1
|
Song IH, Ahn B, Park YS, Kim DH, Hong SM. Presence of RB1 or Absence of LRP1B Mutation Predicts Poor Overall Survival in Patients with Gastric Neuroendocrine Carcinoma and Mixed Adenoneuroendocrine Carcinoma. Cancer Res Treat 2025; 57:492-506. [PMID: 39327909 PMCID: PMC12016830 DOI: 10.4143/crt.2024.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE Neuroendocrine carcinomas (NECs) of the stomach are extremely rare, but fatal. However, our understanding of the genetic alterations in gastric NECs is limited. We aimed to evaluate genomic and clinicopathological characteristics of gastric NECs and mixed adenoneuroendocrine carcinomas (MANECs). MATERIALS AND METHODS Fourteen gastric NECs, three gastric MANECs, and 1,381 gastric adenocarcinomas were retrieved from the departmental next-generation sequencing database between 2017 and 2022. Clinicopathological parameters and next-generation sequencing test results were retrospectively collected and reviewed. RESULTS Gastric NECs and MANECs frequently harbored alterations of TP53, RB1, SMARCA4, RICTOR, APC, TOP1, SLX4, EGFR, BRCA2, and TERT. In contrast, gastric adenocarcinomas exhibited alterations of TP53, CDH1, LRP1B, ARID1A, ERBB2, GNAS, CCNE1, NOTCH, and MYC. Mutations of AKT3, RB1, and SLX4; amplification of BRCA2 and RICTOR; and deletion of ADAMTS18, DDX11, KLRC3, KRAS, MAX, NFKBIA, NUDT7, and RB1 were significantly more frequent in gastric NECs and MANECs than in gastric adenocarcinomas. The presence of LRP1B mutation was significantly associated with longer overall survival (OS), whereas RB1 mutation and advanced TNM stage were associated with shorter OS. CONCLUSION We identified frequently mutated genes and potential predictors of survival in patients with gastric NECs and MANECs.
Collapse
Affiliation(s)
- In Hye Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bokyung Ahn
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok Hoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Zhang J, Wang G, Liu J, Tang F, Wang S, Li Y. ITGA4 as a potential prognostic and immunotherapeutic biomarker in human cancer and its clinical significance in gastric cancer: an integrated analysis and validation. Front Oncol 2025; 15:1513622. [PMID: 40012546 PMCID: PMC11860100 DOI: 10.3389/fonc.2025.1513622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Background Integrin Subunit Alpha 4 (ITGA4), a member of the integrin protein family, is involved in the progression of malignant tumors. However, its role across different cancer types is not well understood. Methods Utilizing multi-omics data, we comprehensively evaluated ITGA4's expression, clinical relevance, diagnostic and prognostic value, functions, mutations, and methylation status, along with its impact on immunity, mismatch repair (MMR), heterogeneity, stemness, immunotherapy responsiveness, and drug resistance in pan-cancer, with partial validation in gastric cancer (GC) using transcriptomic analysis, single-cell data, western blot (WB), wound-healing assay, flow cytometry and immunohistochemistry (IHC). We further investigated its correlation with clinicopathology and serological markers on tissues from 80 GC patients. Results ITGA4 expression was generally low in normal tissues but varied significantly across tumor types, with higher levels in advanced stages and grades. It demonstrated diagnostic value in 20 cancer types and effectively predicted 1-, 3-, and 5-year survival rates as part of a prognostic model. ITGA4 played roles in cell adhesion, migration, immune regulation, and pathways like PI3K-Akt and TSC-mTOR. It showed alterations in 22 cancer types, with methylation at 9 sites inhibiting its expression. ITGA4 positively correlated with immune cell infiltration, immune regulatory genes, chemokines, and might reduce microsatellite instability (MSI) and tumor mutation burden (TMB) by promoting MMR gene expression. It could also predict immunotherapy efficacy and chemotherapy sensitivity. In GC, high ITGA4 expression was related to poor prognosis, promoted tumor proliferation and migration, and enhanced immune cell infiltration. ITGA4 expression was higher in GC cells and tissues than normal ones. Its downregulation inhibited GC cell migration and promoted apoptosis. Moreover, ITGA4 was correlated with N stage, pathological stage, neural and vascular invasion, serum levels of Ki-67, immune cells, CRP and CA125. Conclusion ITGA4 is a potential biomarker and therapeutic target to enhance cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxing Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Gang Wang
- School of Basic Medical Sciences of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Futian Tang
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Song Wang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Wang G, Liu L, Zhao Y, Lin Y, Er L. Comparative genomic analysis unveiling the mutational landscape associated with premalignant lesions and early-stage gastric cardia cancer. Medicine (Baltimore) 2025; 104:e40332. [PMID: 39792765 PMCID: PMC11731115 DOI: 10.1097/md.0000000000040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/11/2024] [Indexed: 01/30/2025] Open
Abstract
This study enrolled 10 patients diagnosed with premalignant lesions and early-stage gastric cardia adenocarcinoma (GCA), confirmed through endoscopic examination. These patients were subjected to next-generation sequencing (NGS) using a customized 1123-gene panel to identify genetic alterations and signaling pathways. The results were compared to stage IIB to IV GCA samples from the cancer genome atlas (TCGA) and a cohort of Hong Kong patients. The study provides insights into the molecular drivers of GCA progression, with potential therapeutic implications. A total of 10 patients diagnosed with premalignant and early-stage GCA were subjected to NGS targeted 1123-panal testing. Genetic alterations characteristics and signaling pathways were defined and analyzed. These findings were compared with the mutation features of stage IIB to IV GCA samples from the TCGA and another GCA cohort of HongKong patients (HK cohort). Additionally, therapeutic implications were also evaluated. In premalignant lesions and early-stage GCA, driver genes, such as TP53, ARIDA and LRP1B were found to have high mutation rates and showed no significantly different in driver gene mutation and tumor mutational burden with stage IIB to IV GCA in both the HK and TCGA-GCA cohorts. However, EPHA2 showed a significantly higher mutation rate in premalignant and early-stage GCA compared to IIB to IV GCA. The majority of 10 cancer-related signaling pathways were found to be activated in premalignant and early-stage GCA. Furthermore, 80% patients had corresponding potential therapeutic inhibitors based on molecular mutation results in our cohort. Certain mutational characteristics involved in the occurrence and progression of GCA are already present in premalignant lesions and early-stage GCA, which can be assessed and prevented through early molecular testing. Additionally, EPHA2 mutations are more common in premalignant lesions and early-stage GCA, which provided potential biomarkers for the diagnosis and detection of premalignant lesions and early-stage GCA.
Collapse
Affiliation(s)
- Guangda Wang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Liu
- Tumor Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Zhao
- The Office of Academic Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Lin
- Library, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Limian Er
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Zhang X, Lian J, Chen F, Wang K, Xue H, Jia S, Wang W, Li Z, Liang H, Li H. Genomic, transcriptomic, and T cell receptor profiling in stratifying response to first-line chemoradiotherapy or radiotherapy for esophageal squamous cell carcinoma. Front Oncol 2025; 14:1495200. [PMID: 39834937 PMCID: PMC11743576 DOI: 10.3389/fonc.2024.1495200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Esophageal squamous cell carcinoma (ESCC) accounts for 80% of esophageal cancer (EC) worldwide. The molecular characteristics of locally advanced ESCC have been extensively studied. Methods In this study, we investigate the genomic and transcriptomic characteristics and try to provide the basic T-cell receptors (TCRs) dynamics and its genomic and transcriptome association during the radiochemotherapy of ESCC using multi-omics analysis. Results A total of 23 patients with pathologic diagnoses of locally advanced ESCC were enrolled. The median tumor mutational burden (TMB) of the 23 ESCC patients were 3.47 mutations/ Mb (mega-base). The TP53, RTK/RAS, and NOTCH pathways were concurrently prevalent in ESCC. Besides, some less prevalent pathways, including WNT and HIPPO pathways also exhibited superior frequencies in ESCC. Meantime, we found the immune-hot tumor had higher immune infiltration scores. The median TMB in the progression-free survival (PFS) low group was significantly higher than that in the PFS-high group. The chromosomal copy number variation (CNV) burden of the neutrophil-to-lymphocyte ratio (NLR)-high group appeared to be higher than that of the NLR-low group, and the StromalScore in the NLR-low group was significantly higher. Clonality score was significantly increased from pre-treat to post-treat and from on-treat to post-treat. Shannon index was significantly decreased from pre-treat to post-treat and from on-treat to posttreat. Richness was significantly decreased from pre-treat to post-treat. Discussion Multiomics analysis provided the basic TCRs dynamics and their genomic and transcriptome association during the radio-chemotherapy of 23 locally advanced ESCC in China, and provided a valuable insights into the heterogeneity and the tumor microenvironment and treatment responses. Meantimes, the identification of biomarkers and the exploration of their association with treatment outcomes could have important implications for clinical practice.
Collapse
Affiliation(s)
- Xiaqin Zhang
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhong Lian
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Kai Wang
- Geneplus-Beijing, Beijing, China
| | - Haoyuan Xue
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sufang Jia
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weili Wang
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Hua Liang
- Ludwig Center for Metastasis Research, Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, United States
| | - Hongwei Li
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Sorbye H, Hjortland GO, Vestermark LW, Sundlov A, Assmus J, Couvelard A, Perren A, Langer SW. NETest in advanced high-grade gastroenteropancreatic neuroendocrine neoplasms. J Neuroendocrinol 2024; 36:e13428. [PMID: 38937137 DOI: 10.1111/jne.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Molecular blood biomarkers are lacking for high-grade (HG) gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN). To histologically distinguish between neuroendocrine carcinoma (NEC), neuroendocrine tumors G3 (NET G3), adenocarcinoma and MINEN is often challenging. The mRNA-based NETest has diagnostic, prognostic and predictive value in neuroendocrine tumors G1-2 but has not been studied in HG GEP-NEN. Patients with advanced HG GEP-NEN were prospectively included in an observational study. A blood sample was collected before the start of chemotherapy and pseudonymised before NETest was performed. NETest results are expressed as an activity index (NETest score) from 0 to 100. The normal score cut-off is 20. Histological sections were pseudonymised before centralized pathological re-evaluation. Samples from 60 patients were evaluable with the NETest. Main primary tumor sites were colon (14), rectum (12), pancreas (11) and esophagus (7). Re-classification: 30 NEC, 12 NET G3, 3 HG-NEN ambiguous morphology, 8 MiNEN, 3 adenocarcinomas with neuroendocrine differentiation (ADNE), 3 adenocarcinomas and 1 NET G2. Elevated NETest (>20) was seen in 38/45 (84%) HG GEP-NEN, all 17 large-cell NEC (100%), 11/13 (85%) small-cell NEC, all ambiguous cases and 7/12 (64%) NET G3. NETest was elevated in 5/8 (63%) MiNEN, 2/3 ADNE, however not in 3 adenocarcinomas. Median survival was 10.2 months (9.6-10.8 95%CI) for evaluable HG GEP-NEN treated with palliative chemotherapy (n = 39), and survival was significantly shorter in patients with NETest >60 with an OS of only 6.5 months. This is the first study to evaluate use of the NETest in advanced HG GEP-NEN. The NETest was almost always elevated in GEP-NEC and in all large-cell NEC. The NETest was also frequently elevated in NET G3 and MiNEN, however cases were limited. Baseline NETest was not predictive for benefit of chemotherapy, however a NETest >60 was prognostic with a shorter survival for patients receiving chemotherapy.
Collapse
Affiliation(s)
- H Sorbye
- Department of Oncology, Haukeland University Hospital and Department of Clinical Science, University of Bergen, Bergen, Norway
| | - G O Hjortland
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - A Sundlov
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - J Assmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - A Couvelard
- Department of Pathology, AP-HP Bichat Hospital, Université Paris Cité, Paris, France
| | - A Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - S W Langer
- Department of Oncology, Copenhagen University Hospital - Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Ergun P, Samuels TL, Mathison AJ, Plehhova K, Coyle C, Horvath L, Johnston N. Global Transcriptomic Analysis of Topical Sodium Alginate Protection against Peptic Damage in an In Vitro Model of Treatment-Resistant Gastroesophageal Reflux Disease. Int J Mol Sci 2024; 25:10714. [PMID: 39409043 PMCID: PMC11605242 DOI: 10.3390/ijms251910714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
Breakthrough symptoms are thought to occur in roughly half of all gastroesophageal reflux disease (GERD) patients despite maximal acid suppression (proton pump inhibitor, PPI) therapy. Topical alginates have recently been shown to enhance mucosal defense against acid-pepsin insult during GERD. We aimed to examine potential alginate protection of transcriptomic changes in a cell culture model of PPI-recalcitrant GERD. Immortalized normal-derived human esophageal epithelial cells underwent pretreatment with commercial alginate-based anti-reflux medications (Gaviscon Advance or Gaviscon Double Action), a matched-viscosity placebo control, or pH 7.4 buffer (sham) alone for 1 min, followed by exposure to pH 6.0 + pepsin or buffer alone for 3 min. RNA sequencing was conducted, and Ingenuity Pathway Analysis was performed with a false discovery rate of ≤0.01 and absolute fold-change of ≥1.3. Pepsin-acid exposure disrupted gene expressions associated with epithelial barrier function, chromatin structure, carcinogenesis, and inflammation. Alginate formulations demonstrated protection by mitigating these changes and promoting extracellular matrix repair, downregulating proto-oncogenes, and enhancing tumor suppressor expression. These data suggest molecular mechanisms by which alginates provide topical protection against injury during weakly acidic reflux and support a potential role for alginates in the prevention of GERD-related carcinogenesis.
Collapse
Affiliation(s)
- Pelin Ergun
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Tina L. Samuels
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| | - Angela J. Mathison
- Mellowes Center for Genomic Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kate Plehhova
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Cathal Coyle
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Lizzie Horvath
- Reckitt Benckiser Healthcare UK Ltd., Slough SL1 3UH, UK; (K.P.); (C.C.); (L.H.)
| | - Nikki Johnston
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (P.E.); (T.L.S.)
| |
Collapse
|
7
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
8
|
Elvebakken H, Venizelos A, Perren A, Couvelard A, Lothe IMB, Hjortland GO, Myklebust TÅ, Svensson J, Garresori H, Kersten C, Hofsli E, Detlefsen S, Vestermark LW, Knappskog S, Sorbye H. Treatment outcome according to genetic tumour alterations and clinical characteristics in digestive high-grade neuroendocrine neoplasms. Br J Cancer 2024; 131:676-684. [PMID: 38909137 PMCID: PMC11333587 DOI: 10.1038/s41416-024-02773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Chemotherapy has limited efficacy in advanced digestive high-grade neuroendocrine neoplasms (HG-NEN) and prognosis is dismal. Predictive markers for palliative chemotherapy are lacking, and prognostic markers are limited. METHODS Digestive HG-NEN patients (n = 229) were prospectively included 2013-2017. Pathological re-assessment revealed 188 neuroendocrine carcinomas (NEC) and 41 neuroendocrine tumours (NET G3). Tumour-DNA was sequenced across 360 cancer-related genes, assessing mutations (mut) and copy number alterations. We linked sequencing results to clinical information and explored potential markers for first-line chemotherapy efficacy and survival. RESULTS In NEC given cis/carboplatin and etoposide (PE), TP53mut predicted inferior response rate in multivariate analyses (p = 0.009) and no BRAFmut NEC showed response. In overall assessment of PE-treated NEC, no genetic alterations were prognostic for OS. For small-cell NEC, TP53mut were associated with longer OS (p = 0.011) and RB1 deletions predicted lack of immediate-progression (p = 0.003). In non-small cell NEC, APC mut were associated with immediate-progression and shorter PFS (p = 0.008/p = 0.004). For NET G3, ATRXmut, ARID1A- and ERS1 deletions were associated with shorter PFS. CONCLUSION Correlations between genetic alterations and response/immediate-progression to PE were frequent in NEC but affected PFS or OS only when subdividing for cell-type. The classification of digestive NEC into large- and small-cell seems therefore molecularly and clinically relevant.
Collapse
Affiliation(s)
- Hege Elvebakken
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Oncology, Ålesund Hospital, Møre and Romsdal Hospital Trust, Ålesund, Norway.
| | - Andreas Venizelos
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Anne Couvelard
- Department of Pathology, Université Paris Cité and AP-HP, Bichat Hospital, Paris, France
| | | | | | - Tor Å Myklebust
- Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
- Department of Registration, Cancer Registry Norway, Oslo, Norway
| | - Johanna Svensson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Herish Garresori
- Department of Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Christian Kersten
- Department of Research, Hospital of Southern Norway, Kristiansand, Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Oncology, St.Olavs Hospital, Trondheim, Norway
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | | | - Stian Knappskog
- K.G. Jebsen Center for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Halfdan Sorbye
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Ren C, Cao Z, Liu Y, Wang R, Lin C, Wang Z. Medicinal chemistry aspects of fat mass and obesity associated protein: structure, function and inhibitors. Future Med Chem 2024; 16:1705-1726. [PMID: 39101588 PMCID: PMC11370915 DOI: 10.1080/17568919.2024.2380245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 08/06/2024] Open
Abstract
Adiposity and obesity-related proteins (FTO), the earliest identified mRNA N6-methyladenosine (m6A) demethylases, are known to play crucial roles in several biological processes. Therefore, FTO is a promising target for anticancer treatment. Understanding the biological functions and regulatory mechanisms of FTO targets can serve as guidelines for drug development. Despite significant efforts to develop FTO inhibitors, no specific small-molecule inhibitors have entered clinical trials so far. In this manuscript, we review the relationship between FTO and various cancers, the small-molecule inhibitors developed against FTO targets from the perspective of medicinal chemistry and other fields, and describe their structural optimization process and structure-activity relationship, providing clues for their future development direction.
Collapse
Affiliation(s)
- Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Zhi Cao
- Medical Quality Control & Evaluation Department, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Yang Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Rui Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Congcong Lin
- Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| |
Collapse
|
10
|
Uccella S. Molecular Classification of Gastrointestinal and Pancreatic Neuroendocrine Neoplasms: Are We Ready for That? Endocr Pathol 2024; 35:91-106. [PMID: 38470548 PMCID: PMC11176254 DOI: 10.1007/s12022-024-09807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
In the last two decades, the increasing availability of technologies for molecular analyses has allowed an insight in the genomic alterations of neuroendocrine neoplasms (NEN) of the gastrointestinal tract and pancreas. This knowledge has confirmed, supported, and informed the pathological classification of NEN, clarifying the differences between neuroendocrine carcinomas (NEC) and neuroendocrine tumors (NET) and helping to define the G3 NET category. At the same time, the identification genomic alterations, in terms of gene mutation, structural abnormalities, and epigenetic changes differentially involved in the pathogenesis of NEC and NET has identified potential molecular targets for precision therapy. This review critically recapitulates the available molecular features of digestive NEC and NET, highlighting their correlates with pathological aspects and clinical characteristics of these neoplasms and revising their role as predictive biomarkers for targeted therapy. In this context, the feasibility and applicability of a molecular classification of gastrointestinal and pancreatic NEN will be explored.
Collapse
Affiliation(s)
- Silvia Uccella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy.
- Pathology Service IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
11
|
Lv JJ, Yao QL, Jiang XB, Ren M, Cai X, Dai B, Kong YY. Primary leptomeningeal melanocytic neoplasms: A clinicopathologic, immunohistochemical, and molecular study of 12 cases. Hum Pathol 2024; 148:32-40. [PMID: 38670237 DOI: 10.1016/j.humpath.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
This study investigated the clinicopathological, immunohistochemical, and molecular features of primary leptomeningeal melanocytic neoplasms (LMNs). Twelve LMN cases were retrospectively reviewed. We performed Fluorescence in-situ hybridization (including a 4-probe FISH assay with CDKN2A and MYC assay) and Next-Generation sequencing analyses on available cases. Histologically, 2 tumours were classified as melanocytomas (MC), 2 as intermediate-grade melanocytomas (IMC), and 8 as leptomeningeal melanomas (LMM). Two rare cases of LMM were associated with large plaque-like blue nevus. One MC case was associated with Ota. Ten cases (83.3%) showed melanocytic cells with benign features diffusely proliferating within the meninges. The Ki-67 in three categories differed (MC 0-1%, IMC 0-3%, LMM 3-10%). 57.1% of LMM cases (4/7) were positive for FISH. Nine of 10 tumours harboured activating hotspot mutations in GNAQ, GNA11, or PLCB4. Additional mutations of EIF1AX, SF3B1, or BAP1 were found in 40%, 30%, and 10% of tumours, respectively. During the follow-up (median = 43 months), 5 LMM patients experienced recurrence and/or metastasis, 3 of them died of the disease and the other 2 are alive with the tumour. Our study is by far the first cohort of LMN cases tested by FISH. In addition to morphological indicators including necrosis and mitotic figures, using a combination of Ki-67 and FISH helps to differentiate between IMC and LMM, especially in LMM cases with less pleomorphic features. SF3B1 mutation is first described in 2 cases of plaque-type blue nevus associated with LMM. Patients with SF3B1 mutation might be related to poor prognosis in LMN.
Collapse
Affiliation(s)
- Jiao-Jie Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Qian-Lan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xue-Bing Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China; Department of Pathology, Minhang Hospital, Fudan University, Shanghai, 201100, People's Republic of China
| | - Min Ren
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Dai
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China; Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China.
| | - Yun-Yi Kong
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, People's Republic of China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
12
|
Duan S, Sawyer TW, Witten BL, Song H, Else T, Merchant JL. Spatial profiling reveals tissue-specific neuro-immune interactions in gastroenteropancreatic neuroendocrine tumors. J Pathol 2024; 262:362-376. [PMID: 38229586 PMCID: PMC10869639 DOI: 10.1002/path.6241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/14/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are heterogeneous malignancies that arise from complex cellular interactions within the tissue microenvironment. Here, we sought to decipher tumor-derived signals from the surrounding microenvironment by applying digital spatial profiling (DSP) to hormone-secreting and non-functional GEP-NETs. By combining this approach with in vitro studies of human-derived organoids, we demonstrated the convergence of cell autonomous immune and pro-inflammatory proteins that suggests their role in neuroendocrine differentiation and tumorigenesis. DSP was used to evaluate the expression of 40 neural- and immune-related proteins in surgically resected duodenal and pancreatic NETs (n = 20) primarily consisting of gastrinomas (18/20). A total of 279 regions of interest were examined between tumors, adjacent normal and abnormal-appearing epithelium, and the surrounding stroma. The results were stratified by tissue type and multiple endocrine neoplasia I (MEN1) status, whereas protein expression was validated by immunohistochemistry (IHC). A tumor immune cell autonomous inflammatory signature was further evaluated by IHC and RNAscope, while functional pro-inflammatory signaling was confirmed using patient-derived duodenal organoids. Gastrin-secreting and non-functional pancreatic NETs showed a higher abundance of immune cell markers and immune infiltrate compared with duodenal gastrinomas. Compared with non-MEN1 tumors, MEN1 gastrinomas and preneoplastic lesions showed strong immune exclusion and upregulated expression of neuropathological proteins. Despite a paucity of immune cells, duodenal gastrinomas expressed the pro-inflammatory and pro-neural factor IL-17B. Treatment of human duodenal organoids with IL-17B activated NF-κB and STAT3 signaling and induced the expression of neuroendocrine markers. In conclusion, multiplexed spatial protein analysis identified tissue-specific neuro-immune signatures in GEP-NETs. Duodenal gastrinomas are characterized by an immunologically cold microenvironment that permits cellular reprogramming and neoplastic transformation of the preneoplastic epithelium. Moreover, duodenal gastrinomas cell autonomously express immune and pro-inflammatory factors, including tumor-derived IL-17B, that stimulate the neuroendocrine phenotype. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Suzann Duan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Travis W. Sawyer
- Department of Optical Sciences, University of Arizona Wyant College of Optical Sciences, Tucson, AZ, USA
| | - Brandon L. Witten
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Heyu Song
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Tobias Else
- Department of Internal Medicine, Endocrinology, University of Michigan, Ann Harbor, Michigan, USA
| | - Juanita L. Merchant
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
13
|
Postel MD, Darabi S, Howe JR, Liang WS, Craig DW, Demeure MJ. Multiomic sequencing of paired primary and metastatic small bowel carcinoids. F1000Res 2023; 12:417. [PMID: 37954063 PMCID: PMC10632590 DOI: 10.12688/f1000research.130251.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Background: Small bowel carcinoids are insidious tumors that are often metastatic when diagnosed. Limited mutation landscape studies of carcinoids indicate that these tumors have a relatively low mutational burden. The development of targeted therapies will depend upon the identification of mutations that drive the pathogenesis and metastasis of carcinoid tumors. Methods: Whole exome and RNA sequencing of 5 matched sets of normal tissue, primary small intestine carcinoid tumors, and liver metastases were investigated. Germline and somatic variants included: single nucleotide variants (SNVs), insertions/deletions (indels), structural variants, and copy number alterations (CNAs). The functional impact of mutations was predicted using Ensembl Variant Effect Predictor. Results: Large-scale CNAs were observed including the loss of chromosome 18 in all 5 metastases and 3/5 primary tumors. Certain somatic SNVs were metastasis-specific; including mutations in ATRX, CDKN1B, MXRA5 (leading to the activation of a cryptic splice site and loss of mRNA), SMARCA2, and the loss of UBE4B. Additional mutations in ATRX, and splice site loss of PYGL, leading to intron retention observed in primary and metastatic tumors. Conclusions: We observed novel mutations in primary/metastatic carcinoid tumor pairs, and some have been observed in other types of neuroendocrine tumors. We confirmed a previously observed loss of chromosome 18 and CDKN1B. Transcriptome sequencing added relevant information that would not have been appreciated with DNA sequencing alone. The detection of several splicing mutations on the DNA level and their consequences at the RNA level suggests that RNA splicing aberrations may be an important mechanism underlying carcinoid tumors.
Collapse
Affiliation(s)
- Mackenzie D. Postel
- Institute of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sourat Darabi
- Precision Medicine, Hoag Family Cancer Institute, Newport Beach, CA, 92663, USA
| | - James R. Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | - David W. Craig
- Institute of Translational Genomics, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Michael J. Demeure
- Precision Medicine, Hoag Family Cancer Institute, Newport Beach, CA, 92663, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
14
|
Ooki A, Osumi H, Fukuda K, Yamaguchi K. Potent molecular-targeted therapies for gastro-entero-pancreatic neuroendocrine carcinoma. Cancer Metastasis Rev 2023; 42:1021-1054. [PMID: 37422534 PMCID: PMC10584733 DOI: 10.1007/s10555-023-10121-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
Neuroendocrine neoplasms (NENs), which are characterized by neuroendocrine differentiation, can arise in various organs. NENs have been divided into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs) based on morphological differentiation, each of which has a distinct etiology, molecular profile, and clinicopathological features. While the majority of NECs originate in the pulmonary organs, extrapulmonary NECs occur most predominantly in the gastro-entero-pancreatic (GEP) system. Although platinum-based chemotherapy is the main therapeutic option for recurrent or metastatic GEP-NEC patients, the clinical benefits are limited and associated with a poor prognosis, indicating the clinically urgent need for effective therapeutic agents. The clinical development of molecular-targeted therapies has been hampered due to the rarity of GEP-NECs and the paucity of knowledge on their biology. In this review, we summarize the biology, current treatments, and molecular profiles of GEP-NECs based on the findings of pivotal comprehensive molecular analyses; we also highlight potent therapeutic targets for future precision medicine based on the most recent results of clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koshiro Fukuda
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
15
|
Peixoto J, Príncipe C, Pestana A, Osório H, Pinto MT, Prazeres H, Soares P, Lima RT. Using a Dual CRISPR/Cas9 Approach to Gain Insight into the Role of LRP1B in Glioblastoma. Int J Mol Sci 2023; 24:11285. [PMID: 37511044 PMCID: PMC10379115 DOI: 10.3390/ijms241411285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
LRP1B remains one of the most altered genes in cancer, although its relevance in cancer biology is still unclear. Recent advances in gene editing techniques, particularly CRISPR/Cas9 systems, offer new opportunities to evaluate the function of large genes, such as LRP1B. Using a dual sgRNA CRISPR/Cas9 gene editing approach, this study aimed to assess the impact of disrupting LRP1B in glioblastoma cell biology. Four sgRNAs were designed for the dual targeting of two LRP1B exons (1 and 85). The U87 glioblastoma (GB) cell line was transfected with CRISPR/Cas9 PX459 vectors. To assess LRP1B-gene-induced alterations and expression, PCR, Sanger DNA sequencing, and qRT-PCR were carried out. Three clones (clones B9, E6, and H7) were further evaluated. All clones presented altered cellular morphology, increased cellular and nuclear size, and changes in ploidy. Two clones (E6 and H7) showed a significant decrease in cell growth, both in vitro and in the in vivo CAM assay. Proteomic analysis of the clones' secretome identified differentially expressed proteins that had not been previously associated with LRP1B alterations. This study demonstrates that the dual sgRNA CRISPR/Cas9 strategy can effectively edit LRP1B in GB cells, providing new insights into the impact of LRP1B deletions in GBM biology.
Collapse
Grants
- PTDC/MEC-ONC/31520/2017 FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- POCI-01-0145-FEDER-028779 (PTDC/BIA-MIC/28779/2017) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- project "Institute for Research and Innovation in Health Sciences" (UID/BIM/04293/2019) FEEI, FEDER through COMPETE 2020 -POCI, Portugal 2020, and by Portuguese funds through FCT/Ministério da Ciência, Tecnologia e Ensino Superior
- "Cancer Research on Therapy Resistance: From Basic Mechanisms to Novel Targets"-NORTE-01-0145-FEDER-000051 Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF
- The Porto Comprehensive Cancer Center" with the reference NORTE-01-0145-FEDER-072678 - Consórcio PORTO.CCC - Porto.Comprehensive Cancer Center Raquel Seruca European Regional Development Fund
- ROTEIRO/0028/2013; LISBOA-01-0145-FEDER-022125 Portuguese Mass Spectrometry Network, integrated in the National Roadmap of Research Infra-structures of Strategic Relevance
Collapse
Affiliation(s)
- Joana Peixoto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Pestana
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
| | - Hugo Osório
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Marta Teixeira Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Hugo Prazeres
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Signaling and Metabolism Group, IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, 4169-007 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- FMUP-Department of Pathology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
16
|
Keane F, Bajwa R, Selenica P, Park W, Roehrl MH, Reis-Filho JS, Mandelker D, O'Reilly EM. Dramatic, durable response to therapy in gBRCA2-mutated pancreas neuroendocrine carcinoma: opportunity and challenge. NPJ Precis Oncol 2023; 7:40. [PMID: 37087482 PMCID: PMC10122663 DOI: 10.1038/s41698-023-00376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/30/2023] [Indexed: 04/24/2023] Open
Abstract
Poorly differentiated pancreatic neuroendocrine tumors (PDNEC), are a subtype of pancreatic cancer encompassing both small cell and large cell neuroendocrine carcinoma subtypes, and are characterized as distinct in terms of biology and prognosis compared to the more common pancreatic adenocarcinoma. Until recently, there has been a paucity of data on the genomic features of this cancer type. We describe a male patient diagnosed with PDNEC and extensive metastatic disease in the liver at diagnosis. Genomic analysis demonstrated a germline pathogenic variant in BRCA2 with somatic loss-of-heterozygosity of the BRCA2 wild-type allele. Following a favorable response to platinum-based chemotherapy (and the addition of immunotherapy), the patient received maintenance therapy with olaparib, which resulted in a further reduction on follow-up imaging (Fig. 1). After seventeen months of systemic control with olaparib, the patient developed symptomatic central nervous system metastases, which harboured a BRCA2 reversion mutation. No other sites of disease progression were observed. Herein, we report an exceptional outcome through the incorporation of a personalized management approach for a patient with a pancreatic PDNEC, guided by comprehensive genomic sequencing.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
| | - Raazi Bajwa
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael H Roehrl
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Diagnostic Molecular Genetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|