrowia lipolytica strain. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Flores AD, Holland SC, Mhatre A, Sarnaik AP, Godar A, Onyeabor M, Varman AM, Wang X, Nielsen DR. A coculture-coproduction system designed for enhanced carbon conservation through inter-strain CO 2 recycling. Metab Eng 2021; 67:387-395. [PMID: 34365009 DOI: 10.1016/j.ymben.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Carbon loss in the form of CO2 is an intrinsic and persistent challenge faced during conventional and advanced biofuel production from biomass feedstocks. Current mechanisms for increasing carbon conservation typically require the provision of reduced co-substrates as additional reducing equivalents. This need can be circumvented, however, by exploiting the natural heterogeneity of lignocellulosic sugars mixtures and strategically using specific fractions to drive complementary CO2 emitting vs. CO2 fixing pathways. As a demonstration of concept, a coculture-coproduction system was developed by pairing two catabolically orthogonal Escherichia coli strains; one converting glucose to ethanol (G2E) and the other xylose to succinate (X2S). 13C-labeling studies reveled that G2E + X2S cocultures were capable of recycling 24% of all evolved CO2 and achieved a carbon conservation efficiency of 77%; significantly higher than the 64% achieved when all sugars are instead converted to just ethanol. In addition to CO2 exchange, the latent exchange of pyruvate between strains was discovered, along with significant carbon rearrangement within X2S.
Collapse
Affiliation(s)
- Andrew D Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Steven C Holland
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Apurv Mhatre
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Aditya P Sarnaik
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States.
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States.
| |
Collapse
|
26
|
Da YY, Liu ZH, Zhu R, Li ZJ. Coutilization of glucose and acetate for the production of pyruvate by engineered Escherichia coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Combining metabolic engineering and evolutionary adaptation in Klebsiella oxytoca KMS004 to significantly improve optically pure D-(-)-lactic acid yield and specific productivity in low nutrient medium. Appl Microbiol Biotechnol 2020; 104:9565-9579. [PMID: 33009939 DOI: 10.1007/s00253-020-10933-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/15/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
In this study, K. oxytoca KMS004 (ΔadhE Δpta-ackA) was further reengineered by the deletion of frdABCD and pflB genes to divert carbon flux through D-(-)-lactate production. During fermentation of high glucose concentration, the resulted strain named K. oxytoca KIS004 showed poor in growth and glucose consumption due to its insufficient capacity to generate acetyl-CoA for biosynthesis. Evolutionary adaptation was thus employed with the strain to overcome impaired growth and acetate auxotroph. The evolved K. oxytoca KIS004-91T strain exhibited significantly higher glucose-utilizing rate and D-(-)-lactate production as a primary route to regenerate NAD+. D-(-)-lactate at concentration of 133 g/L (1.48 M), with yield and productivity of 0.98 g/g and 2.22 g/L/h, respectively, was obtained by the strain. To the best of our knowledge, this strain provided a relatively high specific productivity of 1.91 g/gCDW/h among those of other previous works. Cassava starch was also used to demonstrate a potential low-cost renewable substrate for D-(-)-lactate production. Production cost of D-(-)-lactate was estimated at $3.72/kg. Therefore, it is possible for the KIS004-91T strain to be an alternative biocatalyst offering a more economically competitive D-(-)-lactate production on an industrial scale. KEY POINTS: • KIS004-91T produced optically pure D-(-)-lactate up to 1.48 M in a low salts medium. • It possessed the highest specific D-(-)-lactate productivity than other reported strains. • Cassava starch as a cheap and renewable substrate was used for D-(-)-lactate production. • Costs related to media, fermentation, purification, and waste disposal were reduced.
Collapse
|
28
|
LI D, LI Y, XU JY, LI QY, TANG JL, JIA SR, BI CH, DAI ZB, ZHU XN, ZHANG XL. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli. Chin J Nat Med 2020; 18:666-676. [DOI: 10.1016/s1875-5364(20)60005-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 10/23/2022]
|
29
|
Xiberras J, Klein M, de Hulster E, Mans R, Nevoigt E. Engineering Saccharomyces cerevisiae for Succinic Acid Production From Glycerol and Carbon Dioxide. Front Bioeng Biotechnol 2020; 8:566. [PMID: 32671027 PMCID: PMC7332542 DOI: 10.3389/fbioe.2020.00566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Previously, our lab replaced the endogenous FAD-dependent pathway for glycerol catabolism in S. cerevisiae by the synthetic NAD-dependent dihydroxyacetone (DHA) pathway. The respective modifications allow the full exploitation of glycerol’s higher reducing power (compared to sugars) for the production of the platform chemical succinic acid (SA) via a reductive, carbon dioxide fixing and redox-neutral pathway in a production host robust for organic acid production. Expression cassettes for three enzymes converting oxaloacetate to SA in the cytosol (“SA module”) were integrated into the genome of UBR2CBS-DHA, an optimized CEN.PK derivative. Together with the additional expression of the heterologous dicarboxylic acid transporter DCT-02 from Aspergillus niger, a maximum SA titer of 10.7 g/L and a yield of 0.22 ± 0.01 g/g glycerol was achieved in shake flask (batch) cultures. Characterization of the constructed strain under controlled conditions in a bioreactor supplying additional carbon dioxide revealed that the carbon balance was closed to 96%. Interestingly, the results of the current study indicate that the artificial “SA module” and endogenous pathways contribute to the SA production in a highly synergistic manner.
Collapse
Affiliation(s)
- Joeline Xiberras
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Mathias Klein
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Erik de Hulster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| |
Collapse
|
30
|
Ferreira S, Pereira R, Wahl SA, Rocha I. Metabolic engineering strategies for butanol production in Escherichia coli. Biotechnol Bioeng 2020; 117:2571-2587. [PMID: 32374413 DOI: 10.1002/bit.27377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/06/2022]
Abstract
The global market of butanol is increasing due to its growing applications as solvent, flavoring agent, and chemical precursor of several other compounds. Recently, the superior properties of n-butanol as a biofuel over ethanol have stimulated even more interest. (Bio)butanol is natively produced together with ethanol and acetone by Clostridium species through acetone-butanol-ethanol fermentation, at noncompetitive, low titers compared to petrochemical production. Different butanol production pathways have been expressed in Escherichia coli, a more accessible host compared to Clostridium species, to improve butanol titers and rates. The bioproduction of butanol is here reviewed from a historical and theoretical perspective. All tested rational metabolic engineering strategies in E. coli to increase butanol titers are reviewed: manipulation of central carbon metabolism, elimination of competing pathways, cofactor balancing, development of new pathways, expression of homologous enzymes, consumption of different substrates, and molecular biology strategies. The progress in the field of metabolic modeling and pathway generation algorithms and their potential application to butanol production are also summarized here. The main goals are to gather all the strategies, evaluate the respective progress obtained, identify, and exploit the outstanding challenges.
Collapse
Affiliation(s)
- Sofia Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Rui Pereira
- SilicoLife Lda, Braga, Portugal.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - S A Wahl
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| |
Collapse
|
31
|
Flores AD, Choi HG, Martinez R, Onyeabor M, Ayla EZ, Godar A, Machas M, Nielsen DR, Wang X. Catabolic Division of Labor Enhances Production of D-Lactate and Succinate From Glucose-Xylose Mixtures in Engineered Escherichia coli Co-culture Systems. Front Bioeng Biotechnol 2020; 8:329. [PMID: 32432089 PMCID: PMC7214542 DOI: 10.3389/fbioe.2020.00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Although biological upgrading of lignocellulosic sugars represents a promising and sustainable route to bioplastics, diverse and variable feedstock compositions (e.g., glucose from the cellulose fraction and xylose from the hemicellulose fraction) present several complex challenges. Specifically, sugar mixtures are often incompletely metabolized due to carbon catabolite repression while composition variability further complicates the optimization of co-utilization rates. Benefiting from several unique features including division of labor, increased metabolic diversity, and modularity, synthetic microbial communities represent a promising platform with the potential to address persistent bioconversion challenges. In this work, two unique and catabolically orthogonal Escherichia coli co-cultures systems were developed and used to enhance the production of D-lactate and succinate (two bioplastic monomers) from glucose-xylose mixtures (100 g L-1 total sugars, 2:1 by mass). In both cases, glucose specialist strains were engineered by deleting xylR (encoding the xylose-specific transcriptional activator, XylR) to disable xylose catabolism, whereas xylose specialist strains were engineered by deleting several key components involved with glucose transport and phosphorylation systems (i.e., ptsI, ptsG, galP, glk) while also increasing xylose utilization by introducing specific xylR mutations. Optimization of initial population ratios between complementary sugar specialists proved a key design variable for each pair of strains. In both cases, ∼91% utilization of total sugars was achieved in mineral salt media by simple batch fermentation. High product titer (88 g L-1 D-lactate, 84 g L-1 succinate) and maximum productivity (2.5 g L-1 h-1 D-lactate, 1.3 g L-1 h-1 succinate) and product yield (0.97 g g-total sugar-1 for D-lactate, 0.95 g g-total sugar-1 for succinate) were also achieved.
Collapse
Affiliation(s)
- Andrew D. Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Hyun G. Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - E. Zeynep Ayla
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michael Machas
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
32
|
Sohn YJ, Kim HT, Baritugo K, Jo SY, Song HM, Park SY, Park SK, Pyo J, Cha HG, Kim H, Na J, Park C, Choi J, Joo JC, Park SJ. Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnol J 2020; 15:e1900489. [DOI: 10.1002/biot.201900489] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Jung Sohn
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hee Taek Kim
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Kei‐Anne Baritugo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Seo Young Jo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hye Min Song
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Se Young Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Su Kyeong Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Jiwon Pyo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hyun Gil Cha
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Hoyong Kim
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Jeong‐Geol Na
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbumro Mapo‐gu Seoul 04107 Republic of Korea
| | - Chulhwan Park
- Department of Chemical EngineeringKwangwoon University 98‐2, Seokgye‐ro Nowon‐gu Seoul Republic of Korea
| | - Jong‐Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and BiomaterialsChonnam National University Gwangju 61186 Republic of Korea
| | - Jeong Chan Joo
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| |
Collapse
|
33
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
34
|
Kurgan G, Kurgan L, Schneider A, Onyeabor M, Rodriguez-Sanchez Y, Taylor E, Martinez R, Carbonell P, Shi X, Gu H, Wang X. Identification of major malate export systems in an engineered malate-producing Escherichia coli aided by substrate similarity search. Appl Microbiol Biotechnol 2019; 103:9001-9011. [DOI: 10.1007/s00253-019-10164-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/27/2019] [Accepted: 09/28/2019] [Indexed: 01/29/2023]
|
35
|
Kurgan G, Sievert C, Flores A, Schneider A, Billings T, Panyon L, Morris C, Taylor E, Kurgan L, Cartwright R, Wang X. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli. Biotechnol Bioeng 2019; 116:2074-2086. [PMID: 31038200 PMCID: PMC11161036 DOI: 10.1002/bit.27004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022]
Abstract
Efficient xylose utilization will facilitate microbial conversion of lignocellulosic sugar mixtures into valuable products. In Escherichia coli, xylose catabolism is controlled by carbon catabolite repression (CCR). However, in E. coli such as the succinate-producing strain KJ122 with disrupted CCR, xylose utilization is still inhibited under fermentative conditions. To probe the underlying genetic mechanisms inhibiting xylose utilization, we evolved KJ122 to enhance its xylose fermentation abilities in parallel and characterized the potential convergent genetic changes shared by multiple independently evolved strains. Whole-genome sequencing revealed that convergent mutations occurred in the galactose regulon during adaptive laboratory evolution potentially decreasing the transcriptional level or the activity of GalP, a galactose permease. We showed that deletion of galP increased xylose utilization in both KJ122 and wild-type E. coli, demonstrating a common repressive role of GalP for xylose fermentation. Concomitantly, induced expression of galP from a plasmid repressed xylose fermentation. Transcriptome analysis using RNA sequencing indicates that galP inactivation increases transcription levels of many catabolic genes for secondary sugars including xylose and arabinose. The repressive role of GalP for fermenting secondary sugars in E. coli suggests that utilization of GalP as a substitute glucose transporter is undesirable for conversion of lignocellulosic sugar mixtures.
Collapse
Affiliation(s)
- Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Christian Sievert
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Andrew Flores
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona
| | - Aidan Schneider
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Thomas Billings
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Larry Panyon
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Chandler Morris
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Eric Taylor
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Logan Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Reed Cartwright
- School of Life Sciences, Arizona State University, Tempe, Arizona
- The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
36
|
Yu T, Dabirian Y, Liu Q, Siewers V, Nielsen J. Strategies and challenges for metabolic rewiring. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.coisb.2019.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Metabolism of sucrose in a non-fermentative Escherichia coli under oxygen limitation. Appl Microbiol Biotechnol 2019; 103:6245-6256. [PMID: 31147757 PMCID: PMC6616217 DOI: 10.1007/s00253-019-09909-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/21/2023]
Abstract
Biotechnological industry strives to develop anaerobic bioprocesses fueled by abundant and cheap carbon sources, like sucrose. However, oxygen-limiting conditions often lead to by-product formation and reduced ATP yields. While by-product formation is typically decreased by gene deletion, the breakdown of oligosaccharides with inorganic phosphate instead of water could increment the ATP yield. To observe the effect of oxygen limitation during sucrose consumption, a non-fermentative Escherichia coli K-12 strain was transformed with genes enabling sucrose assimilation. It was observed that the combined deletion of the genes adhE, adhP, mhpF, ldhA, and pta abolished the anaerobic growth using sucrose. Therefore, the biomass-specific conversion rates were obtained using oxygen-limited continuous cultures. Strains performing the breakdown of the sucrose by hydrolysis (SUC-HYD) or phosphorolysis (SUC-PHOSP) were studied in such conditions. An experimentally validated in silico model, modified to account for plasmid and protein burdens, was employed to calculate carbon and electron consistent conversion rates. In both strains, the biomass yields were lower than expected and, strikingly, SUC-PHOSP showed a yield lower than SUC-HYD. Flux balance analyses indicated a significant increase in the non-growth-associated ATP expenses by comparison with the growth on glucose. The observed fructose-1,6-biphosphatase and phosphoglucomutase activities, as well as the concentrations of glycogen, suggest the operation of ATP futile cycles triggered by a combination of the oxygen limitation and the metabolites released during the sucrose breakdown.
Collapse
|
38
|
Flores AD, Ayla EZ, Nielsen DR, Wang X. Engineering a Synthetic, Catabolically Orthogonal Coculture System for Enhanced Conversion of Lignocellulose-Derived Sugars to Ethanol. ACS Synth Biol 2019; 8:1089-1099. [PMID: 30979337 DOI: 10.1021/acssynbio.9b00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fermentation of lignocellulosic sugar mixtures is often suboptimal due to inefficient xylose catabolism and sequential sugar utilization caused by carbon catabolite repression. Unlike in conventional applications employing a single engineered strain, the alternative development of synthetic microbial communities facilitates the execution of complex metabolic tasks by exploiting the unique community features, including modularity, division of labor, and facile tunability. A series of synthetic, catabolically orthogonal coculture systems were systematically engineered, as derived from either wild-type Escherichia coli W or ethanologenic LY180. Net catabolic activities were effectively balanced by simple tuning of the inoculum ratio between specialist strains, which enabled coutilization (98% of 100 g L-1 total sugars) of glucose-xylose mixtures (2:1 by mass) for both culture systems in simple batch fermentations. The engineered ethanologenic cocultures achieved ethanol titer (46 g L-1), productivity (488 mg L-1 h-1), and yield (∼90% of theoretical maximum), which were all significantly increased compared to LY180 monocultures.
Collapse
Affiliation(s)
- Andrew D. Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, ECG 301, 501 E. Tyler Mall, Tempe, Arizona 85287, United States
| | - E. Zeynep Ayla
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, ECG 301, 501 E. Tyler Mall, Tempe, Arizona 85287, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, ECG 301, 501 E. Tyler Mall, Tempe, Arizona 85287, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
39
|
Ferone M, Raganati F, Olivieri G, Marzocchella A. Bioreactors for succinic acid production processes. Crit Rev Biotechnol 2019; 39:571-586. [DOI: 10.1080/07388551.2019.1592105] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- UCD School of Agriculture & Food Science, University College Dublin, Dublin, Ireland
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
40
|
Bioprospecting of Native Efflux Pumps To Enhance Furfural Tolerance in Ethanologenic Escherichia coli. Appl Environ Microbiol 2019; 85:AEM.02985-18. [PMID: 30635383 DOI: 10.1128/aem.02985-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023] Open
Abstract
Efficient microbial conversion of lignocellulose into valuable products is often hindered by the presence of furfural, a dehydration product of pentoses in hemicellulose sugar syrups derived from woody biomass. For a cost-effective lignocellulose microbial conversion, robust biocatalysts are needed that can tolerate toxic inhibitors while maintaining optimal metabolic activities. A comprehensive plasmid-based library encoding native multidrug resistance (MDR) efflux pumps, porins, and select exporters from Escherichia coli was screened for furfural tolerance in an ethanologenic E. coli strain. Small multidrug resistance (SMR) pumps, such as SugE and MdtJI, as well as a lactate/glycolate:H+ symporter, LldP, conferred furfural tolerance in liquid culture tests. Expression of the SMR pump potentially increased furfural efflux and cellular viability upon furfural assault, suggesting novel activities for SMR pumps as furfural efflux proteins. Furthermore, induced expression of mdtJI enhanced ethanol fermentative production of LY180 in the presence of furfural or 5-hydroxymethylfurfural, further demonstrating the applications of SMR pumps. This work describes an effective approach to identify useful efflux systems with desired activities for nonnative toxic chemicals and provides a platform to further enhance furfural efflux by protein engineering and mutagenesis.IMPORTANCE Lignocellulosic biomass, especially agricultural residues, represents an important potential feedstock for microbial production of renewable fuels and chemicals. During the deconstruction of hemicellulose by thermochemical processes, side products that inhibit cell growth and production, such as furan aldehydes, are generated, limiting cost-effective lignocellulose conversion. Here, we developed a new approach to increase cellular tolerance by expressing multidrug resistance (MDR) pumps with putative efflux activities for furan aldehydes. The developed plasmid library and screening methods may facilitate new discoveries of MDR pumps for diverse toxic chemicals important for microbial conversion.
Collapse
|
41
|
Skorokhodova AY, Gulevich AY, Debabov VG. Inactivation of Malic Enzymes Improves the Anaerobic Production of Four-Carbon Dicarboxylic Acids by Recombinant Escherichia coli Strains Expressing Pyruvate Carboxylase. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818090065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Hon MK, Mohamad MS, Mohamed Salleh AH, Choon YW, Mohd Daud K, Remli MA, Ismail MA, Omatu S, Sinnott RO, Corchado JM. Identifying a Gene Knockout Strategy Using a Hybrid of Simple Constrained Artificial Bee Colony Algorithm and Flux Balance Analysis to Enhance the Production of Succinate and Lactate in Escherichia Coli. Interdiscip Sci 2019; 11:33-44. [DOI: 10.1007/s12539-019-00324-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/11/2019] [Accepted: 02/04/2019] [Indexed: 11/29/2022]
|
43
|
Jampatesh S, Sawisit A, Wong N, Jantama SS, Jantama K. Evaluation of inhibitory effect and feasible utilization of dilute acid-pretreated rice straws on succinate production by metabolically engineered Escherichia coli AS1600a. BIORESOURCE TECHNOLOGY 2019; 273:93-102. [PMID: 30419446 DOI: 10.1016/j.biortech.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
This work demonstrated a pioneer work in the pre-treatment of rice straw by phosphoric acid (H3PO4) for succinate production. The optimized pre-treatment condition of rice straw was at 121 °C for 30 min with 2 N H3PO4. With this condition, total sugar concentration of 31.2 g/L with the highest hemicellulose saccharification yield of 94% was obtained. The physicochemical analysis of the pre-treated rice straw showed significant changes in its structure thus enhancing enzymatic saccharification. Succinate concentrations of 78.5 and 63.8 g/L were produced from hydrolysate liquor (L) and solid fraction (S) of the pre-treated rice straw respectively, with a comparable yield of 86% by E. coli AS1600a. Use of a combined L + S fraction in simultaneous saccharification and fermentation (LS + SSF) further improved succinate production at a concentration and yield of 85.6 g/L and 90% respectively. The results suggested that H3PO4 pre-treated rice straw may be utilized for economical succinate production by E. coli AS1600a.
Collapse
Affiliation(s)
- Surawee Jampatesh
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Apichai Sawisit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
44
|
Molecular Identification of Bacterial Strains Producing Succinic Acid from Indian Sources. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
46
|
Karp PD, Ong WK, Paley S, Billington R, Caspi R, Fulcher C, Kothari A, Krummenacker M, Latendresse M, Midford PE, Subhraveti P, Gama-Castro S, Muñiz-Rascado L, Bonavides-Martinez C, Santos-Zavaleta A, Mackie A, Collado-Vides J, Keseler IM, Paulsen I. The EcoCyc Database. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0006-2018. [PMID: 30406744 PMCID: PMC6504970 DOI: 10.1128/ecosalplus.esp-0006-2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 01/28/2023]
Abstract
EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality and on nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.
Collapse
Affiliation(s)
- Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | - Wai Kit Ong
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | | | - Ron Caspi
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | - Carol Fulcher
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | - Anamika Kothari
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | | | - Mario Latendresse
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | - Peter E Midford
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | | | - Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México
| | - Luis Muñiz-Rascado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México
| | - César Bonavides-Martinez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100, México
| | - Ingrid M Keseler
- Bioinformatics Research Group, SRI International, Menlo Park, CA 94025
| | - Ian Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
47
|
Continuous Succinic Acid Fermentation by Actinobacillus Succinogenes: Assessment of Growth and Succinic Acid Production Kinetics. Appl Biochem Biotechnol 2018; 187:782-799. [DOI: 10.1007/s12010-018-2846-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 11/30/2022]
|
48
|
Trichez D, Auriol C, Baylac A, Irague R, Dressaire C, Carnicer-Heras M, Heux S, François JM, Walther T. Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid. Microb Cell Fact 2018; 17:113. [PMID: 30012131 PMCID: PMC6048880 DOI: 10.1186/s12934-018-0959-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/06/2018] [Indexed: 11/27/2022] Open
Abstract
Background Malate is a C4-dicarboxylic acid widely used as an acidulant in the food and beverage industry. Rational engineering has been performed in the past for the development of microbial strains capable of efficient production of this metabolite. However, as malate can be a precursor for specialty chemicals, such as 2,4-dihydroxybutyric acid, that require additional cofactors NADP(H) and ATP, we set out to reengineer Escherichia coli for Krebs cycle-dependent production of malic acid that can satisfy these requirements. Results We found that significant malate production required at least simultaneous deletion of all malic enzymes and dehydrogenases, and concomitant expression of a malate-insensitive PEP carboxylase. Metabolic flux analysis using 13C-labeled glucose indicated that malate-producing strains had a very high flux over the glyoxylate shunt with almost no flux passing through the isocitrate dehydrogenase reaction. The highest malate yield of 0.82 mol/mol was obtained with E. coli Δmdh Δmqo ΔmaeAB ΔiclR ΔarcA which expressed malate-insensitive PEP carboxylase PpcK620S and NADH-insensitive citrate synthase GltAR164L. We also showed that inactivation of the dicarboxylic acid transporter DcuA strongly reduced malate production arguing for a pivotal role of this permease in malate export. Conclusions Since more NAD(P)H and ATP cofactors are generated in the Krebs cycle-dependent malate production when compared to pathways which depend on the function of anaplerotic PEP carboxylase or PEP carboxykinase enzymes, the engineered strain developed in this study can serve as a platform to increase biosynthesis of malate-derived metabolites such as 2,4-dihydroxybutyric acid. Electronic supplementary material The online version of this article (10.1186/s12934-018-0959-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Debora Trichez
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Clément Auriol
- TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.,Cinabio, Cinabio-Adisseo France S.A.S., 31077, Toulouse, France
| | - Audrey Baylac
- TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France
| | - Romain Irague
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | | - Stéphanie Heux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean Marie François
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. .,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.
| | - Thomas Walther
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.,TWB, 3 rue Ariane, 31520, Ramonville-St. Agnes, France.,Institute of Natural Materials Technology, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
49
|
Enhanced production of succinic acid from methanol-organosolv pretreated Strophanthus preussii by recombinant Escherichia coli. Bioprocess Biosyst Eng 2018; 41:1497-1508. [PMID: 30006798 DOI: 10.1007/s00449-018-1977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/29/2018] [Indexed: 01/06/2023]
Abstract
A biorefinery process for high yield production of succinic acid from biomass sugars was investigated using recombinant Escherichia coli. The major problem been addressed is utilization of waste biomass for the production of succinic acid using metabolic engineering strategy. Here, methanol extract of Strophanthus preussii was used for fermentation. The process parameters were optimized. Glucose (9 g/L), galactose (4 g/L), xylose (6 g/L) and arabinose (0.5 g/L) were the major sugars present in the methanol extract of S. preussii. E. coli K3OS with overexpression of soluble nucleotide pyridine transhydrogenase sthA and mutation of lactate dehydrogenase A (ldhA), phosphotransacetylase acetate kinase A (pta-ackA), pyruvate formate lyase B (pflB), pyruvate oxidase B (poxB), produced a final succinic acid concentration of 14.40 g/L and yield of 1.10 mol/mol total sugars after 72 h dual-phase fermentation in M9 medium. Here, we show that the maximum theoretical yield using methanol extracts of S. preussii was 64%. Hence, methanol extract of S. preussii could be used for the production of biochemicals such as succinate, malate and pyruvate.
Collapse
|
50
|
Sawisit A, Jampatesh S, Jantama SS, Jantama K. Optimization of sodium hydroxide pretreatment and enzyme loading for efficient hydrolysis of rice straw to improve succinate production by metabolically engineered Escherichia coli KJ122 under simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2018; 260:348-356. [PMID: 29649727 DOI: 10.1016/j.biortech.2018.03.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
Rice straw was pretreated with sodium hydroxide (NaOH) before subsequent use for succinate production by Escherichia coli KJ122 under simultaneous saccharification and fermentation (SSF). The NaOH pretreated rice straw was significantly enhanced lignin removal up to 95%. With the optimized enzyme loading of 4% cellulase complex + 0.5% xylanase (endo-glucanase 67 CMC-U/g, β-glucosidase 26 pNG-U/g and xylanase 18 CMC-U/g dry biomass), total sugar conversion reached 91.7 ± 0.8% (w/w). The physicochemical analysis of NaOH pretreated rice straw indicated dramatical changes in its structure, thereby favoring enzymatic saccharification. In batch SSF, succinate production of 69.8 ± 0.3 g/L with yield and productivity of 0.84 g/g pretreated rice straw and 0.76 ± 0.02 g/L/h, respectively, was obtained. Fed-batch SSF significantly improved succinate concentration and productivity to 103.1 ± 0.4 g/L and 1.37 ± 0.07 g/L/h with a comparable yield. The results demonstrated a feasibility of sequential saccharification and fermentation of rice straw as a promising process for succinate production in industrial scale.
Collapse
Affiliation(s)
- Apichai Sawisit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Surawee Jampatesh
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirima Suvarnakuta Jantama
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|