1
|
Marinaro G, Bruno L, Pirillo N, Coluccio ML, Nanni M, Malara N, Battista E, Bruno G, De Angelis F, Cancedda L, Di Mascolo D, Gentile F. The role of elasticity on adhesion and clustering of neurons on soft surfaces. Commun Biol 2024; 7:617. [PMID: 38778159 PMCID: PMC11111731 DOI: 10.1038/s42003-024-06329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.
Collapse
Affiliation(s)
- Giovanni Marinaro
- Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital, 4000, Liège, Belgium
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036, Rende, Italy
| | - Noemi Pirillo
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Laura Coluccio
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marina Nanni
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Natalia Malara
- Department of Health Science, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Giulia Bruno
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Francesco De Angelis
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163, Genoa, Italy.
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126, Bari, Italy.
| | - Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Woeppel K, Dhawan V, Shi D, Cui XT. Nanotopography-enhanced biomimetic coating maintains bioactivity after weeks of dry storage and improves chronic neural recording. Biomaterials 2023; 302:122326. [PMID: 37716282 PMCID: PMC10993103 DOI: 10.1016/j.biomaterials.2023.122326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
We developed a nanoparticle base layer technology capable of maintaining the bioactivity of protein-based neural probe coating intended to improve neural recording quality. When covalently bound on thiolated nanoparticle (TNP) modified surfaces, neural adhesion molecule L1 maintained bioactivity throughout 8 weeks of dry storage at room temperature, while those bound to unmodified surfaces lost 66% bioactivity within 3 days. We tested the TNP + L1 coating in mouse brains on two different neural electrode arrays after two different dry storage durations (3 and 28 days). The results show that dry-stored coating is as good as the freshly prepared, and even after 28 days of storage, the number of single units per channel and signal-to-noise ratio of the TNP + L1 coated arrays were significantly higher by 32% and 40% respectively than uncoated controls over 16 weeks. This nanoparticle base layer approach enables the dissemination of biomolecule-functionalized neural probes to users worldwide and may also benefit a broad range of applications that rely on surface-bound biomolecules.
Collapse
Affiliation(s)
- Kevin Woeppel
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Vaishnavi Dhawan
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Delin Shi
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
3
|
Zhang Z, Lv Y, Harati J, Song J, Du P, Ou P, Liang J, Wang H, Wang PY. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells. J Funct Biomater 2023; 14:jfb14050238. [PMID: 37233348 DOI: 10.3390/jfb14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanliang Lv
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Du
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyan Ou
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Liang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Vinzons LU, Lin SP. Facile fabrication of ordered discontinuous nanotopography on photosensitive substrates for enhanced neuronal differentiation. NANOTECHNOLOGY 2021; 32:365301. [PMID: 34015777 DOI: 10.1088/1361-6528/ac0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Controlling the development and morphology of neurons is important for basic neuroscience research as well as for applications in nerve regeneration and neural interfaces. Various studies have shown that nanoscale topographies can promote the development of neuronal cells and the differentiation of neural stem cells; however, the fabrication of these nanotopographical features often involves expensive and sophisticated techniques. Here, we employ nanosphere lens lithography combined with UV-LED technology to create nanopatterns on an SU-8 photoresist. We develop a facile method to create a reusable polystyrene nanosphere (PS-NS) lens array by the spontaneous formation of a hexagonal close-packed array of PS-NSs at a water-air interface and its subsequent transfer to a polydimethylsiloxane carrier film without using any special equipment. We show that this simple technique can create ordered arrays of nanodots on an SU-8 film, the dimensions of which can be controlled by the size of the PS-NSs. When used as a substrate for the neuronal differentiation of pheochromocytoma (PC12) cells, the nanopatterned SU-8 films exhibit enhanced differentiation parameters with respect to conventional tissue culture plastic as compared with their flat counterparts. The method proposed here can greatly facilitate the nanopatterning of various photosensitive substrates for the development of implants for nerve regeneration and neural interfacing.
Collapse
Affiliation(s)
- Lester U Vinzons
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Ping Lin
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019; 11:701-720. [PMID: 31617079 PMCID: PMC6815321 DOI: 10.1007/s12551-019-00587-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli'', Università degli Studi di Milano, via Celoria 16, 20133, Milan, Italy.
| |
Collapse
|
6
|
Rafiq NBM, Grenci G, Lim CK, Kozlov MM, Jones GE, Viasnoff V, Bershadsky AD. Forces and constraints controlling podosome assembly and disassembly. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180228. [PMID: 31431172 DOI: 10.1098/rstb.2018.0228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Podosomes are a singular category of integrin-mediated adhesions important in the processes of cell migration, matrix degradation and cancer cell invasion. Despite a wealth of biochemical studies, the effects of mechanical forces on podosome integrity and dynamics are poorly understood. Here, we show that podosomes are highly sensitive to two groups of physical factors. First, we describe the process of podosome disassembly induced by activation of myosin-IIA filament assembly. Next, we find that podosome integrity and dynamics depends upon membrane tension and can be experimentally perturbed by osmotic swelling and deoxycholate treatment. We have also found that podosomes can be disrupted in a reversible manner by single or cyclic radial stretching of the substratum. We show that disruption of podosomes induced by osmotic swelling is independent of myosin-II filaments. The inhibition of the membrane sculpting protein, dynamin-II, but not clathrin, resulted in activation of myosin-IIA filament formation and disruption of podosomes. The effect of dynamin-II inhibition on podosomes was, however, independent of myosin-II filaments. Moreover, formation of organized arrays of podosomes in response to microtopographic cues (the ridges with triangular profile) was not accompanied by reorganization of myosin-II filaments. Thus, mechanical elements such as myosin-II filaments and factors affecting membrane tension/sculpting independently modulate podosome formation and dynamics, underlying a versatile response of these adhesion structures to intracellular and extracellular cues. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nisha Bte Mohd Rafiq
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Biomedical Engineering Department, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Republic of Singapore
| | - Cheng Kai Lim
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gareth E Jones
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,CNRS UMI 3639, 5A Engineering Drive 1, Singapore 117411, Republic of Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Litowczenko J, Maciejewska BM, Wychowaniec JK, Kościński M, Jurga S, Warowicka A. Groove‐patterned surfaces induce morphological changes in cells of neuronal origin. J Biomed Mater Res A 2019; 107:2244-2256. [DOI: 10.1002/jbm.a.36733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Jagoda Litowczenko
- NanoBioMedical CentreAdam Mickiewicz University Poznań Poland
- Department of Molecular Virology, Faculty of BiologyAdam Mickiewicz University Poznań Poland
| | | | - Jacek K. Wychowaniec
- NanoBioMedical CentreAdam Mickiewicz University Poznań Poland
- School of ChemistryUniversity College Dublin Dublin Ireland
| | - Mikołaj Kościński
- NanoBioMedical CentreAdam Mickiewicz University Poznań Poland
- Department of Physics and Biophysics, Faculty of Food Science and NutritionPoznań University of Life Sciences Poznań Poland
| | - Stefan Jurga
- NanoBioMedical CentreAdam Mickiewicz University Poznań Poland
| | - Alicja Warowicka
- NanoBioMedical CentreAdam Mickiewicz University Poznań Poland
- Department of Animal Physiology and Development, Institute of Experimental BiologyAdam Mickiewicz University Poznań Poland
| |
Collapse
|
8
|
A mechanoelectrical coupling model of neurons under stretching. J Mech Behav Biomed Mater 2019; 93:213-221. [DOI: 10.1016/j.jmbbm.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
|
9
|
Grenci G, Bertocchi C, Ravasio A. Integrating Microfabrication into Biological Investigations: the Benefits of Interdisciplinarity. MICROMACHINES 2019; 10:E252. [PMID: 30995747 PMCID: PMC6523848 DOI: 10.3390/mi10040252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
The advent of micro and nanotechnologies, such as microfabrication, have impacted scientific research and contributed to meaningful real-world applications, to a degree seen during historic technological revolutions. Some key areas benefitting from the invention and advancement of microfabrication platforms are those of biological and biomedical sciences. Modern therapeutic approaches, involving point-of-care, precision or personalized medicine, are transitioning from the experimental phase to becoming the standard of care. At the same time, biological research benefits from the contribution of microfluidics at every level from single cell to tissue engineering and organoids studies. The aim of this commentary is to describe, through proven examples, the interdisciplinary process used to develop novel biological technologies and to emphasize the role of technical knowledge in empowering researchers who are specialized in a niche area to look beyond and innovate.
Collapse
Affiliation(s)
- Gianluca Grenci
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.
- Biomedical Engineering Department, National University of Singapore, Singapore 117583, Singapore.
| | - Cristina Bertocchi
- Department of Physiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile.
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| |
Collapse
|
10
|
Onesto V, Villani M, Narducci R, Malara N, Imbrogno A, Allione M, Costa N, Coppedè N, Zappettini A, Cannistraci CV, Cancedda L, Amato F, Di Fabrizio E, Gentile F. Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces. Sci Rep 2019; 9:4021. [PMID: 30858456 PMCID: PMC6411964 DOI: 10.1038/s41598-019-40548-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/18/2019] [Indexed: 11/25/2022] Open
Abstract
A long-standing goal of neuroscience is a theory that explains the formation of the minicolumns in the cerebral cortex. Minicolumns are the elementary computational units of the mature neocortex. Here, we use zinc oxide nanowires with controlled topography as substrates for neural-cell growth. We observe that neuronal cells form networks where the networks characteristics exhibit a high sensitivity to the topography of the nanowires. For certain values of nanowires density and fractal dimension, neuronal networks express small world attributes, with enhanced information flows. We observe that neurons in these networks congregate in superclusters of approximately 200 neurons. We demonstrate that this number is not coincidental: the maximum number of cells in a supercluster is limited by the competition between the binding energy between cells, adhesion to the substrate, and the kinetic energy of the system. Since cortical minicolumns have similar size, similar anatomical and topological characteristics of neuronal superclusters on nanowires surfaces, we conjecture that the formation of cortical minicolumns is likewise guided by the interplay between energy minimization, information optimization and topology. For the first time, we provide a clear account of the mechanisms of formation of the minicolumns in the brain.
Collapse
Affiliation(s)
- V Onesto
- Center for Advanced Biomaterials for HealthCare, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - M Villani
- IMEM-CNR Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - R Narducci
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - N Malara
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - A Imbrogno
- Tyndall National Institute, Cork, T12 R5CP, Ireland
| | - M Allione
- PSE division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - N Costa
- Health Department, University of Magna Graecia, 88100, Catanzaro, Italy
| | - N Coppedè
- IMEM-CNR Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - A Zappettini
- IMEM-CNR Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - C V Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Department of Physics, Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Brain Bio-Inspired Computing (BBC) Lab, IRCCS Centro Neurolesi "Bonino Pulejo", Messina, 98124, Italy
| | - L Cancedda
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Dulbecco Telethon Institute, Rome, Italy
| | - F Amato
- Department of Electrical Engineering and Information Technology, University Federico II, Naples, Italy
| | - Enzo Di Fabrizio
- PSE division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - F Gentile
- Department of Electrical Engineering and Information Technology, University Federico II, Naples, Italy.
| |
Collapse
|
11
|
Sequential Application of Discrete Topographical Patterns Enhances Derivation of Functional Mesencephalic Dopaminergic Neurons from Human Induced Pluripotent Stem Cells. Sci Rep 2018; 8:9567. [PMID: 29934644 PMCID: PMC6014983 DOI: 10.1038/s41598-018-27653-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s Disease is a progressive neurodegenerative disorder attributed to death of mesencephalic dopaminergic (DA) neurons. Pluripotent stem cells have great potential in the study for this late-onset disease, but acquirement of cells that are robust in quantity and quality is still technically demanding. Biophysical cues have been shown to direct stem cell fate, but the effect of different topographies in the lineage commitment and subsequent maturation stages of cells have been less examined. Using human induced pluripotent stem cells (iPSCs), we applied topographical patterns sequentially during differentiation stages and examined their ability to influence derivation yield and functionality of regionalized subtype-specific DA neurons. Gratings showed higher yield of DA neurons and may be beneficial for initial lineage commitment. Cells derived on pillars in the terminal differentiation stage have increased neuronal complexity, and were more capable of firing repetitive action potentials, showing that pillars yielded better network formation and functionality. Our topography platform can be applied to patient-derived iPSCs as well, and that cells harbouring LRRK2 mutation were more functionally mature when optimal topographies were applied sequentially. This will hopefully accelerate development of robust cell models that will provide novel insights into discovering new therapeutic approaches for Parkinson’s Disease.
Collapse
|
12
|
Li S, Severino FPU, Ban J, Wang L, Pinato G, Torre V, Chen Y. Improved neuron culture using scaffolds made of three-dimensional PDMS micro-lattices. ACTA ACUST UNITED AC 2018; 13:034105. [PMID: 29332841 DOI: 10.1088/1748-605x/aaa777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering strives to create functional components of organs with different cell types in vitro. One of the challenges is to fabricate scaffolds for three-dimensional (3D) cell culture under physiological conditions. Of particular interest is the investigation of the morphology and function of the central nervous system cultured using such scaffolds. Here, we used an elastomer-polydimethylsiloxane (PDMS)-to produce lattice-type scaffolds from a photolithography-defined template. The photomask with antidot arrays was spin-coated by a thick layer of resist, and was downward mounted on a rotating stage at an angle of 45°. After the exposure was repeated three or more times, maintaining the same exposure plan but rotated by the same angle, a photoresist was developed to produce a 3D porous template. Afterwards, a pre-polymer mixture of PDMS was poured in and cured, followed by a resist etch, resulting in lattice-type PDMS features. Before cell culture, the PDMS lattices were surface functionalized. A culture test was conducted using NIH-3T3 cells and primary hippocampal cells from rats, showing homogenous cell infiltration and 3D attachment. As expected, a much higher cell number was found in the 3D PDMS lattices compared to the 2D culture. We also found a higher neuron-to-astrocyte ratio and a higher degree of cell ramification in the 3D culture compared to the 2D culture due to the change of scaffold topography and the elastic properties of the PDMS micro-lattices. Our results demonstrate that the 3D PDMS micro-lattices improve the survival and growth of cells, as well as the network formation of neurons. We believe that such an enabling technology is useful for research and clinical applications, including disease modeling, regenerative medicine, and drug discovery/drug cytotoxicity studies.
Collapse
Affiliation(s)
- Sisi Li
- PASTEUR, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France. Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, PASTEUR, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Onesto V, Cancedda L, Coluccio ML, Nanni M, Pesce M, Malara N, Cesarelli M, Di Fabrizio E, Amato F, Gentile F. Nano-topography Enhances Communication in Neural Cells Networks. Sci Rep 2017; 7:9841. [PMID: 28851984 PMCID: PMC5575309 DOI: 10.1038/s41598-017-09741-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness S a affects networks topology. In the low nano-meter range, S a = 0-30 nm, information increases with S a . Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.
Collapse
Affiliation(s)
- V Onesto
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - L Cancedda
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - M L Coluccio
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - M Nanni
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - M Pesce
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - N Malara
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - M Cesarelli
- Department of Electrical Engineering and Information Technology, University of Naples, 80125, Naples, Italy
| | - E Di Fabrizio
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - F Amato
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - F Gentile
- Department of Electrical Engineering and Information Technology, University of Naples, 80125, Naples, Italy.
| |
Collapse
|
14
|
Marcus M, Baranes K, Park M, Choi IS, Kang K, Shefi O. Interactions of Neurons with Physical Environments. Adv Healthc Mater 2017. [PMID: 28640544 DOI: 10.1002/adhm.201700267] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve growth strongly relies on multiple chemical and physical signals throughout development and regeneration. Currently, a cure for injured neuronal tissue is an unmet need. Recent advances in fabrication technologies and materials led to the development of synthetic interfaces for neurons. Such engineered platforms that come in 2D and 3D forms can mimic the native extracellular environment and create a deeper understanding of neuronal growth mechanisms, and ultimately advance the development of potential therapies for neuronal regeneration. This progress report aims to present a comprehensive discussion of this field, focusing on physical feature design and fabrication with additional information about considerations of chemical modifications. We review studies of platforms generated with a range of topographies, from micro-scale features down to topographical elements at the nanoscale that demonstrate effective interactions with neuronal cells. Fabrication methods are discussed as well as their biological outcomes. This report highlights the interplay between neuronal systems and the important roles played by topography on neuronal differentiation, outgrowth, and development. The influence of substrate structures on different neuronal cells and parameters including cell fate, outgrowth, intracellular remodeling, gene expression and activity is discussed. Matching these effects to specific needs may lead to the emergence of clinical solutions for patients suffering from neuronal injuries or brain-machine interface (BMI) applications.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Koby Baranes
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Matthew Park
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell-Encapsulation Research; Department of Chemistry; KAIST; Daejeon 34141 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry; Kyung Hee University; Yongin Gyeonggi 17104 Korea
| | - Orit Shefi
- Faculty of Engineering and Bar-Ilan Institute for Nanotechnology and Advanced Materials; Bar-Ilan University; Ramat-Gan 5290002 Israel
| |
Collapse
|
15
|
MacGregor-Ramiasa M, Hopp I, Bachhuka A, Murray P, Vasilev K. Surface nanotopography guides kidney-derived stem cell differentiation into podocytes. Acta Biomater 2017; 56:171-180. [PMID: 28232254 DOI: 10.1016/j.actbio.2017.02.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/09/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023]
Abstract
Stem cells have enormous potential for developing novel therapies for kidney disease but our current inability to direct their differentiation to specialised renal cells presents a barrier to their use in renal bioengineering and drug development programmes. Here, a plasma-based technology was used to produce a range of biocompatible substrates comprising controlled surface nanotopography and tailored outermost chemical functionalities. These novel substrata were used to investigate the response of mouse kidney-derived stem cells to changes in both substrate nanotopography and surface chemistry. The stem cells proliferated to a similar extent on all substrates, but specific combinations of nanotopography and surface chemistry promoted differentiation into either podocyte or proximal tubule-like cells. The data reveal that high density of surface nanodefects in association with amine rich chemistry primarily lead to differentiation into podocytes while surfaces with low amine content constituted better substrates for differentiation into proximal tubule cells regardless of the surface nanotopographic profile. Thus plasma coated nanorough substrate may provide useful platform for guiding the fate kidney stem cell in vitro. STATEMENT OF SIGNIFICANCE Adult kidney-derived stem cells have been identified as a promising way to regenerate damaged nephrons. Artificial growth platforms capable to guide the stem cells differentiation into useful cell lineages are needed to expand regenerative cell therapies for chronic kidney diseases. Chemically homogeneous growth substrates endowed with nanotopography gradients were generated via plasma assisted methods in order to investigate the effect of physical cues on the proliferation and differentiation of kidney-derived stem cells. For the first time it is shown that the surface density of the nano-structures had a greater impact on fate of the stem cells than their size. Careful design of the growth substrate nanotopography may help directing the differentiation into either podocytes or proximal tubule cells.
Collapse
|
16
|
Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2016; 148:104-115. [DOI: 10.1016/j.colsurfb.2016.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 11/22/2022]
|
17
|
Sebastian A, Volk SW, Halai P, Colthurst J, Paus R, Bayat A. Enhanced Neurogenic Biomarker Expression and Reinnervation in Human Acute Skin Wounds Treated by Electrical Stimulation. J Invest Dermatol 2016; 137:737-747. [PMID: 27856290 DOI: 10.1016/j.jid.2016.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/20/2016] [Accepted: 09/19/2016] [Indexed: 11/27/2022]
Abstract
Electrical stimulation (ES) is known to promote cutaneous healing; however, its ability to regulate reinnervation remains unclear. First, we show that ES treatment of human acute cutaneous wounds (n = 40) increased reinnervation. Next, to define neurophysiologic mechanisms through which ES affects repair, microarray analysis of wound biopsy samples was performed on days 3, 7, 10, and 14 after wounding. This identified neural differentiation biomarkers TUBB3 (melanocyte development and neuronal marker) and its upstream molecule FIG4 (phosphatidylinositol (3,5)-bisphosphate 5-phosphatase) as significantly up-regulated after ES treatment. To demonstrate a functional ES-TUBB3 axis in cutaneous healing, we showed increased TUBB3+ melanocytes and melanogenesis plus FIG4 and nerve growth factor expression, suggesting higher cellular differentiation. In support of this role of ES to regulate neural crest-derived cell fate and differentiation in vivo, knockdown of FIG4 in neuroblastoma cells resulted in vacuologenesis and cell degeneration, whereas ES treatment after FIG4-small interfering RNA transfection enhanced neural differentiation, survival, and integrity. Further characterization showed increased TUBB3+ and protein gene product 9.5+ Merkel cells during in vivo repair, after ES. We demonstrate that ES contributes to increased expression of neural differentiation biomarkers, reinnervation, and expansion of melanocyte and Merkel cell pool during repair. Targeted ES-assisted acceleration of healing has significant clinical implications.
Collapse
Affiliation(s)
- Anil Sebastian
- Plastic Surgery Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Susan W Volk
- Section of Surgery, Department of Clinical Studies-Philadelphia, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Poonam Halai
- Plastic Surgery Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | | | - Ralf Paus
- Hair Follicle Biology Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Dermatology, University of Muenster, Muenster, Germany
| | - Ardeshir Bayat
- Plastic Surgery Research Group, Dermatology Research Centre, Institute of Inflammation & Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Zennaro C, Rastaldi MP, Bakeine GJ, Delfino R, Tonon F, Farra R, Grassi G, Artero M, Tormen M, Carraro M. A nanoporous surface is essential for glomerular podocyte differentiation in three-dimensional culture. Int J Nanomedicine 2016; 11:4957-4973. [PMID: 27757030 PMCID: PMC5053378 DOI: 10.2147/ijn.s110201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although it is well recognized that cell-matrix interactions are based on both molecular and geometrical characteristics, the relationship between specific cell types and the three-dimensional morphology of the surface to which they are attached is poorly understood. This is particularly true for glomerular podocytes - the gatekeepers of glomerular filtration - which completely enwrap the glomerular basement membrane with their primary and secondary ramifications. Nanotechnologies produce biocompatible materials which offer the possibility to build substrates which differ only by topology in order to mimic the spatial organization of diverse basement membranes. With this in mind, we produced and utilized rough and porous surfaces obtained from silicon to analyze the behavior of two diverse ramified cells: glomerular podocytes and a neuronal cell line used as a control. Proper differentiation and development of ramifications of both cell types was largely influenced by topographical characteristics. Confirming previous data, the neuronal cell line acquired features of maturation on rough nanosurfaces. In contrast, podocytes developed and matured preferentially on nanoporous surfaces provided with grooves, as shown by the organization of the actin cytoskeleton stress fibers and the proper development of vinculin-positive focal adhesions. On the basis of these findings, we suggest that in vitro studies regarding podocyte attachment to the glomerular basement membrane should take into account the geometrical properties of the surface on which the tests are conducted because physiological cellular activity depends on the three-dimensional microenvironment.
Collapse
Affiliation(s)
- Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | | | - Gerald James Bakeine
- Department of Radiology, San Martino University Hospital, University of Genoa, Genoa
| | - Riccarda Delfino
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| | - Rossella Farra
- Department of Engineering and Architecture, University of Trieste
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
- Department of Life Sciences, Cattinara University Hospital, University of Trieste
| | - Mary Artero
- Azienda Sanitaria Universitaria Integrata di Trieste, Trieste
| | | | - Michele Carraro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste
| |
Collapse
|
19
|
Song L, Wang K, Li Y, Yang Y. Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids Surf B Biointerfaces 2016; 148:49-58. [PMID: 27591570 DOI: 10.1016/j.colsurfb.2016.08.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/27/2023]
Abstract
Inefficient neural differentiation of human induced pluripotent stem cells (hiPSCs) motivates recent investigation of the influence of biophysical characteristics of cellular microenvironment, in particular nanotopography, on hiPSC fate decision. However, the roles of geometry and dimensions of nanotopography in neural lineage commitment of hiPSCs have not been well understood. The objective of this study is to delineate the effects of geometry, feature size and height of nanotopography on neuronal differentiation of hiPSCs. HiPSCs were seeded on equally spaced nanogratings (500 and 1000nm in linewidth) and hexagonally arranged nanopillars (500nm in diameter), each having a height of 150 or 560nm, and induced for neuronal differentiation in concert with dual Smad inhibitors. The gratings of 560nm height reduced cell proliferation, enhanced cytoplasmic localization of Yes-associated protein, and promoted neuronal differentiation (up to 60% βIII-tubulin+ cells) compared with the flat control. Nanograting-induced cell polarity and cytoplasmic YAP localization were shown to be critical to the induced neural differentiation of hiPSCs. The derived neuronal cells express MAP2, Tau, glutamate, GABA and Islet-1, indicating the existence of multiple neuronal subtypes. This study contributes to the delineation of cell-nanotopography interactions and provides the insights into the design of nanotopography configuration for pluripotent stem cell neural lineage commitment.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, United States.
| | - Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
20
|
Schulte C, Rodighiero S, Cappelluti MA, Puricelli L, Maffioli E, Borghi F, Negri A, Sogne E, Galluzzi M, Piazzoni C, Tamplenizza M, Podestà A, Tedeschi G, Lenardi C, Milani P. Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnology 2016; 14:18. [PMID: 26955876 PMCID: PMC4784317 DOI: 10.1186/s12951-016-0171-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. Results Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. Conclusion Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carsten Schulte
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Martino Alfredo Cappelluti
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Luca Puricelli
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Elisa Maffioli
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Francesca Borghi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Armando Negri
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Elisa Sogne
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Massimiliano Galluzzi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Claudio Piazzoni
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Alessandro Podestà
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Gabriella Tedeschi
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Cristina Lenardi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Paolo Milani
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| |
Collapse
|
21
|
Stassen I, Styles M, Grenci G, Gorp HV, Vanderlinden W, Feyter SD, Falcaro P, Vos DD, Vereecken P, Ameloot R. Chemical vapour deposition of zeolitic imidazolate framework thin films. NATURE MATERIALS 2016; 15:304-10. [PMID: 26657328 DOI: 10.1038/nmat4509] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/09/2015] [Indexed: 05/26/2023]
Abstract
Integrating metal-organic frameworks (MOFs) in microelectronics has disruptive potential because of the unique properties of these microporous crystalline materials. Suitable film deposition methods are crucial to leverage MOFs in this field. Conventional solvent-based procedures, typically adapted from powder preparation routes, are incompatible with nanofabrication because of corrosion and contamination risks. We demonstrate a chemical vapour deposition process (MOF-CVD) that enables high-quality films of ZIF-8, a prototypical MOF material, with a uniform and controlled thickness, even on high-aspect-ratio features. Furthermore, we demonstrate how MOF-CVD enables previously inaccessible routes such as lift-off patterning and depositing MOF films on fragile features. The compatibility of MOF-CVD with existing infrastructure, both in research and production facilities, will greatly facilitate MOF integration in microelectronics. MOF-CVD is the first vapour-phase deposition method for any type of microporous crystalline network solid and marks a milestone in processing such materials.
Collapse
Affiliation(s)
- Ivo Stassen
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Mark Styles
- CSIRO Manufacturing Flagship, Clayton, Victoria 3168, Australia
| | - Gianluca Grenci
- MBI, National University of Singapore T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Hans Van Gorp
- Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Willem Vanderlinden
- Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Steven De Feyter
- Department of Chemistry, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Paolo Falcaro
- CSIRO Manufacturing Flagship, Clayton, Victoria 3168, Australia
| | - Dirk De Vos
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Philippe Vereecken
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Rob Ameloot
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven-University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
22
|
KASAI N, LU R, FILIP R, GOTO T, TANAKA A, SUMITOMO K. Neuronal Growth on a-Si and Au Nanopillars. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Nahoko KASAI
- NTT Basic Research Laboratories, NTT Corporation
| | - Rick LU
- NTT Basic Research Laboratories, NTT Corporation
| | - Roxana FILIP
- NTT Basic Research Laboratories, NTT Corporation
| | | | - Aya TANAKA
- NTT Basic Research Laboratories, NTT Corporation
| | | |
Collapse
|
23
|
Peláez RJ, González-Mayorga A, Gutiérrez MC, García-Rama C, Afonso CN, Serrano MC. Tailored Fringed Platforms Produced by Laser Interference for Aligned Neural Cell Growth. Macromol Biosci 2015; 16:255-65. [DOI: 10.1002/mabi.201500253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/06/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Ramón J. Peláez
- Laser Processing Group, Instituto de Óptica, Consejo Superior de Investigaciones Científicas (CSIC); Calle Serrano 121; 28006-Madrid Spain
| | - Ankor González-Mayorga
- Laboratory of Neural Repair and Biomaterials, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha; Finca La Peraleda s/n; 45071-Toledo Spain
| | - María C. Gutiérrez
- Group of Bioinspired Materials, Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas; Calle Sor Juana Inés de la Cruz 3; 28049-Madrid Spain
| | - Concepción García-Rama
- Laboratory of Neural Repair and Biomaterials, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha; Finca La Peraleda s/n; 45071-Toledo Spain
| | - Carmen N. Afonso
- Laser Processing Group, Instituto de Óptica, Consejo Superior de Investigaciones Científicas (CSIC); Calle Serrano 121; 28006-Madrid Spain
| | - María C. Serrano
- Laboratory of Neural Repair and Biomaterials, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha; Finca La Peraleda s/n; 45071-Toledo Spain
| |
Collapse
|
24
|
Li W, Tang QY, Jadhav AD, Narang A, Qian WX, Shi P, Pang SW. Large-scale topographical screen for investigation of physical neural-guidance cues. Sci Rep 2015; 5:8644. [PMID: 25728549 DOI: 10.1038/srep08644] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
A combinatorial approach was used to present primary neurons with a large library of topographical features in the form of micropatterned substrate for high-throughput screening of physical neural-guidance cues that can effectively promote different aspects of neuronal development, including axon and dendritic outgrowth. Notably, the neuronal-guidance capability of specific features was automatically identified using a customized image processing software, thus significantly increasing the screening throughput with minimal subjective bias. Our results indicate that the anisotropic topographies promote axonal and in some cases dendritic extension relative to the isotropic topographies, while dendritic branching showed preference to plain substrates over the microscale features. The results from this work can be readily applied towards engineering novel biomaterials with precise surface topography that can serve as guidance conduits for neuro-regenerative applications. This novel topographical screening strategy combined with the automated processing capability can also be used for high-throughput screening of chemical or genetic regulatory factors in primary neurons.
Collapse
Affiliation(s)
- Wei Li
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Qing Yuan Tang
- 1] Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Amol D Jadhav
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ankit Narang
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Wei Xian Qian
- 1] Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China [3] School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Peng Shi
- 1] Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China [3] Shenzhen Research Institute, City University of Hong Kong Shenzhen, Guangdong, China
| | - Stella W Pang
- 1] Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China [2] Center for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
25
|
Tan KK, Tann JY, Sathe SR, Goh SH, Ma D, Goh EL, Yim EK. Enhanced differentiation of neural progenitor cells into neurons of the mesencephalic dopaminergic subtype on topographical patterns. Biomaterials 2015; 43:32-43. [DOI: 10.1016/j.biomaterials.2014.11.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 01/07/2023]
|
26
|
Marinaro G, La Rocca R, Toma A, Barberio M, Cancedda L, Di Fabrizio E, Decuzzi P, Gentile F. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology. Integr Biol (Camb) 2015; 7:184-97. [DOI: 10.1039/c4ib00216d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N2A cells on porous substrates create highly clustered, small world topology patterns.
Collapse
Affiliation(s)
- Giovanni Marinaro
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- European Synchrotron Radiation Facility
- 38043 Grenoble Cedex 9
| | | | - Andrea Toma
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | | | | | - Enzo Di Fabrizio
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
- Department of Experimental and Clinical Medicine
- University of Magna Graecia
| | - Paolo Decuzzi
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- Department of Experimental and Clinical Medicine
- University of Magna Graecia
| | - Francesco Gentile
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- Department of Experimental and Clinical Medicine
- University of Magna Graecia
| |
Collapse
|
27
|
Xie X, Zhao W, Lee HR, Liu C, Ye M, Xie W, Cui B, Criddle CS, Cui Y. Enhancing the nanomaterial bio-interface by addition of mesoscale secondary features: crinkling of carbon nanotube films to create subcellular ridges. ACS NANO 2014; 8:11958-11965. [PMID: 25415858 DOI: 10.1021/nn504898p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biological cells often interact with their local environment through subcellular structures at a scale of tens to hundreds of nanometers. This study investigated whether topographic features fabricated at a similar scale would impact cellular functions by promoting the interaction between subcellular structures and nanomaterials. Crinkling of carbon nanotube films by solvent-induced swelling and shrinkage of substrate resulted in the formation of ridge features at the subcellular scale on both flat and three-dimensional substrates. Biological cells grown upon these crinkled CNT films had enhanced activity: neuronal cells grew to higher density and displayed greater cell polarization; exoelectrogenic micro-organisms transferred electrons more efficiently. The results indicate that crinkling of thin CNT films creates secondary mesoscale features that enhance attachment, growth, and electron transfer.
Collapse
Affiliation(s)
- Xing Xie
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Prabhakaran MP, Vatankhah E, Kai D, Ramakrishna S. Methods for Nano/Micropatterning of Substrates: Toward Stem Cells Differentiation. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.945207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921905. [PMID: 25143954 PMCID: PMC4124711 DOI: 10.1155/2014/921905] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Collapse
Affiliation(s)
- Julien Barthes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Hayriye Özçelik
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy Pontoise, France
| | | | - Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nihal Engin Vrana
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
- Protip SAS, 8 Place de l'Hôpital, 67000, Strasbourg, France
| |
Collapse
|
30
|
Dionigi C, Posati T, Benfenati V, Sagnella A, Pistone A, Bonetti S, Ruani G, Dinelli F, Padeletti G, Zamboni R, Muccini M. A nanostructured conductive bio-composite of silk fibroin-single walled carbon nanotubes. J Mater Chem B 2014; 2:1424-1431. [PMID: 32261458 DOI: 10.1039/c3tb21172j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silk fibroin (SF), a protein core fibre from the silkworm Bombyx mori, has huge potential to become a sustainable, biocompatible, and biodegradable material platform that can pave the way towards the replacement of plastic in the fabrication of bio-derived materials for a variety of technological and biomedical applications. SF has remarkable mechanical flexibility, controllable biodegradability, biocompatibility and is capable of drug/doping inclusion, stabilization and release. However, the dielectric properties of SF limit its potential as a direct bioelectronic interface in biomedical devices intended to control the bioelectrical activity of the cell for regenerative purposes. In this work, a novel wet templating method is proposed to generate nanostructured, conductive Silk Fibroin (SF) composite films. We combine the unusual properties of SF, such as its mechanical properties, its convenience and biocompatibility with the electrical conductivity and stiffness of Single Walled Carbon Nanotubes (SWCNTs). The presented SF-SWCNT composite displays a periodic architecture where SWCNTs are regularly and homogeneously distributed in the SF protein matrix. The morphological and chemo-physical properties of the nanocomposite are analysed and defined by SEM, Raman Spectroscopy, ATR-IR, UFM and contact angle analyses. Notably, the SF-SWCNT composite film is conductive, showing additional functionality compared to the dielectric properties of the bare SF film. Finally, SF-SWCNT is biocompatible and enables the growth of primary rat Dorsal Root Ganglion (DRG) neurons. Collectively our results demonstrate that the nanostructured, conductive, robust and biocompatible SF-SWCNT composite can be fabricated using a wet templating method, paving the way towards the fabrication and development of silk-based electronic devices for use in bioelectronic and biomedical applications.
Collapse
Affiliation(s)
- Chiara Dionigi
- Consiglio Nazionale delle Ricerche-Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rashidi H, Yang J, Shakesheff KM. Surface engineering of synthetic polymer materials for tissue engineering and regenerative medicine applications. Biomater Sci 2014; 2:1318-1331. [DOI: 10.1039/c3bm60330j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
When using polymer materials as scaffolds for tissue engineering or regenerative medicine applications the initial, and often lasting, interaction between cells and the material areviasurfaces.
Collapse
Affiliation(s)
- Hassan Rashidi
- Wolfson Centre for Stem Cells
- Tissue Engineering and Modelling
- Division of Drug Delivery and Tissue Engineering
- School of Pharmacy
- University of Nottingham
| | - Jing Yang
- Wolfson Centre for Stem Cells
- Tissue Engineering and Modelling
- Division of Drug Delivery and Tissue Engineering
- School of Pharmacy
- University of Nottingham
| | - Kevin M. Shakesheff
- Wolfson Centre for Stem Cells
- Tissue Engineering and Modelling
- Division of Drug Delivery and Tissue Engineering
- School of Pharmacy
- University of Nottingham
| |
Collapse
|
32
|
Kim SY, Yang EG. Collective behaviors of mammalian cells on amine-coated silicon nanowires. NANOTECHNOLOGY 2013; 24:455704. [PMID: 24140651 DOI: 10.1088/0957-4484/24/45/455704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Intensive studies with vertical nanowire (NW) arrays have illustrated broad implications for manipulating mammalian cells in vitro, but how cellular responses are influenced by the presence of NWs has not been thoroughly investigated. Here, we address collective cellular behaviors, including surface area of cells, membrane trafficking, focal adhesion distribution and dynamics, and cytoskeletal protein distribution on amine-coated silicon (Si) NWs with different physical properties. The degree of HeLa cell spreading was inversely proportional to the surface area occupied by the NWs, which was not affected by manipulation of membrane trafficking dynamics. In the presence of a diffusive focal complex around the NWs, strong, well organized focal adhesion was hardly visible on the NWs, implying that the cells were interacting weakly with the NW-embedded surface. Furthermore, we found that actin filament formation of the cells on long NWs was not favorable, and this could explain our observation of reduced cell spreading, as well as the decreased number of focal adhesion complexes. Taken together, our results suggest that cells can survive on silicon NWs by adjusting their morphology and adhesion behavior through actively organizing these molecules.
Collapse
Affiliation(s)
- So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Korea
| | | |
Collapse
|
33
|
Lien TL, Ban J, Tormen M, Migliorini E, Grenci G, Pozzato A, Torre V. Can hippocampal neurites and growth cones climb over obstacles? PLoS One 2013; 8:e73966. [PMID: 24040128 PMCID: PMC3765352 DOI: 10.1371/journal.pone.0073966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 µm wide, with 4 µm period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles.
Collapse
Affiliation(s)
- Thuy Linh Lien
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Jelena Ban
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Massimo Tormen
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | - Elisa Migliorini
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | - Gianluca Grenci
- Istituto Officina dei Materiali (IOM-CNR), Basovizza, Trieste, Italy
| | | | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), Trieste, Italy
- * E-mail:
| |
Collapse
|
34
|
Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials 2013; 34:7616-25. [PMID: 23863454 DOI: 10.1016/j.biomaterials.2013.06.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
Abstract
The physiological microenvironment of the stem cell niche, including the three factors of stiffness, topography, and dimension, is crucial to stem cell proliferation and differentiation. Although a growing body of evidence is present to elucidate the importance of these factors individually, the interaction of the biophysical parameters of the factors remains insufficiently characterized, particularly for stem cells. To address this issue fully, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities, two topographies, and three dimensions to systematically test proliferation, morphology and spreading, differentiation, and cytoskeletal re-organization of rat bone marrow mesenchymal stem cells (rBMSCs) on twelve cases. An isolated but not combinatory impact of the factors was found regarding the specific functions. Substrate stiffness or dimension is predominant in regulating cell proliferation by fostering cell growth on stiff, unevenly dimensioned substrate. Topography is a key factor for manipulating cell morphology and spreading via the formation of a large spherical shape in a pillar substrate but not in a grooved substrate. Although stiffness leads to osteogenic or neuronal differentiation of rBMSCs on a stiff or soft substrate, respectively, topography or dimension also plays a lesser role in directing cell differentiation. Neither an isolated effect nor a combinatory effect was found for actin or tubulin expression, whereas a seemingly combinatory effect of topography and dimension was found in manipulating vimentin expression. These results further the understandings of stem cell proliferation, morphology, and differentiation in a physiologically mimicking microenvironment.
Collapse
|
35
|
Ankam S, Teo BKK, Kukumberg M, Yim EKF. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis 2013; 9:128-42. [PMID: 23899508 PMCID: PMC3896583 DOI: 10.4161/org.25425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/19/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells in vivo are housed within a functional microenvironment termed the "stem cell niche." As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including enabling technologies such as the well-established multiwell/microwell plates and robotic spotting, and emerging technologies like microfluidics, micro-contact printing and lithography. We also discuss the studies that utilized high throughput screening platform to investigate stem cell response to extracellular matrix, topography, biomaterials and stiffness gradients in the stem cell niche. The combination of the aforementioned techniques could lay the foundation for new perspectives in further development of high throughput technology and stem cell research.
Collapse
Affiliation(s)
- Soneela Ankam
- Department of Bioengineering; National University of Singapore; Singapore
- Duke-NUS Graduate Medical School; Singapore
| | - Benjamin KK Teo
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Marek Kukumberg
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
| | - Evelyn KF Yim
- Department of Bioengineering; National University of Singapore; Singapore
- Mechanobiology Institute Singapore; National University of Singapore; Singapore
- Department of Surgery; National University of Singapore; Singapore
| |
Collapse
|
36
|
Substrate topography determines neuronal polarization and growth in vitro. PLoS One 2013; 8:e66170. [PMID: 23785482 PMCID: PMC3681759 DOI: 10.1371/journal.pone.0066170] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/03/2013] [Indexed: 11/19/2022] Open
Abstract
The establishment of neuronal connectivity depends on the correct initial polarization of the young neurons. In vivo, developing neurons sense a multitude of inputs and a great number of molecules are described that affect their outgrowth. In vitro, many studies have shown the possibility to influence neuronal morphology and growth by biophysical, i.e. topographic, signaling. In this work we have taken this approach one step further and investigated the impact of substrate topography in the very early differentiation stages of developing neurons, i.e. when the cell is still at the round stage and when the first neurite is forming. For this purpose we fabricated micron sized pillar structures with highly reproducible feature sizes, and analyzed neurons on the interface of flat and topographic surfaces. We found that topographic signaling was able to attract the polarization markers of mouse embryonic neurons -N-cadherin, Golgi-centrosome complex and the first bud were oriented towards topographic stimuli. Consecutively, the axon was also preferentially extending along the pillars. These events seemed to occur regardless of pillar dimensions in the range we examined. However, we found differences in neurite length that depended on pillar dimensions. This study is one of the first to describe in detail the very early response of hippocampal neurons to topographic stimuli.
Collapse
|
37
|
Odawara A, Gotoh M, Suzuki I. Control of neural network patterning using collagen gel photothermal etching. LAB ON A CHIP 2013; 13:2040-2046. [PMID: 23615759 DOI: 10.1039/c3lc00036b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two-dimensional (2D) micropatterning techniques have been developed to guide dissociated neurons into predefined distributions on solid substrates, such as glass and plastic. Micropatterning methods using three-dimensional (3D) substrates or scaffolds that reproduce aspects of the in vivo microenvironment could facilitate the engineering of functional tissues for transplantation or more robust experimental models. We developed a 3D collagen gel photothermal etching method using an infrared laser that precisely controls the area of cell adhesion and neurite projection by etching a small targeted section of the collage gel. It was then possible to guide neural network formation under microscopic observation. After conventional cell seeding, we succeeded in creating isolated 3D networks, while controlling (1) the number of each neural subtype (neurons, glia, and fluorescently-labeled neurons) and (2) the direction of neurite elongation. Neurons seeded on a 10-μm-thick collagen gel survived longer and projected greater numbers of neurites than neurons growing on 2D culture substrates. Intracellular Ca(2+) imaging revealed both synchronous and discordant oscillations in different neuronal populations that suggested the pattern and strength of synaptic connectivity. This photothermal etching technique allows for the creation of designed 3D neural networks during cultivation for use in studies of synaptic transmission, neuron-glial signaling, pathogenesis, and drug responses.
Collapse
Affiliation(s)
- Aoi Odawara
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 katakura, Hachioji, Tokyo 192-0982, Japan
| | | | | |
Collapse
|
38
|
Abstract
Biological cells are well known to respond to a multitude of chemical signals. In the nervous system, chemical signaling has been shown to be crucially involved in development, normal functioning, and disorders of neurons and glial cells. However, there are an increasing number of studies showing that these cells also respond to mechanical cues. Here, we summarize current knowledge about the mechanical properties of nervous tissue and its building blocks, review recent progress in methodology and understanding of cellular mechanosensitivity in the nervous system, and provide an outlook on the implications of neuromechanics for future developments in biomedical engineering to aid overcoming some of the most devastating and currently incurable CNS pathologies such as spinal cord injuries and multiple sclerosis.
Collapse
Affiliation(s)
- Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| | | | | |
Collapse
|
39
|
Suffredini G, East JE, Levy LM. New applications of nanotechnology for neuroimaging. AJNR Am J Neuroradiol 2013; 35:1246-53. [PMID: 23538408 DOI: 10.3174/ajnr.a3543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SUMMARY Advances in nanotechnology have the potential to dramatically enhance the detection of neurologic diseases with targeted contrast agents and to facilitate the delivery of focused therapies to the central nervous system. We present the physicochemical rationale for their use, applications in animal models, and ongoing clinical trials using these approaches. We highlight advances in the use of nanoparticles applied to brain tumor imaging, tumor angiogenesis, neurodegeneration, grafted stem cells, and neuroprogenitor cells.
Collapse
Affiliation(s)
- G Suffredini
- From the George Washington University School of Medicine and Health Sciences (G.S.), Washington, DC
| | - J E East
- Howard University School of Medicine (J.E.E.), Washington, DC
| | - L M Levy
- Department of Radiology (L.M.L.), George Washington University Medical Center, Washington, DC.
| |
Collapse
|
40
|
Migliorini E, Ban J, Grenci G, Andolfi L, Pozzato A, Tormen M, Torre V, Lazzarino M. Nanomechanics controls neuronal precursors adhesion and differentiation. Biotechnol Bioeng 2013; 110:2301-10. [PMID: 23436578 DOI: 10.1002/bit.24880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022]
Abstract
The ability to control the differentiation of stem cells into specific neuronal types has a tremendous potential for the treatment of neurodegenerative diseases. In vitro neuronal differentiation can be guided by the interplay of biochemical and biophysical cues. Different strategies to increase the differentiation yield have been proposed, focusing everything on substrate topography, or, alternatively on substrate stiffness. Both strategies demonstrated an improvement of the cellular response. However it was often impossible to separate the topographical and the mechanical contributions. Here we investigate the role of the mechanical properties of nanostructured substrates, aiming at understanding the ultimate parameters which govern the stem cell differentiation. To this purpose a set of different substrates with controlled stiffness and with or without nanopatterning are used for stem cell differentiation. Our results show that the neuronal differentiation yield depends mainly on the substrate mechanical properties while the geometry plays a minor role. In particular nanostructured and flat polydimethylsiloxane (PDMS) substrates with comparable stiffness show the same neuronal yield. The improvement in the differentiation yield obtained through surface nanopatterning in the submicrometer scale could be explained as a consequence of a substrate softening effect. Finally we investigate by single cell force spectroscopy the neuronal precursor adhesion on the substrate immediately after seeding, as a possible critical step governing the neuronal differentiation efficiency. We observed that neuronal precursor adhesion depends on substrate stiffness but not on surface structure, and in particular it is higher on softer substrates. Our results suggest that cell-substrate adhesion forces and mechanical response are the key parameters to be considered for substrate design in neuronal regenerative medicine.
Collapse
|
41
|
Ankam S, Suryana M, Chan LY, Moe AAK, Teo BKK, Law JBK, Sheetz MP, Low HY, Yim EKF. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater 2013; 9:4535-45. [PMID: 22906625 DOI: 10.1016/j.actbio.2012.08.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/05/2012] [Accepted: 08/13/2012] [Indexed: 01/27/2023]
Abstract
Efficient derivation of neural cells from human embryonic stem cells (hESCs) remains an unmet need for the treatment of neurological disorders. The limiting factors for current methods include being labor-intensive, time-consuming and expensive. In this study, we hypothesize that the substrate topography, with optimal geometry and dimension, can modulate the neural fate of hESCs and enhance the efficiency of differentiation. A multi-architectural chip (MARC) containing fields of topographies varying in geometry and dimension was developed to facilitate high-throughput analysis of topography-induced neural differentiation in vitro. The hESCs were subjected to "direct differentiation", in which small clumps of undifferentiated hESCs were cultured directly without going through the stage of embryoid body formation, on the MARC with N2 and B27 supplements for 7 days. The gene and protein expression analysis indicated that the anisotropic patterns like gratings promoted neuronal differentiation of hESCs while the isotropic patterns like pillars and wells promoted the glial differentiation of hESCs. This study showed that optimal combination of topography and biochemical cues could shorten the differentiation period and allowed derivation of neurons bearing longer neurites that were aligned along the grating axis. The MARC platform would enable high-throughput screening of topographical substrates that could maximize the efficiency of neuronal differentiation from pluripotent stem cells.
Collapse
Affiliation(s)
- Soneela Ankam
- Department of Bioengineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Purcell EK, Naim Y, Yang A, Leach MK, Velkey JM, Duncan RK, Corey JM. Combining topographical and genetic cues to promote neuronal fate specification in stem cells. Biomacromolecules 2012; 13:3427-38. [PMID: 23098293 PMCID: PMC3992984 DOI: 10.1021/bm301220k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is little remedy for the devastating effects resulting from neuronal loss caused by neural injury or neurodegenerative disease. Reconstruction of damaged neural circuitry with stem cell-derived neurons is a promising approach to repair these defects, but controlling differentiation and guiding synaptic integration with existing neurons remain significant unmet challenges. Biomaterial surfaces can present nanoscale topographical cues that influence neuronal differentiation and process outgrowth. By combining these scaffolds with additional molecular biology strategies, synergistic control over cell fate can be achieved. Here, we review recent progress in promoting neuronal fate using techniques at the interface of biomaterial science and genetic engineering. New data demonstrates that combining nanofiber topography with an induced genetic program enhances neuritogenesis in a synergistic fashion. We propose combining patterned biomaterial surface cues with prescribed genetic programs to achieve neuronal cell fates with the desired sublineage specification, neurochemical profile, targeted integration, and electrophysiological properties.
Collapse
Affiliation(s)
- Erin K Purcell
- University of Michigan, 1150 W. Medical Center Drive, 5323A Med Sci I, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Moe AAK, Suryana M, Marcy G, Lim SK, Ankam S, Goh JZW, Jin J, Teo BKK, Law JBK, Low HY, Goh ELK, Sheetz MP, Yim EKF. Microarray with micro- and nano-topographies enables identification of the optimal topography for directing the differentiation of primary murine neural progenitor cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3050-61. [PMID: 22807278 DOI: 10.1002/smll.201200490] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 05/25/2023]
Abstract
During development and tissue repair, progenitor cells are guided by both biochemical and biophysical cues of their microenvironment, including topographical signals. The topographical cues have been shown to play an important role in controlling the fate of cells. Systematic investigation of topographical structures with different geometries and sizes under the identical experimental conditions on the same chip will enhance the understanding of the role of shape and size in cell-topography interactions. A simple customizable multi-architecture chip (MARC) array is therefore developed to incorporate, on a single chip, distinct topographies of various architectural complexities, including both isotropic and anisotropic features, in nano- to micrometer dimensions, with different aspect ratios and hierarchical structures. Polydimethylsiloxane (PDMS) replicas of MARC are used to investigate the influence of different geometries and sizes in neural differentiation of primary murine neural progenitor cells (mNPCs). Anisotropic gratings (2 μm gratings, 250 nm gratings) and isotropic 1 μm pillars significantly promote differentiation of mNPCs into neurons, as indicated by expression of β-III-tubulin (59%, 58%, and 58%, respectively, compared to 30% on the control). In contrast, glial differentiation is enhanced on isotropic 2 μm holes and 1 μm pillars. These results illustrate that anisotropic topographies enhance neuronal differentiation while isotropic topographies enhance glial differentiation on the same chip under the same conditions. MARC enables simultaneous cost-effective investigation of multiple topographies, allowing efficient optimization of topographical and biochemical cues to modulate cell differentiation.
Collapse
Affiliation(s)
- Aung Aung Kywe Moe
- Department of Bioengineering, National University of Singapore, EA-03-12, 9 Engineering Drive 1, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim DH, Provenzano PP, Smith CL, Levchenko A. Matrix nanotopography as a regulator of cell function. ACTA ACUST UNITED AC 2012; 197:351-60. [PMID: 22547406 PMCID: PMC3341161 DOI: 10.1083/jcb.201108062] [Citation(s) in RCA: 427] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.
Collapse
Affiliation(s)
- Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|