1
|
Zhang J, Yang H, Sun Y, Yan B, Chen W, Fan D. The potential use of microalgae for nutrient supply and health enhancement in isolated and confined environments. Compr Rev Food Sci Food Saf 2024; 23:e13418. [PMID: 39073089 DOI: 10.1111/1541-4337.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Exploring isolated and confined environments (IACEs), such as deep-sea ecosystems, polar regions, and outer space, presents multiple challenges. Among these challenges, ensuring sustainable food supply over long timescales and maintaining the health of personnel are fundamental issues that must be addressed. Microalgae, as a novel food resource, possess favorable physiological and nutritional characteristics, demonstrating potential as nutritional support in IACEs. In this review, we discuss the potential of microalgae as a nutritional supplement in IACEs from four perspectives. The first section provides a theoretical foundation by reviewing the environmental adaptability and previous studies in IACEs. Subsequently, the typical nutritional components of microalgae and their bioavailability are comprehensively elucidated. And then focus on the impact of these ingredients on health enhancement and elucidate its mechanisms in IACEs. Combining the outstanding stress resistance, rich active ingredients, the potential to alleviate osteoporosis, regulate metabolism, and promote mental well-being, microalgae demonstrate significant value for food applications. Furthermore, the development of novel microalgae biomatrices enhances health safeguards. Nevertheless, the widespread application of microalgae in IACEs still requires extensive studies and more fundamental data, necessitating further exploration into improving bioavailability, high biomass cultivation methods, and enhancing palatability.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Huayu Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yuying Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Saldivia P, Hernández M, Isla A, Fritz R, Varela D, González-Jartín JM, Figueroa J, Botana LM, Vargas C, Yañez AJ. Proteomic and toxicological analysis of the response of dinoflagellate Alexandrium catenella to changes in NaNO 3 concentration. HARMFUL ALGAE 2023; 125:102428. [PMID: 37220981 DOI: 10.1016/j.hal.2023.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/05/2023] [Accepted: 03/18/2023] [Indexed: 05/25/2023]
Abstract
Dinoflagellates of the genus Alexandrium cause Harmful Algal Blooms (HABs) in coastal waters worldwide, damaging marine environments, aquaculture, and human health. They synthesize potent neurotoxic alkaloids known as PSTs (i.e., Paralytic Shellfish Toxins), the etiological agents of PSP (i.e., Paralytic Shellfish Poisoning). In recent decades, the eutrophication of coastal waters with inorganic nitrogen (e.g., nitrate, nitrite, and ammonia) has increased the frequency and scale of HABs. PSTs concentrations within Alexandrium cells can increase by up to 76% after a nitrogen enrichment event; however, the mechanisms that underlie their biosynthesis in dinoflagellates remains unclear. This study combines mass spectrometry, bioinformatics, and toxicology and investigates the expression profiles of PSTs in Alexandrium catenella grown in 0.4, 0.9 and 1.3 mM NaNO3. Pathway analysis of protein expression revealed that tRNA amino acylation, glycolysis, TCA cycle and pigment biosynthesis were upregulated in 0.4 mM and downregulated in 1.3 mM NaNO3 compared to those grown in 0.9 mM NaNO3. Conversely, ATP synthesis, photosynthesis and arginine biosynthesis were downregulated in 0.4 mM and upregulated in 1.3 mM NaNO3. Additionally, the expression of proteins involved in PST biosynthesis (sxtA, sxtG, sxtV, sxtW and sxtZ) and overall PST production like STX, NEO, C1, C2, GTX1-6 and dcGTX2 was higher at lower nitrate concentrations. Therefore, increased nitrogen concentrations increase protein synthesis, photosynthesis, and energy metabolism and decrease enzyme expression in PST biosynthesis and production. This research provides new clues about how the changes in the nitrate concentration can modulate different metabolic pathways and the expression of PST biosynthesis in toxigenic dinoflagellates.
Collapse
Affiliation(s)
- Pablo Saldivia
- Division of Biotechnology, MELISA Institute, Concepción, Chile; Programa de Doctorado en Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Adolfo Isla
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Valdivia, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rocío Fritz
- Vicerrectoría de Investigación y Postgrado, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Daniel Varela
- Centro i∼mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Jaime Figueroa
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Cristian Vargas
- Division of Biotechnology, MELISA Institute, Concepción, Chile
| | - Alejandro J Yañez
- Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile; Laboratorio de Diagnóstico y Terapia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
3
|
Elementary vectors and autocatalytic sets for resource allocation in next-generation models of cellular growth. PLoS Comput Biol 2022; 18:e1009843. [PMID: 35104290 PMCID: PMC8853647 DOI: 10.1371/journal.pcbi.1009843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 02/17/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Traditional (genome-scale) metabolic models of cellular growth involve an approximate biomass “reaction”, which specifies biomass composition in terms of precursor metabolites (such as amino acids and nucleotides). On the one hand, biomass composition is often not known exactly and may vary drastically between conditions and strains. On the other hand, the predictions of computational models crucially depend on biomass. Also elementary flux modes (EFMs), which generate the flux cone, depend on the biomass reaction. To better understand cellular phenotypes across growth conditions, we introduce and analyze new classes of elementary vectors for comprehensive (next-generation) metabolic models, involving explicit synthesis reactions for all macromolecules. Elementary growth modes (EGMs) are given by stoichiometry and generate the growth cone. Unlike EFMs, they are not support-minimal, in general, but cannot be decomposed “without cancellations”. In models with additional (capacity) constraints, elementary growth vectors (EGVs) generate a growth polyhedron and depend also on growth rate. However, EGMs/EGVs do not depend on the biomass composition. In fact, they cover all possible biomass compositions and can be seen as unbiased versions of elementary flux modes/vectors (EFMs/EFVs) used in traditional models. To relate the new concepts to other branches of theory, we consider autocatalytic sets of reactions. Further, we illustrate our results in a small model of a self-fabricating cell, involving glucose and ammonium uptake, amino acid and lipid synthesis, and the expression of all enzymes and the ribosome itself. In particular, we study the variation of biomass composition as a function of growth rate. In agreement with experimental data, low nitrogen uptake correlates with high carbon (lipid) storage. Next-generation, genome-scale metabolic models allow to study the reallocation of cellular resources upon changing environmental conditions, by not only modeling flux distributions, but also expression profiles of the catalyzing proteome. In particular, they do no longer assume a fixed biomass composition. Methods to identify optimal solutions in such comprehensive models exist, however, an unbiased understanding of all feasible allocations is missing so far. Here we develop new concepts, called elementary growth modes and vectors, that provide a generalized definition of minimal pathways, thereby extending classical elementary flux modes (used in traditional models with a fixed biomass composition). The new concepts provide an understanding of all possible flux distributions and of all possible biomass compositions. In other words, elementary growth modes and vectors are the unique functional units in any comprehensive model of cellular growth. As an example, we show that lipid accumulation upon nitrogen starvation is a consequence of resource allocation and does not require active regulation. Our work puts current approaches on a theoretical basis and allows to seamlessly transfer existing workflows (e.g. for the design of cell factories) to next-generation metabolic models.
Collapse
|
4
|
Strazdina I, Klavins L, Galinina N, Shvirksts K, Grube M, Stalidzans E, Kalnenieks U. Syntrophy of Crypthecodinium cohnii and immobilized Zymomonas mobilis for docosahexaenoic acid production from sucrose-containing substrates. J Biotechnol 2021; 338:63-70. [PMID: 34280360 DOI: 10.1016/j.jbiotec.2021.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Marine heterotrophic dinoflagellate Crypthecodinium cohnii is an aerobic oleaginous microorganism that accumulates intracellular lipid with high content of 4,7,10,13,16,19-docosahexaenoic acid (DHA), a polyunsaturated ω-3 (22:6) fatty acid with multiple health benefits. C. cohnii can grow on glucose and ethanol, but not on sucrose or fructose. For conversion of sucrose-containing renewables to C. cohnii DHA, we investigated a syntrophic process, involving immobilized cells of ethanologenic bacterium Zymomonas mobilis for fermenting sucrose to ethanol. The non-respiring, NADH dehydrogenase-deficient Z. mobilis strain Zm6-ndh, with high ethanol yield both under anaerobic and aerobic conditions, was taken as the genetic background for inactivation of levansucrase (sacB). SacB mutation eliminated the levan-forming activity on sucrose. The double mutant Zm6-ndh-sacB cells were immobilized in Ca alginate, and applied for syntrophic conversion of sucrose to DHA of C. cohnii, either taking the ethanol-containing fermentation medium from the immobilized Z. mobilis for feeding to the C. cohnii fed-batch culture, or directly coculturing the immobilized Zm6-ndh-sacB with C. cohnii on sucrose. Both modes of cultivation produced C. cohnii CCMP 316 biomass with DHA content around 2-3 % of cell dry weight, corresponding to previously reported results for this strain on glucose.
Collapse
Affiliation(s)
- Inese Strazdina
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia
| | - Linards Klavins
- University of Latvia, Natural Resource Research Centre, Riga, Latvia
| | - Nina Galinina
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia
| | - Karlis Shvirksts
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia
| | - Mara Grube
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia
| | - Egils Stalidzans
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia
| | - Uldis Kalnenieks
- University of Latvia, Institute of Microbiology and Biotechnology, Riga, Latvia.
| |
Collapse
|
5
|
Hu X, Tang X, Bi Z, Zhao Q, Ren L. Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Canelli G, Murciano Martínez P, Austin S, Ambühl ME, Dionisi F, Bolten CJ, Carpine R, Neutsch L, Mathys A. Biochemical and Morphological Characterization of Heterotrophic Crypthecodinium cohnii and Chlorella vulgaris Cell Walls. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2226-2235. [PMID: 33570396 DOI: 10.1021/acs.jafc.0c05032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microalgae are attractive for the food and cosmetic industries because of their nutrient composition. However, the bioaccessibility and extractability of nutrients in microalgae are limited by the rigid and indigestible cell wall. The goal of this study is to explore the cell wall polysaccharides (CWPSs) composition and morphology in heterotrophic Crypthecodinium cohnii and Chlorella vulgaris biomasses during growth. Our results showed that glucose was the major component of CWPSs and exopolysaccharides in C. cohnii. C. vulgaris CWPSs have a similar sugar profile in exponential and stationary phases, essentially composed of rhamnose and galactose. C. vulgaris cell wall thickness increased from 82 nm in the exponential phase to 114 nm in the stationary phase and consisted of two main layers. C. cohnii's cell wall was 133 nm thick and composed of several membranes surrounding thecal plates. Understanding of the microalgae cell wall helps developing a more efficient and targeted biorefinery approach.
Collapse
Affiliation(s)
- Greta Canelli
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | | | - Sean Austin
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Mark E Ambühl
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Fabiola Dionisi
- Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland
| | | | - Roberta Carpine
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820 Wädenswil, Switzerland
- Department of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lukas Neutsch
- Institute of Chemistry and Biotechnology, ZHAW, Campus Grüental, 8820 Wädenswil, Switzerland
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Hassan MA, Abol-Fotouh D, Omer AM, Tamer TM, Abbas E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int J Biol Macromol 2020; 154:567-583. [PMID: 32194110 DOI: 10.1016/j.ijbiomac.2020.03.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/25/2022]
Abstract
Enormous masses of keratinous wastes are annually accumulated in the environment as byproducts of poultry processing and agricultural wastes. Keratin is a recalcitrant fibrous protein, which represents the major constituent of various keratin-rich wastes, which released into the environment in the form of feathers, hair, wool, bristle, and hooves. Chemical treatment methods of these wastes resulted in developing many hazardous gases and toxins to the public health, in addition to the destruction of several amino acids. Accordingly, microbial keratinases have been drawing much interest as an eco-friendly approach to convert keratinous wastes into valuable products. Numerous keratinolytic microorganisms have been identified, which revealed the competence to hydrolyze keratins into peptides and amino acids. Several types of keratinolytic proteases have been produced that possess diverse biochemical characteristics, conferring them the versatility for implementing in multifarious applications such as detergents, leather and textile industries, animal feeding, and production of bio-fertilizers, in addition to medical and pharmaceutical treatments. This review article emphasizes the significance of keratinases and keratinase based-products via comprehensive insights into the keratin structure, diversity of keratinolytic microorganisms, and mechanisms of keratin hydrolysis. Furthermore, we discuss the biochemical properties of the produced keratinases and their feasible applications in diverse disciplines.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt.
| | - Deyaa Abol-Fotouh
- Electronic Materials Researches Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Meng FQ, Song JT, Zhou J, Cai ZH. Transcriptomic Profile and Sexual Reproduction-Relevant Genes of Alexandrium minutum in Response to Nutritional Deficiency. Front Microbiol 2019; 10:2629. [PMID: 31803162 PMCID: PMC6877688 DOI: 10.3389/fmicb.2019.02629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
Alexandrium minutum is a typical marine toxic dinoflagellate responsible for producing paralytic shellfish poisoning (PSP) toxins. Until now, we know little about the genomic information of A. minutum, so a transcriptome study was conducted to clarify the physiological adaptations related to nutritional deficiency. Here, we performed RNA-Seq analysis to assess the gene expression patterns of A. minutum under N and P deficient conditions for 0 (control), 6, and 72 h. Main differences between the control and experimental groups were observed in hydrolase activity and fatty acid, lipid, protein, and P metabolism. Activities of photosystem I (PSI) and PSII were significantly down-regulated, and the endocytosis pathway (clathrin-dependent endocytosis) was significantly enriched under N and P stress compared with the control, indicating that A. minutum shifts its trophy pattern under N and P stress. We also identified several unigenes related to the process of sexual reproduction, including sex determination, sperm-egg recognition, sex differentiation, mating, and fertilization. Approximately 50% of the successfully annotated unigenes were differentially expressed between the short-term stimulated sample (6 h) and control (R). However, the expression level of most unigenes returned to normal levels after 72 h, indicating that N and P stress plays a limited role in the induction of sexual reproduction. Furthermore, the quantitative real-time PCR (qRT-PCR) results of the five representative sex-related unigenes were consistent with sequencing data, which confirmed the authenticity of transcriptomic analysis. Also, qRT-PCR analysis showed that the long and short form transcripts of the saxitoxin biosynthesis gene (sxtA) were down-regulated under the nutrient deficient condition compared with the control, indicating that N and P stress regulates sxtA expression. Overall, transcriptome analysis of A. minutum revealed that N and P deficiency induced responses associated with stress response, photosynthetic efficiency, toxin biosynthesis, and sexual reproduction. Our data indicate that algae change their trophic modes (to facultative mixotrophy) and related physiological reactions under stress conditions; this possibly represents an ecological adaption strategy in the algal life cycle.
Collapse
Affiliation(s)
- Fan-Qiang Meng
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jun-Ting Song
- School of Life Sciences, Tsinghua University, Beijing, China.,Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhong-Hua Cai
- Shenzhen Public Platform of Screening and Application of Marine Microbial Resources, The Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
9
|
Peinemann JC, Demichelis F, Fiore S, Pleissner D. Techno-economic assessment of non-sterile batch and continuous production of lactic acid from food waste. BIORESOURCE TECHNOLOGY 2019; 289:121631. [PMID: 31220764 DOI: 10.1016/j.biortech.2019.121631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Non-sterile lactic acid (LA) fermentation of highly viscous food waste was demonstrated in batch and continuous flow fermentations. With Streptococcus sp., an indigenous consortium, and/or applied glucoamylase, food waste was fermented without addition of external carbon or nitrogen sources. Experimental results were used for economic and energy evaluations under consideration of different catchment area sizes from 50,000 to 1,000,000 inhabitants. During batch mode, addition of glucoamylase resulted in a titer (after 24 h), yield, and productivity of 50 g L-1, 63%, and 2.93 g L-1h-1, respectively. While titer and yield were enhanced, productivity was lower during continuous operation and 69 g L-1, 86%, and 1.27 g L-1h-1 were obtained at a dilution rate of 0.44 d-1 when glucoamylase was added. Both batch and continuous flow fermentations were found economically profitable with food waste from 200,000 or more inhabitants.
Collapse
Affiliation(s)
- Jan Christoph Peinemann
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, 21335 Lüneburg, Germany
| | | | - Silvia Fiore
- DIATI, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, 21335 Lüneburg, Germany.
| |
Collapse
|
10
|
Sidari R, Tofalo R. A Comprehensive Overview on Microalgal-Fortified/Based Food and Beverages. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1608557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rossana Sidari
- Department of Agraria, Mediterranea University of Reggio Calabria, Reggio Calabria, Italy
| | - Rosanna Tofalo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
11
|
Hutson KS, Cable J, Grutter AS, Paziewska-Harris A, Barber I. Aquatic Parasite Cultures and Their Applications. Trends Parasitol 2018; 34:1082-1096. [PMID: 30473011 DOI: 10.1016/j.pt.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
In this era of unprecedented growth in aquaculture and trade, aquatic parasite cultures are essential to better understand emerging diseases and their implications for human and animal health. Yet culturing parasites presents multiple challenges, arising from their complex, often multihost life cycles, multiple developmental stages, variable generation times and reproductive modes. Furthermore, the essential environmental requirements of most parasites remain enigmatic. Despite these inherent difficulties, in vivo and in vitro cultures are being developed for a small but growing number of aquatic pathogens. Expanding this resource will facilitate diagnostic capabilities and treatment trials, thus supporting the growth of sustainable aquatic commodities and communities.
Collapse
Affiliation(s)
- Kate S Hutson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Iain Barber
- School of Animal, Rural and Environmental Sciences, College of Science and Technology, Nottingham Trent University, NG25 0QF, UK
| |
Collapse
|
12
|
Comparison of microalgal biomasses as functional food ingredients: Focus on the composition of cell wall related polysaccharides. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.03.017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Cui J, Diao J, Sun T, Shi M, Liu L, Wang F, Chen L, Zhang W. 13C Metabolic Flux Analysis of Enhanced Lipid Accumulation Modulated by Ethanolamine in Crypthecodinium cohnii. Front Microbiol 2018; 9:956. [PMID: 29867861 PMCID: PMC5963191 DOI: 10.3389/fmicb.2018.00956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
The heterotrophic microalga Crypthecodinium cohnii has attracted considerable attention due to its capability of accumulating lipids with a high fraction of docosahexaenoic acid (DHA). In our previous study, ethanolamine (ETA) was identified as an effective chemical modulator for lipid accumulation in C. cohnii. In this study, to gain a better understanding of the lipid metabolism and mechanism for the positive effects of modulator ETA, metabolic flux analysis was performed using 13C-labeled glucose with and without 1 mM ETA modulator. The analysis of flux distribution showed that with the addition of ETA, flux in glycolysis pathway and citrate pyruvate cycle was strengthened while flux in pentose phosphate pathway was decreased. In addition, flux in TCA cycle was slightly decreased compared with the control without ETA. The enzyme activity of malic enzyme (ME) was significantly increased, suggesting that NADP+-dependent ME might be the major source of NADPH for lipid accumulation. The flux information obtained by this study could be valuable for the further efforts in improving lipid accumulation and DHA production in C. cohnii.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jinjin Diao
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Mengliang Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Pleissner D, Rumpold BA. Utilization of organic residues using heterotrophic microalgae and insects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:227-239. [PMID: 29150257 DOI: 10.1016/j.wasman.2017.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/31/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Various organic residues occur globally in the form of straw, wood, green biomass, food waste, feces, manure etc. Other utilization strategies apart from anaerobic digestion, composting and incineration are needed to make use of the whole potential of organic residues as sources of various value added compounds. This review compares the cultivation of heterotrophic microalgae and insects using organic residues as nutrient sources and illuminates their potential with regard to biomass production, productivity and yield, and utilization strategies of produced biomasses. Furthermore, cultivation processes as well as advantages and disadvantages of utilization processes are identified and discussed. It was shown that both heterotrophic algae and insects are able to reduce a sufficient amount of organic residues by converting it into biomass. The biomass composition of both organisms is similar which allows similar utilization strategies in food and feed, chemicals and materials productions. Even though insect is the more complex organism, biomass production can be carried out using simple equipment without sterilization and hydrolysis of organic residues. Contrarily, heterotrophic microalgae require a pretreatment of organic residues in form of sterilization and in most cases hydrolysis. Interestingly, the volumetric productivity of insect biomass exceeds the productivity of algal biomass. Despite legal restrictions, it is expected that microalgae and insects will find application as alternative food and feed sources in the future.
Collapse
Affiliation(s)
- Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13, 21335 Lüneburg, Germany.
| | - Birgit A Rumpold
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Research Program Quality and Safety of Food and Feed, Max-Eyth-Allee 100, 14469 Potsdam, Germany; Technische Universität Berlin, Institute of Vocational Education and Work Studies, Department of Education of Sustainable Nutrition and Food Science, Marchstr. 23, 10587 Berlin, Germany
| |
Collapse
|
15
|
Safdar W, Shamoon M, Zan X, Haider J, Sharif HR, Shoaib M, Song Y. Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration. AMB Express 2017; 7:85. [PMID: 28429330 PMCID: PMC5399014 DOI: 10.1186/s13568-017-0384-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022] Open
Abstract
The effect of varying concentrations of the nitrogen source on the growth kinetics, lipid accumulation, lipid and DHA productivity, and fatty acid composition of C. cohnii was elucidated. Growth of C. cohnii was in three distinct growth stages: cell growth, lipid accumulation and a final lipid turnover stage. Most of lipids were accumulated in lipid accumulation stage (48-120 h) though, slow growth rate was observed during this stage. NaNO3 supported significantly higher lipid content (26.9% of DCW), DHA content (0.99 g/L) and DHA yield (44.2 mg/g glucose) which were 2.5 to 3.3-folds higher than other N-sources. The maximum level of C16-C18 content (% TFA) was calculated as 43, 54 and 43% in lipid accumulation stage under low nitrogen (LN, 0.2 g/L), medium nitrogen (MN, 0.8 g/L) and high nitrogen (HN, 1.6 g/L) treatments, respectively. Cultures with LN, by down-regulating cell metabolism, trigger onset of lipogenic enzymes. Conversely, NAD+/NADP+-dependent isocitrate dehydrogenase (NAD+/NADP+-ICDH) were less active in LN than HN treatments which resulted in retardation of Kreb's Cycle and thereby divert citrate into cytoplasm as substrate for ATP-citrate lyase (ACL). Thereby, ACL and fatty acid synthase (FAS) were most active in lipid accumulation stage at LN treatments. Glucose-6-phosphate dehydrogenase (G6PDH) was more active than malic enzyme (ME) in lipid accumulation stage and showed higher activities in NaNO3 than other N-sources. This represents that G6PDH contributes more NADPH than ME in C. cohnii. However, G6PDH and ME together seems to play a dual role in offering NADPH for lipid biosynthesis. This concept of ME together with G6PD in offering NADPH for lipogenesis might be novel in this alga and needed to be explored.
Collapse
|
16
|
Physiological and Biochemical Changes Reveal Differential Patterns of Docosahexaenoic Acid Partitioning in Two Marine Algal Strains of Isochrysis. Mar Drugs 2017; 15:md15110357. [PMID: 29137149 PMCID: PMC5706046 DOI: 10.3390/md15110357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/31/2017] [Accepted: 11/06/2017] [Indexed: 01/08/2023] Open
Abstract
The marine microalgae Isochrysis are a good producer of natural docosahexaenoic acid (DHA). To better understand the patterns of DHA accumulation and distribution, two Isochrysis strains, CL153180 and CCMP462, were evaluated in this study. In a batch culture, CL153180 showed a decline in DHA content while CCMP462 exhibited a progressive increase during the late growth period when nitrogen was almost exhausted. In response to nitrogen deficiency (ND), both strains showed a considerable increase in neutral lipids (NL) at the expense of glycolipids (GL) but had little variation in phospholipids (PL). In CL153180, the DHA percentage of NL decreased gradually upon ND, while that in CCMP462 increased progressively to 21.4% after 4 days of ND, which is around 5-fold higher than CL153180. Accordingly, in contrast to CL153180 that stored DHA predominantly in GL, CCMP462 accumulated DHA mainly in NL in late days of ND. Taken together, we proposed a working model for the differential DHA partitioning patterns between two Isochrysis strains: for CCMP462, the degradation of GL released free fatty acids including DHA, which was incorporated into NL upon ND; whereas for CL153180, the released DHA from GL might not be incorporated into NL, and, consequently, might be subject to β-oxidation for degradation.
Collapse
|
17
|
De novo transcriptomic and metabolomic analysis of docosahexaenoic acid (DHA)-producing Crypthecodinium cohnii during fed-batch fermentation. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Yu JH, Wang Y, Sun J, Bian F, Chen G, Zhang Y, Bi YP, Wu YJ. Antioxidant activity of alcohol aqueous extracts of Crypthecodinium cohnii and Schizochytrium sp. *. J Zhejiang Univ Sci B 2017; 18:797-806. [PMCID: PMC5611551 DOI: 10.1631/jzus.b1600367] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 03/09/2025]
Abstract
Crypthecodinium cohnii (dinoflagellate) and Schizochytrium sp. (thraustochytrid) are the main sources for docosahexaenoic acid (DHA). The present study aimed to evaluate the antioxidant activity of petroleum ether, ethyl acetate, n -butanol, and water fractions of alcohol aqueous extracts of these two microalgae and to provide a theoretical basis for comprehensive utilization. The antioxidant activity was determined by total antioxidant capacity (TAC) determination, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, ferrous ion-chelating ability (FICA) assay, and reducing power (RP) assay. The total phenolic content (TPC) and total flavonoid content (TFC) were also measured by the Folin-Ciocalteu and spectrophotometry methods, respectively. The results indicated that the extracts from these two microalgae possessed good antioxidant capacity. Analysis showed that most antioxidant performance indicators (TAC, DPPH, and RP) were positively correlated with the TPC of the extracts, suggesting that the phenolics might be the major components in C . cohnii and Schizochytrium sp., contributing to their antioxidative function. Therefore, the polar fractions of C . cohnii and Schizochytrium sp. could be further examined and considered for application in health products or cosmetics.
Collapse
Affiliation(s)
- Jin-hui Yu
- Institute of Genome Engineered Animal Models for Human Disease, Dalian Medical University, Dalian 116044, China
- Shandong Center of Crop Germplasm Resources, Jinan 250100, China
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Wang
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jie Sun
- Institute of Genome Engineered Animal Models for Human Disease, Dalian Medical University, Dalian 116044, China
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Fei Bian
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Gao Chen
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yan Zhang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu-ping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying-jie Wu
- Institute of Genome Engineered Animal Models for Human Disease, Dalian Medical University, Dalian 116044, China
- College of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
19
|
Safdar W, Zan X, Shamoon M, Sharif HR, Mukama O, Tang X, Song Y. Effects of twenty standard amino acids on biochemical constituents, docosahexaenoic acid production and metabolic activity changes of Crypthecodinium cohnii. BIORESOURCE TECHNOLOGY 2017; 238:738-743. [PMID: 28433582 DOI: 10.1016/j.biortech.2017.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The influence of 20 standard amino acids was investigated on growth, lipid accumulation, docosahexaenoic acid (DHA) production and cell biochemical composition of Crypthecodinium cohnii. C. cohnii efficiently utilize organic nitrogen (predominantly threonine and to a lesser extent tyrosine and serine) as compared to inorganic nitrogen (NH4)2SO4. However, No significant effect was observed on major biochemical composition of C. cohnii (lipids, carbohydrates and proteins) under N limitation or supplementation with different N-sources. Key lipogenic enzymes glucose-6-phosphate dehydrogenase, ATP-citrate lyase, fatty acid synthase, malic enzyme, citrate synthase (CS), NAD+ and NADP+ dependent isocitrate dehydrogenase were shown to be vital in lipogenesis of C. cohnii. Our results indicated that the process of lipid accumulation in C. cohnii is growth-associated and does not depend upon the trigger of nitrogen depletion. This unusual behavior would suggest that the metabolism of the cells may not be entirely the same as in other lipid-accumulating microorganisms.
Collapse
Affiliation(s)
- Waseem Safdar
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Xinyi Zan
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Muhammad Shamoon
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Hafiz Rizwan Sharif
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Omar Mukama
- State Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xin Tang
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yuanda Song
- State Key Laboratory of Food Science & Technology, School of Food Science & Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China; Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China.
| |
Collapse
|
20
|
Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim. Appl Microbiol Biotechnol 2017; 101:6179-6191. [DOI: 10.1007/s00253-017-8397-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/11/2017] [Accepted: 06/15/2017] [Indexed: 11/25/2022]
|
21
|
Jang SH, Jeong HJ, Kwon JE. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Guo DS, Ji XJ, Ren LJ, Li GL, Huang H. Improving docosahexaenoic acid production by Schizochytrium
sp. using a newly designed high-oxygen-supply bioreactor. AIChE J 2017. [DOI: 10.1002/aic.15783] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dong-Sheng Guo
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| | - Gan-Lu Li
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
| | - He Huang
- School of Pharmaceutical Sciences; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No. 5 Xinmofan Road Nanjing 210009 P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No. 5 Xinmofan Road Nanjing 210009 P.R. China
| |
Collapse
|
23
|
Sun D, Zhang Z, Mao X, Wu T, Jiang Y, Liu J, Chen F. Light enhanced the accumulation of total fatty acids (TFA) and docosahexaenoic acid (DHA) in a newly isolated heterotrophic microalga Crypthecodinium sp. SUN. BIORESOURCE TECHNOLOGY 2017; 228:227-234. [PMID: 28064135 DOI: 10.1016/j.biortech.2016.12.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
In the present study, light illumination was found to be efficient in elevating the total fatty acid content in a newly isolated heterotrophic microalga, Crypthecodinium sp. SUN. Under light illumination, the highest total fatty acid and DHA contents were achieved at 96h as 24.9% of dry weight and 82.8mgg-1 dry weight, respectively, which were equivalent to 1.46-fold and 1.68-fold of those under the dark conditions. The elevation of total fatty acid content was mainly contributed by an increase of neutral lipids at the expense of starches. Moreover, light was found to alter the cell metabolism and led to a higher specific growth rate, higher glucose consumption rate and lower non-motile cell percentage. This is the first report that light can promote the total fatty acids accumulation in Crypthecodinium without growth inhibition.
Collapse
Affiliation(s)
- Dongzhe Sun
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Zhang
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Xuemei Mao
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Tao Wu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Jiang
- Runke Bioengineering Co. Ltd., Zhangzhou, Fujian, China
| | - Jin Liu
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Feng Chen
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Compositional profiles of Rhodosporidium toruloides cells under nutrient limitation. Appl Microbiol Biotechnol 2017; 101:3801-3809. [DOI: 10.1007/s00253-017-8157-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
|
25
|
Pleissner D, Qi Q, Gao C, Rivero CP, Webb C, Lin CSK, Venus J. Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Brovedani V, Sosa S, Poli M, Forino M, Varello K, Tubaro A, Pelin M. A revisited hemolytic assay for palytoxin detection: Limitations for its quantitation in mussels. Toxicon 2016; 119:225-33. [PMID: 27343702 DOI: 10.1016/j.toxicon.2016.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Abstract
Palytoxin (PLTX) and its analogues have been detected as seafood contaminants associated with a series of human foodborne poisonings. Due to a number of fatalities ascribed to the ingestion of PLTX-contaminated marine organisms, the development of methods for its detection in seafood has been recommended by the European Food Safety Authority (EFSA). Due to its feasibility, the spectrophotometric hemolytic assay is widely used to detect PLTX in different matrices, even though a standardized protocol is still lacking. Thus, on the basis of available assay procedures, a new standardized protocol was set up using purified human erythrocytes exposed to PLTX (working range: 3.9 × 10(-10)-2.5 × 10(-8) M) in a K(+)-free phosphate buffered saline solution, employing a 5 h incubation at 41 °C. An intra-laboratory characterization demonstrated its sensitivity (limit of detection, LOD = 1.4 × 10(-10) M and quantitation, LOQ = 3.4 × 10(-10) M), accuracy (bias = -0.8%), repeatability (RSDr = 15% and 6% for intra- and inter-day repeatability, respectively) and specificity. However, the standardized method seems not to be suitable for PLTX quantitation in complex matrices, such as mussel (Mytilus galloprovincialis) extracts, at least below the limit suggested by EFSA (30 μg PLTXs/Kg shellfish meat). Thus, the hemolytic assay for PLTX quantitation in seafood should be used only after a careful evaluation of the specific matrix effects.
Collapse
Affiliation(s)
- Valentina Brovedani
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| | - Mark Poli
- U.S. Army Medical Research Institute of Infectious Diseases, Ft Detrick, MD, United States.
| | - Martino Forino
- Department of Pharmacy, University of Napoli Federico II, 80131, Napoli, Italy.
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127, Trieste, Italy.
| |
Collapse
|
27
|
CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis. Bioprocess Biosyst Eng 2016; 39:1297-304. [DOI: 10.1007/s00449-016-1608-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/09/2016] [Indexed: 10/21/2022]
|
28
|
Lin S, Litaker RW, Sunda WG. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. JOURNAL OF PHYCOLOGY 2016; 52:10-36. [PMID: 26987085 DOI: 10.1111/jpy.12365] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/26/2015] [Indexed: 05/24/2023]
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).
Collapse
Affiliation(s)
- Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA
| | - Richard Wayne Litaker
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, 28516, USA
| | - William G Sunda
- National Oceanic and Atmospheric Administration, National Ocean Service, Center for Coastal Fisheries and Habitat Research, Beaufort, North Carolina, 28516, USA
| |
Collapse
|
29
|
Pleissner D, Venus J. Utilization of protein-rich residues in biotechnological processes. Appl Microbiol Biotechnol 2016; 100:2133-40. [PMID: 26758300 DOI: 10.1007/s00253-015-7278-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 11/25/2022]
Abstract
A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.
Collapse
Affiliation(s)
- Daniel Pleissner
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany
| | - Joachim Venus
- Department of Bioengineering, Leibniz Institute for Agricultural Engineering Potsdam-Bornim, Potsdam, Germany.
| |
Collapse
|
30
|
Ulusoy S, Ulusoy HI, Pleissner D, Eriksen NT. Nitrosation and analysis of amino acid derivatives by isocratic HPLC. RSC Adv 2016. [DOI: 10.1039/c5ra25854e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino acids are transformed by nitrosation with dinitrogen trioxide into their corresponding α-hydroxy acids, which are separated and analysed by HPLC, and used to quantify the original amino acid concentration in samples.
Collapse
Affiliation(s)
- Songül Ulusoy
- Department of Chemistry and Bioscience
- Aalborg University
- DK-9220 Aalborg
- Denmark
- Department of Chemistry
| | - Halil Ibrahim Ulusoy
- Department of Chemistry and Bioscience
- Aalborg University
- DK-9220 Aalborg
- Denmark
- Department of Analytical Chemistry
| | - Daniel Pleissner
- Department of Bioengineering
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim e. V
- Potsdam
- Germany
| | | |
Collapse
|
31
|
Pleissner D, Lau KY, Schneider R, Venus J, Lin CSK. Fatty acid feedstock preparation and lactic acid production as integrated processes in mixed restaurant food and bakery wastes treatment. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Liu B, Liu J, Sun P, Ma X, Jiang Y, Chen F. Sesamol Enhances Cell Growth and the Biosynthesis and Accumulation of Docosahexaenoic Acid in the Microalga Crypthecodinium cohnii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5640-5. [PMID: 26017014 DOI: 10.1021/acs.jafc.5b01441] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Sesamol is a strong antioxidant phenolic compound found in sesame seed. It possesses the ability to scavenge intracellular reactive oxygen species (ROS) and to inhibit malic enzyme activity and NADPH supply, resulting possibly in cell proliferation and alteration in the fatty acid composition. In the present study, the effect of sesamol on the growth and accumulation of docosahexaenoic acid (DHA) was investigated in the marine microalga Crypthecodinium cohnii, a prolific producer of DHA. C. cohnii showed a great decrease in the intracellular ROS level with the addition of sesamol. In contrast, the biomass concentration, DHA content (% of total fatty acids), and DHA productivity were significantly increased by 44.20, 11.25, and 20.00%, respectively (P < 0.01). Taken together, this work represents the first report of employing sesamol for enhanced production of DHA by C. cohnii, providing valuable insights into this alga for future biotechnological applications.
Collapse
Affiliation(s)
- Bin Liu
- †School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jin Liu
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
- #Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland 21202, United States
| | - Peipei Sun
- †School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Xiaonian Ma
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yue Jiang
- ⊥School of Food Science, Jiangnan University, Wuxi 214122, China
| | - Feng Chen
- §Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
- ΔSingapore-Peking University Research Centre for a Sustainable Low-Carbon Future, CREATE Tower, Singapore 138602
| |
Collapse
|
33
|
Pleissner D, Lau KY, Zhang C, Lin CSK. Plasticizer and surfactant formation from food-waste- and algal biomass-derived lipids. CHEMSUSCHEM 2015; 8:1686-1691. [PMID: 25425530 DOI: 10.1002/cssc.201402888] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/09/2014] [Indexed: 06/04/2023]
Abstract
The potential of lipids derived from food-waste and algal biomass (produced from food-waste hydrolysate) for the formation of plasticizers and surfactants is investigated herein. Plasticizers were formed by epoxidation of double bonds of methylated unsaturated fatty acids with in situ generated peroxoformic acid. Assuming that all unsaturated fatty acids are convertible, 0.35 and 0.40 g of plasticizer can be obtained from 1 g of crude algae- or food-waste-derived lipids, respectively. Surfactants were formed by transesterification of saturated and epoxidized fatty acid methyl esters (FAMEs) with polyglycerol. The addition of polyglycerol would result in a complete conversion of saturated and epoxidized FAMEs to fatty acid polyglycerol esters. This study successfully demonstrates the conversion of food-waste into value-added chemicals using simple and conventional chemical reactions.
Collapse
Affiliation(s)
- Daniel Pleissner
- School of Energy and Environment, City University of Hong, Tat Chee Avenue, Kowloon, Hong Kong (PR China)
| | - Kin Yan Lau
- School of Energy and Environment, City University of Hong, Tat Chee Avenue, Kowloon, Hong Kong (PR China)
| | - Chengwu Zhang
- Laboratory of Microalgal Bioenergy and Biotechnology, Jinan University, No. 601, Huangpu Boulevard, Tianhe District, Guangzhou City, 510630 (PR China)
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong, Tat Chee Avenue, Kowloon, Hong Kong (PR China).
| |
Collapse
|
34
|
The dinoflagellate Lingulodinium polyedrum responds to N depletion by a polarized deposition of starch and lipid bodies. PLoS One 2014; 9:e111067. [PMID: 25368991 PMCID: PMC4219697 DOI: 10.1371/journal.pone.0111067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/19/2014] [Indexed: 01/02/2023] Open
Abstract
Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions.
Collapse
|
35
|
Lau KY, Pleissner D, Lin CSK. Recycling of food waste as nutrients in Chlorella vulgaris cultivation. BIORESOURCE TECHNOLOGY 2014; 170:144-151. [PMID: 25128844 DOI: 10.1016/j.biortech.2014.07.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 06/03/2023]
Abstract
Heterotrophic cultivation of Chlorella vulgaris was investigated in food waste hydrolysate. The highest exponential growth rate in terms of biomass of 0.8day(-1) was obtained in a hydrolysate consisting of 17.9gL(-1) glucose, 0.1gL(-1) free amino nitrogen, 0.3gL(-1) phosphate and 4.8mgL(-1) nitrate, while the growth rate was reduced in higher concentrated hydrolysates. C. vulgaris utilized the nutrients recovered from food waste for the formation of biomass and 0.9g biomass was produced per gram glucose consumed. The microalgal biomass produced in nutrient sufficient batch cultures consisted of around 400mgg(-1) carbohydrates, 200mgg(-1) proteins and 200mgg(-1) lipids. The conversion of nutrients derived from food waste and the balanced biomass composition make C. vulgaris a promising strain for the recycling of food waste in food, feed and fuel productions.
Collapse
Affiliation(s)
- Kin Yan Lau
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Daniel Pleissner
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
36
|
Sun L, Ren L, Zhuang X, Ji X, Yan J, Huang H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. BIORESOURCE TECHNOLOGY 2014; 159:199-206. [PMID: 24657750 DOI: 10.1016/j.biortech.2014.02.106] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 05/27/2023]
Abstract
Four nutrient limitation cultures, namely monosodium glutamate (MSG-L), phosphate (P-L), ammonium sulfate (NH4(+)-L) and double (D-L, MSG and P limitation) limited, were designed to study how cell growth and biochemical components of Schizochytrium sp. were affected by nutrient limitations. All limited conditions caused decrease in biomass especially MSG-L and D-L conditions. MSG-L condition attained the highest lipid yield of 30.73 g/l but the lowest protein content. P-L condition shortened the fermentation time and obtained the highest DHA productivity of 291 mg/lh. D-L condition was the most cost-effective fermentation condition which gained the highest input-output ratio. NH4(+)-L condition got the highest squalene and DHA content in lipids. Meanwhile, nitrogen limited conditions promoted the accumulation of neutral lipids. All limited conditions benefit the PUFAs accumulation in the neutral lipids. In addition, the existence of NH4(+) or the absence of MSG and phosphate reduced the unsaponifiable matters content in lipid.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Lujing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| | - Xiaoyan Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiaojun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Jiacheng Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
37
|
Pleissner D, Kwan TH, Lin CSK. Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. BIORESOURCE TECHNOLOGY 2014; 158:48-54. [PMID: 24583214 DOI: 10.1016/j.biortech.2014.01.139] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Potential of fungal hydrolysis in submerged fermentation by Aspergillus awamori and Aspergillus oryzae as a food waste treatment process and for preparation of fermentation feedstock has been investigated. By fungal hydrolysis, 80-90% of the initial amount of waste was reduced and degraded within 36-48 h into glucose, free amino nitrogen (FAN) and phosphate. Experiments revealed that 80-90% of starch can be converted into glucose and highest concentration of FAN obtained, when solid mashes of A. awamori and A. oryzae are successively added to fermentations at an interval of 24h. A maximal solid-to-liquid ratio of 43.2% (w/v) of food waste has been tested without a negative impact on releases of glucose, FAN and phosphate, and final concentrations of 143 g L(-1), 1.8 g L(-1) and 1.6 g L(-1) were obtained in the hydrolysate, respectively. Additionally, fungal hydrolysis as an alternative to conventional treatments for utilization of food waste is discussed.
Collapse
Affiliation(s)
- Daniel Pleissner
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Tsz Him Kwan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
38
|
Wang J, Yang H, Wang F. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Appl Biochem Biotechnol 2014; 172:3307-29. [PMID: 24532442 DOI: 10.1007/s12010-014-0729-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.
Collapse
Affiliation(s)
- Jinghan Wang
- Research Institute of Environmental Planning and Management, College of Environmental Science & Engineering, Tongji University, Shanghai, 200092, China
| | | | | |
Collapse
|
39
|
Dagenais-Bellefeuille S, Morse D. Putting the N in dinoflagellates. Front Microbiol 2013; 4:369. [PMID: 24363653 PMCID: PMC3849724 DOI: 10.3389/fmicb.2013.00369] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 11/19/2013] [Indexed: 11/22/2022] Open
Abstract
The cosmopolitan presence of dinoflagellates in aquatic habitats is now believed to be a direct consequence of the different trophic modes they have developed through evolution. While heterotrophs ingest food and photoautotrophs photosynthesize, mixotrophic species are able to use both strategies to harvest energy and nutrients. These different trophic modes are of particular importance when nitrogen nutrition is considered. Nitrogen is required for the synthesis of amino acids, nucleic acids, chlorophylls, and toxins, and thus changes in the concentrations of various nitrogenous compounds can strongly affect both primary and secondary metabolism. For example, high nitrogen concentration is correlated with rampant cell division resulting in the formation of the algal blooms commonly called red tides. Conversely, nitrogen starvation results in cell cycle arrest and induces a series of physiological, behavioral and transcriptomic modifications to ensure survival. This review will combine physiological, biochemical, and transcriptomic data to assess the mechanism and impact of nitrogen metabolism in dinoflagellates and to compare the dinoflagellate responses with those of diatoms.
Collapse
Affiliation(s)
- Steve Dagenais-Bellefeuille
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal Montréal QC, Canada
| | - David Morse
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal Montréal QC, Canada
| |
Collapse
|
40
|
|
41
|
Qu L, Ren LJ, Li J, Sun GN, Sun LN, Ji XJ, Nie ZK, Huang H. Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexanoic acid producing Schizochytrium sp. strains. Appl Biochem Biotechnol 2013; 171:1865-76. [PMID: 24061873 DOI: 10.1007/s12010-013-0456-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
Growth and fermentation characteristics, biomass composition, lipid characterization and metabolic profiling analysis of two different Schizochytrium sp. strains, the original strain and the industrial adaptive strain, were investigated in the fed-batch fermentation process. The final cell biomass, total lipids content, docosahexanoic acid (DHA) content and DHA productivity of the adaptive strain were much higher than those of the original strain. The metabolic distinctions which extensively existed between these two strains were revealed by the score plot of principal component analysis. In addition, potential biomarkers responsible for discriminating different strains were identified as myo-inositol, histidine, alanine, asparagine, cysteine, and oxalic acid. These findings provided new insights into the industrial strain screening and further improvement of DHA production by Schizochytrium sp.
Collapse
Affiliation(s)
- Liang Qu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Martins DA, Custódio L, Barreira L, Pereira H, Ben-Hamadou R, Varela J, Abu-Salah KM. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 2013; 11:2259-81. [PMID: 23807546 PMCID: PMC3736422 DOI: 10.3390/md11072259] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/21/2022] Open
Abstract
The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.
Collapse
Affiliation(s)
- Dulce Alves Martins
- Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal; E-Mails: (D.A.M.); (L.C.); (L.B.); (H.P.); (R.B.-H.)
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal; E-Mails: (D.A.M.); (L.C.); (L.B.); (H.P.); (R.B.-H.)
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal; E-Mails: (D.A.M.); (L.C.); (L.B.); (H.P.); (R.B.-H.)
| | - Hugo Pereira
- Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal; E-Mails: (D.A.M.); (L.C.); (L.B.); (H.P.); (R.B.-H.)
| | - Radhouan Ben-Hamadou
- Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal; E-Mails: (D.A.M.); (L.C.); (L.B.); (H.P.); (R.B.-H.)
| | - João Varela
- Centre of Marine Sciences, University of Algarve, Faro 8005-139, Portugal; E-Mails: (D.A.M.); (L.C.); (L.B.); (H.P.); (R.B.-H.)
| | - Khalid M. Abu-Salah
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Pleissner D, Lam WC, Sun Z, Lin CSK. Food waste as nutrient source in heterotrophic microalgae cultivation. BIORESOURCE TECHNOLOGY 2013; 137:139-46. [PMID: 23587816 DOI: 10.1016/j.biortech.2013.03.088] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 05/02/2023]
Abstract
Glucose, free amino nitrogen (FAN), and phosphate were recovered from food waste by fungal hydrolysis using Aspergillus awamori and Aspergillus oryzae. Using 100g food waste (dry weight), 31.9 g glucose, 0.28 g FAN, and 0.38 g phosphate were recovered after 24h of hydrolysis. The pure hydrolysate has then been used as culture medium and nutrient source for the two heterotrophic microalgae Schizochytrium mangrovei and Chlorella pyrenoidosa, S. mangrovei and C. pyrenoidosa grew well on the complex food waste hydrolysate by utilizing the nutrients recovered. At the end of fermentation 10-20 g biomass were produced rich in carbohydrates, lipids, proteins, and saturated and polyunsaturated fatty acids. Results of this study revealed the potential of food waste hydrolysate as culture medium and nutrient source in microalgae cultivation.
Collapse
Affiliation(s)
- Daniel Pleissner
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
44
|
Pleissner D, Eriksen NT, Lundgreen K, Riisgård HU. Biomass Composition of Blue Mussels, Mytilus edulis, is Affected by Living Site and Species of Ingested Microalgae. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/902152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have investigated changes in specific contents of protein, glycogen and lipid, and fatty acids of blue mussels, Mytilus edulis, under different conditions in the field and in laboratory feeding experiments using different microalgae. Specific contents of glycogen and lipid increased in mussels relocated to net bags at a location in Kerteminde Bay (Great Belt, Denmark) in contrast to mussels relocated to a location in Sallingsund (Limfjorden, Denmark). The polyunsaturated fatty acid, eicosapentaenoic acid, reached 3 times higher values in the mussels in Kerteminde Bay. Mussels fed pure cultures of Crypthecodinium cohnii, which is rich in the polyunsaturated fatty acid, docosahexaenoic acid, and glycogen, gained the highest specific contents of this fatty acid and glycogen. Mussels feeding on the most protein rich of the microalgae, Bracteacoccus sp., gained the highest protein contents. The specific glycogen content of the mussels was influenced by their “condition” (body dry weight/shell length ratio) while specific protein and lipid contents were not. Starvation affected mainly the specific glycogen content. These results show that biomass composition of blue mussels is affected by living site and local phytoplankton species and that the fatty acids composition of mussels reflects the content of fatty acids in the diet.
Collapse
Affiliation(s)
- Daniel Pleissner
- Marine Biological Research Centre, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Niels Thomas Eriksen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, 9000 Aalborg, Denmark
| | - Kim Lundgreen
- Marine Biological Research Centre, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| | - Hans Ulrik Riisgård
- Marine Biological Research Centre, University of Southern Denmark, Hindsholmvej 11, 5300 Kerteminde, Denmark
| |
Collapse
|