1
|
Panikulam S, Morgan H, Gutknecht M, Villiger TK, Lebesgue N, Karle AC. Host cell protein-mediated adjuvanticity and immunogenicity risks of biotherapeutics. Biotechnol Adv 2025; 81:108575. [PMID: 40180137 DOI: 10.1016/j.biotechadv.2025.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/18/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Host cell proteins (HCPs) are process-related impurities of biotherapeutic production that might affect product quality and/or patient safety. In a few cases, adverse events were attributed to HCPs present in the administered biotherapeutic. HCP-associated immune risks include adjuvanticity and immunogenicity with potential cross-reactivity. Based on the published data, some HCPs can act as adjuvants increasing the immunogenicity of the biotherapeutic as a bystander effect. HCPs may also induce immunogenicity against themselves, resulting in anti-HCP T cell responses and anti-HCP antibody formation. Depending on sequence similarities, these anti-HCP immune responses might theoretically be cross-reactive to the biotherapeutic or human endogenous proteins. In this review, we examine HCP-associated immune-related risks reported from non-clinical and clinical studies. We also discuss the potential and limitations of in vitro and in silico methods to evaluate the adjuvanticity and immunogenicity potential of HCPs. A risk-based assessment of the safety impact of HCPs may include the identity of the HCP and similarity to the biotherapeutic and human proteins, as well as product, treatment-, and patient-related factors.
Collapse
Affiliation(s)
- Sherin Panikulam
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Hannah Morgan
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Thomas K Villiger
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Nicolas Lebesgue
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Anette C Karle
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
2
|
Bhoyar S, Foster M, Lenhoff AM. Multi-component behavior of host-cell protein- and antibody-containing heteroaggregates in protein A chromatography. J Chromatogr A 2025; 1753:465954. [PMID: 40311270 DOI: 10.1016/j.chroma.2025.465954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025]
Abstract
Despite its high selectivity and affinity towards the monoclonal antibody (mAb) product, protein A chromatography displays persistence of impurities such as host-cell proteins (HCPs) and high molecular weight (HMW) species, necessitating further purification steps. One factor in the persistence of HCPs and HMWs is the presence of mAb-HCP heteroaggregates that can co-elute with the mAb. This work investigates the chromatographic behavior of persistent aggregate species of a number of IgG1s and IgG4s, using both industrial harvested cell culture fluids (HCCFs) and protein A eluates as feeds. For two classes of aggregates, classified as small and large by size-exclusion chromatography (SEC), the protein A chromatography behavior was determined experimentally and a multi-component, mechanistic model based on the general rate model (GRM) was developed to describe and predict chromatographic breakthrough and elution under various process conditions. The model-predicted column outlet profiles and intra-particle uptake profiles agree satisfactorily with experimental chromatographic and confocal laser scanning microscopy data, respectively. Within the model framework, the basis for separation is that the binding affinity ratio for small aggregates (SA) relative to that of the mAb increases from near 1 at pH 7 to >4 at pH 4.2, while for large aggregates (LA) the ratios are ∼25 and ∼35 respectively, resulting in lower elution pH ranges for the aggregates. These results and the model may aid in aggregate clearance and may also have broader application in multicomponent chromatographic modeling.
Collapse
Affiliation(s)
- Soumitra Bhoyar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Max Foster
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
3
|
Felix MN, Waerner T, Lakatos D, Reisinger B, Fischer S, Garidel P. Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives. Front Bioeng Biotechnol 2025; 12:1490276. [PMID: 39867473 PMCID: PMC11760601 DOI: 10.3389/fbioe.2024.1490276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities. Chemical (oxidations and hydrolyses) and enzymatic degradations have been reported to affect the stability of PS in drug products. Specifically, the presence of trace amounts (sub-ppm) of certain host cell proteins (HCPs) can induce enzymatic PS degradation, which can lead to the release of free fatty acids during storage over time. Enzymatic polysorbate degradation may impair the functionality of the surfactant in stabilising therapeutic proteins, leading to the formation of visible and/or sub-visible particles in biopharmaceutical drug products. This review summarises the enzymes currently known to be involved in the degradation of polysorbate in mammalian biotechnological processes for therapeutic proteins. In recent years, advanced analytical methods have been developed to qualify and quantify the PS-degrading enzymes. Most of these assays are based on mass spectrometry with a preceding HCP enrichment approach. Efforts were made to measure the enzyme activity and correlate it with observed PS degradation. The impact on drug product quality attributes, including fatty acid solubility and phase separation, up to the formation of visible particles, and the potential induction of protein and protein/fatty acid mixed particles as well as the sensitivity of specific PS quality towards enzymatic degradation, was considered. Various drug substance (DS) mitigation strategies related to the occurrence of PS degrading enzymes are discussed as amongst them the generation of stable HCP knockout cell lines, which are also carefully analysed. The underlying opinion article reflects the undergoing discussions related to PS degrading enzymes and focusses on (i) impact on drug product, (ii) analytics for identification/quantification (characterisation) of the PS degrading enzymes, (iii) enzyme activity (iv) currently identified enzymes, and (v) potential mitigation strategies to avoid enzymatic PS degradation during DS manufacturing.
Collapse
Affiliation(s)
- Marius Nicolaus Felix
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Thomas Waerner
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Bernd Reisinger
- Analytical Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| | - Patrick Garidel
- Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany
| |
Collapse
|
4
|
Sahoo A, Tsukiadate T, Lin B, Kotzbauer E, Houser J, Patel M, Li X, Madabhushi SR. Proteomics Reveals Distinctive Host Cell Protein Expression Patterns in Fed-Batch and Perfusion Cell Culture Processes. Biotechnol J 2025; 20:e202400567. [PMID: 39834099 PMCID: PMC11747259 DOI: 10.1002/biot.202400567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Chinese hamster ovary (CHO) cells are widely used to produce recombinant proteins, including monoclonal antibodies (mAbs), through various process modes. While fed-batch (FB) processes have been the standard, a shift toward high-density perfusion processes is being driven by increased productivity, flexible facility footprints, and lower costs. Ensuring the clearance of process-related impurities, such as host cell proteins (HCPs), is crucial in biologics manufacturing. Although purification processes remove most impurities, integrated strategies are being developed to enhance clearance of some high-risk HCPs. Current understanding of HCP expression dynamics in cell culture is limited. This study utilized data-independent acquisition (DIA) proteomics to compare the proteomic profiles of cell culture supernatants from 14 FB clones and three perfusion clones, all expressing the same mAb from the same host cell line. Results showed that perfusion processes enhance cell growth and productivity, exhibiting distinct proteomic profiles compared to FB processes. Perfusion processes also maintain a more comparable HCP abundance profile across clones, especially for 46 problematic HCPs monitored. Cluster analysis of FB proteomics revealed distinct abundance patterns and correlations with process parameters. Differential abundance analysis identified significant protein differences between the two processes. This is the first extensive study characterizing HCPs expressed by clones under different process modes. Further research could lead to strategies for preventing or managing problematic HCPs in biologics manufacturing.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biologics Process Research & DevelopmentMerck & Co., Inc.RahwayNew JerseyUSA
| | - Taku Tsukiadate
- Analytical Research & Development Mass SpectrometryMerck & Co., Inc.RahwayNew JerseyUSA
| | - Bor‐Ruei Lin
- Biologics Process Research & DevelopmentMerck & Co., Inc.RahwayNew JerseyUSA
| | - Erin Kotzbauer
- Biologics Process Research & DevelopmentMerck & Co., Inc.RahwayNew JerseyUSA
| | - Jason Houser
- Biologics Process Research & DevelopmentMerck & Co., Inc.RahwayNew JerseyUSA
| | - Misaal Patel
- Biologics Process Research & DevelopmentMerck & Co., Inc.RahwayNew JerseyUSA
| | - Xuanwen Li
- Analytical Research & Development Mass SpectrometryMerck & Co., Inc.RahwayNew JerseyUSA
| | | |
Collapse
|
5
|
Leibiger TM, Min L, Lee KH. Quantitative proteomic analysis of residual host cell protein retention across adeno-associated virus affinity chromatography. Mol Ther Methods Clin Dev 2024; 32:101383. [PMID: 39691383 PMCID: PMC11650319 DOI: 10.1016/j.omtm.2024.101383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
To better understand host cell protein (HCP) retention in adeno-associated virus (AAV) downstream processes, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) was used to quantitatively profile residual HCPs for four AAV serotypes (AAV2, -5, -8, and -9) produced with HEK293 cells and purified using POROS CaptureSelect AAVX affinity chromatography. A broad range of residual HCPs were detected in affinity eluates after purification (N total = 2,746), and HCP profiles showed universally present species (N universal = 1,117) and species unique to one or more AAV serotype. SWATH-MS revealed that HCP persistence was dominated by high-abundance conserved species (HACS), which appeared across all serotype conditions studied. Due to the notable contribution of these species to overall residual HCP levels, physical and functional characteristics of HACS were examined to determine trends that coincide with persistence. Subnetwork interaction mapping and Gene Ontology function enrichment analysis revealed extensive physical interactions between these proteins and significant enrichment for biological processes, molecular functions, and reactome pathways related to protein folding, nucleic acid binding, and cellular stress. The abundant and conserved nature of these HCPs and their functions offers a new perspective for mechanistic evaluations of impurity retention for AAV downstream processes.
Collapse
Affiliation(s)
- Thomas M. Leibiger
- University of Delaware, Department of Chemical and Biomolecular Engineering, Newark, DE 19713, USA
| | - Lie Min
- University of Delaware, Department of Chemical and Biomolecular Engineering, Newark, DE 19713, USA
| | - Kelvin H. Lee
- University of Delaware, Department of Chemical and Biomolecular Engineering, Newark, DE 19713, USA
| |
Collapse
|
6
|
Lakatos D, Idler M, Stibitzky S, Amann J, Schuschkewitz J, Krayl D, Liebau J, Grosch JH, Arango Gutierrez E, Kluters S. Buffer system improves the removal of host cell protein impurities in monoclonal antibody purification. Biotechnol Bioeng 2024; 121:3869-3880. [PMID: 39295215 DOI: 10.1002/bit.28844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
Polysorbates (PS) are commonly used as stabilizers of biopharmaceuticals such as monoclonal antibodies (mAbs). However, they are prone to chemical and enzymatic degradation. The latter can be caused by residual host cell proteins (HCPs) in the drug substance. Degradation affects the functionality of the PS surfactant which can lead to formation of particles. An increasing number of publications describe enzymatic PS degradation. Significant efforts have been made to characterize HCP removal during Downstream Processing (DSP) of mAbs and to develop mitigation strategies. Here we describe the use of glycine buffer for acidic elution in Protein A affinity chromatography compared to acetate buffer, which is more commonly used in the biopharmaceutical industry. Increased turbidity was observed during pH re-adjustment after low pH virus inactivation when using glycine buffer. Analytical data suggests that this turbidity is caused by the formation of precipitates which include HCP and DNA impurities. Additionally, as a zwitterion, glycine does not contribute to conductivity; this further enhances HCP removal during anion-exchange flow-through chromatography. Although glycine is well known as a possible elution buffer for Protein A affinity chromatography, its positive impact on HCP removal and PS stability have not yet been described in literature.
Collapse
Affiliation(s)
- Dániel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martina Idler
- Development Operations, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Selina Stibitzky
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jennifer Amann
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jakob Schuschkewitz
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Dominik Krayl
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Judith Liebau
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Jan-Hendrik Grosch
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Erik Arango Gutierrez
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simon Kluters
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
7
|
Disela R, Neijenhuis T, Le Bussy O, Geldhof G, Klijn M, Pabst M, Ottens M. Experimental characterization and prediction of Escherichia coli host cell proteome retention during preparative chromatography. Biotechnol Bioeng 2024; 121:3848-3859. [PMID: 39267334 DOI: 10.1002/bit.28840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/17/2024]
Abstract
Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host Escherichia coli (E. coli) over 1500 unique proteins can be identified. Currently, understanding the behavior of individual HCPs for purification operations, such as preparative chromatography, is limited. Therefore, we aim to elucidate the elution behavior of individual HCPs from E. coli strain BLR(DE3) during chromatography. Understanding this complex mixture and knowing the chromatographic behavior of each individual HCP improves the ability for rational purification process design. Specifically, linear gradient experiments were performed using ion exchange (IEX) and hydrophobic interaction chromatography, coupled with mass spectrometry-based proteomics to map the retention of individual HCPs. We combined knowledge of protein location, function, and interaction available in literature to identify trends in elution behavior. Additionally, quantitative structure-property relationship models were trained relating the protein 3D structure to elution behavior during IEX. For the complete data set a model with a cross-validated R2 of 0.55 was constructed, that could be improved to a R2 of 0.70 by considering only monomeric proteins. Ultimately this study is a significant step toward greater process understanding.
Collapse
Affiliation(s)
- Roxana Disela
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tim Neijenhuis
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | - Marieke Klijn
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
8
|
Disela R, Keulen D, Fotou E, Neijenhuis T, Le Bussy O, Geldhof G, Pabst M, Ottens M. Proteomics-based method to comprehensively model the removal of host cell protein impurities. Biotechnol Prog 2024; 40:e3494. [PMID: 39016609 PMCID: PMC11659801 DOI: 10.1002/btpr.3494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/30/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Mechanistic models mostly focus on the target protein and some selected process- or product-related impurities. For a better process understanding, however, it is advantageous to describe also reoccurring host cell protein impurities. Within the purification of biopharmaceuticals, the binding of host cell proteins to a chromatographic resin is far from being described comprehensively. For a broader coverage of the binding characteristics, large-scale proteomic data and systems level knowledge on protein interactions are key. However, a method for determining binding parameters of the entire host cell proteome to selected chromatography resins is still lacking. In this work, we have developed a method to determine binding parameters of all detected individual host cell proteins in an Escherichia coli harvest sample from large-scale proteomics experiments. The developed method was demonstrated to model abundant and problematic proteins, which are crucial impurities to be removed. For these 15 proteins covering varying concentration ranges, the model predicts the independently measured retention time during the validation gradient well. Finally, we optimized the anion exchange chromatography capture step in silico using the determined isotherm parameters of the persistent host cell protein contaminants. From these results, strategies can be developed to separate abundant and problematic impurities from the target antigen.
Collapse
Affiliation(s)
- Roxana Disela
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Daphne Keulen
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Eleni Fotou
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Tim Neijenhuis
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Olivier Le Bussy
- GSK, Technical Research & Development, Rue de l'Institut 89RixensartBelgium
| | - Geoffroy Geldhof
- GSK, Technical Research & Development, Rue de l'Institut 89RixensartBelgium
| | - Martin Pabst
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Marcel Ottens
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
9
|
Maier M, Schneider S, Weiss L, Fischer S, Lakatos D, Studts J, Franzreb M. Tailoring polishing steps for effective removal of polysorbate-degrading host cell proteins in antibody purification. Biotechnol Bioeng 2024; 121:3181-3195. [PMID: 38853584 DOI: 10.1002/bit.28767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Ensuring the quality and safety of biopharmaceutical products requires the effective separation of monoclonal antibodies (mAbs) from host cell proteins (HCPs). A major challenge in this field is the enzymatic hydrolysis of polysorbates (PS) in drug products. This study addresses this issue by investigating the removal of polysorbate-degrading HCPs during the polishing steps of downstream purification, an area where knowledge about individual HCP behavior is still limited. We investigated the separation of different mAb formats from four individual polysorbate degrading hydrolases (CES1F, CES2C, LPLA2, and PAF-AH) using cation exchange (CEX) and mixed-mode chromatography (MMC) polishing steps. Our research identified a key challenge: The similar elution behavior of mAbs and HCPs during chromatographic separation. To investigate this phenomenon, we performed high-throughput binding screenings for recombinant polysorbate degrading hydrolases and representative mAb candidates on CEX and MMC chromatography resins. We then employed a three-step strategy that also served as a scale-up process, optimizing separation conditions and leading to the successful removal of specific HCPs while maintaining high mAb recovery rates (>96%). This strategy involved the use of surface response models and miniature columns for screening, followed by validation on larger columns using a chromatography system. Our results highlight the critical role of the inherent properties of mAbs for successful separation from HCPs. These results underscore the need to tailor the purification process to leverage the slight differences in binding behavior and elution profiles between mAbs and specific HCPs. This approach lays the foundation for developing more effective strategies for overcoming the challenge of enzymatic polysorbate degradation, paving the way for improved quality and safety in biopharmaceutical products.
Collapse
Affiliation(s)
- Melanie Maier
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan Schneider
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Linus Weiss
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach an der Riss, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Lakatos
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Joey Studts
- Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
10
|
Wittkopp F, Welsh J, Todd R, Staby A, Roush D, Lyall J, Karkov S, Hunt S, Griesbach J, Bertran MO, Babi D. Current state of implementation of in silico tools in the biopharmaceutical industry-Proceedings of the 5th modeling workshop. Biotechnol Bioeng 2024; 121:2952-2973. [PMID: 38853778 DOI: 10.1002/bit.28768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
The fifth modeling workshop (5MW) was held in June 2023 at Favrholm, Denmark and sponsored by Recovery of Biological Products Conference Series. The goal of the workshop was to assemble modeling practitioners to review and discuss the current state, progress since the last fourth mini modeling workshop (4MMW), gaps and opportunities for development, deployment and maintenance of models in bioprocess applications. Areas of focus were four categories: biophysics and molecular modeling, mechanistic modeling, computational fluid dynamics (CFD) and plant modeling. Highlights of the workshop included significant advancements in biophysical/molecular modeling to novel protein constructs, mechanistic models for filtration and initial forays into modeling of multiphase systems using CFD for a bioreactor and mapped strategically to cell line selection/facility fit. A significant impediment to more fully quantitative and calibrated models for biophysics is the lack of large, anonymized datasets. A potential solution would be the use of specific descriptors in a database that would allow for detailed analyzes without sharing proprietary information. Another gap identified was the lack of a consistent framework for use of models that are included or support a regulatory filing beyond the high-level guidance in ICH Q8-Q11. One perspective is that modeling can be viewed as a component or precursor of machine learning (ML) and artificial intelligence (AI). Another outcome was alignment on a key definition for "mechanistic modeling." Feedback from participants was that there was progression in all of the fields of modeling within scope of the conference. Some areas (e.g., biophysics and molecular modeling) have opportunities for significant research investment to realize full impact. However, the need for ongoing research and development for all model types does not preclude the application to support process development, manufacturing and use in regulatory filings. Analogous to ML and AI, given the current state of the four modeling types, a prospective investment in educating inter-disciplinary subject matter experts (e.g., data science, chromatography) is essential to advancing the modeling community.
Collapse
Affiliation(s)
- Felix Wittkopp
- Roche Diagnostics GmbH, Gene Therapy Technical Development, Penzberg, Germany
| | - John Welsh
- Rivanna Bioprocess Solutions, Charlottesville, Virginia, USA
| | - Robert Todd
- Digital Process Design, Boulder, Colorado, USA
| | - Arne Staby
- CMC Development, Novo Nordisk, Bagsværd, Denmark
| | - David Roush
- Roush Biopharma Panacea, Colts Neck, New Jersey, USA
| | - Jessica Lyall
- Purification Development, Genentech, South San Francisco, California, USA
| | - Sophie Karkov
- Purification Research, Global Research Technologies, Novo Nordisk, Måløv, Denmark
| | - Stephen Hunt
- Allogene Therapeutics, Inc., South San Francisco, California, USA
| | | | - Maria-Ona Bertran
- Product Supply API Manufacturing Development, Novo Nordisk, Bagsværd, Denmark
| | - Deenesh Babi
- Product Supply API Manufacturing Development, Novo Nordisk, Bagsværd, Denmark
| |
Collapse
|
11
|
Soni H, Lako I, Placidi M, Cramer SM. Implications of AAV affinity column reuse and vector stability on product quality attributes. Biotechnol Bioeng 2024; 121:2449-2465. [PMID: 37485847 DOI: 10.1002/bit.28500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
In this work, the implications of AAV9 capsid design and column reuse on AAV9 vector product quality were assessed with POROS CaptureSelect (PCS) AAVX and AAV9 resins using sf9 insect cell-derived model AAV9 vectors with varying viral protein (VP) ratios. Chromatographic experiments with purified drug substance AAV9 model feeds indicated consistent vector elution profiles, independent of adeno-associated virus (AAV) VP ratio, or cycle number. In contrast, the presence of process impurities in the clarified lysate feeds resulted in clear changes in the elution patterns. This included increased aggregate content in the vector eluates over multiple cycles as well as clear differences in the performance of these affinity resin systems. The AAV9-serotype specific PCS AAV9 column, with lower vector elution pH, resulted in higher aggregate content over multiple cycles as compared to the serotype-independent PCS AAVX column. Further, the results with vectors of varying VP ratio indicated that while one vector type eluate displayed higher aggregation in both affinity columns over column reuse, the eluate with the other vector type did not exhibit changes in the aggregation profile. Interestingly, vector aggregates in the affinity eluates also contained double-stranded DNA impurities and histone proteins, with similar trends to the aggregate levels. This behavior upon column reuse indicates that these host cell impurities are likely carried over to subsequent runs due to incomplete clean-in-place (CIP). These results indicate that feed impurities, affinity resin characteristics, elution pH, column CIP, and vector stability can impact the reusability of AAV affinity columns and product quality.
Collapse
Affiliation(s)
- Harshal Soni
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ira Lako
- Voyager Therapeutics, Cambridge, Massachusetts, USA
| | | | - Steven M Cramer
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
12
|
Panikulam S, Hanke A, Kroener F, Karle A, Anderka O, Villiger TK, Lebesgue N. Host cell protein networks as a novel co-elution mechanism during protein A chromatography. Biotechnol Bioeng 2024; 121:1716-1728. [PMID: 38454640 DOI: 10.1002/bit.28678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
Host cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.
Collapse
Affiliation(s)
- Sherin Panikulam
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alexander Hanke
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Frieder Kroener
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Anette Karle
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Oliver Anderka
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Thomas K Villiger
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Nicolas Lebesgue
- Analytical Development and Characterization, Biopharmaceutical Product and Process Development, Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
13
|
Oh YH, Becker ML, Mendola KM, Choe LH, Min L, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Factors affecting product association as a mechanism of host-cell protein persistence in bioprocessing. Biotechnol Bioeng 2024; 121:1284-1297. [PMID: 38240126 DOI: 10.1002/bit.28658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
Product association of host-cell proteins (HCPs) to monoclonal antibodies (mAbs) is widely regarded as a mechanism that can enable HCP persistence through multiple purification steps and even into the final drug substance. Discussion of this mechanism often implies that the existence or extent of persistence is directly related to the strength of binding but actual measurements of the binding affinity of such interactions remain sparse. Two separate avenues of investigation of HCP-mAb binding are reported here. One is the measurement of the affinity of binding of individual, commonly persistent Chinese hamster ovary (CHO) HCPs to each of a set of mAbs, and the other uses quantitative proteomic measurements to assess binding of HCPs in a null CHO harvested cell culture fluid (HCCF) to mAbs produced in the same cell line. The individual HCP measurements show that the binding affinities of individual HCPs to different mAbs can vary appreciably but are rarely very high, with only weak pH dependence. The measurements on the null HCCF allow estimation of individual HCP-mAb affinities; these are typically weaker than those seen in affinity measurements on isolated HCPs. Instead, the extent of binding appears correlated with the initial abundance of individual HCPs in the HCCF and the forms of the HCPs in the solution, i.e., whether HCPs are present as free molecules or as parts of large aggregates. Separate protein A chromatography experiments performed by feeding different fractions of a mAb-containing HCCF obtained by size-exclusion chromatography (SEC) showed clear differences in the number and identity of HCPs found in the protein A eluate. These results indicate a significant role for HCP-mAb association in determining HCP persistence through protein A chromatography, presumably through binding of HCP-mAb complexes to the resin. Overall, the results illustrate the importance of considering more fully the biophysical context of HCP-product association in assessing the factors that may affect the phenomenon and determine its implications. Knowledge of the abundances and the forms of individual or aggregated HCPs in HCCF are particularly significant, emphasizing the integration of upstream and downstream bioprocessing and the importance of understanding the collective properties of HCPs in addition to just the biophysical properties of individual HCPs.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Matthew L Becker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kerri M Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, California, USA
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David J Roush
- Biologics PR&D, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Steven M Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, 27606, North Carolina, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
14
|
Sampathkumar K, Kerwin BA. Roadmap for Drug Product Development and Manufacturing of Biologics. J Pharm Sci 2024; 113:314-331. [PMID: 37944666 DOI: 10.1016/j.xphs.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Therapeutic biology encompasses different modalities, and their manufacturing processes may be vastly different. However, there are many similarities that run across the different modalities during the drug product (DP) development process and manufacturing. Similarities include the need for Quality Target Product Profile (QTTP), analytical development, formulation development, container/closure studies, drug product process development, manufacturing and technical requirements set out by numerous regulatory documents such as the FDA, EMA, and ICH for pharmaceuticals for human use and other country specific requirements. While there is a plethora of knowledge on studies needed for development of a drug product, there is no specific guidance set out in a phase dependent manner delineating what studies should be completed in alignment with the different phases of clinical development from pre-clinical through commercialization. Because of this reason, we assembled a high-level drug product development and manufacturing roadmap. The roadmap is applicable across the different modalities with the intention of providing a unified framework from early phase development to commercialization of biologic drug products.
Collapse
Affiliation(s)
- Krishnan Sampathkumar
- SSK Biosolutions LLC, 14022 Welland Terrace, North Potomac, MD 20878, USA; Currently at Invetx, Inc., One Boston Place, Suite 3930, 201 Washington Street, Boston, MA 02108, USA
| | - Bruce A Kerwin
- Kerwin BioPharma Consulting LLC, 14138 Farmview Ln NE, Bainbridge Island, WA 98110, USA; Coriolis Scientific Advisory Board, Coriolis Pharma, Fraunhoferstr. 18 b, 82152 Martinsried, Germany.
| |
Collapse
|
15
|
Oh YH, Mendola KM, Choe LH, Min L, Lavoie AR, Sripada SA, Williams TI, Lee KH, Yigzaw Y, Seay A, Bill J, Li X, Roush DJ, Cramer SM, Menegatti S, Lenhoff AM. Identification and characterization of CHO host-cell proteins in monoclonal antibody bioprocessing. Biotechnol Bioeng 2024; 121:291-305. [PMID: 37877536 PMCID: PMC10842603 DOI: 10.1002/bit.28568] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines. The results show considerable variability in HCP identities in the processing steps but extensive commonality in the identities and quantities of the most abundant HCPs in the harvests for different processes. Analysis of HCP abundance in the harvests shows a likely relationship between abundance and the reproducibility of quantification measurements and suggests that some groups of HCPs may hinder the characterization. Quantitative monitoring of HCPs persisting through purification steps coupled with the findings from the harvest analysis suggest that multiple factors, including HCP abundance and mAb-HCP interactions, can contribute to the persistence of individual HCPs and the identification of groups of common, persistent HCPs in mAb manufacturing.
Collapse
Affiliation(s)
- Young Hoon Oh
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kerri M. Mendola
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Leila H. Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Ashton R. Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Sobhana A. Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Taufika Islam Williams
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27606
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Yinges Yigzaw
- Purification Process Development, Genentech, Inc., South San Francisco, CA 94080
| | - Alexander Seay
- Purification Process Development, Genentech, Inc., South San Francisco, CA 94080
| | - Jerome Bill
- Purification Process Development, Genentech, Inc., South San Francisco, CA 94080
| | - Xuanwen Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, NJ 07033
| | | | - Steven M. Cramer
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
16
|
Huang H, Dong X, Sun Y, Shi Q. Biomimetic affinity chromatography for antibody purification: Host cell protein binding and impurity removal. J Chromatogr A 2023; 1707:464305. [PMID: 37607431 DOI: 10.1016/j.chroma.2023.464305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Peptide affinity chromatography has received increasing attention as an alternative to protein A chromatography in antibody purification. However, its lower selectivity than protein A chromatography has impeded its success in practical applications. In particular, efficient removal of contaminants, including host cell proteins (HCPs) and DNA, is a great challenge for peptide affinity chromatography in monoclonal antibody (mAb) manufacturing. In this work, a biomimetic peptide ligand (bPL), FYWHCLDE, was coupled onto Sepharose 6 Fast Flow (SepFF) to synthesize a peptide affinity gel, SepFF-bPL, for the investigation of the binding mechanism of HCP as well as the feasibility of antibody capture. The results showed that the SepFF-bPL column exhibited effective removal of mAb aggregates as well as mAb capture from feedstocks of various origins, whereas poor removal of HCP and DNA was found. Mechanistic studies of HCP binding indicated that electrostatic interactions dominated HCP binding on the SepFF-bPL gel and that ionic conductivity had a significant influence on HCP binding at low salt concentrations. Thus, combined chromatin extraction and anion exchange adsorption were introduced prior to SepFF-bPL chromatography for initial contaminant removal to reduce mAb aggregation induced by HCP and the loading burden of contaminants in SepFF-bPL chromatography. A proof-of-concept study of the purification train demonstrated a high recovery of mAb (68.7%) and low levels of HCP (23 ppm) and DNA (below the limit of detection) in the final product, which were acceptable for the mandatory requirements in clinical applications. This research provided a deep understanding of HCP binding on the peptide affinity column and led to the development of an effective purification train.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
17
|
Herman CE, Min L, Choe LH, Maurer RW, Xu X, Ghose S, Lee KH, Lenhoff AM. Behavior of host-cell-protein-rich aggregates in antibody capture and polishing chromatography. J Chromatogr A 2023; 1702:464081. [PMID: 37244165 PMCID: PMC10299761 DOI: 10.1016/j.chroma.2023.464081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Recent work has shown that aggregates in monoclonal antibody (mAb) solutions may be made up not just of mAb oligomers but can also harbor hundreds of host-cell proteins (HCPs), suggesting that aggregate persistence through downstream purification operations may be related to HCP clearance. We have examined this in a primary analysis of aggregate persistence through processing steps that are typically implemented for HCP reduction, demonstrating that the phenomenon is relevant to depth filtration, protein A chromatography and flow-through anion-exchange (AEX) polishing. Confocal laser scanning microscopy observations show that aggregates compete with the mAb to adsorb specifically in protein A chromatography and that this competitive interaction is integral to the efficacy of protein A washes. Column chromatography reveals that the protein A elution tail can have a relatively high concentration of aggregates, which corroborates analogous observations from recent HCP studies. Similar measurements in flow-through AEX chromatography show that relatively large aggregates that harbor HCPs and that persist into the protein A eluate can be retained to an extent that appears to depend primarily on the resin surface chemistry. The total aggregate mass fraction of both protein A eluate pools (∼ 2.4 - 3.6%) and AEX flow-through fractions (∼ 1.5 - 3.2%) correlates generally with HCP concentrations measured using enzyme-linked immunosorbent assay (ELISA) as well as the number of HCPs that may be identified in proteomic analysis. This suggests that quantification of the aggregate mass fraction may serve as a convenient albeit imperfect surrogate for informing early process development decisions regarding HCP clearance strategies.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Ronald W Maurer
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Xuankuo Xu
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Sanchayita Ghose
- Biologics Development, Bristol Myers Squibb, Devens, MA 01434, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
18
|
Herman CE, Min L, Choe LH, Maurer RW, Xu X, Ghose S, Lee KH, Lenhoff AM. Analytical characterization of host-cell-protein-rich aggregates in monoclonal antibody solutions. Biotechnol Prog 2023; 39:e3343. [PMID: 37020359 DOI: 10.1002/btpr.3343] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023]
Abstract
Host-cell proteins (HCPs) and high molecular weight (HMW) species have historically been treated as independent classes of impurities in the downstream processing of monoclonal antibodies (mAbs), but recent indications suggest that they may be partially linked. We have explored this connection with a shotgun proteomic analysis of HMW impurities that were isolated from harvest cell culture fluid (HCCF) and protein A eluate using size-exclusion chromatography (SEC). As part of the proteomic analysis, a cross-digest study was performed in which samples were analyzed using both the standard and native digest techniques to enable a fair comparison between bioprocess pools. This comparison reveals that the HCP profiles of HCCF and protein A eluate overlap substantially more than previous work has suggested, because hundreds of HCPs are conserved in aggregates that may be up to ~50 nm in hydrodynamic radius and that persist through the protein A capture step. Quantitative SWATH proteomics suggests that the majority of the protein A eluate's HCP mass is found in such aggregates, and this is corroborated by ELISA measurements on SEC fractions. The SWATH data also show that intra-aggregate concentrations of individual HCPs are positively correlated between aggregates that were isolated from HCCF and protein A eluate, and species that have generally been considered difficult to remove tend to be more concentrated than their counterparts. These observations support prior hypotheses regarding aggregate-mediated HCP persistence through protein A chromatography and highlight the importance of this persistence mechanism.
Collapse
Affiliation(s)
- Chase E Herman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Lie Min
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Leila H Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Ronald W Maurer
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Xuankuo Xu
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Sanchayita Ghose
- Biologics Process Development, Bristol Myers Squibb, Massachusetts, 01434, Devens, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716, USA
| |
Collapse
|