1
|
Bruno F, Nava V, Fazio F, Sansotta C, Bruschetta G, Licata P, Parrino V. Heavy Metals Bioaccumulation in Mytilus galloprovincialis and Tapes decussatus from Faro Lake (Messina), Italy. Biol Trace Elem Res 2024; 202:5762-5770. [PMID: 38430347 DOI: 10.1007/s12011-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
The aim of this study was to evaluate the potential bioaccumulation of arsenic (As), copper (Cu), zinc (Zn), cadmium (Cd), lead (Pb) and mercury (Hg) in the haemolymph and corpus of Mytilus galloprovincialis and Tapes decussatus from Lake Faro. The lake is particularly prone to the accumulation of substances that are potentially toxic to aquatic organisms, due to the input of pollutants from urban and agricultural sources and the low rate of water exchange. The combination of saltwater from the Tyrrhenian Sea, the Strait of Messina and freshwater from hilly aquifers has created brackish conditions in the lake, resulting in an area of high commercial shellfish productivity. As, Cd, Cu, Pb and Zn were determined using a single quadrupole inductively coupled plasma mass spectrometer; Hg was determined using a direct mercury analyser (DMA-80). Physicochemical parameters of the water from Lake Faro were also performed. Statistical analysis was carried out using GraphPad Prism 9.0 (GraphPad Software, Inc., Boston, MA, USA) and Shapiro-Wilk normality was applied. Concentrations of Cd, Hg and Pb below the permitted MRLs in Mytilus galloprovincialis and Tapes decussatus used as ''biological indicators'' show that Lake Faro is not at risk of contamination by these pollutants and, moreover, is free of health problems for the consumer based on regulatory limits.
Collapse
Affiliation(s)
- Fabio Bruno
- Department of Veterinary Sciences, University of Messina, Via Palatucci N.13, Messina, Italy
| | - Vincenzo Nava
- Department of Veterinary Sciences, University of Messina, Via Palatucci N.13, Messina, Italy.
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci N.13, Messina, Italy
| | - Carlo Sansotta
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Via Palatucci N.13, Messina, Italy
| | - Patrizia Licata
- Department of Veterinary Sciences, University of Messina, Via Palatucci N.13, Messina, Italy.
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Filice M, Caferro A, Amelio D, Impellitteri F, Iovine MA, Porretti M, Faggio C, Gattuso A, Cerra MC, Imbrogno S. The effects of ACE inhibitor Enalapril on Mytilus galloprovincialis: Insights into morphological and functional responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107014. [PMID: 38954870 DOI: 10.1016/j.aquatox.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
In the last decades, pharmaceuticals have emerged as a new class of environmental contaminants. Antihypertensives, including angiotensin-converting enzyme (ACE) inhibitors, are of special concern due to their increased consumption over the past years. However, the available data on their putative effects on the health of aquatic animals, as well as the possible interaction with biological systems are still poorly understood. This study analysed whether and to which extent the exposure to Enalapril, an ACE inhibitor commonly used for treating hypertension and heart failure, may induce morpho-functional alterations in the mussel Mytilus galloprovincialis, a sentinel organism of water pollution. By mainly focusing on the digestive gland (DG), a target tissue used for analysing the effects of xenobiotics in mussels, the effects of 10-days exposure to 0.6 ng/L (E1) and 600 ng/L (E2) of Enalapril were investigated in terms of cell viability and volume regulation, morphology, oxidative stress, and stress protein expression and localization. Results indicated that exposure to Enalapril compromised the capacity of DG cells from the E2 group to regulate volume by limiting the ability to return to the original volume after hypoosmotic stress. This occurred without significant effects on DG cell viability. Enalapril unaffected also haemocytes viability, although an increased infiltration of haemocytes was histologically observed in DG from both groups, suggestive of an immune response. No changes were observed in the two experimental groups on expression and tissue localization of heat shock proteins 70 (HSPs70) and HSP90, and on the levels of oxidative biomarkers. Our results showed that, in M. galloprovincialis the exposure to Enalapril did not influence the oxidative status, as well as the expression and localization of stress-related proteins, while it activated an immune response and compromised the cell ability to face osmotic changes, with potential consequences on animal performance.
Collapse
Affiliation(s)
- Mariacristina Filice
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy.
| | - Alessia Caferro
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Daniela Amelio
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | | | - Maria Assunta Iovine
- Dept of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Miriam Porretti
- Dept of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Dept of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy; Dept of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alfonsina Gattuso
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy.
| | - Maria Carmela Cerra
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| | - Sandra Imbrogno
- Dept of Biology, Ecology and Earth Science, University of Calabria, Rende (CS), Italy
| |
Collapse
|
3
|
Hou T, Yu J, Li C, Wang Z, Liu H. Immunotoxicity of microplastics and polychlorinated biphenyls alone or in combination to Crassostrea gigas. MARINE POLLUTION BULLETIN 2024; 200:116161. [PMID: 38364644 DOI: 10.1016/j.marpolbul.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Microplastics (MPs) and polychlorinated biphenyls (PCBs) are pervasive pollutants in the marine environment, exerting adverse effects on marine organisms. While it is suggested that their exposure may compromise the immune responses of marine organisms, the cumulative immunotoxic effects remain uncertain. Additionally, the intricate mechanisms underlying the immunotoxicity of PCBs and MPs in marine organisms are not yet fully comprehended. To illuminate their combined biological impacts, Crassostrea gigas were exposed to 50 μg/L MPs (30-μm porous) alone, as well as 10 or 100 ng/L PCBs individually or in combination with 50 μg/L of MPs for 28 days. Our data demonstrated that oysters treated with the pollutants examined led to decreased total haemocyte count, inhibited phagocytosis of haemocytes, enhanced the intracellular contents of reactive oxygen species, lipid peroxidation and DNA damage, reduced lysozyme concentration and activity, gave rise to superoxide dismutase. Catalaseand glutathione S-transferaseactivity. The expression of three immune-related genes (NF-κB, TNF-α, TLR-6) was drastically suppressed by the PCBs and MPs treatment, while the apoptosis pathway-related genes (BAX and Caspase-3) showed a significant increase. In addition, compared to oysters treated with a single type of pollutant, coexposure to MPs and PCBs exerted more severe adverse impacts on all the parameters investigated, indicating a significant synergistic effect. Therefore, the risk of MPs and PCBs chemicals on marine organisms should be paid more attention.
Collapse
Affiliation(s)
- Tinglong Hou
- Department of Ecology, Institute of Hydrobiology, School of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Jinyu Yu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China
| | - Chuntao Li
- College of Biology and Agriculture, Zunyi Normal College, Guizhou 563002, China
| | - Zibin Wang
- Shenzhen Ocean Center, Ministry of Natural Resources, Shenzhen 518131, China
| | - Huiru Liu
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Department of Fishery Sciences, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
4
|
Wang X, Shao S, Zhang T, Zhang Q, Yang D, Zhao J. Effects of exposure to nanoplastics on the gill of mussels Mytilus galloprovincialis: An integrated perspective from multiple biomarkers. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106174. [PMID: 37708618 DOI: 10.1016/j.marenvres.2023.106174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The pervasive presence of nanoplastics (NPs) in marine environments poses a threat to marine organisms. Gills, as the organ in direct contact with the environment in marine invertebrates, maybe the first to accumulate NPs. To date, the toxic effects of NPs on the gills of marine invertebrates are still largely unknown. In this study, the response of multiple biomarkers (i.e., total antioxidant capacity, the activity of acetylcholine, ion content and transport enzyme, metabolic enzymes, and lipids content) in mussels Mytilus galloprovincialis exposed to polystyrene nanoplastics (PS-NPs) for 7 days were evaluated. Significant inductions of total antioxidant capacity (T-AOC) and inhibition of acetylcholine (AChE) activity were detected after 7 days of PS-NPs exposure. PS-NPs also triggered significant alteration in ion content (Na+ and K+) and suppressed the activities of the ion transport enzyme (Na+/K+-ATPase). Moreover, we found the activity of metabolic enzymes (succinate dehydrogenase and pyruvate kinase) and lipids content (triacylglycerol and cholesterol) were significantly altered, suggesting the interference of PS-NPs on energy metabolism and lipid metabolism. This investigation provides substantial information to understand the physical responses of invertebrate gills to PS-NPs exposure. Given the crucial ecological roles of invertebrates, the presence of PS-NPs in the marine environment may have far-reaching impacts on population abundance, biodiversity, and stability of the marine ecosystem.
Collapse
Affiliation(s)
- Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shengyuan Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
5
|
Tresnakova N, Impellitteri F, Famulari S, Porretti M, Filice M, Caferro A, Savoca S, D Iglio C, Imbrogno S, Albergamo A, Vazzana I, Stara A, Di Bella G, Velisek J, Faggio C. Fitness assessment of Mytilus galloprovincialis Lamarck, 1819 after exposure to herbicide metabolite propachlor ESA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121878. [PMID: 37236591 DOI: 10.1016/j.envpol.2023.121878] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
The lack of data on the chronic effects of chloroacetanilide herbicide metabolites on non-target aquatic organisms creates a gap in knowledge about the comprehensive impacts of excessive and repeated pesticide use. Therefore, this study evaluates the long-term effects of propachlor ethanolic sulfonic acid (PROP-ESA) after 10 (T1) and 20 (T2) days at the environmental level of 3.5 μg.L-1 (E1) and its 10x fold multiply 35 μg.L-1 (E2) on a model organism Mytilus galloprovincialis. To this end, the effects of PROP-ESA usually showed a time- and dose-dependent trend, especially in its amount in soft mussel tissue. The bioconcentration factor increased from T1 to T2 in both exposure groups - from 2.12 to 5.30 in E1 and 2.32 to 5.48 in E2. Biochemical haemolymph profile and haemocyte viability were not affected by PROP-ESA exposure. In addition, the viability of digestive gland (DG) cells decreased only in E2 compared to control and E1 after T1. Moreover, malondialdehyde levels increased in E2 after T1 in gills, and DG, superoxidase dismutase activity and oxidatively modified proteins were not affected by PROP-ESA. Histopathological observation showed several damages to gills (e.g., increased vacuolation, over-production of mucus, loss of cilia) and DG (e.g., growing haemocyte trend infiltrations, alterations of tubules). This study revealed a potential risk of chloroacetanilide herbicide, propachlor, via its primary metabolite in the Bivalve bioindicator species M. galloprovincialis. Furthermore, considering the possibility of the biomagnification effect, the most prominent threat poses the ability of PROP-ESA to be accumulated in edible mussel tissues. Therefore, future research about the toxicity of pesticide metabolites alone or their mixtures is needed to gain comprehensive results about their impacts on living non-target organisms.
Collapse
Affiliation(s)
- Nikola Tresnakova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Federica Impellitteri
- University of Messina, Department of Veterinary Science, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Sergio Famulari
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Miriam Porretti
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Serena Savoca
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Claudio D Iglio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036, Arcavacata di Rende, Cosenza, Italy.
| | - Ambrogina Albergamo
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Irene Vazzana
- Zooprophylactic Institute of Sicily, Via Gino Marinuzzi 3, 90129, Palermo, Italy.
| | - Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Giuseppa Di Bella
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences of the University of Messina, Messina, Italy.
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
6
|
Cáceres-Farias L, Espinoza-Vera MM, Orós J, Garcia-Bereguiain MA, Alfaro-Núñez A. Macro and microplastic intake in seafood variates by the marine organism's feeding behaviour: Is it a concern to human health? Heliyon 2023; 9:e16452. [PMID: 37251848 PMCID: PMC10213373 DOI: 10.1016/j.heliyon.2023.e16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Seafood is considered one of the healthiest sources of food intake for humans, mainly because of its high protein content. However, oceans are among the most polluted environments, and microplastics have been widely reported to be ingested, absorbed or bioaccumulated by marine organisms. The different feeding behaviour may contribute to infer the amounts of microplastic particles accidently intake by marine organisms. We investigated the putative levels of microplastics in different edible species of fish, molluscs, and crustaceans. Plastic fragments larger than 200 μm were detected in the digestive tract of 277 out of 390 specimens (71.5 ± 22.2%) of the 26 different species analysed. There was no evidence of microplastic translocation or bioaccumulation in the muscle tissue of fish, molluscs, and crustaceans. Organisms with carnivorous feeding habits had the highest prevalence of plastic ingestion (79 ± 9.4%), followed by planktivorous species (74 ± 15.5%), and detritivorous species (38 ± 36.9%), suggesting a transfer through the food chain. Moreover, we found evidence that species with less selective feeding habits may be the most affected by the ingestion of large microplastic particles. Our results provide further evidence to the ubiquitous presence of microplastics in marine organisms representing a direct threat to marine wildlife, and to human health with potential consequences for future generations according to the One Health initiatives approach.
Collapse
Affiliation(s)
- Lenin Cáceres-Farias
- AquaCEAL Corporation, Urb. Las Palmeras, Ave. Capitán Byron Palacios & General Quisquis, #8 EC230101, Santo Domingo de los Colorados, Ecuador
- Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, 131101, Ecuador
| | - María Mercedes Espinoza-Vera
- AquaCEAL Corporation, Urb. Las Palmeras, Ave. Capitán Byron Palacios & General Quisquis, #8 EC230101, Santo Domingo de los Colorados, Ecuador
- Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, 131101, Ecuador
| | - Jorge Orós
- Department of Morphology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Miguel Angel Garcia-Bereguiain
- One Health Research Group, Universidad de las Américas, Quito, Ecuador
- Facultad de Ciencias de la Salud, Universidad Latina de Costa Rica, San José, Costa Rica
| | - Alonzo Alfaro-Núñez
- Department of Clinical Biochemistry, Naestved Hospital, Ringstedgade 57a, 4700, Naestved, Denmark
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen K, Denmark
| |
Collapse
|
7
|
Tresnakova N, Famulari S, Zicarelli G, Impellitteri F, Pagano M, Presti G, Filice M, Caferro A, Gulotta E, Salvatore G, Sandova M, Vazzana I, Imbrogno S, Capillo G, Savoca S, Velisek J, Faggio C. Multi-characteristic toxicity of enantioselective chiral fungicide tebuconazole to a model organism Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalve: Mytilidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160874. [PMID: 36521610 DOI: 10.1016/j.scitotenv.2022.160874] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 05/24/2023]
Abstract
The survey of available scientific literature shows a lack of data on the chronic effects of tebuconazole (TEB) on non-target aquatic organisms. Therefore, this study evaluates toxicity (10 and 20 days) of two considered concentrations 2 ng/L (E1) and 2 μg/L (E2) of TEB to bioindicator species Mytilus galloprovincialis. To this end, the TEB concentrations measured in soft mussel tissues showed a time-dependent increasing trend. The viability of haemocyte and digestive gland (DG) cells was higher than 95 % during the experiment. However, DG cells lost the ability to regulate their volume in both groups after 20-d. The E1 treatment increased Cl- and Na+ levels, and E2 decreased Na+ levels in the haemolymph. In addition, levels of superoxide dismutase (SOD) activity and oxidatively modified protein (OMP) increased after 10- and 20-d in both treatments. Histopathological findings showed abnormalities in the E2, e.g., haemocyte infiltration, hypertrophy, and hyperplasia in gills and DG. This study reveals the potential risks of TEB usage in the model organism M. galloprovincialis, primarily via bioaccumulation of TEB in food web links, and improves knowledge about its comprehensive toxicity.
Collapse
Affiliation(s)
- Nikola Tresnakova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Sergio Famulari
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giorgia Zicarelli
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Federica Impellitteri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Presti
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Eleonora Gulotta
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Guiliano Salvatore
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Irene Vazzana
- Zooprophylactic Institute of Sicily, Via Gino Marinuzzi, Italy
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy
| | - Serena Savoca
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy; Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
8
|
Lin Y, Yu J, Wang M, Wu L. Toxicity of single and combined 4-epianhydrotetracycline and cadmium at environmentally relevant concentrations on the zebrafish embryos (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120543. [PMID: 36341832 DOI: 10.1016/j.envpol.2022.120543] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The combined pollution of antibiotics and heavy metals has attracted a worldwide attention in the recent years. 4-epianhydrotetracycline (EATC) is the major degradation product of tetracycline (TC), which has been detected frequently in environment and its concentration is even higher than TC under some circumstances. Cadmium (Cd) is a common heavy metal contaminant and has highly toxic to organisms, plants and humans even at low doses. In the present study, zebrafish (Danio rerio) embryo toxicity test was performed to investigate the single and combined effects of EATC and Cd on aquatic organisms. Exposure to EATC and Cd at environmentally relevant concentrations had a series of hazardous impacts on the embryonic development, including lethality, hatching rate, heart rate and teratogenic effects. Compared to the contaminant existed alone, combined pollution produced stronger toxicity, which appeared as the decreasing of heart rate and hatching rate, and the increasing of malformation of zebrafish embryos. After 96 h exposure, the reactive oxygen species (ROS) levels in zebrafish embryos were increased significantly, revealing that EATC-Cd co-exposure resulted in potential oxidative stress-induced damage. Acridine orange (AO) staining showed that combined exposure resulted in stronger cell apoptosis. The potential health risks of the combined pollution of EATC and Cd should be paid more attention to higher level vertebrates and humans.
Collapse
Affiliation(s)
- Yinxuan Lin
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Jiao Yu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Meng Wang
- College of Biology and Environmental Science, Jishou University, Jishou, 416000, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
9
|
Liu L, Zhou Y, Wang C, Liu H, Xie R, Wang L, Hong T, Hu Q. Oxidative Damage in Roots of Rice (Oryza sativa L.) Seedlings Exposed to Microplastics or Combined with Cadmium. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:15. [PMID: 36520278 DOI: 10.1007/s00128-022-03659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to investigate the effect of 10-40 mg L-1 polystyrene microplastics (PS-MPs), 0.05 mg L-1 cadmium (Cd) and their combination on the growth and related physiological and toxicological responses in Oryza sativa L. seedling roots. Results showed that the fresh weight, dry weight and root lengths of treatments by PS-MPs, Cd single and combinative were all lower than the control, and opposite phenomenon appeared in production of superoxide radical (O2-.), malondialdehyde (MDA) and carbonylated protein. Superoxide dismutase (SOD) and guaiacol peroxidase (POD) activities induced by 10-40 mg L-1 PS-MPs and combination with Cd were almost higher than those by Cd alone, expression of heat shock protein (HSP)70 and carbonylated protein slightly decreased. In compound exposure, 10-20 mg L-1 PS-MPs alleviated Cd damage and promoted root growth by increasing SOD and POD activities, but 40 mg L-1 PS-MPs accelerated the accumulation of Cd, MDA, and O2-., which was responsible for decreasing root biomass and the aggravating necrosis of root tip cells.
Collapse
Affiliation(s)
- Ling Liu
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Ying Zhou
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China.
| | - Ruili Xie
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Ling Wang
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Tingting Hong
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| | - Qiannan Hu
- School of Biological Engineering, Huainan Normal University, 232038, Huainan, China
| |
Collapse
|
10
|
Saha S, Chukwuka AV, Mukherjee D, Dhara K, Saha NC, Faggio C. Behavioral and physiological toxicity thresholds of a freshwater vertebrate (Heteropneustes fossilis) and invertebrate (Branchiura sowerbyi), exposed to zinc oxide nanoparticles (nZnO): A General Unified Threshold model of Survival (GUTS). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109450. [PMID: 36058464 DOI: 10.1016/j.cbpc.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
The toxic effects of Zinc oxide nanoparticles (nZnO) on Branchiura sowerbyi and Heteropneustes fossilis, was assessed in a 96-hour acute exposure regime using behavioral (including loss-of balance and clumping tendencies) and physiological (mucus secretion and oxygen consumption) endpoints. While the relationship between behavioral, physiological biomarkers, and exposure concentrations was assessed using correlation analysis, nZnO toxicity was further predicted using the General Unified Threshold model for Survival (GUTS). The time-dependent lethal limits for acute nZnO toxicity (LC50) on B. sowerbyi were estimated to be 0.668, 0.588, 0.448, and 0.400 mg/l, respectively, at 24, 48, 72, and 96 h whereas for H. fossilis the LC50 values are 0.954, 0.905, 0.874 and 0.838 mg/l. Threshold effect values i.e., LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) threshold effect values at 96 h were higher for fish compared to the oligochaete. For B. sowerbyi, the GUTS-SD (stochastic death) model is a better predictor of nanoparticle exposure effects compared to the GUTS-IT (individual tolerance) model, however in the case of H. fossilis, the reverse pattern was observed. Oxygen consumption rate was negatively correlated to mortality under acute exposure duration. The strong negative correlation between mortality and oxygen consumption strongly suggests a metabolic-toxicity pathway for nZnO exposure effects. The higher toxicity threshold values i.e., LOEC, NOEC, and MATC for fish compared to the oligochaete invertebrate indicates greater risks for invertebrates compared to vertebrates, with resultant implications for local habitat trophic relationships.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24, Parganas 743 611, West Bengal, India. https://twitter.com/@DrShubhajitS
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria
| | - Dip Mukherjee
- Department of Zoology, S.B.S. Government College, Hili, Dakshin Dinajpur 733126, India
| | - Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Kalyani, Nadia 741 251, India
| | - Nimai Chandra Saha
- Department of Zoology, University of Burdwan, Purba Barddhaman 713 104, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
11
|
Hodkovicova N, Hollerova A, Svobodova Z, Faldyna M, Faggio C. Effects of plastic particles on aquatic invertebrates and fish - A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104013. [PMID: 36375728 DOI: 10.1016/j.etap.2022.104013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
This review summarises the current knowledge on the effects of microplastics and their additives on organisms living in the aquatic environment, particularly invertebrates and fish. To date, microplastics have been recognised to affect not only the behaviour of aquatic animals but also their proper development, causing variations in fertility, oxidative stress, inflammations and immunotoxicity, neurotoxicity, and changes in metabolic pathways and gene expression. The ability of microplastics to bind other xenobiotics and cause combined toxicity along side the effect of other agents is also discussed as well. Microplastics are highly recalcitrant materials in both freshwater and marine environments and should be considered extremely toxic to aquatic ecosystems. They are severely problematic from ecological, economic and toxicological standpoints.
Collapse
Affiliation(s)
- N Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - A Hollerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic; Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Z Svobodova
- Department of Animal Protection and Welfare & Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - M Faldyna
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
12
|
Forouhar Vajargah M, Bibak M. Pollution zoning on the southern shores of the Caspian Sea by measuring metals in Rutilus kutum tissue. Biol Trace Elem Res 2022; 200:4465-4475. [PMID: 34851494 DOI: 10.1007/s12011-021-03023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study was to bio monitor the status of heavy metals on the southern shores of the Caspian Sea by determining the concentration of these metals in the tissue of Rutilus kutum. Sampling of kidney tissue, liver, muscle, skin, and gonad of this fish was performed in 5 sites. Sampling was performed in Anzali, Kiashahr, Astara, Farahabad, and Bandar Torkaman from September 2017 to January 2018. In this study, the concentration of elements in different tissues was determined. Contamination zonation was determined by the concentration of metals in fish tissues. The highest amount of Pb accumulation (0.73 ppb) was determined in Astara and Anzali regions and in liver tissue. The highest amount of Cd (0.23 ppb) was reported in Astara region and in fish liver. Zoning showed that the concentration of most elements in the west of the Caspian Sea is higher than in the east; in other words, the west of the Caspian Sea is more polluted than the east. Existence of polluting sources such as ports, customs, agricultural lands, and tourism industry are important factors of pollution in these areas. Annual biological monitoring along with accurate identification of pollutant sources can help reduce this pollution, especially in the western part of the Caspian Sea. This study showed that the use of zoning technique in environmental studies as an effective management tool can be very useful in providing appropriate ways to identify and control sources and pollutants in the coast.
Collapse
Affiliation(s)
- Mohammad Forouhar Vajargah
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, P.O. box: 1144, Sowmeh Sara, Iran.
| | - Mehdi Bibak
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, P.O. box: 1144, Sowmeh Sara, Iran
| |
Collapse
|
13
|
Apiamu A, Osawaru SU, Asagba SO, Evuen UF, Achuba FI. Exposure of African Catfish (Clarias gariepinus) to Lead and Zinc Modulates Membrane-Bound Transport Protein: A Plausible Effect on Na +/K +-ATPase Activity. Biol Trace Elem Res 2022; 200:4160-4170. [PMID: 34791624 DOI: 10.1007/s12011-021-03005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
The contamination of the aquatic ecosystem beyond tolerable limits may pose serious health challenges to its components. This study evaluated the toxic effects of a binary mixture of lead (Pb) and zinc (Zn) compounds on the activity of Na+/K+-ATPase in tissues of Clarias gariepinus in a controlled aquatic system. The study employed Box-Behnken Design (BBD) with 17 runs in which Pb and Zn concentrations were considered process variables in a time-dependent fashion. Metal exposure levels consisted of 0, 10 and 20% of 96 h-LC50 of Pb (55.12 mg/L) and Zn (32.15 mg/L) for three weeks. Thereafter, membrane-bound Na+/K+-ATPase activity was assessed in gill, hepatic and renal tissues, and data generated from the BBD were used for the development of models. Three regression models were obtained, for gill, hepatic and renal Na+/K+-ATPase activities with exposure to metals differ significantly (p < 0.05) at R2 > 90%, and no significant lack of fit (p > 0.05) was observed in each case. Congruent to the synergistic interactions observed between Pb and Zn in the study, the gill and hepatic Na+/K+-ATPase activities were significantly inhibited, whereas renal Na+/K+-ATPase activity was significantly stimulated (p < 0.05). The optimized models were considered reliable, as they were confirmed in the laboratory through accurate prediction of hepatic, renal and gill Na+/K+-ATPase activities with equivalences of 1.22 ± 0.17, 1.66 ± 0.07 and 3.50 ± 0.33 µmol pi/min/mg protein (p < 0.05) respectively. It is hereby concluded that the synergistic interaction between Pb and Zn truncated the physiological function of Na+/K+-ATPase activity in the respective tissues except for renal tissue of exposed C. gariepinus.
Collapse
Affiliation(s)
- Augustine Apiamu
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B. 1, Abraka, Nigeria.
| | - Sophia U Osawaru
- Department of Biochemistry, College of Natural and Applied Sciences, Western Delta University, P.M.B. 10, Oghara, Nigeria
| | - Samuel O Asagba
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Uduenevwo F Evuen
- Department of Biochemistry, College of Natural and Applied Sciences, Western Delta University, P.M.B. 10, Oghara, Nigeria
| | - Fidelis I Achuba
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B. 1, Abraka, Nigeria
| |
Collapse
|
14
|
Jyoti D, Sinha R, Faggio C. Advances in biological methods for the sequestration of heavy metals from water bodies: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103927. [PMID: 35809826 DOI: 10.1016/j.etap.2022.103927] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Pollution is a major concern of the modern era as it affects all the principal aspects of the environment, especially the hydrosphere. Pollution with heavy metals has unequivocally threatened aquatic bodies and organisms as these metals are persistent, non-biodegradable, and toxic. Heavy metals tend to accumulate in the environment and eventually in humans, which makes their efficient removal a topic of paramount importance. Treatment of metal-contaminated water can be done both via chemical and biological methods. Where remediation through conventional methods is expensive and generates a large amount of sludge, biological methods are favoured over older and prevalent chemical purification processes because they are cheaper and environment friendly. The present review attempts to summarise effective methods for the remediation of water contaminated with heavy metals. We concluded that in biological techniques, bio-sorption is among the most employed and successful mechanisms because of its high efficacy and eco-friendly nature.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, HP 173 229, India.
| | - Reshma Sinha
- Department of Animal Science, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, 176206, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
15
|
Shahjahan M, Taslima K, Rahman MS, Al-Emran M, Alam SI, Faggio C. Effects of heavy metals on fish physiology - A review. CHEMOSPHERE 2022; 300:134519. [PMID: 35398071 DOI: 10.1016/j.chemosphere.2022.134519] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The pollution by heavy metals poses a serious threat to the aquatic environment and to the organisms if the concentration of heavy metals in the environment exceeds the safe limits. Due to their non-biodegradable and long persistence nature in the environment, heavy metals cause toxicity in fish by producing oxygen reactive species through oxidizing radical production. In this review, we investigated the effects of heavy metals on fish physiology with special emphasis on hemato-biochemical properties, immunological parameters especially hormones and enzymes, histopathology of different major organs and underlying molecular mechanisms. All those parameters are significantly affected by heavy metal exposure and are found to be important bio-monitoring tools to assess heavy metal toxicity. Hematological and biochemical alterations have been documented including cellular and nuclear abnormalities in different fish species exposed to different concentrations of heavy metals. Major fish organs (gills, liver, kidneys) including intestine, muscles showed different types of pathology specific to organs in acute and chronic exposure to different heavy metals. This study also revealed the expression of different genes involved in oxidative stress and detoxification of heavy metals. In a nutshell, this article shades light on the manipulation of fish physiology by the heavy metals and sought attention in the prevention and maintenance of aquatic environments particularly from heavy metals contaminations.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shanon Iffat Alam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S.Agata-Messina, Italy
| |
Collapse
|
16
|
Bakhshalizadeh S, Liyafoyi AR, Saoca C, Piccione G, Cecchini S, Fazio F. Nickel and cadmium tissue bioaccumulation and blood parameters in Chelon auratus and Mugil cephalus from Anzali free zone in the south Caspian Sea (Iran) and Faro Lake (Italy): A comparative analysis. J Trace Elem Med Biol 2022; 72:126999. [PMID: 35597100 DOI: 10.1016/j.jtemb.2022.126999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Analysis of heavy metal concentrations in fish blood is a valuable tool in environmental pollution monitoring. Among different type of fish, detritivorous fish are a very good indicator for monitoring pollution and environmental stress, along with hematological studies, which are an important indicator in eco-toxicological and biological studies. AIM The aim of this study was to evaluate the influence of environment on bioaccumulation of Ni and Cd and on blood parameters in Chelon auratus and Mugil cephalus (a detritivorous fish which is widely distributed in the world) captured in Caspian Sea and Faro Lake. METHODS For the research blood and tissues samples were collected from 40 mullets (20 Mugil cephalus from Italy and 20 Chelon auratus from Iran) in 2019. The hematological (white blood cell, WBC; red blood cell, RBC; thrombocyte count, TC; hematocrit, Hct; hemoglobin concentration, Hb; mean corpuscular volume, MCV; mean corpuscular hemoglobin, MCH and mean corpuscular hemoglobin concentration, MCHC) and biochemical parameters (aspartate aminotransferase, AST; alanine aminotransferase, ALT; alkaline phosphatase, ALP; lactate dehydrogenase, LDH and creatine phosphokinase, CPK were assessed. RESULTS Although the concentration of Ni and Cd in the muscle of fish have no significant health risks and were low in both regions, the most elevated concentration was found in the liver of Caspian Sea mullet. In all cases, the results obtained for all biochemical and most hematological parameters of individual Faro Lake, were considerably lower than the Caspian Sea, demonstrating that habitats and environmental conditions affect the blood metabolites. CONCLUSIONS The results of this study show that these measurements can be used as criteria for the quantitative evaluation of fish /health and provide information on the extent of potential poisoning and the risks posed to the populations and fisheries.
Collapse
Affiliation(s)
- Shima Bakhshalizadeh
- Department of Marine Science, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | | | - Concetta Saoca
- Department of Veterinary Science, Polo Universitario dell'Annunziata, University of Messina, 98168 Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Science, Polo Universitario dell'Annunziata, University of Messina, 98168 Messina, Italy
| | - Stefano Cecchini
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Francesco Fazio
- Department of Veterinary Science, Polo Universitario dell'Annunziata, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
17
|
Kladchenko ES, Andreyeva AY, Mindukshev IV, Gambaryan S. Cellular osmoregulation of the ark clam (Anadara kagoshimensis) hemocytes to hyposmotic media. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:434-439. [PMID: 35167189 DOI: 10.1002/jez.2578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/18/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Many bivalve species are considered to be euryhaline organisms due to effective adaptation to fluctuations of environmental salinity. Cellular mechanisms responsible for tolerance to salinity changes remain unclear for bivalves despite this question being critically important for commercially cultured species frequently introduced into regions differing from natural habitat by salinity regime. In the present work laser diffraction method was used for the analysis of volume changes in hemoglobin-containing ark clam (Anadara kagoshimensis) hemocytes following hyposmotic stimulation. Hemocytes responded to hyposmotic shock (decrease of media osmolarity from 461 to 216 mОsm/L) by a rapid swelling up to 171.5 ± 15.2% of control level. At normal osmotic conditions (osmolarity 461 mOsm/L), hemocyte mean cellular volume (MCV) was 354.0 ± 24.4 fl and maximum MCV of hyposmotically swollen cells prior lysis was 555.5 ± 57.4 fl (at the osmolarity 194 mOsm/L). Ark clam hemocytes demonstrated volume recovery response following hyposmotic swelling. Regulatory volume decrease (RVD) reaction did not depend on hemoglobin confirmation status. Final MCV of swollen hemocytes at the end of experimental period of RVD in oxygenated and deoxygenated suspensions did not significantly differ.
Collapse
Affiliation(s)
- Ekaterina S Kladchenko
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
| | - Aleksandra Y Andreyeva
- Laboratory of Ecological Immunology of Aquatic Organisms, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
18
|
Bertolino M, Costa G, Ruocco N, Esposito R, De Matteo S, Zagami G, Costantini M. First certain record of Demospongiae class (Porifera) alien species from the Mediterranean Sea. Mar Genomics 2022; 63:100951. [PMID: 35395504 DOI: 10.1016/j.margen.2022.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
In this paper, we identify some sponge specimens collected in the Faro Lake in Sicily, and belonging to Haliclona (Halicoclona) by using morphological analysis accompanied by molecular analysis through amplification of several molecular markers (18S and 28S rRNA, CO1 and ITS). The samples are identified as. H. (Halichoclona) vansoesti de Weerdt, de Kluijver & Gómez, 1999, a species native to the Caribbean, and therefore this is the first record of an alien species of the Demospongiae class (Porifera) from the Mediterranean Sea. This presence can be ascribed as results of global change (mainly global warming) that are affecting marine environment.
Collapse
Affiliation(s)
- Marco Bertolino
- Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genova, Italy..
| | - Gabriele Costa
- Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Napoli, Italy
| | - Roberta Esposito
- Department of Earth, Environmental and Life Sciences, University of Genoa, Corso Europa 26, 16132 Genova, Italy.; Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Sergio De Matteo
- Department of Biological, Chemical, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy
| | - Giacomo Zagami
- Department of Biological, Chemical, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Department of Marine Biotechnology, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
19
|
Javanshir Khoei A. A comparative study on the accumulation of toxic heavy metals in fish of the Oman Sea: effects of fish size, spatial distribution and trophic level. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Ibrahim MS, El-Gendi GMI, Ahmed AI, El-Haroun ER, Hassaan MS. Nano Zinc Versus Bulk Zinc Form as Dietary Supplied: Effects on Growth, Intestinal Enzymes and Topography, and Hemato-biochemical and Oxidative Stress Biomarker in Nile Tilapia (Oreochromis niloticus Linnaeus, 1758). Biol Trace Elem Res 2022; 200:1347-1360. [PMID: 33931824 DOI: 10.1007/s12011-021-02724-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Five isonitrogenous diets were formulated to comprise two forms of zinc (Zn): convention zinc oxide named Bulk-ZnO or zinc oxide nanoparticles (Nano-ZnO) supplemented at two levels 30 and 60 mg kg-1 compared to the control diet. Nile tilapia, Oreochromis niloticus, fingerlings (5.02-5.05 g) were fed tested diets two times a day for 84 days. The results displayed that the best growth and digestive enzyme activity (P < 0.05) were noticed in fish fed 60 mg kg-1 Nano-ZnO. Moreover, significant (P < 0.05) improvement in intestinal topography was observed in 60 mg kg-1 Nano-ZnO group versus other treatments. Furthermore, fish fed 30 mg kg-1 Nano-ZnO recorded the best values of hematological indices (P < 0.05). The alanine and aspartate aminotransferase (ALT and AST) values were lower, while total serum protein, albumin, and globulin contents were clearly higher in fish fed diet that contained 30 mg kg-1 Nano-ZnO versus other groups. The significant highest values of oxidative enzyme activity escorted with lower malondialdehyde value recorded of fish fed diet supplemented with 60 mg kg-1 Nano-ZnO. The results indicated that inclusion of Nano-ZnO at 60 mg kg-1 was the recommended source to enhance growth, feed utilization, amylase and lipase enzymes activity, intestinal morphology, hemato-biochemical, and oxidative response biomarkers of Nile tilapia compared with Bulk-ZnO in commercial tilapia feeds.
Collapse
Affiliation(s)
- Mohamed S Ibrahim
- Department of Aquaculture, Central Laboratory of Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Gaffar M I El-Gendi
- Department of Animal Production, Fish Research Laboratory, Faculty of Agriculture at Moshtohor, Benha University, Benha, 13736, Egypt
| | - Ahmed I Ahmed
- Department of Aquaculture, Central Laboratory of Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Ehab R El-Haroun
- Animal Production Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Mohamed S Hassaan
- Department of Animal Production, Fish Research Laboratory, Faculty of Agriculture at Moshtohor, Benha University, Benha, 13736, Egypt.
| |
Collapse
|
21
|
Dhara K, Chukwuka AV, Saha S, Saha NC, Faggio C. Effects of short-term selenium exposure on respiratory activity and proximate body composition of early-life stages of Catla catla, Labeo rohita and Cirrhinus mrigala. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103805. [PMID: 34974167 DOI: 10.1016/j.etap.2021.103805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Metal exposure impairs respiration, increases metabolic demand, and reduces energy storage/fitness in aquatic species. Respiratory impairment and energy storage was examined in acute selenium-exposed Indian major carps, Catla catla, Labeo rohita and Cirrhinus mrigala fry and were correlated with exposure concentrations. Toxicity effects were determined in a renewal bioassay using 96 h lethal selenium concentrations. Species sensitivity distribution (SSD) was also used to derive predicted no-effect concentrations, toxicity exposure ratios, for selenium exposures to early-life fish stages. Mortality was proportional with increasing concentrations. Oxygen consumption and lipid content compared to moisture and ash and of all protein content in tissues of C. catla and C. mrigala indicates that lowered oxygen consumption is directly predictive of lowered lipid content and selenium-induced hypoxia impacts the energy/nutritional status of the early-life stage of carp. This cross-taxa comparison will have major implications for advancing impact assessment and allow better targeting of species for conservation measures.
Collapse
Affiliation(s)
- Kishore Dhara
- Freshwater Fisheries Research & Training Centre, Directorate of Fisheries, Govt. of West Bengal, Kulia, Kalyani, Nadia 741 235, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Osun State, Nigeria
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, Pathankhali, South 24 Parganas 743611, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
22
|
Spatiotemporal Organic Carbon Distribution in the Capo Peloro Lagoon (Sicily, Italy) in Relation to Environmentally Sustainable Approaches. WATER 2022. [DOI: 10.3390/w14010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transitional water environments represent very ecologically interesting areas, which provide various ecosystem services, both concerning biodiversity protection and sustainable fruition of resources. In this way, the evaluation of total carbon and its components, chlorophyll, and chemical and physical parameters is of fundamental importance to deepen the dynamics of these peculiar natural areas. Commercial interests linked to the biological resources of these areas are often not well exploited in relation to their sustainability, due to lack of knowledge. In this study, we investigated the distribution of total organic carbon, chlorophyll, and other related physical and chemical parameters in the natural Lagoon of Capo Peloro (Eastern Sicily), to deepen the knowledge on the carbon equilibrium of these transitional basins. Collected data showed different trends for all parameters, mainly related to different seasons and water exchanges with sea. The influences of primary production sources and farmed molluscs were not negligible and deserve to be further investigated in the future. The results obtained reveal good margins for the possibility of environmentally sustainable exploitation of natural resources in both basins, but at the same time, there is a need for a more detailed knowledge of anthropogenic impacts on the area.
Collapse
|
23
|
Forouhar Vajargah M, Sattari M, Imanpour Namin J, Bibak M. Predicting the Trace Element Levels in Caspian Kutum (Rutilus kutum) from South of the Caspian Sea Based on Locality, Season and Fish Tissue. Biol Trace Elem Res 2022; 200:354-363. [PMID: 33576943 DOI: 10.1007/s12011-021-02622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Elements are the shared result of the erosion of rocks in the catchment area and human activities. Nutritional habits, ecological needs, heavy metal concentrations in water and sediment, duration of fishing in the aquatic environment, fishing season, and physicochemical properties of water (salinity, pH, hardness, and temperature) are among the effective factors in the accumulation of heavy metals in various fish organs. In this study, 150 specimens of Rutilus kutum were collected from the southern shores of the Caspian Sea including Astara, Anzali, and Kiashahr in Guilan Province, Farahabad in Mazandaran Province, and Bandar Torkaman in Golestan Province from December 2018 through October 2019. It is possible to predict the metal concentrations using the variables such as fish tissue, sampling region, and season. Akaike information criterion (AIC) was used to select the best regression model. We used fish muscle tissue and Anzali sampling site which were considered reference variables in the regression model. For some elements, a better model is obtained by considering all variables (AIC criterion is its lowest value). The best model obtained for Cu, Mn, and Si was only with region (as a variable). The best model obtained for Sn and Sr only concerns the region and tissue variables. The best model obtained for Sb only related to tissue variable. Using these models, environmental monitoring becomes easier and cheaper. We suggest further studies to be carried out in the shortest possible time along with the least laboratory cost.
Collapse
Affiliation(s)
- Mohammad Forouhar Vajargah
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran.
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| | - Javid Imanpour Namin
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| | - Mehdi Bibak
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| |
Collapse
|
24
|
Stara A, Pagano M, Albano M, Savoca S, Di Bella G, Albergamo A, Koutkova Z, Sandova M, Velisek J, Fabrello J, Matozzo V, Faggio C. Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117892. [PMID: 34385134 DOI: 10.1016/j.envpol.2021.117892] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 05/24/2023]
Abstract
Thiacloprid is a neonicotinoid insecticide widely exploited in agriculture and easily mobilized towards aquatic environments by atmospheric agents. However, little information about its toxicological effects on aquatic invertebrate bioindicators is available. In this study, specimens of the mussel Mytilus galloprovincialis were exposed to thiacloprid at environmental (4.5 μg L-1) and 100 times higher than environmental (450 μg L-1) concentrations for 20 days. Thiacloprid affected haemolymph biochemical parameters, cell viability in the digestive gland, antioxidant biomarkers and lipid peroxidation in the digestive gland and gills at environmentally relevant concentrations (4.5 μg L-1). In addition, thiacloprid exposure caused histological damage to the digestive gland and gills. Interestingly, the pesticide was detected at levels equal to 0.14 ng g-1 in the soft tissues of sentinels exposed for 20 days to 450 μg L-1 thiacloprid in seawaterμ. Due to its harmful potential and cumulative effects after long-term exposure of M. galloprovincialis, thiacloprid may pose a potential risk to nontarget aquatic organisms, as well as to human health. This aspect requires further in-depth investigation.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Maria Pagano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Marco Albano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Serena Savoca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, Viale Annunziata, Messina, Italy
| | - Zuzana Koutkova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Basssi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
25
|
DeiviArunachalam K, Kuruva JK, Pradhoshini KP, Musthafa MS, Faggio C. Antioxidant and antigenotoxic potential of Morinda tinctoria Roxb. leaf extract succeeding cadmium exposure in Asian catfish, Pangasius sutchi. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109149. [PMID: 34352397 DOI: 10.1016/j.cbpc.2021.109149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
The present study investigated the protective effect of methanolic leaf extract of Morinda tinctoria. Roxb (MEMT) (200 mg/kg) via feed in supplementation with standard compound silymarin (400 mg/kg). M. tinctoria (Roxb.) belonging to Rubiaceae, is an evergreen shrub indigenous to unfarmed lands of tropical countries. It is considered as an essential traditional medicine attributing for the potential antioxidant and anti-inflammatory properties. The enhancements of antioxidant and antigenotoxic status in different tissues of cadmium (Cd) intoxicated Pangasius sutchi were evaluated by using various antioxidant assays (superoxide dismutase (SOD) and catalase (CAT) and lipid peroxidation) in addition to micronuclei (MN), binuclei (BN) and comet assay. The cadmium toxicated fish showed a significant (p < 0.001) increase in lipid peroxidation (LPO) activities in liver, gills, muscle and kidney whereas significant (p < 0.001) decline were observed in superoxide dismutase (SOD) and catalase (CAT) contents in all fish tissues. The results also revealed that, Cd exposure induced the formation of genotoxic endpoints like MN, BN, notched nuclei, kidney shaped nuclei and DNA damage in the fish erythrocytes. Maximum of 26.8% MN frequencies and maximum of 66.74% tail DNA damage were observed on the 7th day of Cd exposure. A time-dependent significant increase (p < 0.001) in the frequencies of MN, BN and tail DNA damage were observed in all treated groups against the control which started to decline from 14th day onwards. There was a decline in the LPO content, frequencies of MN, BN and percentage of tail DNA in contrast to significant elevation in SOD and CAT content in all tissues due to the combined treatment of M. tinctoria feed and water borne Cd exposure. It can be concluded from our observations that, supplementation of M. tinctoria leaf extract through feed alone produced enhanced antioxidant and antigenotoxic status in cadmium treated fish by diminishing oxidative stress and genotoxicity effects in a time dependent manner.
Collapse
Affiliation(s)
- Kantha DeiviArunachalam
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Jaya Krishna Kuruva
- Center for Environmental and Nuclear Research (CENR), SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Kumara Perumal Pradhoshini
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India
| | - Mohamed Saiyad Musthafa
- Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G. & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai 600 014, Tamilnadu, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
26
|
Han X, Wang J, Cai W, Xu X, Sun M. The Pollution Status of Heavy Metals in the Surface Seawater and Sediments of the Tianjin Coastal Area, North China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11243. [PMID: 34769760 PMCID: PMC8582827 DOI: 10.3390/ijerph182111243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Heavy metal pollution has become a great concern due to its adverse effects on the ecological system and human health. The present study investigated the concentrations of six common heavy metals (Cr, Cu, Zn, As, Cd, and Pb) in the Tianjin coastal area to understand their distribution, enrichment, sources, and potential ecological risk levels, focusing on the main contributors. The results showed that the concentration of Cu was high in the surface seawater (6.89 µg/L for the average), while Cd was the main contaminating metal in the sediments, with an average concentration of 0.77 mg/kg. The potential ecological risk index (RI) implied that the heavy metals in the sediments could cause considerable ecological risk, and Cd was the major contributor to ecological risk in this area. In particular, the field investigation showed that Cd contamination occurred as a result of anthropogenic activities, including port transportation, mariculture, and metal fabrication along the coastal area. Therefore, it is necessary to control Cd contamination in the future to improve the quality of the marine environment in Bohai Bay.
Collapse
Affiliation(s)
- Xuemeng Han
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, China;
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.W.); (X.X.)
| | - Junqiang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.W.); (X.X.)
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Wenqian Cai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.W.); (X.X.)
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Xiangqin Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.W.); (X.X.)
| | - Mingdong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (J.W.); (X.X.)
| |
Collapse
|
27
|
Świacka K, Smolarz K, Maculewicz J, Michnowska A, Caban M. Exposure of Mytilus trossulus to diclofenac and 4'-hydroxydiclofenac: Uptake, bioconcentration and mass balance for the evaluation of their environmental fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148172. [PMID: 34412396 DOI: 10.1016/j.scitotenv.2021.148172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DIC) is one of the most widely consumed drugs in the world, and its presence in the environment as well as potential effects on organisms are the subject of numerous recent scientific works. However, it is becoming clear that the risk posed by pharmaceuticals in the environment needs to be viewed more broadly and their numerous derivatives should also be considered. In fact, already published results confirm that the transformation products of NSAIDs including DIC may cause a variety of potentially negative effects on marine organisms, sometimes showing increased biological activity. To date, however, little is known about bioconcentration of DIC and DIC metabolites and the role of sex in this process. Therefore, the present study for the first time evaluates sex-related differences in DIC bioconcentration and estimates bioconcentration potential of DIC metabolite, 4-OH DIC, in the Mytilus trossulus tissues. In the experiment lasting 7 days, mussels were exposed to DIC and 4-OH DIC at concentrations 68.22 and 20.85 μg/L, respectively. Our study confirms that DIC can be taken up by organisms not only in its native form, but also as a metabolite, and metabolised further. Furthermore, in the present work, mass balance was performed and the stability of both studied compounds under experimental conditions was analysed. Obtained results suggest that DIC is more stable than its derivative under the tested conditions, but further analyses of the environmental fate of these compounds are necessary.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Alicja Michnowska
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
28
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
29
|
Capo X, Rubio M, Solomando A, Alomar C, Compa M, Sureda A, Deudero S. Microplastic intake and enzymatic responses in Mytilus galloprovincialis reared at the vicinities of an aquaculture station. CHEMOSPHERE 2021; 280:130575. [PMID: 33957472 DOI: 10.1016/j.chemosphere.2021.130575] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is a potential source of microplastics (MPs) that could be strong stressors for marine organisms. In this study, we evaluated the effects of MPs derived from aquaculture in antioxidant defences and oxidative stress markers in gills of Mytilus galloprovincialis. Mussels were distributed in three areas with different impacts: inside aquaculture cages, Control 1 (located inside Andratx harbour) and Control 2 (located in a no-anthropized area). Samples were obtained along three different time periods in May (T0), July (T60) and in September (T120). At each sampling period, mussels' biometric measurements were taken, and tissue samples were kept frozen for biochemical determinations and to determine the intake of MPs. An increase in MPs intake was detected throughout the study, and this increase was significantly higher in samples from the aquaculture cages. Similarly, antioxidant enzyme activities (catalase, superoxide dismutase, glutathione reductase and glutathione peroxidase) were significantly higher in samples from cages at T120. Additionally, a similar tendency was observed in glutathione-s-transferase, with a higher activity in the aquaculture cages at T60 and T120. Malondialdehyde and carbonyl protein derivates as a marker of oxidative damage were also measured and samples from aquaculture cages presented higher oxidative stress markers, mainly in T120. In conclusion, living in environments exposed to aquaculture activities at sea may imply a higher intake of MPs which in turn might cause an antioxidant response in M. galloprovincialis which is not enough to avoid oxidative damage.
Collapse
Affiliation(s)
- X Capo
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain.
| | - M Rubio
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Solomando
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - C Alomar
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - M Compa
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| | - A Sureda
- Research Group in Community Nutrition and Oxidative Stress, and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain
| | - S Deudero
- Instituto Español de Oceanografía, Centro Oceanografico de Baleares, Muelle de Poniente S/n, 07015, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
30
|
Strungaru SA, Pohontiu CM, Nicoara M, Teodosiu C, Baltag ES, Jijie R, Plavan G, Pacioglu O, Faggio C. Response of aquatic macroinvertebrates communities to multiple anthropogenic stressors in a lowland tributary river. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103687. [PMID: 34144183 DOI: 10.1016/j.etap.2021.103687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
In the current study the response of aquatic macroinvertebrate communities to multiple anthropogenic stressors in a typical lowland river that crosses pristine sectors situated toward headwaters, as well as densely populated urban areas was assessed. We wished to develop an effective bioassay procedure for assessing water and sediment quality in lotic ecosystems from Romania with the aid of macroinvertebrate organisms correlated with physico-chemical parameters and pollutants in both dissolved fractions and material bonded to sediment. A fast scanning approach of the river, from springs to the mouth, was employed. We found significant changes in physico-chemical parameters along a longitudinal gradient, the highest values being registered within the urban area and heavily agriculturally developed areas. The macroinvertebrates showed affinities for certain abiotic factors, emphasising their potential use for future studies as reliable ecological indicators, shaped by a synergic combination of urban effects and magnitude of type of land use.
Collapse
Affiliation(s)
- Stefan-Adrian Strungaru
- Alexandru Ioan Cuza University of Iasi, Institute for Interdisciplinary Research, Science Research Department, Lascar Catargi Str. 54, 700107, Iasi, Romania
| | - Corneliu Mihaita Pohontiu
- University Stefan cel Mare of Suceava, Department of Forestry and Environmental Protection, University Street, No. 13, 720229, Suceava, Romania
| | - Mircea Nicoara
- Alexandru Ioan Cuza University of Iasi, Department of Biology, Faculty of Biology, B-dul Carol I, 700505, Iasi, Romania; Alexandru Ioan Cuza University of Iași, Doctoral School of Geosciences, Faculty of Geography-Geology, B-dul Carol I, 700505, Iasi, Romania.
| | - Carmen Teodosiu
- Gheorghe Asachi Technical University of Iasi, Department of Environmental Engineering and Management, 73, "Prof. Dr. D. Mangeron" Street, 700050, Iasi, Romania
| | - Emanuel Stefan Baltag
- Alexandru Ioan Cuza University of Iasi, Marine Biological Station "Prof. dr. I. Borcea", Nicolae Titulescu Street, No. 163 907018, Agigea, Constanta, Romania
| | - Roxana Jijie
- Alexandru Ioan Cuza University of Iasi, Institute for Interdisciplinary Research, Science Research Department, Lascar Catargi Str. 54, 700107, Iasi, Romania
| | - Gabriel Plavan
- Alexandru Ioan Cuza University of Iasi, Department of Biology, Faculty of Biology, B-dul Carol I, 700505, Iasi, Romania
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Splaiul Independenței 296, Sector 6, 060031, Bucharest, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy.
| |
Collapse
|
31
|
Bacha O, Khazri A, Mezni A, Mezni A, Touaylia S. Protective effect of the Spirulina platensis against toxicity induced by Diuron exposure in Mytilus galloprovincialis. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:778-786. [PMID: 34541976 DOI: 10.1080/15226514.2021.1975640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diuron herbicide is widely used for weeds control in many kinds of cultivations. It reaches the waterbodies through various fate routes and can adversely threaten non-target organism. The current study was carried out to evaluate the antioxidant activity of Spirulina as feed additive against the toxicity of Diuron concentrations (40 and 80 µg/L) on the edible mollusk Mytilus galloprovincialis during seven days of exposure. Oxidative stress biomarkers were applied on mussel gills and digestive gland, investigating changes in enzymes activities such as catalase (CAT), Glutathione-S-transferase (GST) and Acetylcholinesterase (AChE) and the Malondialdehyde level (MDA). The obtained results show that diuron altered oxidative stress biomarkers in both organs, gills and digestive gland. Performed principle component analysis (PCA) highlighted relationship between biomarkers involved in functional response. Spirulina platensis supplemented diet (1 mg/L), completely ameliorated diuron-induced oxidative stress in mussel tissues. Thus, Spirulina seems to be a promising microalgae and eco-friendly tool helping the health recovery of aquatic animals subjected to environmental stressors.
Collapse
Affiliation(s)
- Ons Bacha
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| | - Abdelhafidh Khazri
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| | - Ali Mezni
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Samir Touaylia
- Laboratoire de biosurveillance de l'environnement (LBE), Faculté des Sciences de Bizerte, Université de Carthage, Zarzouna, Tunisie
| |
Collapse
|
32
|
Yalsuyi AM, Hajimoradloo A, Ghorbani R, Jafari VA, Prokić MD, Faggio C. Behavior evaluation of rainbow trout (Oncorhynchus mykiss) following temperature and ammonia alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103648. [PMID: 33812012 DOI: 10.1016/j.etap.2021.103648] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In the study, we assessed how acute changes in water temperature and dissolved ammonia concentration can affect the swimming behavior pattern of rainbow trout (Oncorhynchus mykiss). The behavior was analyzed in three different stages: 1) increase stage, (where temperature and ammonia concentration increase during this step, respectively); 2) unchanged stage, (where levels of both factors do not change during this stage); 3) reduction stage, (where ammonia concentration and temperature during this stage are reduced), respectively. The results showed that both factors significantly changed the swimming pattern of the rainbow trout. There were significant differences in swimming parameters (distance from the center, swimming speed, total movement and the average of angular changes of movement) of treated fish in the comparison between treatments, and with the control group. The changes in the swimming pattern of fish in response to physicochemical parameters of water were confirmed to be a good tool in ecotoxicological studies.
Collapse
Affiliation(s)
- Ahmad Mohamadi Yalsuyi
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Abdolmajid Hajimoradloo
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Rasul Ghorbani
- Department of Aquatic production and Exploitation, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Vally-Allah Jafari
- Department of Aquaculture, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Basij Sq., 4913815739, Gorgan, Iran.
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S, Agata-Messina, Italy.
| |
Collapse
|
33
|
Javanshir Khoei A, Rezaei K. Toxicity of titanium nano-oxide nanoparticles (TiO2) on the pacific oyster, Crassostrea gigas: immunity and antioxidant defence. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1864649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Kiadokht Rezaei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
34
|
Butrimavičienė L, Nalivaikienė R, Kalcienė V, Rybakovas A. Impact of copper and zinc mixture on haematological parameters of rainbow trout (Oncorhynchus mykiss): acute exposure and recovery. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:873-884. [PMID: 33851333 DOI: 10.1007/s10646-021-02404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Significant changes in composition of rainbow trout Oncorhynchus mykiss blood cells types were induced after 4-days exposure with mixture of Cu2+ and Zn2+ at 0.25, 0.125 and 0.06 parts of LC50 in comparison to control group. The highest concentration of metal mixture (0.25 of LC50) significantly induced elevation of the number of monocytes and poly-segmented neutrophils. Treatment with 0.125 parts of LC50 concentration increased the number of thrombocytes, monocytes and non-segmented neutrophils. The most diluted mixture resulted in significant induction of thrombocytes, monocytes, non- and poly segmented neutrophils. Analysis of leucocyte cell types in the O. mykiss blood samples after 4-days of exposure at all applied mixture parts showed signs of monocytosis and neutrophilia. Comparison of different types of leucocytes' percentages (leukogram) in fish after 4-days exposure to metal mixture and after 4, 8, and 12-days recovery periods showed that, values of neutrophils even after the 12-days recovery period at all tested parts of LC50, and monocytes after exposure with the highest (0.25) used part of LC50 were not restored to control group levels. Depuration and recovery processes in treated fish are concentration and recovery period dependent.
Collapse
Affiliation(s)
- Laura Butrimavičienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania.
| | - Reda Nalivaikienė
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Virginija Kalcienė
- Vilnius University, Life Sciences Center, Institute of Biosciences, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania
| | - Aleksandras Rybakovas
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| |
Collapse
|
35
|
Andreyeva AY, Gostyukhina OL, Kladchenko ES, Vodiasova EA, Chelebieva ES. Acute hypoxic exposure: Effect on hemocyte functional parameters and antioxidant potential in gills of the pacific oyster, Crassostrea gigas. MARINE ENVIRONMENTAL RESEARCH 2021; 169:105389. [PMID: 34171591 DOI: 10.1016/j.marenvres.2021.105389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Bivalve mollusks are frequently subjected to fluctuations of dissolved oxygen concentration in the environment which can represent a significant threat to bivalve antioxidant status. In this work the effects of hypoxia on hemocyte reactive oxygen species (ROS) production and level of mitochondrial potential as well as the activity and expression level of catalase (CAT) and superoxide dismutase (SOD) in gills of Crassostrea gigas were investigated after 24 h and 72 h exposure. 24 h hypoxia promoted an increase of mitochondrial membrane potential in agranulocytes and induced ROS accumulation in granulocytes. 72 h exposure substantially decreased hemocyte mitochondrial potential and intracellular ROS level in all hemocyte types. No significant changes in the activity of CAT in gills were observed following both 24 h and 72 h exposure periods compared to control. SOD activity in gills decreased after 72 h exposure to hypoxia but did not change under 24 h hypoxia. Significant up-regulation of SOD gene and no changes in expression level of CAT were observed in all experimental groups. The results indicate an overall shift in antioxidant status in gills and hemocytes of the Pacific oyster that may act as compensatory mechanisms to maintain redox homeostasis after a short-term (24 h) exposure and represent the occurrence of oxidative stress conditions at the end of 72 h hypoxia.
Collapse
Affiliation(s)
- A Y Andreyeva
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - O L Gostyukhina
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E S Kladchenko
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E A Vodiasova
- Marine Biodiversity and Functional Genomics Laboratory, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia
| | - E S Chelebieva
- Department of Animal Physiology and Biochemistry, A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave, 38, Moscow, 119991, Russia.
| |
Collapse
|
36
|
Study of Heavy Metals Pollution and Vitellogenin Levels in Brown Trout (Salmo trutta trutta) Wild Fish Populations. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The objectives of this research were, first, to determine the concentrations of certain heavy metals in the edible tissue of wild brown trout (Salmo trutta trutta) from two different rivers located in the Abruzzi region (Italy), and then, to investigate the levels of variation in vitellogenin (VTG) associated with the presence of metalloestrogens. VTG is an effective indicator for endocrine disturbance, and an increase in the vitellogenin levels in male fish is widely employed as a biomarker of estrogenic contamination in the aquatic environment. The muscles of the trout were analyzed for As, Cd, Co, Cr, Ni, Pb, Al, and Zn using an inductively coupled plasma-mass spectrometer (ICP-MS), and Hg was measured using a direct mercury analyzer (DMA-80). The calculated values of the condition factor confirmed a healthy status for this species, indicating that the aquatic habit in both rivers is suitable for brown trout life. No significant difference in the concentrations of each metal were reported between the trout from the two rivers, and no significant difference for VTG levels were found between male and female fish. It is interesting to note the high concentrations of Al/Zn, while the Pb, Cd, and Hg concentrations in all of the samples were lower than those established by the European Commission.
Collapse
|
37
|
Yu D, Peng Z, Wu H, Zhang X, Ji C, Peng X. Stress responses in expressions of microRNAs in mussel Mytilus galloprovincialis exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111927. [PMID: 33508712 DOI: 10.1016/j.ecoenv.2021.111927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are known to have complicated functions in aquatic species, but little is known about the role of miRNAs in mollusk species under environmental stress. In this study, we performed small RNA sequencing to characterize the differentially expressed miRNAs in different tissues (whole tissues, digestive glands, gills, and gonads) of blue mussels (Mytilus galloprovincialis) exposed to cadmium (Cd). In summary, 107 known miRNAs and 32 novel miRNAs were significantly (p < 0.01) differentially expressed after Cd exposure. The peak size of miRNAs was 22 nucleotides. Target genes of these differentially expressions of miRNAs related to immune defense, apoptosis, lipid and xenobiotic metabolism showed significant changes under Cd stress. These findings provide the first characterization of miRNAs in mussel M. galloprovincialis and expressions of many target genes in response to Cd stress.
Collapse
Affiliation(s)
- Deliang Yu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Zheng Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiaoying Zhang
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Chenglong Ji
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
38
|
Sahraoui AS, Verweij RA, Belhiouani H, Cheriti O, van Gestel CAM, Sahli L. Dose-dependent effects of lead and cadmium and the influence of soil properties on their uptake by Helix aspersa: an ecotoxicity test approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:331-342. [PMID: 33432456 DOI: 10.1007/s10646-020-02331-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Three soil types with different physicochemical properties were selected to evaluate their effect on lead and cadmium bioavailability and toxicity in the land snail Helix aspersa. In 28-day ecotoxicity tests, H. aspersa juveniles were exposed to increasing concentrations of Pb or Cd. EC50s, concentrations reducing snail growth by 50%, differed between the soils and so did Cd and Pb uptake in the snails. For lead, EC50s were 2397-6357 mg Pb/kg dry soil, while they ranged between 327 and 910 mg Cd/kg dry soil for cadmium. Toxicity and metal uptake were highest on the soil with the lowest pH, organic matter content and Cation Exchange Capacity (CEC). Growth reduction was correlated with metal accumulation levels in the snails' soft body, and differences in toxicity between the soils decreased when EC50s were expressed on the basis of internal metal concentrations in the snails. These results confirm the effect of soil properties; pH, CEC, OM content, on the uptake and growth effect of Pb and Cd in H. aspersa, indicating the importance of properly characterizing soils when assessing the environmental risk of metal contaminated sites.
Collapse
Affiliation(s)
- Aboubakre Seddik Sahraoui
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria.
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hadjer Belhiouani
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria
| | - Oumnya Cheriti
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Leila Sahli
- Laboratory of Biology and Environment, University Mentouri Brothers-Constantine1, Constantine, Algeria
| |
Collapse
|
39
|
Intra-variability of some biochemical parameters and serum electrolytes in rainbow trout (Walbaum, 1792) bred using a flow-through system. Heliyon 2021; 7:e06361. [PMID: 33718650 PMCID: PMC7920874 DOI: 10.1016/j.heliyon.2021.e06361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
This study aims to evaluate some biochemical parameters and serum electrolytes in cultured rainbow trout Oncorhynchus mykiss (Walbaum, 1792) to evaluate a potential correlation with biometric parameters (weight and length). For this purpose, 100 cultured trout (300–700 g weight range, 25–38 cm length range) bred on a fish-farm were used for the study. Physico-chemical characteristics of water were measured on the farm. Blood samples were collected from each fish to analyze the following parameters: glucose, triglycerides, cholesterol, aspartate aminotransferase (AST); alanine aminotransferase (ALT), calcium (Ca2+), chlorine (Cl−), iron (Fe2+), phosphorus (P), magnesium (Mg2+), potassium (K+), sodium (Na+) and urea. Statistical data analysis showed a significant correlation between size and glucose and cholesterol. No correlation was found between size and other parameters studied. These results represent a contribution to the study of fish size leading to better understanding some biochemical parameters and serum electrolyte profiles in cultured rainbow trout. This research contributes to understanding the intra-individual variability of some blood parameters in cultured rainbow trout O. mykiss offering reliable information on chronic stress status, metabolic disorders and deficiencies in relation to different sizes. These could help in improve the health monitoring in trout fish farms.
Collapse
|
40
|
Ali Z, Yousafzai AM, Sher N, Muhammad I, Nayab GE, Aqeel SAM, Shah ST, Aschner M, Khan I, Khan H. Toxicity and bioaccumulation of manganese and chromium in different organs of common carp ( Cyprinus carpio) fish. Toxicol Rep 2021; 8:343-348. [PMID: 33659190 PMCID: PMC7896127 DOI: 10.1016/j.toxrep.2021.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/01/2022] Open
Abstract
Heavy metals effects fishes when its concentration arises from its normal. Bioaccumulation of manganese and chromium was studied in Cyprinus carpio on hematological and biochemical parameters. In organ, bioaccumulation is highest in the gills followed by intestine > muscles > skin > bones. It is concluded that heavy metal can readily bio accumulate in the organs of fish.
The present research work was carried out to determine the bioaccumulation of manganese and chromium in the gills, intestine, muscles, skin and bones, as well as its acute toxicity and effects on hematological and biochemical parameters in Common carp (Cyprinus carpio). Adult carps were exposed for 96 h to manganese sulphate and chromium chloride solution, a sub lethal concentration was used in the experiment. Bioaccumulation was highest in the gills followed by intestine > muscles > skin > bones. The concentration of hematocrit (HCT) (37.3 ± 0.36), hemoglobin (HGB) (9.0 ± 0.04), Red Blood Cells (RBCs) (3.7 ± 0.025), mean corpuscular volume (MCV) (121.2 ± 0.36), mean corpuscular hemoglobin (MCH) (41.3 ± 0.3) and mean corpuscular hemoglobin concentration (MCHC) (41.06 ± 0.072) was significantly higher at 96 h (P < 0.01) after exposure to manganese and chromium, while the concentration of platelets (PLT) (16.8 ± 0.12) and white blood cells (WBCs) (62.7 ± 0.11) was lower at 96 h of exposure. Serum glutamic pyruvic transaminase (SGPT) (40.6 ± 0.4), Blood Urea (13 ± 0.1), serum triglycerides (231.21 ± 0.04), high-density lipoprotein (HDL) (39 ± 0.07), serum Alkaline PO4 (242 ± 0.2), lactate dehydrogenase (LDH) (1239 ± 13.21), and serum Uric Acid (4.81 ± 0.33) were significantly higher (P < 0.01) at 96 h of exposure. The highest concentration of serum cholesterol (339 ± 0.09), serum reatinine (0.9 ± 0.01), low density lipid (240 ± 0.2) was observed at 24 h. Serum glutamic-oxaloacetic transaminase (SGOT) (19 ± 0.13), and serum albumin were at the highest level at 72 h (3.19 ± 0.07) (P < 0.01) post exposure.
Collapse
Key Words
- Bioaccumulation
- Chromium
- Cyprinus carpio
- HCT, Hematocrit
- HDL, High-density lipoprotein
- HGB, Hemoglobin
- Heavy metal
- LDH, Lactate dehydrogenase
- MCH, Mean corpuscular hemoglobin
- MCHC, Mean corpuscular hemoglobin concentration
- MCV, Mean corpuscular volume
- Manganese
- PLT, Platelets
- RBCs, Red Blood Cells
- SGOT, Serum glutamic-oxaloacetic transaminase
- SGPT, Serum glutamic pyruvic transaminase
- WBCs, White blood cells
Collapse
Affiliation(s)
- Zeeshan Ali
- Department of Zoology, Islamia College University Peshawar, Pakistan
| | | | - Nadia Sher
- Department of Chemistry, Islamia College University Peshawar, Pakistan
| | - Ijaz Muhammad
- Department of Zoology, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Gul E Nayab
- Department of Zoology, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | | | - Syed Touheed Shah
- Department of Zoology, Islamia College University Peshawar, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer, 209 1300 Morris Park Avenue Bronx, NY, 10461, United States
| | - Ijaz Khan
- Department of Microbiology, Hazara University Mansehra, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| |
Collapse
|
41
|
Abo-Al-Ela HG, Faggio C. MicroRNA-mediated stress response in bivalve species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111442. [PMID: 33038725 DOI: 10.1016/j.ecoenv.2020.111442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bivalve mollusks are important aquatic organisms, which are used for biological monitoring because of their abundance, ubiquitous nature, and abilities to adapt to different environments. MicroRNAs (miRNAs) are small noncoding RNAs, which typically silence the expression of target genes; however, certain miRNAs directly or indirectly upregulate their target genes. They are rapidly modulated and play an essential role in shaping the response of organisms to stresses. Based on the regulatory function and rapid alteration of miRNAs, they could act as biomarkers for biotic and abiotic stress, including environmental stresses and contaminations. Moreover, mollusk, particularly hemocytes, rapidly respond to environmental changes, such as pollution, salinity changes, and desiccation, which makes them an attractive model for this purpose. Thus, bivalve mollusks could be considered a good animal model to examine a system's response to different environmental conditions and stressors. miRNAs have been reported to adjust the adaptation and physiological functions of bivalves during endogenous and environmental stressors. In this review, we aimed to discuss the potential mechanisms underlying the response of bivalves to stressors and how miRNAs orchestrate this process; however, if necessary, other organisms' response is included to explain specific processes.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
42
|
Lin Y, Lu J, Wu J. Heavy metals pollution and health risk assessment in farmed scallops: Low level of Cd in coastal water could lead to high risk of seafood. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111768. [PMID: 33396086 DOI: 10.1016/j.ecoenv.2020.111768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Scallops are one of the most common bivalves, large-scale farmed in the coastal areas of China. Three species of scallops (Chlamys farreri, Argopecten irradians and Patinopecten yessoensis) from 10 samples sites along the Bohai Sea and the Yellow Sea were collected to investigate species-specific and tissues-specific bioaccumulation, spatial-temporal distribution and health risks for people. Cd must be paid attention since Cd concentrations in 96% of scallop samples exceeded standard with the highest Cd bioaccumulation potentials (BCF) >10,000 while those of the other metals were less than the corresponding limits except Zn with exceeding-limit percentage of 13%. The metal pollution index values showed that A. irradians could accumulate more metals than the other two species, and scallops in the Bohai Sea were polluted more seriously by heavy metals than in the Yellow Sea. The capacities of tissues in scallops to accumulate metals generally followed the order of digestive gland > gill > adductor muscle. However, Zn accumulated in gill was more than that in digestive gland and muscle. Adults and children would face the non-cancer risks because of the accumulation Cd in scallops based on health risk assessment. Cd was the major contributor of health risk to account for 85% of total hazard quotient and 48% of total cancer risk. Scallops could accumulate Cd rapidly from ambient environments to cause health risks according to the transplantation test. Moreover, the recommended maximum edible amounts of whole scallops were 127/63 g/week for adult/children on the basis of the provisional tolerance weekly intake. Humans are recommended to only consume adductor muscles for reducing health risks.
Collapse
Affiliation(s)
- Yichen Lin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, Shandong 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai, Shandong 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China.
| | - Jun Wu
- School of Resources and Environmental Engineering, Ludong University, Yantai, Shandong 264025, PR China
| |
Collapse
|
43
|
Febrer-Serra M, Renga E, Fernández G, Lassnig N, Tejada S, Capó X, Pinya S, Sureda A. First report of heavy metal presence in muscular tissue of loggerhead turtles Caretta caretta (Linnaeus, 1758) from the Balearic Sea (Balearic Islands, Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39651-39656. [PMID: 32808129 DOI: 10.1007/s11356-020-10464-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The concentrations of cadmium (Cd), mercury (Hg) and lead (Pb) were determined in muscular tissue of eleven loggerhead turtles (Caretta caretta) from the Balearic Islands (Spain, Western Mediterranean). The metal levels found in the present study were similar or lower than concentrations detected in Andalusia (mainland Spain), Italy, Canary Islands (Spain) or Japan. As the main source of metals in the loggerhead turtle is the diet, low metal burdens could be explained by its opportunistic feeding way. No significant differences were found in metal concentrations between juveniles and subadults in any of the heavy metals analysed. Furthermore, no significant correlation was detected between heavy metal concentrations and straight carapace length (SCL) of the studied individuals. These results could derive from the homogeneity in age and size of the turtles sampled, so further studies including adults are needed in order to assess the heavy metal accumulation with turtle growth.
Collapse
Affiliation(s)
- Maria Febrer-Serra
- Interdisciplinary Ecology Group, Biology Department, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Emanuela Renga
- Palma Aquarium Foundation, Carrer Manuela de los Herreros i Sorà 21, 07610, Palma, Balearic Islands, Spain
| | - Gloria Fernández
- Palma Aquarium Foundation, Carrer Manuela de los Herreros i Sorà 21, 07610, Palma, Balearic Islands, Spain
| | - Nil Lassnig
- Interdisciplinary Ecology Group, Biology Department, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department and IdisBa, University of the Balearic Islands, E-07122, Palma, Balearic Islands, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Xavier Capó
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and IdisBa, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Biology Department, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122, Palma, Balearic Islands, Spain.
- Natural Sciences Museum of the Balearic Islands, Ctra Palma - Sóller km 30, 07100, Sóller, Balearic Islands, Spain.
| | - Antoni Sureda
- CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122, Palma, Balearic Islands, Spain
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and IdisBa, University of the Balearic Islands, Ctra. Valldemossa km 7.5, 07122, Palma, Balearic Islands, Spain
| |
Collapse
|
44
|
Elia AC, Burioli E, Magara G, Pastorino P, Caldaroni B, Menconi V, Dörr AJM, Colombero G, Abete MC, Prearo M. Oxidative stress ecology on Pacific oyster Crassostrea gigas from lagoon and offshore Italian sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139886. [PMID: 32554117 DOI: 10.1016/j.scitotenv.2020.139886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 05/29/2023]
Abstract
Crassostrea gigas is a sentinel species along the Italian coast. In mussels, the levels of oxidative stress biomarkers can be modulated by several environmental pollutants or pathogens and also fluctuate in response to reproductive stages and seasonal changes. In this study, adult Crassostrea gigas were sampled during summer and autumn from two lagoon and two offshore sites along the Adriatic coast of Italy in order to investigate the influence of seasonality on oxidative stress biomarkers. Trace elements load of Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se and Zn suggests low contamination for lagoon and offshore sites. Levels of total glutathione, superoxide dismutase, catalase, glutathione peroxidases, glutathione reductase and glutathione S-transferase were analyzed in digestive gland and gills of the Pacific oysters in June, July, September and October. OsHV-1 and Vibrio aestuarianus were detected in lagoon sites, but both pathogens did not affect the biomarkers levels in both tissues. Although several biological responses were found different among the four sites in the same month, principal component analysis revealed similar trend in biomarkers levels between sites during the whole sampling period. On the other hand, a different biochemical pattern through the months emerged, suggesting that the level of oxidative stress biomarkers in both tissues may be related to seasonal progress and biological cycle of oysters sampled from the two lagoons and offshore sites along the Italian coasts of the Mediterranean Sea.
Collapse
Affiliation(s)
- Antonia Concetta Elia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
| | | | - Gabriele Magara
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Barbara Caldaroni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Vasco Menconi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | | | - Giorgio Colombero
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154 Torino, Italy
| |
Collapse
|
45
|
Stara A, Pagano M, Capillo G, Fabrello J, Sandova M, Albano M, Zuskova E, Velisek J, Matozzo V, Faggio C. Acute effects of neonicotinoid insecticides on Mytilus galloprovincialis: A case study with the active compound thiacloprid and the commercial formulation calypso 480 SC. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110980. [PMID: 32888623 DOI: 10.1016/j.ecoenv.2020.110980] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 05/24/2023]
Abstract
Pesticides can enter aquatic environments potentially affecting non-target organisms. Unfortunately, the effects of such substances are still poorly understood. This study investigated the effects of the active neonicotinoid substance thiacloprid (TH) and the commercial product Calypso 480 SC (CA) (active compound 40.4% TH) on Mytilus galloprovincialis after short-term exposure to sublethal concentrations. Mussels were tested for seven days to 0, 1, 5 and 10 mg L-1 TH and 0, 10, 50 and 100 mg L-1 CA. For this purpose, several parameters, such as cell viability of haemocytes and digestive cells, biochemical haemolymph features, superoxide dismutase (SOD) and catalase (CAT) enzymatic activity of gills and digestive gland, as well as histology of such tissues were analysed. The sublethal concentrations of both substances lead to abatement or completely stopping the byssal fibres creation. Biochemical analysis of haemolymph showed significant changes (P < 0.01) in electrolytes ions (Cl-, K+, Na+, Ca2+, S-phosphor), lactate dehydrogenase (LDH) enzyme activity and glucose concentration following exposure to both substances. The TH-exposed mussels showed significant imbalance (P < 0.05) in CAT activity in digestive gland and gills. CA caused significant decrease (P < 0.05) in SOD activity in gills and in CAT activity in both tissues. Results of histological analyses showed severe damage in both digestive gland and gills in a time- and concentration-dependent manner. This study provides useful information about the acute toxicity of a neonicotinoid compound and a commercial insecticide on mussels. Nevertheless, considering that neonicotinoids are still widely used and that mussels are very important species for marine environment and human consumption, further researches are needed to better comprehend the potential risk posed by such compounds to aquatic non-target species.
Collapse
Affiliation(s)
- Alzbeta Stara
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic; University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gioele Capillo
- University of Messina, Department of Veterinary Sciences, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Jacopo Fabrello
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Marco Albano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Eliska Zuskova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Valerio Matozzo
- University of Padova, Department of Biology, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
46
|
Duarte GSC, Lehun AL, Leite LAR, Consolin-Filho N, Bellay S, Takemoto RM. Acanthocephalans parasites of two Characiformes fishes as bioindicators of cadmium contamination in two neotropical rivers in Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140339. [PMID: 32806342 DOI: 10.1016/j.scitotenv.2020.140339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Studies have demonstrated the role of acanthocephalan as environmental bioindicators. The dynamics in the parasite-host relationship that define the patterns of distribution of trace metals in parasites and, in its host, are extremely variable. In addition, the neotropical region, which is a major maintainer of the biodiversity of fish and parasites, remains little explored in this subject. Therefore, our objective was to analyze and compare the concentration of Cadmium (Cd) in the tissues of Prochilodus lineatus and Serrasalmus marginatus collected from Baía and Paraná rivers, as well as to assess the use of acanthocephalan as environmental bioindicators of pollution and their Cd bioaccumulation capacity. We collected 53 fish, 20 specimens of Prochilodus lineatus from Paraná River and 17 from Baía River, in addition to 16 specimens of Serrasalmus marginatus from Baía River, in September 2017 and March 2018. Tissues of the fish along with their parasites were subjected a Cd concentration analysis by Atomic Absorption Spectroscopy. The results revealed that the parasites had higher concentrations than all the tissues of S. marginatus, P. lineatus from Baía River and Paraná River. The high Cd concentrations in these parasites derived from their bioaccumulation capacity, because of the absorption of nutrients directly from the intestinal content of the fish through the tegument, as well as for the presence of Cd on the surface waters of Praná River floodplain. Besides that, the Coefficient of Spearman Rank Correlation showed that the infrapopulation size seems to affect Cd bioaccumulation in the parasites, smaller infrapopulations demonstrate a higher accumulation capacity compared to the larger ones. With that, we concluded that the two acanthocephalans species analyzed in this study have a good capacity for Cd accumulation, and can be used as accumulation indicators of trace-metal pollution. Accumulation indicators provide important information on the biological availability of pollutants.
Collapse
Affiliation(s)
| | - Atsler Luana Lehun
- Graduate Program of Professional Mastering in Ecology of Continental Aquatic Environments, Maringá State University, Paraná, Brazil
| | | | - Nelson Consolin-Filho
- Graduate Program of Professional Mastering in Management and Regulation of Water Resources (Profwater), Federal Technological University of Paraná (UTFPR), Campus of Campo Mourão, Paraná, Brazil
| | - Sybelle Bellay
- Research Center in Limnology, Ichthyology, and Aquaculture (Nupélia), Maringá State University, Paraná, Brazil
| | - Ricardo Massato Takemoto
- Research Center in Limnology, Ichthyology, and Aquaculture (Nupélia), Maringá State University, Paraná, Brazil
| |
Collapse
|
47
|
Wu M, Yang C, Du C, Liu H. Microplastics in waters and soils: Occurrence, analytical methods and ecotoxicological effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110910. [PMID: 32800245 PMCID: PMC7324347 DOI: 10.1016/j.ecoenv.2020.110910] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/07/2023]
Abstract
Microplastics (MPs) are ubiquitous in the environment and more abundant in the marine environment. Consequently, increasing focus has been put on MPs in oceans and seas, while little importance has been attached to their presence in freshwaters and soils. Therefore, this paper aimed to provide a comprehensive review of the occurrence, analysis and ecotoxicology of MPs. The abundance and distribution of MPs in several typical freshwater systems of China were summarized. It suggested that the surface water of Poyang Lake contained the highest concentration of 34 items/L MPs among all the 8 freshwater systems, and the content of MPs in sediments were higher than that of the surface water. Net-based zooplankton sampling methods are the most frequently utilized sampling methods for MPs, and density separation, elutriation and digestion are three major pretreatment methods. Fourier transform infrared spectroscopy, Raman spectroscopy and pyrolysis-gas chromatography coupled to mass spectrometry are often used to identify the polymer types of MPs. Besides, MPs might damage the digestive tract of various organisms and negatively inhibit their growth, feeding and reproduction. The ways of human exposure to MPs are by ingestion, inhalation and dermal exposure, digestive and respiratory system might be adversely influenced. However, potential health risks of MPs to humans are remained insufficiently researched. Overall, by showing the presence of MPs in freshwaters and soils as well as possible ecotoxicological effects on the environment and humans, this paper provided a framework for future research in this field.
Collapse
Affiliation(s)
- Mengjie Wu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China; College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China; Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha, Hunan, 410001, China.
| | - Cheng Du
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, China.
| | - Hongyu Liu
- College of Environmental Science and Engineering, Hunan University, and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
48
|
Wu D, Liu Z, Yu P, Huang Y, Cai M, Zhang M, Zhao Y. Cold stress regulates lipid metabolism via AMPK signalling in Cherax quadricarinatus. J Therm Biol 2020; 92:102693. [PMID: 32888578 DOI: 10.1016/j.jtherbio.2020.102693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022]
Abstract
Lipids play an important role in protecting poikilotherms from cold stress, but relatively little is known about the regulation of lipid metabolism under cold stress, especially in crustaceans. In the present study, red-clawed crayfish Cherax quadricarinatus was employed as a model organism. Animals were divided into four temperature groups (25, 20, 15 and 9 °C) and treated for 4 weeks, with the 25 °C group serving as a control. The total lipid content in the hepatopancreas as well as the triglyceride, cholesterol and free fatty acid levels in the hemolymph were determined. Lipids stored in the hepatopancreas and hemolymph decreased with decreasing temperature, with changes in the 9 °C group most pronounced, indicating that lipids are the main energy source for crayfish at low temperatures. Furthermore, enzyme activity of lipase, fatty acid synthase, acetyl-CoA carboxylase, and lipoprotein esterase, and gene expression analysis of fatty acid synthase gene, acetyl-CoA carboxylase gene and carnitine palmitoyltransferase gene showed that the digestion, synthesis and oxidation of lipids in the hepatopancreas were inhibited under low temperature stress, but expression of sphingolipid delta-4 desaturase (DEGS) was increased, indicating an increase in the demand for highly unsaturated fatty acids at low temperatures. Analysis of the expression of genes related to the AMP-activated protein kinase (AMPK) signalling pathway revealed that the adiponectin receptor gene was rapidly upregulated at low temperatures, which may in turn activate the expression of the downstream AMPKα gene, thereby inhibiting lipid anabolism.
Collapse
Affiliation(s)
- Donglei Wu
- School of Life Science, East China Normal University, Shanghai, 200241, China; Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Ping Yu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Mingqi Cai
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Meng Zhang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
49
|
Sun S, Shi W, Tang Y, Han Y, Du X, Zhou W, Hu Y, Zhou C, Liu G. Immunotoxicity of petroleum hydrocarbons and microplastics alone or in combination to a bivalve species: Synergic impacts and potential toxication mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138852. [PMID: 32570313 DOI: 10.1016/j.scitotenv.2020.138852] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Both the frequent occurrence of accidental petroleum spills and the ubiquitous presence of microplastics (MPs) in the sea may pose severe threats to marine species. However, the immunotoxic impacts of these two types of pollutants and the underlying toxication mechanisms still remain largely unknown in sessile filter-feeding bivalve mollusks. Therefore, the impacts of exposure to petroleum hydrocarbons and MPs alone or in combination on the total count, cell type composition, and phagocytic activity of hemocytes were investigated in the blood clam, Tegillarca granosa. In addition, the intracellular ROS content, cell viability, degree of DNA damage, and expression levels of genes from immune-, apoptosis-, and immunotoxicity-related pathways were analyzed to reveal the potential toxication mechanisms. The results demonstrated that exposure to petroleum hydrocarbons and MPs alone or in combination at environmentally realistic concentrations could exert significant immunotoxic impacts on the blood clam, which may be caused by alterations in a series of physiological and molecular processes. In addition, the immunotoxicity of petroleum hydrocarbons could be significantly aggravated by the copresence of MPs, which suggests that coexposure to these two pollutants deserves closer attention.
Collapse
Affiliation(s)
- Shuge Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xueying Du
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuan Hu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Chaosheng Zhou
- Zhejiang Mariculture Research Institute, Wenzhou 325005, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
50
|
Mohsenpour R, Mousavi‐Sabet H, Hedayati A, Rezaei A, Yalsuyi AM, Faggio C. In vitro effects of silver nanoparticles on gills morphology of female Guppy (
Poecilia reticulate
) after a short‐term exposure. Microsc Res Tech 2020; 83:1552-1557. [DOI: 10.1002/jemt.23549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Reza Mohsenpour
- Department of Fisheries, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Hamed Mousavi‐Sabet
- Department of Fisheries, Faculty of Natural Resources University of Guilan Sowmeh Sara Iran
| | - Aliakbar Hedayati
- Department of Fisheries Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Amir Rezaei
- Department of Fisheries, Faculty of Natural Resources & Marine Sciences Tarbiat Modares University Noor Iran
| | - Ahmad Mohamadi Yalsuyi
- Department of Fisheries Science Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|