1
|
Di Stefano A, Nucera F, Rosani U, Brun P, Gnemmi I, Maniscalco M, D’Anna SE, Leonardi A, Carriero V, Bertolini F, Freni J, Ieni A, Gangemi S, Ruggeri P, Ricciardolo FLM. Impaired SERPIN-Protease Balance in the Peripheral Lungs of Stable COPD Patients. Int J Mol Sci 2025; 26:2832. [PMID: 40243422 PMCID: PMC11988695 DOI: 10.3390/ijms26072832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The protease-antiprotease balance is involved in many biological processes, including blood coagulation, tissue remodeling, inflammation and immune responses. The aim of this study is to determine the balance between SERPINs and some related proteases in the lungs of stable COPD patients. In this cross-sectional study, the expression and localization of human SERPINs (anti-proteases) and some related proteases were measured in the lung parenchyma of mild-moderate COPD (MCOPD, n = 13) patients, control smokers (CS, n = 14) and control nonsmokers (CNS, n = 12) using transcriptome analysis, immunohistochemistry, and ELISA tests. Peripheral lung transcriptomic data showed increased mRNA levels of tissue plasminogen activator (tPA), cathepsin-L and caspase-1 as well as increased SERPINs A6, B3, B5, B11, B13 in the COPD group compared to the CNS group. At the protein level, IHC analysis showed that tPA and cathepsin-L increased in the bronchiolar epithelium and alveolar septa of the CS and COPD groups compared to the CNS group, as well as SERPINB5 and B13 in the alveolar macrophages and alveolar septa of the CS and COPD groups compared to the CNS group. SERPINA6 was shown to be decreased in the bronchiolar epithelium, bronchiolar lamina propria, and alveolar septa of the CS and COPD groups compared to the CNS group and was positively correlated with lung function. SERPINB3 was decreased in the alveolar septa of the CS group compared to the CNS group. The ELISA tests showed that in the total lung extracts, decreased levels of SERPINA6 and increased caspase-1 were shown in the COPD group compared to the CNS or both control groups, respectively. These data show an imbalance, at the protein level, of SERPINs and some related proteases in the lungs of the CS and stable COPD groups. These alterations may play a role in damaging the lung parenchyma of susceptible COPD patients.
Collapse
Affiliation(s)
- Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Linici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, 28013 Novara, Italy;
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (F.N.); (J.F.); (P.R.)
| | - Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Paola Brun
- Histology Unit, Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
| | - Isabella Gnemmi
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell’Apparato Cardio Respiratorio, Istituti Linici Scientifici Maugeri, IRCCS, Respiratory Rehabilitation Unit of Gattico-Veruno, 28013 Novara, Italy;
| | - Mauro Maniscalco
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, 82037 Benevento, Italy; (M.M.); (S.E.D.)
| | - Silvestro Ennio D’Anna
- Divisione di Pneumologia, Istituti Clinici Scientifici Maugeri, IRCCS, Telese, 82037 Benevento, Italy; (M.M.); (S.E.D.)
| | - Andrea Leonardi
- Ophthalmology Unit, Department of Neuroscience, University of Padova, 35121 Padova, Italy;
| | - Vitina Carriero
- Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (V.C.); (F.B.)
| | - Francesca Bertolini
- Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (V.C.); (F.B.)
| | - Josè Freni
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (F.N.); (J.F.); (P.R.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, Section of Pathology, University of Messina, 98122 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Piazza Pugliatti 1, 98122 Messina, Italy; (F.N.); (J.F.); (P.R.)
| | - Fabio Luigi Massimo Ricciardolo
- Severe Asthma, Rare Lung Disease and Respiratory Pathophysiology Unit, Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (V.C.); (F.B.)
| |
Collapse
|
2
|
Wang S, Sun Y, Shao D, Pan Y, Gao X, Zhao P, Liu Q, Shang G, Shang W, Fu Z, Sun Y. High expression of serine protease inhibitor kazal type 1 predicts poor prognosis and promotes the progression and invasion of oral tongue squamous cell carcinoma. Arch Oral Biol 2024; 164:106003. [PMID: 38781741 DOI: 10.1016/j.archoralbio.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This study aimed to investigate the expression of serine protease inhibitor kazal type 1 (SPINK1) and its carcinogenic effect in oral tongue squamous cell carcinoma (OTSCC). DESIGN Initially, bioinformatics analysis was conducted using data from The Cancer Genome Atlas and Gene Expression Omnibus to compare SPINK1 mRNA expression between malignant and adjacent tissues. Subsequently, the impact of differential expression on survival and other clinical variables was examined. Additionally, histology microarray analysis was performed to assess SPINK1 protein expression in 35 cases of malignant and adjacent tissues. Finally, alterations in SPINK1 expression were evaluated to determine its biological phenotypes in OTSCC, including proliferation, apoptosis, invasion, and metastasis. RESULTS OTSCC tissues exhibit higher levels of SPINK1 compared to surrounding cancerous tissues. Notably, increased SPINK1 expression correlates with the pathological N stage and independently predicts overall survival among patients with OTSCC. CONCLUSION Suppression of SPINK1 inhibited OTSCC cell proliferation, invasion, and motility while promoting apoptosis. These findings suggest that SPINK1 may serve as a prognostic biomarker as well as a potential therapeutic target for managing OTSCC.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China; Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Yaping Sun
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Dan Shao
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Yunjie Pan
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Xiaoyan Gao
- Traditional Chinese Medical Hospital of Huangdao District, Qingdao 266499,China
| | - Peng Zhao
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Qiaoling Liu
- Department of Oncology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Gaishuang Shang
- Department of Scientific Research, Qingdao East Sea Pharmaceutical Co., Ltd., Qingdao 266431, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, PLA, Beijing 100142, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
Cardinale V, Lanthier N, Baptista PM, Carpino G, Carnevale G, Orlando G, Angelico R, Manzia TM, Schuppan D, Pinzani M, Alvaro D, Ciccocioppo R, Uygun BE. Cell transplantation-based regenerative medicine in liver diseases. Stem Cell Reports 2023; 18:1555-1572. [PMID: 37557073 PMCID: PMC10444572 DOI: 10.1016/j.stemcr.2023.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Nicolas Lanthier
- Service d'Hépato-gastroentérologie, Cliniques Universitaires Saint-Luc, Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain; Department of Biomedical and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain
| | - Guido Carpino
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological Sciences with Interest in Transplant, Oncology, and Regenerative Medicine, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giuseppe Orlando
- Section of Transplantation, Department of Surgery, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Roberta Angelico
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Tommaso Maria Manzia
- Hepatobiliary Surgery and Transplant Unit, Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Detlef Schuppan
- Institute of Translational Immunology, Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
| | - Domenico Alvaro
- Department of Translation and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, A.O.U.I. Policlinico G.B. Rossi & University of Verona, Verona, Italy.
| | - Basak E Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
4
|
Zhao W, Xi L, Yu G, Wang G, Chang C. High expression of GPR50 promotes the proliferation, migration and autophagy of hepatocellular carcinoma cells in vitro. J Cell Commun Signal 2023:10.1007/s12079-023-00772-9. [PMID: 37378811 DOI: 10.1007/s12079-023-00772-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play important roles in tumorigenesis and the development of hepatocellular carcinoma (HCC). GPR50 is an orphan GPCR. Previous studies have indicated that GPR50 could protect against breast cancer development and decrease tumor growth in a xenograft mouse model. However, its role in HCC remains indistinct. To detect the role and the regulation mechanism of GPR50 in HCC, GPR50 expression was analyzed in HCC patients (gene expression omnibus database (GEO) (GSE45436)) and detected in HCC cell line CBRH-7919, and the results showed that GPR50 was significantly up-regulated in HCC patients and CBRH-7919 cell line compared to the corresponding normal control. Gpr50 cDNA was transfected into HCC cell line CBRH-7919, and we found that Gpr50 promoted the proliferation, migration, and autophagy of CBRH-7919. The regulation mechanism of GPR50 in HCC was detected by isobaric tags for relative and absolute quantification (iTRAQ) analysis, and we found that GPR50 promoted HCC was closely related to CCT6A and PGK1. Taken together, GPR50 may promote HCC progression via CCT6A-induced proliferation and PGK1-induced migration and autophagy, and GPR50 could be an important target for HCC.
Collapse
Affiliation(s)
- Weiming Zhao
- College of Life Sciences, State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Institute of Biomedical Science, Henan Normal University, Henan Xinxiang, 453007, China
| | - Lingling Xi
- Institute of Regenerative Medicine and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Guoying Yu
- College of Life Sciences, State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Institute of Biomedical Science, Henan Normal University, Henan Xinxiang, 453007, China
| | - Gaiping Wang
- College of Life Sciences, State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Institute of Biomedical Science, Henan Normal University, Henan Xinxiang, 453007, China
| | - Cuifang Chang
- College of Life Sciences, State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Institute of Biomedical Science, Henan Normal University, Henan Xinxiang, 453007, China.
| |
Collapse
|
5
|
Chen YT, Tseng TT, Tsai HP, Kuo SH, Huang MY, Wang JY, Chai CY. Serine protease inhibitor Kazal type 1 (SPINK1) promotes proliferation, migration, invasion and radiation resistance in rectal cancer patients receiving concurrent chemoradiotherapy: a potential target for precision medicine. Hum Cell 2022; 35:1912-1927. [PMID: 36053457 PMCID: PMC9515043 DOI: 10.1007/s13577-022-00776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
Serine peptidase inhibitor Kazal type-1 (SPINK1), a trypsin kinase inhibitor, is known to be associated with inflammation and pathogenesis. The aim in this study was to demonstrate the clinicopathological role and progression of SPINK1 in rectal cancer (RC) patients undergoing concurrent chemoradiotherapy (CCRT). Immunohistochemical staining for SPINK1 protein expression in 111 RC cases revealed high SPINK1 expression was significantly associated with perineural invasion and poor CCRT response in pre-CCRT specimens. In addition, multivariable analyses showed that pre-CCRT SPINK1 expression was a significant prognostic marker of both overall and disease-free survival in RC patients receiving pre-operative CCRT; furthermore, in vitro studies demonstrated SPINK1 interacted with EGFR to promote the abilities of proliferation, migration and invasion attenuated by SPINK1 si-RNA via ERK, p38, and JNK pathways. SPINK1 was also found to regulate radio-resistance in CRC cell lines. In conclusion, SPINK1 expression is an independent prognostic marker in patients receiving pre-operative CCRT, and SPINK1 regulates proliferation, migration and invasion via EGFR-downstream ERK, p38 and JNK pathways. The phenotypes of radiosensitivity that could be reversed with attenuation of SPINK1 levels suggest that targeting SPINK1 might offer a strategy for optimal precision medicine.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Ting Tseng
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Hsun Kuo
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Road, Kaohsiung, 807, Taiwan.
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Chang C, Wang D, Xi L, Guo X, Wang G, Yu G. The orphan GPR50 receptor interacting with TβRI induces G1/S-phase cell cycle arrest via Smad3-p27/p21 in BRL-3A cells. Biochem Pharmacol 2022; 202:115117. [PMID: 35671788 DOI: 10.1016/j.bcp.2022.115117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
The liver has the powerful capacity to regenerate after injury or resection. In one of our previous studies, GPR50 was observed to be significantly upregulated at 6 h, following a partial hepatectomy (PH) in rat liver regeneration (LR) via gene expression profile. However, little research has been done on the regulation and mechanism of GPR50 in the liver. Herein, we observed that the overexpression of GPR50 inhibited the proliferation of BRL-3A cells. To further explore the molecular mechanisms of GPR50 in the regulation of BRL-3A cell proliferation, interaction between GPR50 and transforming growth factor-beta I (TβRI) and iTRAQTM differential proteomic analysis were elucidated, which suggested that GPR50 may interact with TβRI to activate the TGF-β signaling pathway and arrest BRL-3A cell cycle G1/S transition. Subsequently, the potential mechanism underlying the role of GPR50 in hepatocyte growth was also explored through the addition of a signaling pathway inhibitor. These data suggested that interaction between the orphan GPR50 receptor and TβRI induced the G1⁄S-phase cell cycle arrest of BRL-3A cells via the Smad3-p27/p21 pathway.
Collapse
Affiliation(s)
- Cuifang Chang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Danlin Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lingling Xi
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xueqiang Guo
- Institute of Regenerative Medicine and Orthopedics, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Gaiping Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
7
|
Yin F, Nian M, Wang N, Wu H, Wu H, Zhao W, Cao S, Wu P, Zhou A. Protective Mechanism of Gandou Decoction in a Copper-Laden Hepatolenticular Degeneration Model: In Vitro Pharmacology and Cell Metabolomics. Front Pharmacol 2022; 13:848897. [PMID: 35401189 PMCID: PMC8984159 DOI: 10.3389/fphar.2022.848897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Gandou decoction (GDD) is a classic prescription for the treatment of hepatolenticular degeneration (HLD) in China; however, the liver-protecting mechanism of this prescription needs further evaluation. In the present study, we explored the protective mechanisms of GDD in a copper-laden HLD model using integrated pharmacology and cellular metabolomics in vitro. The results revealed that GDD could significantly promote copper excretion in copper-laden HLD model cells and improve the ultrastructural changes in hepatocytes. In addition, GDD could decrease the extent of lipid peroxidation, levels of reactive oxygen species, and the release rate of lactate dehydrogenase while increasing the activity of superoxide dismutase and the ratio of glutathione to oxidized glutathione in the copper-laden HLD model cells. On conducting statistical analysis of significant metabolic changes, 47 biomarkers and 30 related metabolic pathways were screened as pharmacological reactions induced by GDD in HLD model cells. d-glutamate and d-glutamine metabolic pathways showed the highest importance and significance among the 30 metabolic pathways, and the differential expression levels of the glutamine synthetase (GS) and the renal type and liver type GLS (GLS1 and GLS2) proteins were verified by Western blotting. Collectively, our data established the underlying mechanism of GDD therapy, such as the promotion of copper excretion and improvement in oxidative stress by regulating the expressions of GS, GLS1, and GLS2 protein to protect hepatocytes from injury.
Collapse
Affiliation(s)
- Fengxia Yin
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Mengnan Nian
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Na Wang
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Huan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Peng Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
8
|
Lin TC. Functional Roles of SPINK1 in Cancers. Int J Mol Sci 2021; 22:ijms22083814. [PMID: 33916984 PMCID: PMC8067593 DOI: 10.3390/ijms22083814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Serine Peptidase Inhibitor Kazal Type 1 (SPINK1) is a secreted protein known as a protease inhibitor of trypsin in the pancreas. However, emerging evidence shows its function in promoting cancer progression in various types of cancer. SPINK1 modulated tumor malignancies and induced the activation of the downstream signaling of epidermal growth factor receptor (EGFR) in cancer cells, due to the structural similarity with epidermal growth factor (EGF). The discoverable SPINK1 somatic mutations, expressional signatures, and prognostic significances in various types of cancer have attracted attention as a cancer biomarker in clinical applications. Emerging findings further clarify the direct and indirect biological effects of SPINK1 in regulating cancer proliferation, metastasis, drug resistance, transdifferentiation, and cancer stemness, warranting the exploration of the SPINK1-mediated molecular mechanism to identify a therapeutic strategy. In this review article, we first integrate the transcriptomic data of different types of cancer with clinical information and recent findings of SPINK1-mediated malignant phenotypes. In addition, a comprehensive summary of SPINK1 expression in a pan-cancer panel and individual cell types of specific organs at the single-cell level is presented to indicate the potential sites of tumorigenesis, which has not yet been reported. This review aims to shed light on the roles of SPINK1 in cancer and provide guidance and potential directions for scientists in this field.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 333, Taoyuan City, Taiwan
| |
Collapse
|
9
|
Wen Y, Chen H, Luo F, Zhao L, Shu M, Su S, Zhao Y, Huang Q, Li Z. Chlamydia trachomatis Plasmid Protein pORF5 Up-Regulates ZFAS1 to Promote Host Cell Survival via MAPK/p38 Pathway. Front Microbiol 2020; 11:593295. [PMID: 33391210 PMCID: PMC7773608 DOI: 10.3389/fmicb.2020.593295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to play essential roles in many diseases. However, few studies have shown that lncRNAs take part in the pathogenesis of Chlamydia trachomatis (C. trachomatis). Here, we used a lncRNA microarray to detect the global lncRNA expression profiles in HeLa cells transfected with pORF5 plasmid protein, an important virulence factor for C. trachomatis. The differentially expressed lncRNAs and mRNAs screened by microarray were selected for validation by quantitative real-time PCR. The up-regulated lncRNA zinc finger antisense 1 (ZFAS1) was presumed to involved in MAPK pathways by bioinformatics analysis. Inhibition of ZFAS1 decreased the apoptotic rate of pORF5 and reduced the infectivity of C. trachomatis, and MAPK/p38 pathway was involved in anti-apoptotic effect induced by ZFAS1. Therefore, the present study confirmed that pORF5 up-regulates ZFAS1 to promote host cell survival via MAPK/p38 pathway and influences the infectivity of C. trachomatis.
Collapse
Affiliation(s)
- Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Hongliang Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Fangzhen Luo
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shengmei Su
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Yuqi Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Qiulin Huang
- Department of General Surgery, First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
10
|
Chang C, Xie J, Yang Q, Yang J, Luo Y, Xi L, Guo J, Yang G, Jin W, Wang G. Serine peptidase inhibitor Kazal type III (SPINK3) promotes BRL-3A cell proliferation by targeting the PI3K-AKT signaling pathway. J Cell Physiol 2019; 235:2209-2219. [PMID: 31478211 DOI: 10.1002/jcp.29130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The serine protease inhibitor, Kazal type III (SPINK3), is a trypsin inhibitor associated with liver disease, which highly overexpresses in a variety of cancers. In one of our previous studies of our laboratory, Spink3 was observed to be significantly upregulated in rat liver regeneration (LR) via a gene expression profile. For the current study, rat hepatocyte BRL-3A cells were treated by gene addition/interference, and the addition of the exogenous rat recombinant protein SPINK3. It was revealed that both the overexpression of endogenous Spink3 and addition of exogenous rat recombinant SPINK3 (rrSPINK3) significantly promoted the cell proliferation of BRL-3A cells, whereas cell proliferation was inhibited when Spink3 was interfered. Furthermore, quantitative reverse transcription polymerase chain reaction and western blot results revealed that three signaling pathways, including extracellular-signal-regulated kinase 1/2 (ERK1/2), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), and phosphatidylinositol-3-kinase (PI3K)-protein kinase B (AKT), as well as their related genes, were altered following endogenous Spink3 addition/interference. Also, the PI3K-AKT and SRC-p38 pathways and their related genes were modified following exogenous SPINK3 treatment. Among them, the common signaling pathway was PI3K-AKT pathway. We concluded that SPINK3 could activate the PI3K-AKT pathway by enhancing the expression of AKT1 to regulate the proliferation of BRL-3A cells. This study may contribute to shedding light on the potential mechanisms of SPINK3 that regulate the proliferation of BRL-3A cells.
Collapse
Affiliation(s)
- Cuifang Chang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Junjie Xie
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Qingdan Yang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Jing Yang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Yaru Luo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Lingling Xi
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Jianlin Guo
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Ganggang Yang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Wei Jin
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| | - Gaiping Wang
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Interleukin (IL)-22 from IL-20 Subfamily of Cytokines Induces Colonic Epithelial Cell Proliferation Predominantly through ERK1/2 Pathway. Int J Mol Sci 2019; 20:ijms20143468. [PMID: 31311100 PMCID: PMC6678670 DOI: 10.3390/ijms20143468] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL)-20 subfamily of cytokines consists of IL-19, IL-20, IL-22, IL-24, and IL-26, and the expression of IL-20, IL-22, and IL-24 is reported to be higher in the colon of patients with ulcerative colitis. Although the receptors for these cytokines are highly expressed in the colon epithelium, their effects on epithelial renewal are not clearly understood. This study evaluated the effects of IL-20, IL-22, and IL-24 in epithelial renewal using the LS174T human colon cancer epithelial cell line. LS174T cells were treated with IL-20, IL-22, and IL-24 (25, 50, and 100 ng/mL) and a live-cell imaging system was used to evaluate the effects on cell proliferation. Following treatment, the signaling pathways contributing to cell proliferation were investigated through Western blotting in LS174T cells and downstream transcriptional changes through qRT-PCR in LS174T cells, and RNA-Seq in primary murine intestinal epithelial cells. Our results demonstrated that only IL-22 promoted LS174T cell proliferation, mediated via extracellular-signal-regulated kinase (ERK)1/2-mediated downstream regulation of p90RSK, c-Jun, and transcriptional changes of TRIM15 and STOM. IL-22 also promoted expression of ERK1/2-independent genes such as DDR2, LCN2, and LRG1, which are known to be involved in cell proliferation and migration. This study suggests that IL-22 induces cell proliferation in highly proliferative cells such as intestinal epithelial cells.
Collapse
|
12
|
Chen F, Long Q, Fu D, Zhu D, Ji Y, Han L, Zhang B, Xu Q, Liu B, Li Y, Wu S, Yang C, Qian M, Xu J, Liu S, Cao L, Chin YE, Lam EWF, Coppé JP, Sun Y. Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance. Nat Commun 2018; 9:4315. [PMID: 30333494 PMCID: PMC6193001 DOI: 10.1038/s41467-018-06860-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Chemotherapy and radiation not only trigger cancer cell apoptosis but also damage stromal cells in the tumour microenvironment (TME), inducing a senescence-associated secretory phenotype (SASP) characterized by chronic secretion of diverse soluble factors. Here we report serine protease inhibitor Kazal type I (SPINK1), a SASP factor produced in human stromal cells after genotoxic treatment. DNA damage causes SPINK1 expression by engaging NF-κB and C/EBP, while paracrine SPINK1 promotes cancer cell aggressiveness particularly chemoresistance. Strikingly, SPINK1 reprograms the expression profile of cancer cells, causing prominent epithelial-endothelial transition (EET), a phenotypic switch mediated by EGFR signaling but hitherto rarely reported for a SASP factor. In vivo, SPINK1 is expressed in the stroma of solid tumours and is routinely detectable in peripheral blood of cancer patients after chemotherapy. Our study substantiates SPINK1 as both a targetable SASP factor and a novel noninvasive biomarker of therapeutically damaged TME for disease control and clinical surveillance.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dexiang Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Ji
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Liu Han
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Boyi Zhang
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bingjie Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shanshan Wu
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Yang
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Qian
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianmin Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, 110122, China
| | - Y Eugene Chin
- Institute of Biology and Medical Sciences, Soochow University Medical College, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Jean-Philippe Coppé
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94115, USA
| | - Yu Sun
- Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine, VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
ERK1/2 MAPK promotes autophagy to suppress ER stress-mediated apoptosis induced by cadmium in rat proximal tubular cells. Toxicol In Vitro 2018; 52:60-69. [PMID: 29870746 DOI: 10.1016/j.tiv.2018.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/23/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal and its toxic mechanism is not entirely clear. The goal of the present study was to investigate the toxic mechanism of Cd on rPT cells, and to elucidate the role of ERK1/2 signaling pathway in mediating the relationship between apoptosis and autophagy. We evaluated the cell morphology, cell cycle distribution, apoptosis rates, and the expression of related proteins. We observed that increased Cd concentration disrupted cell morphology, increased apoptosis and induced autophagy. Additionally, activation of JNK1/2 and p38 MAPK promoted apoptosis, while activation of ERK1/2 inhibited apoptosis. Upon inhibition of autophagy, apoptosis rate and the expression of ER proteins related to the apoptosis were increased. Following inhibition of the ERK1/2 signaling pathway, the number of LC3 aggregates, the rate of LC3II/LC3I and the expression of Beclin-1were decreased, but the expression level of ER proteins related to apoptosis were increased. Our results indicated that Cd exposure damages cells also induces apoptosis and autophagy, meanwhile demonstrate that the ERK1/2 signaling pathway plays an important role in this process. Besides, these data suggest that autophagy can inhibit Cd-induced apoptosis and the ERK1/2 signaling pathway can suppress ER stress-mediated apoptosis by activating autophagy.
Collapse
|
14
|
Huang S, Dong X, Wang J, Ding J, Li Y, Li D, Lin H, Wang W, Zhao M, Chang Q, Zhou N, Cui W, Huang C. Overexpression of the Ubiquilin-4 (UBQLN4) is Associated with Cell Cycle Arrest and Apoptosis in Human Normal Gastric Epithelial Cell Lines GES-1 Cells by Activation of the ERK Signaling Pathway. Med Sci Monit 2018; 24:3564-3570. [PMID: 29807370 PMCID: PMC6004079 DOI: 10.12659/msm.909621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. MATERIAL AND METHODS We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. RESULTS Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. CONCLUSIONS These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells.
Collapse
Affiliation(s)
- Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Jia Wang
- Department of Clinical Laboratory, Meitan General Hospital, Beijing, China (mainland)
| | - Jie Ding
- State Key Laboratory of Cardiovascular Disease, Anesthesia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Yan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Dongdong Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Hong Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Wenjie Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Qing Chang
- Department of Ultrasound, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Ning Zhou
- The Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China (mainland)
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| |
Collapse
|