1
|
Xu M, Li X, Yuan C, Zhu T, Wang M, Zhu Y, Duan Y, Yao J, Luo B, Wang Z, Yin S, Zhao Y. Ursolic Acid Inhibits Glycolysis of Ovarian Cancer via KLF5/PI3K/AKT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2211-2231. [PMID: 39614414 DOI: 10.1142/s0192415x2450085x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Glycolysis is one of the key metabolic reprogramming characteristics of ovarian cancer. Ursolic Acid (UA), as a natural compound, exerts a beneficial regulatory effect on tumor metabolism. In this study, we have confirmed through RNA-seq analysis and a series of in vitro and in vivo functional experiments that UA significantly inhibits ovarian cancer cell proliferation, promotes tumor apoptosis, and reduces glycolysis levels. Additionally, it demonstrates synergistic therapeutic effects with cisplatin in both in vitro and in vivo experiments. Furthermore, at the molecular level, we found that UA inhibits glycolysis in ovarian cancer by binding to the transcription factor KLF5 and blocking the transcriptional expression of the downstream PI3K/AKT signaling pathway, thereby exerting its therapeutic effect. In conclusion, our research indicates that UA can inhibit the proliferation, apoptosis, and glycolysis levels of ovarian cancer cells through the KLF5/PI3K/AKT signaling axis. Our findings offer a new perspective on the therapeutic application of the natural compound UA in ovarian cancer and support its potential development as a candidate for chemotherapy.
Collapse
Affiliation(s)
- Meng Xu
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Centre, Shanghai 200032, P. R. China
| | - Chenyue Yuan
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Tingting Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P. R. China
| | - Mengfei Wang
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Ying Zhu
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Yanqiu Duan
- Central Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jialiang Yao
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Bin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Ziliang Wang
- Cancer Institute, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Sheng Yin
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China
| | - Yuqing Zhao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200090, P. R. China
| |
Collapse
|
2
|
Qin Y, Ma FY, Zhang Z, Zhao CH, Huang B. Vascular endothelial growth factor pathway's influence on bevacizumab efficacy in metastatic colorectal cancer treatment. World J Gastrointest Oncol 2024; 16:4514-4517. [PMID: 39554750 PMCID: PMC11551636 DOI: 10.4251/wjgo.v16.i11.4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
In this article, an article published in the World Journal of Gastrointestinal Oncology, which focuses on whether the expression of programmed death-ligand 1 (PD-L1) affects the effectiveness of chemotherapy regimens, including bevacizumab, in treating patients with colorectal cancer (CRC). Through neutralization of vascular endothelial growth factor (VEGF), bevacizumab inhibits tumor angiogenesis, impairing neovascularization and thereby depriving the tumor of essential nutrients and oxygen. Conversely, PD-L1 binding to VEGF receptor 2 promotes angiogenesis, supporting tumor vasculature. The interplay between these pathways complicates the assessment of bevacizumab's efficacy in cancer therapy, notably in CRC, where VEGF and PD-L1 significantly affect treatment response. This review examines metastatic CRC treatment strategies, focusing on bevacizumab's mechanism of action and the role of PD-L1 in this therapeutic context.
Collapse
Affiliation(s)
- Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fu-Yuan Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Zhi Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Chen-Hao Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
3
|
Li Y, Luo W, Meng C, Shi K, Gu R, Cui S. Exosomes as promising bioactive materials in the treatment of spinal cord injury. Stem Cell Res Ther 2024; 15:335. [PMID: 39334506 PMCID: PMC11438208 DOI: 10.1186/s13287-024-03952-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Patients with spinal cord injury (SCI) have permanent devastating motor and sensory disabilities. Secondary SCI is known for its complex progression and presents with sophisticated aberrant inflammation, vascular changes, and secondary cellular dysfunction, which aggravate the primary damage. Since their initial discovery, the potent neuroprotective effects and powerful delivery abilities of exosomes (Exos) have been reported in different research fields, including SCI. In this study, we summarize therapeutic advances related to the application of Exos in preclinical animal studies. Subsequently, we discuss the mechanisms of action of Exos derived from diverse cell types, including neurogenesis, angiogenesis, blood-spinal cord barrier preservation, anti-apoptosis, and anti-inflammatory potential. We also evaluate the relationship between the Exo delivery cargo and signaling pathways. Finally, we discuss the challenges and advantages of using Exos to offer innovative insights regarding the development of efficient clinical strategies for SCI.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Wenqi Luo
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Chuikai Meng
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Kaiyuan Shi
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China
| | - Rui Gu
- Department of Orthopaedic Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, No. 126 Xiantai Street, Changchun, Jilin, 130033, P.R. China.
| |
Collapse
|
4
|
Kang SW, Lim SH, Kim MJ, Lee J, Park YS, Lim HY, Kang WK, Kim ST. Efficacy of chemotherapy containing bevacizumab in patients with metastatic colorectal cancer according to programmed cell death ligand 1. World J Gastrointest Oncol 2024; 16:3521-3528. [PMID: 39171162 PMCID: PMC11334044 DOI: 10.4251/wjgo.v16.i8.3521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody, inhibits angiogenesis and reduces tumor growth. Serum VEGF-C, lactate dehydrogenase, and inflammatory markers have been reported as predictive markers related to bevacizumab treatment. Programmed cell death ligand 1 (PD-L1) could act upon VEGF receptor 2 to induce cancer cell angiogenesis and metastasis. AIM To investigate the efficacy of bevacizumab-containing chemotherapy in patients with metastatic colorectal cancer (CRC) according to the expression of PD-L1. METHODS This analysis included CRC patients who received bevacizumab plus FOLFOX or FOLFIRI as first-line therapy between June 24, 2014 and February 28, 2022, at Samsung Medical Center (Seoul, South Korea). Analysis of patient data included evaluation of PD-L1 expression by the combined positive score (CPS). We analyzed the efficacy of bevacizumab according to PD-L1 expression status in patients with CRC. RESULTS A total of 124 patients was included in this analysis. Almost all patients were treated with bevacizumab plus FOLFIRI or FOLFOX as the first-line chemotherapy. While 77% of patients received FOLFOX, 23% received FOLFIRI as backbone first-line chemotherapy. The numbers of patients with a PD-L1 CPS of 1 or more, 5 or more, or 10 or more were 105 (85%), 64 (52%), and 32 (26%), respectively. The results showed no significant difference in progression-free survival (PFS) and overall survival (OS) with bevacizumab treatment between patients with PD-L1 CPS less than 1 and those with PD-L1 CPS of 1 or more (PD-L1 < 1% vs PD-L1 ≥ 1%; PFS: P = 0.93, OS: P = 0.33), between patients with PD-L1 CPS less than 5 and of 5 or more (PD-L1 < 5% vs PD-L1 ≥ 5%; PFS: P = 0.409, OS: P = 0.746), and between patients with PD-L1 CPS less than 10 and of 10 or more (PD-L1 < 10% vs PD-L1 ≥ 10%; PFS: P = 0.529, OS: P = 0.568). CONCLUSION Chemotherapy containing bevacizumab can be considered as first-line therapy in metastatic CRC irrespective of PD-L1 expression.
Collapse
Affiliation(s)
- Shin Woo Kang
- Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Sung Hee Lim
- Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Min-Ji Kim
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Jeeyun Lee
- Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Young Suk Park
- Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Ho Yeong Lim
- Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Won Ki Kang
- Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Seung Tae Kim
- Division of Hematology Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| |
Collapse
|
5
|
Jin X, Pan Y, Cheng C, Shen H, Zhai C, Yin K, Zhu X, Pan H, You L. Optimizing first-line TKI treatment efficacy in PD-L1-positive EGFR-mutated NSCLC: the impact of antiangiogenic agents. Front Pharmacol 2024; 15:1391972. [PMID: 39161896 PMCID: PMC11330760 DOI: 10.3389/fphar.2024.1391972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Background In individuals receiving treatment with epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), those exhibiting positive PD-L1 expression might experience reduced progression-free survival (PFS). However, the effects on overall survival (OS) and the determination of efficacious treatment approaches are still not well-defined. Methods In our retrospective study, we examined data from 193 NSCLC patients with advanced EGFR mutations who received first-line TKI treatments, treated at two centers of Shaw Hospital in Zhejiang, China. This analysis covered a period from 1 January 2016 to 30 April 2023. Results Patients with PD-L1 positivity exhibited a markedly shorter average PFS (9.5 months versus 17.8 months, P < 0.001) and OS (44.4 months versus 65.7 months, P = 0.016) relative to those without PD-L1 expression. This difference in both PFS and OS remained statistically significant even after adjusting for multiple factors (P < 0.001 for PFS and P = 0.028 for OS). In the PD-L1-positive cohort, introducing combination antiangiogenic significantly extended both PFS (from 9.1 to 25.7 months, P = 0.026) and OS (from 42 to 53.5 months, P = 0.03). Post-first-line TKI therapy, 39.3% of PD-L1-positive patients and 54.5% of PD-L1-negative patients developed the T790M mutation (P = 0.212), with no notable difference in PFS from second-line TKI treatments between the groups. Additionally, subsequent combination therapy with immunotherapy markedly prolonged OS in the PD-L1-positive group. However, for PD-L1-negative patients, neither combination antiangiogenic therapy nor later-line immunotherapy demonstrated significant benefits in PFS or OS. Conclusion For PD-L1-positive patients, combined antiangiogenic treatments and immunotherapy can significantly improve survival outcomes. In contrast, PD-L1-negative patients show less benefit from these therapies, highlighting the greater efficacy of these treatments in PD-L1-positive individuals.
Collapse
Affiliation(s)
- Xuanhong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Pan
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Cheng Cheng
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hangchen Shen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chongya Zhai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kailai Yin
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Xinyu Zhu
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhou W, Zeng T, Chen J, Tang X, Yuan Y, Hu D, Zhang Y, Li Y, Zou J. Aberrant angiogenic signaling pathways: Accomplices in ovarian cancer progression and treatment. Cell Signal 2024; 120:111240. [PMID: 38823664 DOI: 10.1016/j.cellsig.2024.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Ovarian cancer is one of the most common malignant tumors in women, and treatment options are limited. Despite efforts to adjust cancer treatment models and develop new methods, including tumor microenvironment (TME) therapy, more theoretical support is needed. Increasing attention is being given to antiangiogenic measures for TME treatment. Another important concept in ovarian cancer TME is angiogenesis, where tumor cells obtain nutrients and oxygen from surrounding tissues through blood vessels to support further expansion and metastasis. Many neovascularization signaling pathways become imbalanced and hyperactive during this process. Inhibiting these abnormal pathways can yield ideal therapeutic effects in patients, even by reversing drug resistance. However, these deep TME signaling pathways often exhibit crosstalk and correlation. Understanding these interactions may be an important strategy for further treating ovarian cancer. This review summarizes the latest progress and therapeutic strategies for these angiogenic signaling pathways in ovarian cancer.
Collapse
Affiliation(s)
- Wenchao Zhou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Junling Chen
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yuwei Yuan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Daopu Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Sun L, Fan C, Xu P, Sun FH, Tang HH, Wang WD. Identification of prognostic biomarkers for hepatocellular carcinoma with vascular invasion. Am J Transl Res 2024; 16:2828-2839. [PMID: 39114683 PMCID: PMC11301501 DOI: 10.62347/sqzw3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Vascular invasion (VI) profoundly impacts the prognosis of hepatocellular carcinoma (HCC), yet the underlying biomarkers and mechanisms remain elusive. This study aimed to identify prognostic biomarkers for HCC patients with VI. METHODS Transcriptome data from primary HCC tissues and HCC tissues with VI were obtained through the Genome Expression Omnibus database. Differentially expressed genes (DEGs) in the two types of tissues were analyzed using functional enrichment analysis to evaluate their biological functions. We examined the correlation between DEGs and prognosis by combining HCC transcriptome data and clinical information from The Cancer Genome Atlas database. Univariate and multivariate Cox regression analyses, along with the least absolute shrinkage and selection operator (LASSO) method were utilized to develop a prognostic model. The effectiveness of the model was assessed through time-dependent receiver operating characteristic (ROC) curve, calibration diagram, and decision curve analysis. RESULTS In the GSE20017 and GSE5093 datasets, a total of 83 DEGs were identified. Gene Ontology analysis indicated that these DEGs were predominantly associated with xenobiotic stimulus, collagen-containing extracellular matrix, and oxygen binding. Additionally, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the DEGs were primarily involved in immune defense and cellular signal transduction. Cox and LASSO regression further identified 7 genes (HSPA8, ABCF2, EAF1, MARCO, EPS8L3, PLA3G1B, C6), which were used to construct a predictive model in the training cohort. We used X-tile software to calculate the optimal cut-off value to stratify HCC patients into low-risk and high-risk groups. Notably, the high-risk group exhibited poorer prognosis than the low-risk group (P < 0.001). The model demonstrated area under the ROC curve (AUC) values of 0.815, 0.730, and 0.710 at 1-year, 3-year, and 5-year intervals in the training cohort, respectively. In the validation cohort, the corresponding AUC values were 0.701, 0.571, and 0.575, respectively. The C-index of the calibration curve for the training and validation cohorts were 0.716 and 0.665. Decision curve analysis revealed the model's efficacy in guiding clinical decision-making. CONCLUSIONS The study indicates that 7 genes may be potential prognostic biomarkers and treatment targets for HCC patients with VI.
Collapse
Affiliation(s)
| | - Chen Fan
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Ping Xu
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Fei-Hu Sun
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Hao-Huan Tang
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | | |
Collapse
|
8
|
Ying X, Zheng X, Zhang X, Yin Y, Wang X. Kynurenine in IDO1 high cancer cell-derived extracellular vesicles promotes angiogenesis by inducing endothelial mitophagy in ovarian cancer. J Transl Med 2024; 22:267. [PMID: 38468343 PMCID: PMC10929174 DOI: 10.1186/s12967-024-05054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Mitophagy, a prominent cellular homeostasis process, has been implicated in modulating endothelial cell function. Emerging evidence suggests that extracellular vesicles (EVs) participate in intercellular communication, which could modulate tumor angiogenesis, a hallmark of ovarian cancer (OC) progression. However, the underlying mechanisms through how EVs regulate endothelial mitophagy associated with tumor angiogenesis during OC development remain obscure. METHODS The effect of cancer cell-derived EVs on endothelial mitophagy and its correlation with tumor angiogenesis and OC development were explored by in vitro and in vivo experiments. Multi-omics integration analysis was employed to identify potential regulatory mechanisms of cancer cell-derived EVs on endothelial mitophagy, which is involved in tumor angiogenesis associated with OC development. These insights were then further corroborated through additional experiments. An orthotopic OC mouse model was constructed to assess the antiangiogenic and therapeutic potential of the Indoleamine 2,3 dioxygenase-1 (IDO1) inhibitor. RESULTS Cancer cell-derived EVs promoted tumor angiogenesis via the activation of endothelial mitophagy, contributing to the growth and metastasis of OC. The aberrantly high expression of IDO1 mediated abnormal tryptophan metabolism in cancer cells and promoted the secretion of L-kynurenine (L-kyn)-enriched EVs, with associated high levels of L-kyn in EVs isolated from both the tumor tissues and patient plasma in OC. EVs derived from IDO1high ovarian cancer cells elevated nicotinamide adenine dinucleotide (NAD +) levels in endothelial cells via delivering L-kyn. Besides, IDO1high ovarian cancer cell-derived EVs upregulated sirt3 expression in endothelial cells by increasing acetylation modification. These findings are crucial for promoting endothelial mitophagy correlated with tumor angiogenesis. Notably, both endothelial mitophagy and tumor angiogenesis could be suppressed by the IDO1 inhibitor in the orthotopic OC mouse model. CONCLUSIONS Together, our findings unveil a mechanism of mitophagy in OC angiogenesis and indicate the clinical relevance of EV enriched L-kyn as a potential biomarker for tumorigenesis and progression. Additionally, IDO1 inhibitors might become an alternative option for OC adjuvant therapy.
Collapse
Affiliation(s)
- Xiang Ying
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xiaocui Zheng
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Yujia Yin
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China
| | - Xipeng Wang
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
9
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Cavazzoni A, Digiacomo G, Volta F, Alfieri R, Giovannetti E, Gnetti L, Bellini L, Galetti M, Fumarola C, Xu G, Bonelli M, La Monica S, Verzè M, Leonetti A, Eltayeb K, D'Agnelli S, Moron Dalla Tor L, Minari R, Petronini PG, Tiseo M. PD-L1 overexpression induces STAT signaling and promotes the secretion of pro-angiogenic cytokines in non-small cell lung cancer (NSCLC). Lung Cancer 2024; 187:107438. [PMID: 38100954 DOI: 10.1016/j.lungcan.2023.107438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Monoclonal antibodies (ICI) targeting the immune checkpoint PD-1/PD-L1 alone or in combination with chemotherapy have demonstrated relevant benefits and established new standards of care in first-line treatment for advanced non-oncogene addicted non-small cell lung cancer (NSCLC). However, a relevant percentage of NSCLC patients, even with high PD-L1 expression, did not respond to ICI, highlighting the presence of intracellular resistance mechanisms that could be dependent on high PD-L1 levels. The intracellular signaling induced by PD-L1 in tumor cells and their correlation with angiogenic signaling pathways are not yet fully elucidated. METHODS The intrinsic role of PD-L1 was initially checked in two PD-L1 overexpressing NSCLC cells by transcriptome profile and kinase array. The correlation of PD-L1 with VEGF, PECAM-1, and angiogenesis was evaluated in a cohort of advanced NSCLC patients. The secreted cytokines involved in tumor angiogenesis were assessed by Luminex assay and their effect on Huvec migration by a non-contact co-culture system. RESULTS PD-L1 overexpressing cells modulated pathways involved in tumor inflammation and JAK-STAT signaling. In NSCLC patients, PD-L1 expression was correlated with high tumor intra-vasculature. When challenged with PBMC, PD-L1 overexpressing cells produced higher levels of pro-angiogenic factors compared to parental cells, as a consequence of STAT signaling activation. This increased production of cytokines involved in tumor angiogenesis largely stimulated Huvec migration. Finally, the addition of the anti-antiangiogenic agent nintedanib significantly reduced the spread of Huvec cells when exposed to high levels of pro-angiogenic factors. CONCLUSIONS In this study, we reported that high PD-L1 modulates STAT signaling in the presence of PBMC and induces pro-angiogenic factor secretion. This could enforce the role of PD-L1 as a crucial regulator of the tumor microenvironment stimulating tumor progression, both as an inhibitor of T-cell activity and as a promoter of tumor angiogenesis.
Collapse
Affiliation(s)
- A Cavazzoni
- Department of Medicine and Surgery University of Parma, Parma, Italy.
| | - G Digiacomo
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - F Volta
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - R Alfieri
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - E Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - L Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - L Bellini
- Italian Society of Medicine and Scientific Divulgation, SIMED, Parma, Italy
| | - M Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority-INAIL, 00078 Rome, Italy
| | - C Fumarola
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - G Xu
- Department of Medical Oncology, Amsterdam University Medical Center, VU University, Amsterdam, the Netherlands
| | - M Bonelli
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - S La Monica
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - M Verzè
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - A Leonetti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - K Eltayeb
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - S D'Agnelli
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - R Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - P G Petronini
- Department of Medicine and Surgery University of Parma, Parma, Italy
| | - M Tiseo
- Department of Medicine and Surgery University of Parma, Parma, Italy; Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|
11
|
Choi DH, Lee J, Lim HY, Kang WK, Jang JY, Jeon Y, Jeong SY, Jung YJ, Kim ST. Effect of ramucirumab plus paclitaxel in advanced gastric cancer according to the status of programmed cell death-ligand 1 (PD-L1) expression. J Gastrointest Oncol 2023; 14:2324-2333. [PMID: 38196548 PMCID: PMC10772691 DOI: 10.21037/jgo-23-418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 01/11/2024] Open
Abstract
Background Ramucirumab, an anti-vascular endothelial growth factor receptor (VEGFR) monoclonal antibody (mAb), inhibits angiogenesis and reduces tumor activity. Programmed cell death-ligand 1 (PD-L1) might act upon VEGFR2 to induce cancer cell angiogenesis and metastasis. Herein, we investigated the efficacy of combining ramucirumab and paclitaxel according to the status of PD-L1 expression in patients with advanced gastric cancer (AGC). Methods This analysis included AGC patients who received ramucirumab plus paclitaxel as 2nd line therapy between December 1, 2018, and February 28, 2022, at Samsung Medical Center. All patient data analyses included an evaluation of PD-L1 expression using the combined positive score (CPS). We analyzed the efficacy and the survival of patients according to their PD-L1 expression. Results We included 117 patients in this analysis, and 80 patients (68.4%) had a PD-L1 CPS of one or more, 37 (31.6%) had five or more, and 19 (16.2%) had ten or more scores. Progression-free survival (PFS) and overall survival (OS) did not differ significantly between patients with a PD-L1 CPS of less than one and one or more {PD-L1 <1% vs. PD-L1 ≥1%; PFS: median 3.6 months [95% confidence interval (CI): 2.4-4.8 months] vs. median 4.1 months (95% CI: 3.5-4.7 months), P=0.93; PD-L1 <1% vs. PD-L1 ≥1%; OS: median 7.0 months (95% CI: 5.4-8.6 months) vs. median 8.1 months (95% CI: 6.4-9.8 months), P=0.32}. PFS and OS did not differ significantly between patients with a PD-L1 CPS of less than 5 and 5 or more [PD-L1 <5% vs. PD-L1 ≥5%; PFS: 3.9 months (95% CI: 3.3-4.5 months) vs. 4.4 months (95% CI: 3.0-5.8 months), P=0.57; OS: 7.4 months (95% CI: 6.5-8.3 months) vs. 10.0 months (95% CI: 1.1-18.9 months), P=0.07]. Interestingly, with a PD-L1 CPS cutoff of 10, PFS and OS did differ significantly [PD-L1 <10% vs. PD-L1 ≥10%; PFS: 3.8 months (95% CI: 3.3-4.3 months) vs. 5.7 months (95% CI: 4.1-7.3 months), P=0.05; OS: 7.2 months (95% CI: 6.5-7.9 months) vs. 18.9 months (95% CI: 6.5-31.3 months), P=0.04]. Conclusions No biomarkers have been established to predict survival times after ramucirumab plus paclitaxel treatment. This analysis suggests that a PD-L1 CPS cutoff of 10 might be novel a biomarker to predict the survival of AGC patients treated with ramucirumab and paclitaxel.
Collapse
Affiliation(s)
- Dae-Ho Choi
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Yeon Jang
- Division of Hematology-Oncology, Department of Internal Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Youngkyung Jeon
- Division of Medical Oncology and Hematology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sun Young Jeong
- Division of Hematology-Oncology, Department of Internal Medicine, Soonchunhyang University, College of Medicine, Soonchunhyang University, Seoul, Republic of Korea
| | - Ye Ji Jung
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Zhang J, Qi C, Li H, Ding C, Wang L, Wu H, Dai W, Wang C. Exploration of the effect and mechanism of Scutellaria barbata D. Don in the treatment of ovarian cancer based on network pharmacology and in vitro experimental verification. Medicine (Baltimore) 2023; 102:e36656. [PMID: 38134066 PMCID: PMC10735072 DOI: 10.1097/md.0000000000036656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The mortality rate of ovarian cancer is the highest among gynecological cancers, posing a serious threat to women health and life. Scutellaria barbata D. Don (SBD) can effectively treat ovarian cancer. However, its mechanism of action is unclear. The aim of this study was to elucidate the mechanism of SBD in the treatment of ovarian cancer using network pharmacology, and to verify the experimental results using human ovarian cancer SKOV3 cells. The Herb and Disease Gene databases were searched to identify common targets of SBD and ovarian cancer. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Protein-Protein Interaction (PPI) network analyses were performed to identify the potential molecular mechanisms behind SBD. Finally, the molecular docking and main possible pathways were verified by experimental studies. Cell proliferation, the mRNA expression level of key genes and signaling pathway were all investigated and evaluated in vitro. A total of 29 bioactive ingredients and 137 common targets in SBD were found to inhibit ovarian cancer development. The active ingredients identified include quercetin, luteolin, and wogonin. Analysis of the PPI network showed that AKT1, VEGFA, JUN, TNF, and Caspase-3 shared centrality among all target genes. The results of the KEGG pathway analysis indicated that the cancer pathway, PI3K-Akt signaling pathway, and MAPK signaling pathways mediated the effects of SBD against ovarian cancer progression. Cell experiments showed that quercetin, luteolin, and wogonin inhibited the proliferation and clone formation of SKOV3 cells and regulated mRNA expression of 5 key genes by inhibiting PI3K/Akt signaling pathway. Our results demonstrate that SBD exerted anti-ovarian cancer effects through its key components quercetin, luteolin and wogonin. Mechanistically, its anti-cancer effects were mediated by inhibition of the PI3K/Akt signaling pathways. Therefore, SBD might be a candidate drug for ovarian cancer treatment.
Collapse
Affiliation(s)
- Jie Zhang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Libo Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjin Wu
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Dai
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenglong Wang
- Central Laboratory for Science and Technology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Hu QR, Huang QX, Hong H, Pan Y, Luo T, Li J, Deng ZY, Chen F. Ginsenoside Rh2 and its octyl ester derivative inhibited invasion and metastasis of hepatocellular carcinoma via the c-Jun/COX2/PGE2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155131. [PMID: 37806155 DOI: 10.1016/j.phymed.2023.155131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Liver cancer is a topical global health issue. The treatment of liver cancer meets significant challenges in the high recurrence rate and invasive incidence. Therefore, the treatment strategies that target epithelial-mesenchymal transition (EMT) induced by cyclooxygenase 2 (COX2)/ prostaglandin E2 (PGE2) pathway have become epidemic. Ginsenoside Rh2 has been proved to inhibit the EMT. However, the underlying mechanisms remain unclear. Moreover, the octyl ester derivative of Rh2 (Rh2-O) exhibited superior anti-proliferative and immunomodulatory effects than Rh2 in our previous researches, which indicated that Rh2-O might also exert inhibitory effects on invasion and metastasis. PURPOSE The aim of current study is to explore the inhibitory effects of Rh2 and Rh2-O on invasion and metastasis of hepatocellular carcinoma, and to investigate whether these effects are dependent on the c-Jun/COX2/PGE2 pathway. STUDY DESIGN The Huh-7 liver cancer cells and the H22 tumor-bearing mice were treated with Rh2 and Rh2-O. METHOD In this paper, the inhibitory effects of Rh2 and Rh2-O on invasion and metastasis were tested by wound healing, trans-well assay and tumor-bearing mice, and the involvement of c-Jun/COX2/PGE2 pathway were verified by exogenous PGE2, activation of COX2 and overexpression of c-Jun. RESULTS The results showed that Rh2 and Rh2-O could efficiently inhibit the invasion and metastasis in a dose-dependent manner (p < 0.05). And the Rh2-O showed stronger effects than Rh2. Moreover, the exogenous PGE2, activation of COX2 by exogenous LPS and the overexpression of c-Jun by transfection all reversed the inhibitory effects of Rh2 and Rh2-O on metastasis or EMT (p < 0.05). CONCLUSION Rh2 and Rh2-O could inhibit the invasion and metastasis of hepatocellular carcinoma via restraining the EMT, which was mediated by c-Jun/COX2/PGE2 pathway.
Collapse
Affiliation(s)
- Qi-Rui Hu
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Qing-Xin Huang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi 330000, China
| | - Huan Hong
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi 330000, China
| | - Yao Pan
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi 330000, China
| | - Ting Luo
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, College of Food Science, Nanchang University, Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Bayi Avenue, Nanchang, Jiangxi 330000, China.
| |
Collapse
|
14
|
Zhang C, Qin M. Extracellular vesicles targeting tumor microenvironment in ovarian cancer. Int J Biol Macromol 2023; 252:126300. [PMID: 37573911 DOI: 10.1016/j.ijbiomac.2023.126300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Ovarian cancer (OC) is a prevalent neoplastic condition affecting women. Extracellular vesicles (EVs), nano-sized membrane vesicles, are secreted by various cells in both physiological and pathological states. The profound interplay between EVs and the tumor microenvironment (TME) in ovarian cancer is crucial. In this review, we explores the pivotal role of EVs in facilitating intercellular communication between cancer cells and the TME, emphasizing the potential of EVs as promising diagnostic markers and innovative therapeutic targets for ovarian cancer. The comprehensive analysis outlines the specific mechanisms by which EVs engage in communication with the constituents of the TME, including the modulation of tumor growth through EVs carrying matrix metalloproteinases (MMPs) and EV-mediated inhibition of angiogenesis, among other factors. Additionally, the we discuss the potential clinical applications of EVs that target the TME in ovarian cancer, encompassing the establishment of novel treatment strategies and the identification of novel biomarkers for early detection and prognosis. Finally, this review identifies novel strategies for therapeutic interventions, such as utilizing EVs as carriers for drug delivery and targeting specific EV-mediated signaling pathways. In summary, this manuscript offers valuable insights into the role of EVs in ovarian cancer and highlights the significance of comprehending intercellular communication in the realm of cancer biology.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Meiying Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
15
|
Yu Y, Huang X, Liang C, Zhang P. Evodiamine impairs HIF1A histone lactylation to inhibit Sema3A-mediated angiogenesis and PD-L1 by inducing ferroptosis in prostate cancer. Eur J Pharmacol 2023; 957:176007. [PMID: 37611839 DOI: 10.1016/j.ejphar.2023.176007] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Prostate cancer (PCa) is among the most commonly diagnosed solid cancers in male adults. However, most anti-angiogenic therapies and immunotherapies fail to achieve durable remission in advanced PCa. Integrative analysis indicated that Sema3A was negatively correlated with the pathological malignancy and was involved in angiogenesis, cell adhesion, and immune infiltrates in PCa. Sema3A significantly inhibited vascular endothelial growth factor (VEGFA)-induced colony formation, cell proliferation, and PD-L1 expression in PCa cells. Network pharmacological analysis demonstrated that evodiamine, a natural alkaloid compound derived from Evodiae fructus fruits, might regulate Sema3A, lipid metabolism, and monocarboxylic acid transport signaling of PCa. Evodiamine evidently inhibited PCa cell viability in a time-dose-dependent manner. Furthermore, evodiamine impaired angiogenesis by increasing Sema3A expression, and induced ferroptosis by reducing glutathione peroxidase 4 (GPX4) expression, which could be reversed by the ferroptosis blocker ferrostatin-1. Lactate treatment increased hypoxia-inducible factor (HIF)-1α and PD-L1 expressions while restricting Sema3A expression in PCa cells, which could be reversed by silencing monocarboxylate transporter 4 (MCT4) expression. Moreover, evodiamine markedly blocked lactate-induced angiogenesis by restricting histone lactylation and expression of HIF1A in PCa cells, further enhancing Sema3A transcription while inhibiting that of PD-L1. In vivo, evodiamine remarkably inhibited PCa xenograft growth in nude mice, repressing expressions of HIF1α, H3K18la, GPX4, PD-L1, and proliferation, while hindering angiogenesis by increasing Sema3A expression. Therefore, Sema3A represents an essential antineoplastic biomarker, while evodiamine may act as a metabolic-epigenetic modulator, as well as a promising agent in either PCa anti-angiogenic therapy or immunotherapy.
Collapse
Affiliation(s)
- Ying Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xing Huang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chaoqi Liang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
16
|
Shen X, Jin X, Fang S, Chen J. EFEMP2 upregulates PD-L1 expression via EGFR/ERK1/2/c-Jun signaling to promote the invasion of ovarian cancer cells. Cell Mol Biol Lett 2023; 28:53. [PMID: 37420173 DOI: 10.1186/s11658-023-00471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Fibulin-like extracellular matrix protein 2 (EFEMP2) has been reported to be related to the progression of various cancers. We have previously reported that EFEMP2 was highly expressed in ovarian cancer and was strongly associated with poor prognosis in patients. This study intends to further explore its interacting proteins and possible downstream signaling pathways. METHOD The expression of EFEMP2 was detected by RT-qPCR, ICC and western blot in 4 kinds of ovarian cancer cells with different migration and invasion ability. Cell models with strong or weak EFEMP2 expression were constructed by lentivirus transfection. The effects of the down-regulation and up-regulation of EFEMP2 on the biological behavior of ovarian cancer cells were studied through in-vitro and in-vivo functional tests. The phosphorylation pathway profiling array and KEGG database analyses identified the downstream EGFR/ERK1/2/c-Jun signaling pathway and the programmed death-1 (PD-L1) pathway enrichment. Additionally, the protein interaction between EFEMP2 and EGFR was detected by immunoprecipitation. RESULT EFEMP2 was positively correlated with the invasion ability of ovarian cancer cells, its down-regulation inhibited the migrative, invasive and cloning capacity of cancer cells in vitro and suppressed the tumor proliferation and intraperitoneal diffusion in vivo, while its up-regulation did the opposite. Moreover, EFEMP2 could bind to EGFR to induce PD-L1 regulation in ovarian cancer, which was caused by the activation of EGFR/ERK1/2/c-Jun signaling. Similar to EFEMP2, PD-L1 was also highly expressed in aggressive cells and had the ability to promote the invasion and metastasis of ovarian cancer cells both in vitro and in vivo, and PD-L1 upregulation was partly caused by EFEMP2 activation. Afatinib combined with trametinib had an obvious effect of inhibiting the intraperitoneal diffusion of ovarian cancer cells, especially in the group with low expression of EFEMP2, while overexpression of PD-L1 could reverse this phenomenon. CONCLUSION EFEMP2 could bind to EGFR to activate ERK1/2/c-Jun pathway and regulate PD-L1 expression, furthermore PD-L1 was extremely essential for EFEMP2 to promote ovarian cancer cells invasion and dissemination in vitro and in vivo. Targeted therapy against the source gene EFEMP2 is our future research direction, which may better inhibit the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xin Shen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuli Jin
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shuang Fang
- Jinan Medical Center Management Committee, Jinan, 250000, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
17
|
Kawachi H, Yamada T, Yoshimura A, Morimoto K, Iwasaku M, Tokuda S, Kim YH, Shimose T, Takayama K. Rationale and design of phase II clinical trial of dual inhibition with ramucirumab and erlotinib in EGFR exon 19 deletion-positive treatment-naïve non-small cell lung cancer with high PD-L1 expression (SPIRAL-3D study). Ther Adv Med Oncol 2023; 15:17588359231177022. [PMID: 37333903 PMCID: PMC10272699 DOI: 10.1177/17588359231177022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Background Osimertinib is a standard treatment option for epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC). However, osimertinib monotherapy yields poor clinical outcomes in some patients, necessitating the development of novel treatment strategies. In addition, several studies have suggested that high programmed cell death-ligand 1 (PD-L1) expression is associated with poor progression-free survival (PFS) for osimertinib monotherapy in patients with advanced NSCLC harboring EGFR mutations. Objective To evaluate the clinical efficacy of erlotinib plus ramucirumab for EGFR exon 19 deletion-positive treatment-naïve NSCLC with high PD-L1 expression. Design A single-arm, prospective, open-label, phase II study. Methods and Analysis Patients with treatment-naïve EGFR exon 19 deletion-positive NSCLC with high PD-L1 expression and a performance status of 0-2 will receive combination therapy with erlotinib plus ramucirumab until evidence of disease progression or development of unacceptable toxicity. High PD-L1 expression is defined as a tumor proportion score of 50% or higher, as determined by PD-L1 immunohistochemistry 22C3 pharmDx testing. The Kaplan-Meier method and the Brookmeyer and Crowley method with the arcsine square-root transformation will be used with PFS as the primary endpoint. The secondary endpoints include overall response rate, disease control rate, overall survival, and safety. A total of 25 patients will be enrolled. Ethics The study has been approved by the Clinical Research Review Board, Kyoto Prefectural University of Medicine, Kyoto, Japan, and written informed consent will be obtained from all patients. Discussion To the best of our knowledge, this is the first clinical trial to focus on PD-L1 expression in EGFR mutation-positive NSCLC. If the primary end point is met, combination therapy with erlotinib and ramucirumab could become a potential treatment option for this clinical population. Trial Registration This trial was registered with the Japan Registry for Clinical Trials on 12 January 2023 (jRCTs 051220149).
Collapse
Affiliation(s)
- Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Young Hak Kim
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takayuki Shimose
- Department of Statistics and Data Center, Clinical Research Support Center Kyushu, Fukuoka, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
19
|
Baggio C, Ramaschi GE, Oliviero F, Ramonda R, Sfriso P, Trevisi L, Cignarella A, Bolego C. Sex-dependent PD-L1/sPD-L1 trafficking in human endothelial cells in response to inflammatory cytokines and VEGF. Biomed Pharmacother 2023; 162:114670. [PMID: 37068331 DOI: 10.1016/j.biopha.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
Programmed cell death 1 ligand 1 (PD-L1) expressed in non-immune cells is involved in immune-mediated tissue damage in the context of inflammatory conditions and tumor immune escape. Emerging evidence suggests soluble (s)PD-L1 as a marker of inflammation. Based on well-established sex-specific differences in immunity, we tested the novel hypotheses that (i) endothelial cell PD-L1 is modulated by inflammatory cytokines and vascular endothelial growth factor (VEGF) in a sex-specific fashion, and (ii) the endothelium is a source of sPD-L1. After exposure of human umbilical vein endothelial cells (HUVECs) to lipopolysaccharide, interleukin (IL)1β or VEGF for 24 h, total PD-L1 levels were upregulated solely in cells from female donors, while being unchanged in those from male donors. Accordingly, exposure to synovial fluids from patients with inflammatory arthritis upregulated PD-L1 levels in HUVECs from female donors only. Membrane PD-L1 expression as measured by flow cytometry was unchanged in response to inflammatory stimuli. However, exposure to 2 ng/mL IL-1β or 50 ng/mL VEGF time-dependently increased sPD-L1 release by HUVECs from female donors. Treatment with the metalloproteinase (MMP) inhibitor GM6001 (10 μM) prevented IL-1β-induced sPD-L1 release and enhanced membrane PD-L1 levels. The anti-VEGF agents bevacizumab and sunitinib reduced both VEGF-induced PD-L1 accumulation and sPD-L1 secretion. Thus, inflammatory agents and VEGF rapidly increased endothelial PD-L1 levels in a sex-specific fashion. Furthermore, the vascular endothelium may be a sPD-L1 source, whose production is MMP-dependent and modulated by anti-VEGF agents. These findings may have implications for sex-specific immunity, vascular inflammation and response to anti-angiogenic therapy.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Sfriso
- Department of Medicine, University of Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| |
Collapse
|
20
|
Do Aging and Parity Affect VEGF-A/VEGFR Content and Signaling in the Ovary?-A Mouse Model Study. Int J Mol Sci 2023; 24:ijms24043318. [PMID: 36834730 PMCID: PMC9966908 DOI: 10.3390/ijms24043318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
In this study, the effects of aging and parity on VEGF-A/VEGFR protein content and signaling in the mice ovaries were determined. The research group consisted of nulliparous (virgins, V) and multiparous (M) mice during late-reproductive (L, 9-12 months) and post-reproductive (P, 15-18 months) stages. Whilst ovarian VEGFR1 and VEGFR2 remained unchanged in all the experimental groups (LM, LV, PM, PV), protein content of VEGF-A and phosphorylated VEGFR2 significantly decreased only in PM ovaries. VEGF-A/VEGFR2-dependent activation of ERK1/2, p38, as well as protein content of cyclin D1, cyclin E1, and Cdc25A were then assessed. In ovaries of LV and LM, all of these downstream effectors were maintained at a comparable low/undetectable level. Conversely, the decrease recorded in PM ovaries did not occur in the PV group, in which the significant increase of kinases and cyclins, as well phosphorylation levels mirrored the trend of the pro-angiogenic markers. Altogether, the present results demonstrated that, in mice, ovarian VEGF-A/VEGFR2 protein content and downstream signaling can be modulated in an age- and parity-dependent manner. Moreover, the lowest levels of pro-angiogenic and cell cycle progression markers detected in PM mouse ovaries sustains the hypothesis that parity could exert a protective role by downregulating the protein content of key mediators of pathological angiogenesis.
Collapse
|
21
|
Efficacy of immune checkpoint inhibitor monotherapy or combined with other small molecule-targeted agents in ovarian cancer. Expert Rev Mol Med 2023; 25:e6. [PMID: 36691778 DOI: 10.1017/erm.2023.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ovarian cancer is the most lethal female reproductive system tumour. Despite the great advances in surgery and systemic chemotherapy over the past two decades, almost all patients in stages III and IV relapse and develop resistance to chemotherapy after first-line treatment. Ovarian cancer has an extraordinarily complex immunosuppressive tumour microenvironment in which immune checkpoints negatively regulate T cells activation and weaken antitumour immune responses by delivering immunosuppressive signals. Therefore, inhibition of immune checkpoints can break down the state of immunosuppression. Indeed, Immune checkpoint inhibitors (ICIs) have revolutionised the therapeutic landscape of many solid tumours. However, ICIs have yielded modest benefits in ovarian cancer. Therefore, a more comprehensive understanding of the mechanistic basis of the immune checkpoints is needed to improve the efficacy of ICIs in ovarian cancer. In this review, we systematically introduce the mechanisms and expression of immune checkpoints in ovarian cancer. Moreover, this review summarises recent updates regarding ICI monotherapy or combined with other small-molecule-targeted agents in ovarian cancer.
Collapse
|
22
|
Huang X, Li XY, Shan WL, Chen Y, Zhu Q, Xia BR. Targeted therapy and immunotherapy: Diamonds in the rough in the treatment of epithelial ovarian cancer. Front Pharmacol 2023; 14:1131342. [PMID: 37033645 PMCID: PMC10080064 DOI: 10.3389/fphar.2023.1131342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Currently, for ovarian cancer, which has the highest mortality rate among all gynecological cancers, the standard treatment protocol is initial tumor cytoreductive surgery followed by platinum-based combination chemotherapy. Although the survival rate after standard treatment has improved, the therapeutic effect of traditional chemotherapy is very limited due to problems such as resistance to platinum-based drugs and recurrence. With the advent of the precision medicine era, molecular targeted therapy has gradually entered clinicians' view, and individualized precision therapy has been realized, surpassing the limitations of traditional therapy. The detection of genetic mutations affecting treatment, especially breast cancer susceptibility gene (BRCA) mutations and mutations of other homologous recombination repair defect (HRD) genes, can guide the targeted drug treatment of patients, effectively improve the treatment effect and achieve a better patient prognosis. This article reviews different sites and pathways of targeted therapy, including angiogenesis, cell cycle and DNA repair, and immune and metabolic pathways, and the latest research progress from preclinical and clinical trials related to ovarian cancer therapy.
Collapse
Affiliation(s)
- Xu Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Bengbu Medical College Bengbu, Anhui, China
| | - Xiao-Yu Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Bengbu Medical College Bengbu, Anhui, China
| | - Wu-Lin Shan
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, Anhui, China
| | - Qi Zhu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bai-Rong Xia
- Bengbu Medical College Bengbu, Anhui, China
- *Correspondence: Bai-Rong Xia,
| |
Collapse
|
23
|
An Efficient, Short Stimulus PANC-1 Cancer Cell Ablation and Electrothermal Therapy Driven by Hydrophobic Interactions. Pharmaceutics 2022; 15:pharmaceutics15010106. [PMID: 36678734 PMCID: PMC9867450 DOI: 10.3390/pharmaceutics15010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Promising results in clinical studies have been demonstrated by the utilization of electrothermal agents (ETAs) in cancer therapy. However, a difficulty arises from the balance between facilitating the degradation of ETAs, and at the same time, increasing the electrothermal performance/stability required for highly efficient treatment. In this study, we controlled the thermal signature of the MoS2 by harnessing MoS2 nanostructures with M13 phage (MNM) via the structural assembling (hydrophobic interaction) phenomena and developed a combined PANC-1 cancer cell-MNM alternating current (AC)-stimulus framework for cancer cell ablation and electrothermal therapy. A percentage decrease in the cell viability of ~23% was achieved, as well as a degradation time of 2 weeks; a stimulus length of 100 μs was also achieved. Molecular dynamics (MD) simulations revealed the assembling kinetics in integrated M13 phage-cancer cell protein systems and the structural origin of the hydrophobic interaction-enabled increase in thermal conduction. This study not only introduced an 'ideal' agent that avoided the limitations of ETAs but also provided a proof-of-concept application of MoS2-based materials in efficacious cancer therapy.
Collapse
|
24
|
Geng A, Yang H, Wang Z, Wu C. Apatinib plus paclitaxel versus paclitaxel monotherapy for platinum-resistant recurrent ovarian cancer treatment: A retrospective cohort study. J Clin Pharm Ther 2022; 47:2264-2273. [PMID: 36404135 DOI: 10.1111/jcpt.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Apatinib, an oral antiangiogenic drug, exerts potential anti-tumour effects on platinum-resistant recurrent ovarian cancer (PROC). This study intended to evaluate the efficacy and safety of apatinib plus paclitaxel compared to paclitaxel monotherapy in PROC patients. METHODS This retrospective cohort study reviewed 70 PROC patients who received apatinib plus paclitaxel (apatinib plus paclitaxel group) (N = 32) or paclitaxel monotherapy (paclitaxel monotherapy group) (N = 38). The recommended regimens were as follows: paclitaxel (60 mg/m2 ) administrated once a week with a maximum of 18 weeks; apatinib (250-375 mg/day) administrated until disease progression or patient intolerance. RESULTS AND DISCUSSION Disease control rate was elevated (84.4% vs. 60.5%, P = 0.028), whereas objective response rate only disclosed an increasing trend (lacked statistical significance) (37.5% vs. 18.4%, P = 0.074) in apatinib plus paclitaxel group compared with paclitaxel monotherapy group. Progression-free survival (median [95% confidence interval (CI)]: 5.0 [2.5-7.5] months vs. 3.8 [2.4-5.2] months, P = 0.033) and overall survival (median [95% CI]: 21.1 [13.2-29.0] months vs. 14.8 [11.4-18.2] months, P = 0.032) were both prolonged in apatinib plus paclitaxel group compared to paclitaxel monotherapy group, which were further verified in the multivariate Cox's proportional hazard regression analyses (both P < 0.050). Additionally, the incidence of each adverse event was not different between the two groups (all P > 0.050). WHAT IS NEW AND CONCLUSION Apatinib plus paclitaxel exhibits better efficacy and acceptable toxicity compared with paclitaxel monotherapy in PROC patients.
Collapse
Affiliation(s)
- Aizhi Geng
- Department of Gynecology, The Second People's Hospital of Liaocheng, Linqing, China.,Department of Gynecology, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, China
| | - Hailei Yang
- Department of Gynecology, The Second People's Hospital of Liaocheng, Linqing, China.,Department of Gynecology, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, China
| | - Zhenfeng Wang
- Department of Gynecology, The Second People's Hospital of Liaocheng, Linqing, China.,Department of Gynecology, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, China
| | - Chuanzhong Wu
- Department of Gynecology, The Second People's Hospital of Liaocheng, Linqing, China.,Department of Gynecology, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, China
| |
Collapse
|
25
|
Gong S, Bai B, Sun G, Jin H, Zhang Z. CDCA3 exhibits a role in promoting the progression of ovarian cancer. Tissue Cell 2022; 79:101903. [DOI: 10.1016/j.tice.2022.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
26
|
Zalpoor H, Aziziyan F, Liaghat M, Bakhtiyari M, Akbari A, Nabi-Afjadi M, Forghaniesfidvajani R, Rezaei N. The roles of metabolic profiles and intracellular signaling pathways of tumor microenvironment cells in angiogenesis of solid tumors. Cell Commun Signal 2022; 20:186. [PMID: 36419156 PMCID: PMC9684800 DOI: 10.1186/s12964-022-00951-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022] Open
Abstract
Innate and adaptive immune cells patrol and survey throughout the human body and sometimes reside in the tumor microenvironment (TME) with a variety of cell types and nutrients that may differ from those in which they developed. The metabolic pathways and metabolites of immune cells are rooted in cell physiology, and not only provide nutrients and energy for cell growth and survival but also influencing cell differentiation and effector functions. Nowadays, there is a growing awareness that metabolic processes occurring in cancer cells can affect immune cell function and lead to tumor immune evasion and angiogenesis. In order to safely treat cancer patients and prevent immune checkpoint blockade-induced toxicities and autoimmunity, we suggest using anti-angiogenic drugs solely or combined with Immune checkpoint blockers (ICBs) to boost the safety and effectiveness of cancer therapy. As a consequence, there is significant and escalating attention to discovering techniques that target metabolism as a new method of cancer therapy. In this review, a summary of immune-metabolic processes and their potential role in the stimulation of intracellular signaling in TME cells that lead to tumor angiogenesis, and therapeutic applications is provided. Video abstract.
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razieh Forghaniesfidvajani
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran ,grid.411705.60000 0001 0166 0922Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, Iran ,grid.411705.60000 0001 0166 0922Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Chu XD, Bao H, Lin YJ, Chen RX, Zhang YR, Huang T, He JS, Huangfu SC, Pan YL, Ding H. Endostatin induces normalization of blood vessels in colorectal cancer and promotes infiltration of CD8+ T cells to improve anti-PD-L1 immunotherapy. Front Immunol 2022; 13:965492. [PMID: 36389685 PMCID: PMC9644205 DOI: 10.3389/fimmu.2022.965492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2023] Open
Abstract
INTRODUCTION The purpose of this study was to evaluate recombinant human endostatin (rHE)-induced normalization of the tumor vasculature in colorectal cancer (CRC) and to evaluate the therapeutic effects of combined treatment with rHE and a programmed death ligand-1 (PD-L1) inhibitor. METHODS A mouse subcutaneous tumorigenesis model was established to evaluate the antitumor effects of endostatin combined with a PD-L1 inhibitor on CRC. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging (IVIM-DW MRI) was used to evaluate changes in the intratumor microcirculation in response to combined treatment with endostatin and a PD-L1 inhibitor. The infiltration density and function of CD8+ T cells in tumors were evaluated using flow cytometry. Finally, clinical specimens were used to evaluate the expression area of tumor vascular pericytes and CD8+ T cells in tumor tissues. RESULTS The antitumor effects of endostatin combined with a PD-L1 inhibitor were significantly greater than those of endostatin or a PD-L1 inhibitor alone. On the ninth day of intervention, the endostatin group showed significantly higher pseudo diffusion parameter (D*) and microvascular volume fraction (F) values in tumors than those in the control group or PD-L1 group. After 27 days of intervention, the endostatin groups showed significantly lower levels of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-β than those in the control group. Treatment of CD8+ T cells with endostatin for 24 h did not alter the expression levels of markers of reduced T-cell activity. However, endostatin reversed the VEGF-mediated inhibition of the secretion of interferon (IFN)-γ from T cells. The results in CRC clinical samples showed that treatment with endostatin induced significantly higher infiltration of CD8+ T cells compared with treatment that did not include endostatin. Furthermore, the expression area of pericytes was significantly positively related to the infiltration density of CD8+ T cells and overall survival time. CONCLUSION Endostatin improved the antitumor effects of PD-L1 inhibitors on CRC, significantly increased the activity of CD8+ T cells, and synergistically improved the tumor treatment effect of the two inhibitors.
Collapse
Affiliation(s)
- Xiao-Dong Chu
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Bao
- Department of Plastic Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu-Jian Lin
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruo-Xi Chen
- Department of Plastic Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yi-Ran Zhang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Huang
- Department of Clinical Pathology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jia-Shuai He
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu-Chen Huangfu
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Ding
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
28
|
Ma B, Zhao L, Zhang Y, Zhang F, Gao Q. Complete remission of ovarian clear cell carcinoma achieved after pseudoprogression during PD-1 inhibitor therapy. Immunotherapy 2022; 14:1205-1209. [PMID: 36043370 DOI: 10.2217/imt-2021-0328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Ovarian clear cell carcinoma (OCCC), which is resistant to traditional treatment, has a poor prognosis. Immune checkpoint inhibitors (ICIs) have been emerged in the past decade and are now widely used in clinics. However, OCCC reportedly responds poorly to ICIs, and ICI monotherapy is rarely used for patients with OCCC. Methodology & Results: We report the case of a patient with refractory OCCC who received an ICI (nivolumab) monotherapy treatment and achieved a complete response despite the occurrence of pseudoprogression. Nivolumab was discontinued after 2 years, and the patient remained in complete remission more than a year after treatment withdrawal. Conclusion: This is the first report of complete remission being achieved in a case of refractory OCCC after pseudoprogression during nivolumab monotherapy.
Collapse
Affiliation(s)
- Baozhen Ma
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lingdi Zhao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yong Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Fang Zhang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Quanli Gao
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| |
Collapse
|
29
|
Lan CY, Zhao J, Yang F, Xiong Y, Li R, Huang Y, Wang J, Liu C, Bi XH, Jin HH, Meng J, Zhao WH, Zhang L, Wang YF, Zheng M, Huang X. Anlotinib combined with TQB2450 in patients with platinum-resistant or -refractory ovarian cancer: A multi-center, single-arm, phase 1b trial. Cell Rep Med 2022; 3:100689. [PMID: 35858589 PMCID: PMC9381412 DOI: 10.1016/j.xcrm.2022.100689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022]
Abstract
This is a phase Ib study of anlotinib plus a programmed death-ligand 1 (PD-L1) inhibitor TQB2450 for platinum-resistant or -refractory ovarian cancer. Thirty-four patients are enrolled and receive treatment. The objective response rate (ORR) is 47.1%, and the disease control rate is 97.1%. The median duration of response (DOR) has not been reached, and 61.3% of patients have a DOR of at least 8 months. The median progression-free survival (PFS) is 7.8 months, and the median overall survival (OS) has not been reached. The PD-L1-positive group has an ORR of 25.0%, whereas the PD-L1-negative group has an ORR of 92.9%. Treatment-related grade 3 or 4 adverse events (AEs) occur in 70.6% of patients, with the most common being hypertension (29.4%) and palmar-plantar erythrodysesthesia syndrome (29.4%). Anlotinib plus TQB2450 show promising antitumor activity and manageable toxicities in patients with platinum-resistant or -refractory ovarian cancer. A phase 3 randomized controlled trial to further validate our findings is ongoing.
Collapse
Affiliation(s)
- Chun-Yan Lan
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China
| | - Jing Zhao
- Department of Radiology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China
| | - Fan Yang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China
| | - Ying Xiong
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China
| | - Rong Li
- Gynecological Oncology Center, Chongqing University Cancer Hospital, Chongqing 40000, China
| | - Yu Huang
- Gynecological Oncology Center, Chongqing University Cancer Hospital, Chongqing 40000, China
| | - Jing Wang
- Gynecological Oncology Center, Chongqing University Cancer Hospital, Chongqing 40000, China
| | - Chang Liu
- Gynecology Department, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xue-Han Bi
- Gynecology Department, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Hai-Hong Jin
- Gynecology Department, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Jin Meng
- Gynecology Department, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Wei-Hong Zhao
- Medical Oncology, Chinese PLA General Hospital, Beijing 100000, China
| | - Li Zhang
- Medical Oncology, Chinese PLA General Hospital, Beijing 100000, China
| | - Ya-Fei Wang
- Data Management Department, Chia Tai Tianqing Pharmaceutical Group, Nanjing 210000, China
| | - Min Zheng
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China
| | - Xin Huang
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
30
|
Lee HS, Lee IH, Kang K, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Network Pharmacology Study to Uncover the Mechanism of FDY003 for Ovarian Cancer Treatment. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) is one of the deadliest gynecological tumors responsible for 0.21 million deaths per year worldwide. Despite the increasing interest in the use of herbal drugs for cancer treatment, their pharmacological effects in OC treatment are not understood from a systems perspective. Using network pharmacology, we determined the anti-OC potential of FDY003 from a comprehensive systems view. We observed that FDY003 suppressed the viability of human OC cells and further chemosensitized them to cytotoxic chemotherapy. Through network pharmacological and pharmacokinetic approaches, we identified 16 active ingredients in FDY003 and their 108 targets associated with OC mechanisms. Functional enrichment investigation revealed that the targets may coordinate diverse cellular behaviors of OC cells, including their growth, proliferation, survival, death, and cell cycle regulation. Furthermore, the FDY003 targets are important constituents of diverse signaling pathways implicated in OC mechanisms (eg, phosphoinositide 3-kinase [PI3K]-Akt, mitogen-activated protein kinase [MAPK], focal adhesion, hypoxia-inducible factor [HIF]-1, estrogen, tumor necrosis factor [TNF], erythroblastic leukemia viral oncogene homolog [ErbB], Janus kinase [JAK]-signal transducer and activator of transcription [STAT], and p53 signaling). In summary, our data present a comprehensive understanding of the anti-OC effects and mechanisms of action of FDY003.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
| | - Kyungrae Kang
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Sang-In Park
- Forestheal Hospitalo, Songpa-gu, Seoul, Republic of Korea
| | - Minho Jung
- Forest Hospital, Songpa-gu, Seoul, Republic of Korea
| | - Seung Gu Yang
- Kyunghee Naro Hospital, Bundang-gu, Seongnam, Republic of Korea
| | - Tae-Wook Kwon
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| | - Dae-Yeon Lee
- The Fore, Songpa-gu, Seoul, Republic of Korea
- Forest Hospital, Jongno-gu, Seoul, Republic of Korea
| |
Collapse
|
31
|
Cui L, Yan L, Guan X, Dong B, Zhao M, Lv A, Liu D, Wang Z, Liu F, Wu J, Tian X, Hao C. Anti-Tumor Effect of Apatinib and Relevant Mechanisms in Liposarcoma. Front Oncol 2021; 11:739139. [PMID: 34868934 PMCID: PMC8637299 DOI: 10.3389/fonc.2021.739139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background Primary retroperitoneal liposarcomas (RLPSs) are rare heterogeneous tumors for which there are few effective therapies. Certain anti-angiogenic tyrosine kinase inhibitors have demonstrated efficacy against various solid tumors. The aims of this study were to investigate the effect of Apatinib against retroperitoneal liposarcoma cells and its underlying mechanism and to explore the anti-tumor efficacy of a combination of Apatinib and Epirubicin. Methods CD34 immunohistochemical staining was used to measure microvessel density (MVD) in 89 retroperitoneal liposarcoma tissues. We used CCK-8 cell proliferation, clone formation, Transwell migration, invasion assays and flow cytometry to evaluate the effects of Apatinib alone and the combination of Apatinib and Epirubicin on liposarcoma cells. High-throughput RNA sequencing and western-blotting was used to identify key differentially expressed genes (DEGs) in SW872 cell line after application of Apatinib. Murine patient-derived tumor xenograft (PDX) was established to assess the efficacy and safety of Apatinib monotherapy and the combination of Apatinib and Epirubicin in RLPS. Results The microvessel density (MVD) varied widely among retroperitoneal liposarcoma tissues. Compared with the low-MVD group, the high-MVD group had poorer overall survival. Apatinib inhibited the liposarcoma cell proliferation, invasion and migration, increased the proportion of apoptosis, and induced G1 phase arrest. In addition, the combination of Apatinib and Epirubicin enhanced the foregoing inhibitory effects. High-throughput RNA sequencing showed that Apatinib downregulated the expression of TYMS and RRM2. Western blotting verified that Apatinib downregulated the TYMS/STAT3/PD-L1 pathway and inhibited liposarcoma proliferation by suppressing the RRM2/PI3K/AKT/mTOR pathway. In the murine PDX model of retroperitoneal liposarcoma, Apatinib and its combination with Epirubicin significantly inhibited microvessel formation and repressed tumor growth safely and effectively. Conclusions Apatinib and its combination with Epirubicin showed strong efficacy against liposarcoma both in vitro and in vivo. Apatinib might inhibit liposarcoma cell proliferation through the RRM2/PI3K/AKT/mTOR signaling pathway and downregulate PD-L1 via the TYMS/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lixuan Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Daoning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Faqiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
32
|
Shiau JP, Wu CC, Chang SJ, Pan MR, Liu W, Ou-Yang F, Chen FM, Hou MF, Shih SL, Luo CW. FAK Regulates VEGFR2 Expression and Promotes Angiogenesis in Triple-Negative Breast Cancer. Biomedicines 2021; 9:biomedicines9121789. [PMID: 34944605 PMCID: PMC8698860 DOI: 10.3390/biomedicines9121789] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) remains a significant clinical challenge because of its high vascularity and metastatic and recurrent rates. Tumor angiogenesis is considered an important mediator in the regulation of tumor cell survival and metastasis in TNBC. Angiogenesis is induced by the binding of vascular endothelial growth factor to vascular endothelial growth factor receptor 2 (VEGFR2). Focal adhesion kinase (FAK) plays an important role in regulating various cell functions in normal and cancer cells. Previous studies have focused on investigating the function of endothelial FAK in tumor cell angiogenesis. However, the association between tumor FAK and VEGFR2 in tumor angiogenesis and the possible mechanisms of this remain unclear. In this study, we used a public database and human specimens to examine the association between FAK and VEGFR2. At the same time, we verified the association between FAK and VEGFR2 through several experimental methods, such as quantitative real-time polymerase chain reaction, Western blotting, and next-generation sequencing. In addition, we used the endothelial cell model, zebrafish, and xenograft animal models to investigate the role of FAK in TNBC angiogenesis. We found that FAK and VEGFR2 were positively correlated in patients with TNBC. VEGFR2 and several other angiogenesis-related genes were regulated by FAK. In addition, FAK regulated VEGFR2 and VEGF protein expression in TNBC cells. Functional assays showed that FAK knockdown inhibited endothelial tube formation and zebrafish angiogenesis. An animal model showed that FAK inhibitors could suppress tumor growth and tumor vascular formation. FAK promotes angiogenesis in TNBC cells by regulating VEGFR2 expression. Therefore, targeting FAK could be another antiangiogenic strategy for TNBC treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Cheng-Che Wu
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Shu-Jyuan Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Fu Ou-Yang
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Fang-Ming Chen
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shen-Liang Shih
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (J.-P.S.); (C.-C.W.); (F.O.-Y.); (F.-M.C.); (M.-F.H.); (S.-L.S.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2260); Fax: +886-7-3165011
| |
Collapse
|
33
|
Xie C, Zhou X, Liang C, Li X, Ge M, Chen Y, Yin J, Zhu J, Zhong C. Apatinib triggers autophagic and apoptotic cell death via VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling in lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:266. [PMID: 34429133 PMCID: PMC8385858 DOI: 10.1186/s13046-021-02069-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
Background Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. Methods MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. Results We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. Conclusion Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02069-4. Apatinib suppressed proliferation, induced cell cycle arrest and apoptosis, and inhibited malignancy in NSCLC in vitro and in vivo. Apatinib downregulated PD-L1 and c-Myc in NSCLC through VEGFR2/STAT3 pathway. Apatinib inhibited PD-L1 expression in THP-1 derived macrophages stimulated by the conditioned medium from NSCLC cells and partially restored the activation of Jurkat T cells co-cultured with NSCLC cells. Apatinib induced ROS generation and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Chunhua Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Miaomiao Ge
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Rd, Suzhou, 215008, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, 101 Longmian Ave, Jiangning, Nanjing, 211166, China. .,Cancer Research Division, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
34
|
Gao G, Li C, Fan W, Zhang M, Li X, Chen W, Li W, Liang R, Li Z, Zhu X. Brilliant glycans and glycosylation: Seq and ye shall find. Int J Biol Macromol 2021; 189:279-291. [PMID: 34389387 DOI: 10.1016/j.ijbiomac.2021.08.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/30/2023]
Abstract
Proteoglycosylation is the addition of monosaccharides or glycans to the protein peptide chain. This is a common post-translational modification of proteins with a variety of biological functions. At present, more than half of all biopharmaceuticals in clinic are modified by glycosylation. Most glycoproteins are potential drug targets and biomarkers for disease diagnosis. Therefore, in-depth study of glycan structure of glycoproteins will ultimately improve the sensitivity and specificity of glycoproteins for clinical disease detection. With the deepening of research, the function and application value of glycans and glycosylation has gradually emerged. This review systematically introduces the latest research progress of glycans and glycosylation. It encompasses six cancers, four viruses, and their latest discoveries in Alzheimer's disease, allergic diseases, congenital diseases, gastrointestinal diseases, inflammation, and aging.
Collapse
Affiliation(s)
- Guanwen Gao
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin 14195, Germany
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Mingtao Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xinming Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Wenqing Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Weiquan Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Runzhang Liang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Zesong Li
- Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China; Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), The First Affiliated Hospital of Shenzhen University, Shenzhen, China; Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
35
|
Abstract
Mesenchymal stem cells (MSCs), a kind of multipotent stem cells with self-renewal ability and multi-differentiation ability, have become the “practical stem cells” for the treatment of diseases. MSCs have immunomodulatory properties and can be used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and Crohn’s disease. MSCs also can be used in cancer and aging. At present, many clinical experiments are using MSCs. MSCs can reduce the occurrence of inflammation and apoptosis of tissue cells, and promote the proliferation of endogenous tissue and organ cells, so as to achieve the effect of repairing tissue and organs. MSCs presumably also play an important role in Corona Virus Disease 2019 (COVID-19) infection.
Collapse
|
36
|
Wu Z, Li S, Zhu X. The Mechanism of Stimulating and Mobilizing the Immune System Enhancing the Anti-Tumor Immunity. Front Immunol 2021; 12:682435. [PMID: 34194437 PMCID: PMC8237941 DOI: 10.3389/fimmu.2021.682435] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer immunotherapy is a kind of therapy that can control and eliminate tumors by restarting and maintaining the tumor-immune cycle and restoring the body's normal anti-tumor immune response. Although immunotherapy has great potential, it is currently only applicable to patients with certain types of tumors, such as melanoma, lung cancer, and cancer with high mutation load and microsatellite instability, and even in these types of tumors, immunotherapy is not effective for all patients. In order to enhance the effectiveness of tumor immunotherapy, this article reviews the research progress of tumor microenvironment immunotherapy, and studies the mechanism of stimulating and mobilizing immune system to enhance anti-tumor immunity. In this review, we focused on immunotherapy against tumor microenvironment (TME) and discussed the important research progress. TME is the environment for the survival and development of tumor cells, which is composed of cell components and non-cell components; immunotherapy for TME by stimulating or mobilizing the immune system of the body, enhancing the anti-tumor immunity. The checkpoint inhibitors can effectively block the inhibitory immunoregulation, indirectly strengthen the anti-tumor immune response and improve the effect of immunotherapy. We also found the checkpoint inhibitors have brought great changes to the treatment model of advanced tumors, but the clinical treatment results show great individual differences. Based on the close attention to the future development trend of immunotherapy, this study summarized the latest progress of immunotherapy and pointed out a new direction. To study the mechanism of stimulating and mobilizing the immune system to enhance anti-tumor immunity can provide new opportunities for cancer treatment, expand the clinical application scope and effective population of cancer immunotherapy, and improve the survival rate of cancer patients.
Collapse
Affiliation(s)
- Zhengguo Wu
- Department of Thoracic Surgery, Yantian District People’s Hospital, Shenzhen, China
| | - Shang Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
- First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| |
Collapse
|
37
|
Yang Y, Xia L, Wu Y, Zhou H, Chen X, Li H, Xu M, Qi Z, Wang Z, Sun H, Cheng X. Programmed death ligand-1 regulates angiogenesis and metastasis by participating in the c-JUN/VEGFR2 signaling axis in ovarian cancer. Cancer Commun (Lond) 2021; 41:511-527. [PMID: 33939321 PMCID: PMC8211352 DOI: 10.1002/cac2.12157] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/27/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Although programmed cell death‐ligand 1 (PD‐L1) plays a well‐known function in immune checkpoint response by interacting with programmed cell death‐1 (PD‐1), the cell‐intrinsic role of PD‐L1 in tumors is still unclear. Here, we explored the molecular regulatory mechanism of PD‐L1 in the progression and metastasis of ovarian cancer. Methods Immunohistochemistry of benign tissues and ovarian cancer samples was performed, followed by migration, invasion, and angiogenesis assays in PD‐L1‐knockdown ovarian cancer cells. Immunoprecipitation, mass spectrometry, and chromatin immunoprecipitation were conducted along with zebrafish and mouse experiments to explore the specific functions and mechanisms of PD‐L1 in ovarian cancer. Results Our results showed that PD‐L1 induced angiogenesis, which further promoted cell migration and invasion in vitro and in vivo of ovarian cancer. Mechanistically, PD‐L1 was identified to directly interact with vascular endothelial growth factor receptor‐2 (VEGFR2) and then activated the FAK/AKT pathway, which further induced angiogenesis and tumor progression, leading to poor prognosis of ovarian cancer patients. Meanwhile, PD‐L1 was found to be regulated by the oncogenic transcription factor c‐JUN at the transcriptional level, which enhanced the expression of PD‐L1 in ovarian cancer. Furthermore, we demonstrated that PD‐L1 inhibitor durvalumab, combined with the antiangiogenic drug, apatinib, could enhance the effect of anti‐angiogenesis and the inhibition of cell migration and invasion. Conclusion Our results demonstrated that PD‐L1 promoted the angiogenesis and metastasis of ovarian cancer by participating in the c‐JUN/VEGFR2 signaling axis, suggesting that the combination of PD‐L1 inhibitor and antiangiogenic drugs may be considered as a potential therapeutic approach for ovarian cancer patients.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Lingfang Xia
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Yong Wu
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Hongyu Zhou
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Xin Chen
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| | - Haoran Li
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Midie Xu
- Department of Pathology and Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Zihao Qi
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Ziliang Wang
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China.,Clinical Research Unit of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 200071, P. R. China
| | - Huizhen Sun
- Department of Gynecology and Obstetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, P. R. China
| | - Xi Cheng
- Department of Gynecological Oncology and Cancer Research Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|