1
|
Millán-Martín S, Jakes C, Carillo S, Bones J. Multi-attribute method (MAM) to assess analytical comparability of adalimumab biosimilars. J Pharm Biomed Anal 2023; 234:115543. [PMID: 37385093 DOI: 10.1016/j.jpba.2023.115543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Adalimumab drug product (Humira ®), the first fully human monoclonal antibody (mAb) approved by FDA in 2002, led the top ten list of best-selling mAbs in 2018 and has been the most profitable drug in the world. With the expiration of patent protection in Europe in 2018 and in United States by 2023, the landscape is changing as up to 10 adalimumab biosimilars are expected to enter the market in the US. Biosimilars offer the potential to lower costs on health care systems and increase patient accessibility. The analytical similarity of seven different adalimumab biosimilars was accomplished in the present study using the multi-attribute method (MAM), a LC-MS based peptide mapping technique that allows for primary sequence assessment and evaluation of multiple quality attributes including deamidation, oxidation, succinimide formation, N- and C- terminal composition and detailed N-glycosylation analysis. In the first step, characterization of the most relevant post-translational modifications of a reference product was attained during the discovery phase of MAM. During the second step, as part of the MAM targeted monitoring phase, adalimumab batch-to batch variability was evaluated to define statistical intervals for the establishment of similarity ranges. The third step describes biosimilarity evaluation of predefined quality attributes and new peak detection for the assessment of any new or modified peak compared to the reference product. This study highlights a new perspective of the MAM approach and its underlying power for biotherapeutic comparability exercises in addition to analytical characterization. MAM offers a streamlined comparability assessment workflow based on high-confidence quality attribute analysis using high-resolution accurate mass mass spectrometry (HRAM MS) and the capability to detect any new or modified peak compared to the reference product.
Collapse
Affiliation(s)
- Silvia Millán-Martín
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Craig Jakes
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Sara Carillo
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland
| | - Jonathan Bones
- National Institute for Bioprocessing Research & Training, Fosters Avenue, Mount Merrion, Blackrock, A94 X099 Dublin, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland.
| |
Collapse
|
2
|
Niu B, Lu Y, Chen X, Xu W. Using New Peak Detection to Solve Sequence Variants Analysis Challenges in Bioprocess Development. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:401-408. [PMID: 36705517 DOI: 10.1021/jasms.2c00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recombinant therapeutic proteins have become the major class of drugs to treat various human diseases in recent years. Low levels of protein sequence variants (SVs) have been reported to be present in recombinant therapeutic proteins. The consequences of potential unwanted immune response from SVs of recombinant therapeutic proteins have increasingly drawn attention from regulatory authorities and the biopharmaceutical industry. It is highly desirable to detect low-level SVs during clone selection and early process development as part of the control strategy. Peptide mapping with LC-MS/MS analysis has been applied as a powerful tool to characterize post-translation modifications of therapeutic proteins. Despite the recent advancements in mass spectrometry hardware and software, it is still quite challenging and time-consuming to detect and identify low-level SVs. In this study, we present an optimized approach using new peak detection to detect and identify low level SVs with high confidence and high speed. The new approach makes sequence variants analysis by LC-MS/MS broadly applicable and practical in bioprocess development of therapeutic proteins.
Collapse
Affiliation(s)
- Ben Niu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| | - Yali Lu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| | - Xiaoyu Chen
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| | - Wei Xu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| |
Collapse
|
3
|
Zhang A, Chen Z, Li M, Qiu H, Lawrence S, Bak H, Li N. A general evidence-based sequence variant control limit for recombinant therapeutic protein development. MAbs 2021; 12:1791399. [PMID: 32744138 PMCID: PMC7531532 DOI: 10.1080/19420862.2020.1791399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequence variants (SVs) resulting from unintended amino acid substitutions in recombinant therapeutic proteins have increasingly gained attention from both regulatory agencies and the biopharmaceutical industry given their potential impact on efficacy and safety. With well-optimized production systems, such sequence variants usually exist at very low levels in the final protein products due to the high fidelity of DNA replication and protein biosynthesis process in mammalian expression systems such as Chinese hamster ovary cell lines. However, their levels can be significantly elevated in cases where the selected production cell line has unexpected DNA mutations or the manufacturing process is not fully optimized, for example, if depletion of certain amino acids occurs in the cell culture media in bioreactors. Therefore, it is important to design and implement an effective monitoring and control strategy to prevent or minimize the possible risks of SVs during the early stage of product and process development. However, there is no well-established guidance from the regulatory agencies or consensus across the industry to assess and manage SV risks. A question frequently asked is: What levels of SVs can be considered acceptable during product and process development, but also have no negative effects on drug safety and efficacy in patients? To address this critical question, we have taken a holistic approach and conducted a comprehensive sequence variant analysis. To guide biologic development, a general SV control limit of 0.1% at individual amino acid sites was proposed and properly justified based on extensive literature review, SV benchmark survey of approved therapeutic proteins, and accumulated experience on SV control practice at Regeneron.
Collapse
Affiliation(s)
- Aming Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Zhengwei Chen
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Meinuo Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Shawn Lawrence
- Preclinical Manufacturing and Process Development , Tarrytown, New York, USA
| | - Hanne Bak
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| |
Collapse
|
4
|
Identification, characterization and control of a sequence variant in monoclonal antibody drug product: a case study. Sci Rep 2021; 11:13233. [PMID: 34168178 PMCID: PMC8225904 DOI: 10.1038/s41598-021-92338-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sequence variants (SV) in protein bio therapeutics can be categorized as unwanted impurities and may raise serious concerns in efficacy and safety of the product. Early detection of specific sequence modifications, that can result in altered physicochemical and or biological properties, is therefore desirable in product manufacturing. Because of their low abundance, and finite resolving power of conventional analytical techniques, they are often overlooked in early drug development. Here, we present a case study where trace amount of a sequence variant is identified in a monoclonal antibody (mAb) based therapeutic protein by LC-MS/MS and the structural and functional features of the SV containing mAb is assessed using appropriate analytical techniques. Further, a very sensitive selected reaction monitoring (SRM) technique is developed to quantify the SV which revealed both prominent and inconspicuous nature of the variant in process chromatography. We present the extensive characterization of a sequence variant in protein biopharmaceutical and first report on control of sequence variants to < 0.05% in final drug product by utilizing SRM based mass spectrometry method during the purification steps.
Collapse
|
5
|
Ravi A, Foster ER, Perez LM, Nikolov ZL. Capture chromatography with mixed-mode resins: A case study with recombinant human thioredoxin from Escherichia coli. J Chromatogr A 2020; 1625:461327. [PMID: 32709356 DOI: 10.1016/j.chroma.2020.461327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Ayswarya Ravi
- Department of Biological and Agricultural Engineering, Texas A&M University, USA.
| | - Emma R Foster
- Department of Biological and Agricultural Engineering, Texas A&M University, USA.
| | - Lisa M Perez
- High Performance Research Computing, Texas A&M University, USA.
| | - Zivko L Nikolov
- Department of Biological and Agricultural Engineering, and National Center for Therapeutics Manufacturing, Texas A&M University, USA.
| |
Collapse
|
6
|
Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins. Int J Mol Sci 2020; 21:ijms21030990. [PMID: 32024292 PMCID: PMC7037952 DOI: 10.3390/ijms21030990] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.
Collapse
|
7
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
8
|
Griaud F, Winter A, Denefeld B, Lang M, Hensinger H, Straube F, Sackewitz M, Berg M. Identification of multiple serine to asparagine sequence variation sites in an intended copy product of LUCENTIS® by mass spectrometry. MAbs 2017; 9:1337-1348. [PMID: 28846476 PMCID: PMC5680803 DOI: 10.1080/19420862.2017.1366395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patent expiration of first-generation biologics and the high cost of innovative biologics are 2 drivers for the development of biosimilar products. There are, however, technical challenges to the production of exact copies of such large molecules. In this study, we performed a head-to-head comparison between the originator anti-VEGF-A Fab product LUCENTIS® (ranibizumab) and an intended copy product using an integrated analytical approach. While no differences could be observed using size-exclusion chromatography, capillary electrophoresis-sodium dodecyl sulfate and potency assays, different acidic peaks were identified with cation ion exchange chromatography and capillary zone electrophoresis. Further investigation of the intact Fab, subunits and primary sequence with mass spectrometry demonstrated the presence of a modified light chain variant in the intended copy product batches. This variant was characterized with a mass increase of 27.01 Da compared to the originator sequence and its abundance was estimated in the range of 6–9% of the intended copy product light chain. MS/MS spectra interrogation confirmed that this modification relates to a serine to asparagine sequence variant found in the intended copy product light chain. We demonstrated that the integration of high-resolution and sensitive orthogonal technologies was beneficial to assess the similarity of an originator and an intended copy product.
Collapse
Affiliation(s)
- François Griaud
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Andrej Winter
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Blandine Denefeld
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Manuel Lang
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Héloïse Hensinger
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Frank Straube
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Mirko Sackewitz
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| | - Matthias Berg
- a Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing, Novartis Pharma AG , Basel , Basel-Stadt, Switzerland
| |
Collapse
|
9
|
Veeravalli K, Laird MW. Toward an era of utilizing methionine overproducing hosts for recombinant protein production in Escherichia coli. Bioengineered 2015; 6:132-5. [PMID: 25801611 DOI: 10.1080/21655979.2015.1030544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amino acid sequence variants, especially variants containing non-canonical amino acids such as norleucine and norvaline, are a concern during therapeutic protein production in microbial systems. Substitution of methionine residues with norleucine in recombinant proteins produced in Escherichia coli is well known. Continuous feeding of amino acids such as methionine is commonly used in E. coli fermentation processes to control incorporation of norleucine in the recombinant protein. There are several disadvantages associated with continuous feeding during a fermentation process. For example, a continuous feed increases the operational complexity and cost of a manufacturing process and results in dilution of culture medium which could result in lower cell densities and product yields. To overcome the limitations of existing approaches to prevent norleucine incorporation during E. coli fermentations, a new approach using an engineered host was developed that overproduces methionine in the cell to prevent norleucine incorporation without negatively impacting fermentation process performance and product yields. In this commentary, the results on using methionine overproducing hosts for recombinant protein production in E. coli and some "watch outs" when using these hosts for recombinant protein production are discussed.
Collapse
Affiliation(s)
- Karthik Veeravalli
- a Late Stage Cell Culture , Genentech , Inc.; South San Francisco, CA USA
| | | |
Collapse
|
10
|
Ragionieri L, Vitorino R, Frommlet J, Oliveira JL, Gaspar P, Ribas de Pouplana L, Santos MAS, Moura GR. Improving the accuracy of recombinant protein production through integration of bioinformatics, statistical and mass spectrometry methodologies. FEBS J 2015; 282:769-87. [DOI: 10.1111/febs.13181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/09/2014] [Accepted: 12/16/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Lapo Ragionieri
- RNA and Genome Biology Laboratories; Department of Biology/Health Sciences; Centro de Estudos do Ambiente e do Mar iBiMED; University of Aveiro; Portugal
| | - Rui Vitorino
- Department of Chemistry; University of Aveiro; Portugal
| | - Joerg Frommlet
- Department of Biology and Centro de Estudos do Ambiente e do Mar; University of Aveiro; Portugal
| | - José L. Oliveira
- Department of Electronics; Telecommunications and Informatics and Instituto de Engenharia Electrónica e Telemática de Aveiro; University of Aveiro; Portugal
| | - Paulo Gaspar
- Department of Electronics; Telecommunications and Informatics and Instituto de Engenharia Electrónica e Telemática de Aveiro; University of Aveiro; Portugal
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine; Barcelona Spain
- Catalan Institution for Research and Advanced Studies; Barcelona Spain
| | - Manuel A. Silva Santos
- RNA and Genome Biology Laboratories; Department of Biology/Health Sciences; Centro de Estudos do Ambiente e do Mar iBiMED; University of Aveiro; Portugal
| | - Gabriela Ribeiro Moura
- RNA and Genome Biology Laboratories; Department of Biology/Health Sciences; Centro de Estudos do Ambiente e do Mar iBiMED; University of Aveiro; Portugal
| |
Collapse
|
11
|
Borisov OV, Alvarez M, Carroll JA, Brown PW. Sequence Variants and Sequence Variant Analysis in Biotherapeutic Proteins. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Oleg V. Borisov
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Melissa Alvarez
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - James A. Carroll
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Paul W. Brown
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| |
Collapse
|
12
|
Harris RP, Kilby PM. Amino acid misincorporation in recombinant biopharmaceutical products. Curr Opin Biotechnol 2014; 30:45-50. [PMID: 24922333 DOI: 10.1016/j.copbio.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Microbial and mammalian host systems have been used extensively for the production of protein biotherapeutics. Generally these systems rely on the production of a specific gene sequence encoding one therapeutic product. Analysis of these protein products over many years has proven that this was not always the case, with multiple species of the intended product being produced due to amino acid misincorporation or mistranslation during biosynthesis of the protein. This review is the first to give a comprehensive overview of the occurrence and analysis of these misincorporations. Furthermore, using the latest data on misincorporation in native human proteins we explore potential considerations for producing a specification for misincorporation for the development of a human biotherapeutic protein product in a production environment.
Collapse
Affiliation(s)
- Robert P Harris
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks RG42 6EY, UK.
| | - Peter M Kilby
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks RG42 6EY, UK
| |
Collapse
|
13
|
Feeney L, Carvalhal V, Yu XC, Chan B, Michels DA, Wang YJ, Shen A, Ressl J, Dusel B, Laird MW. Eliminating tyrosine sequence variants in CHO cell lines producing recombinant monoclonal antibodies. Biotechnol Bioeng 2013; 110:1087-97. [PMID: 23108857 DOI: 10.1002/bit.24759] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/08/2012] [Indexed: 12/21/2022]
Abstract
Amino acid sequence variants are defined as unintended amino acid sequence changes that contribute to product variation with potential impact to product safety, immunogenicity, and efficacy. Therefore, it is important to understand the propensity for sequence variant (SV) formation during the production of recombinant proteins for therapeutic use. During the development of clinical therapeutic products, several monoclonal antibodies (mAbs) produced from Chinese Hamster Ovary (CHO) cells exhibited SVs at low levels (≤3%) in multiple locations throughout the mAbs. In these examples, the cell culture process depleted tyrosine, and the tyrosine residues in the recombinant mAbs were replaced with phenylalanine or histidine. In this work, it is demonstrated that tyrosine supplementation eliminated the tyrosine SVs, while early tyrosine starvation significantly increased the SV level in all mAbs tested. Additionally, it was determined that phenylalanine is the amino acid preferentially misincorporated in the absence of tyrosine over histidine, with no other amino acid misincorporated in the absence of tyrosine, phenylalanine, and histidine. The data support that the tyrosine SVs are due to mistranslation and not DNA mutation, most likely due to tRNA(Tyr) mischarging due to the structural similarities between tyrosine and phenylalanine.
Collapse
Affiliation(s)
- Lauren Feeney
- Department of Late Stage Cell Culture, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|