1
|
Kumar R, Tambrini SJ, Jiang G. NAD(P)-Dependent Glucose Dehydrogenases: Underestimated Multifunctional Biocatalysts. Chembiochem 2025; 26:e202400716. [PMID: 39531513 DOI: 10.1002/cbic.202400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
The last decade has witnessed tremendous progress in the field of biocatalysis. One of the most frequently utilized enzymes in diverse biocatalytic applications is NAD(P)-dependent glucose dehydrogenases (GDHs). Traditionally, these enzymes are employed for their role in regenerating NAD(P)H in various enzymatic reactions utilizing glucose. However, recent studies have expanded the scope of GDHs beyond cofactor regeneration, highlighting their potential as biocatalysts in diverse chemical transformations. GDHs have demonstrated versatility in catalyzing key reactions in the synthesis of various drug molecules and intermediates, including ketone reduction to produce alcohols, imine reduction of C=N bonds to yield amines, reduction of aldehydes to alcohols, and dehydrogenation of cyclohexanol derivatives. This review highlights recent advancements in elucidating the multifunctional roles of NAD(P)-dependent glucose dehydrogenases (GDHs) in biocatalysis, with an emphasis on their growing applications and significant potential in small molecule synthesis.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Samantha J Tambrini
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Guangde Jiang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
2
|
Liu H, Gao Q, Zhang K, Xu M, Wang H, Wei D. Combining binding pocket mutagenesis and substrate tunnel engineering to improve an (R)-selective transaminase for the efficient synthesis of (R)-3-aminobutanol. Biochem Biophys Res Commun 2024; 731:150383. [PMID: 39024977 DOI: 10.1016/j.bbrc.2024.150383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
(R)-selective transaminases have the potential to act as efficient biocatalysts for the synthesis of important pharmaceutical intermediates. However, their low catalytic efficiency and unfavorable equilibrium limit their industrial application. Seven (R)-selective transaminases were identified using homologous sequence mining. Beginning with the optimal candidate from Mycolicibacterium hippocampi, virtual mutagenesis and substrate tunnel engineering were performed to improve catalytic efficiency. The obtained variant, T282S/Q137E, exhibited 3.68-fold greater catalytic efficiency (kcat/Km) than the wild-type enzyme. Using substrate fed-batch and air sweeping processes, effective conversion of 100 mM 4-hydroxy-2-butanone was achieved with a conversion rate of 93 % and an ee value > 99.9 %. This study provides a basis for mutation of (R)-selective transaminases and offers an efficient biocatalytic process for the asymmetric synthesis of (R)-3-aminobutanol.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Qian Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Kaiyue Zhang
- Ludong University Laishan Experimental Middle School, 264000, China
| | - Meng Xu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Dai J, Wu Z, Liu Z, Li C, Zhu L, Chen H, Chen X. Sources and control of impurity during one-pot enzymatic production of dehydroepiandrosterone. Appl Microbiol Biotechnol 2024; 108:399. [PMID: 38951177 PMCID: PMC11217079 DOI: 10.1007/s00253-024-13221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 07/03/2024]
Abstract
Dehydroepiandrosterone (DHEA) has a promising market due to its capacity to regulate human hormone levels as well as preventing and treating various diseases. We have established a chemical esterification coupled biocatalytic-based scheme by lipase-catalyzed 4-androstene-3,17-dione (4-AD) hydrolysis to obtain the intermediate product 5-androstene-3,17-dione (5-AD), which was then asymmetrically reduced by a ketoreductase from Sphingomonas wittichii (SwiKR). Co-enzyme required for KR is regenerated by a glucose dehydrogenase (GDH) from Bacillus subtilis. This scheme is more environmentally friendly and more efficient than the current DHEA synthesis pathway. However, a significant amount of 4-AD as by-product was detected during the catalytic process. Focused on the control of by-products, we investigated the source of 4-AD and identified that it is mainly derived from the isomerization activity of SwiKR and GDH. Increasing the proportion of glucose in the catalytic system as well as optimizing the catalytic conditions drastically reduced 4-AD from 24.7 to 6.5% of total substrate amount, and the final yield of DHEA achieved 40.1 g/L. Furthermore, this is the first time that both SwiKR and GDH have been proved to be promiscuous enzymes with dehydrogenase and ketosteroid isomerase (KSI) activities, expanding knowledge of the substrate diversity of the short-chain dehydrogenase family enzymes. KEY POINTS: • A strategy of coupling lipase, ketoreductase, and glucose dehydrogenase in producing DHEA from 4-AD • Both SwiKR and GDH are identified with ketosteroid isomerase activity. • Development of catalytic strategy to control by-product and achieve highly selective DHEA production.
Collapse
Affiliation(s)
- Jiawei Dai
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zheyi Wu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zebin Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chen Li
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Roth S, Niese R, Müller M, Hall M. Redox Out of the Box: Catalytic Versatility Across NAD(P)H-Dependent Oxidoreductases. Angew Chem Int Ed Engl 2024; 63:e202314740. [PMID: 37924279 DOI: 10.1002/anie.202314740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
The asymmetric reduction of double bonds using NAD(P)H-dependent oxidoreductases has proven to be an efficient tool for the synthesis of important chiral molecules in research and on industrial scale. These enzymes are commercially available in screening kits for the reduction of C=O (ketones), C=C (activated alkenes), or C=N bonds (imines). Recent reports, however, indicate that the ability to accommodate multiple reductase activities on distinct C=X bonds occurs in different enzyme classes, either natively or after mutagenesis. This challenges the common perception of highly selective oxidoreductases for one type of electrophilic substrate. Consideration of this underexplored potential in enzyme screenings and protein engineering campaigns may contribute to the identification of complementary biocatalytic processes for the synthesis of chiral compounds. This review will contribute to a global understanding of the promiscuous behavior of NAD(P)H-dependent oxidoreductases on C=X bond reduction and inspire future discoveries with respect to unconventional biocatalytic routes in asymmetric synthesis.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Richard Niese
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Mélanie Hall
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
- BioHealth, Field of Excellence, University of Graz, 8010, Graz, Austria
| |
Collapse
|
5
|
Nonnhoff J, Stammler HG, Gröger H. Enantioselective Synthesis of Thiomorpholines through Biocatalytic Reduction of 3,6-Dihydro-2 H-1,4-thiazines Using Imine Reductases. J Org Chem 2022; 87:11369-11378. [PMID: 35969670 DOI: 10.1021/acs.joc.2c00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, an enantioselective biocatalytic synthesis of chiral thiomorpholines using imine reductases (IREDs) is described. As substrates, four prochiral and one chiral 3,6-dihydro-2H-1,4-thiazines were synthesized in a modified Asinger reaction and subsequently reduced using imine reductases as a biocatalyst, NADPH as a cofactor, and a glucose dehydrogenase (GDH)-glucose cofactor regeneration system. As a result, chiral thiomorpholines with a stereogenic center created in 3-position were obtained under mild process conditions with high conversions and excellent enantioselectivities of up to 99%. Furthermore, as a proof of concept, a sequential one-pot process combining both individual reaction steps was achieved.
Collapse
Affiliation(s)
- Jannis Nonnhoff
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Hans-Georg Stammler
- Inorganic and Structural Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| |
Collapse
|
6
|
Yan Q, Zhang X, Chen Y, Guo B, Zhou P, Chen B, Huang Q, Wang JB. From Semirational to Rational Design: Developing a Substrate-Coupled System of Glucose Dehydrogenase for Asymmetric Synthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qipeng Yan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xinhua Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Pei Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
7
|
Huang Q, Zhang X, Chen Q, Tian S, Tong W, Zhang W, Chen Y, Ma M, Chen B, Wang B, Wang JB. Discovery of a P450-Catalyzed Oxidative Defluorination Mechanism toward Chiral Organofluorines: Uncovering a Hidden Pathway. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qun Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Shaixiao Tian
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Tong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 360015 Xiamen, People’s Republic of China
| | - Jian-bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemistry R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, People’s Republic of China
| |
Collapse
|
8
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
9
|
Jia HY, Yang ZY, Chen Q, Zong MH, Li N. Engineering Promiscuous Alcohol Dehydrogenase Activity of a Reductive Aminase AspRedAm for Selective Reduction of Biobased Furans. Front Chem 2021; 9:610091. [PMID: 34055734 PMCID: PMC8155666 DOI: 10.3389/fchem.2021.610091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Catalytic promiscuity is a promising starting point for improving the existing enzymes and even creating novel enzymes. In this work, site-directed mutagenesis was performed to improve promiscuous alcohol dehydrogenase activity of reductive aminase from Aspergillus oryzae (AspRedAm). AspRedAm showed the cofactor preference toward NADPH in reductive aminations, while it favored NADH in the reduction reactions. Some key amino acid residues such as N93, I118, M119, and D169 were identified for mutagenesis by molecular docking. Variant N93A showed the optimal pH and temperature of 8 and 30°C, respectively, in the reduction of 5-hydroxymethylfurfural (HMF). The thermostability was enhanced upon mutation of N93 to alanine. The catalytic efficiency of variant N93A (kcat/Km, 23.6 mM−1 s−1) was approximately 2-fold higher compared to that of the wild-type (WT) enzyme (13.1 mM−1 s−1). The improved catalytic efficiency of this variant may be attributed to the reduced steric hindrance that stems from the smaller side chain of alanine in the substrate-binding pocket. Both the WT enzyme and variant N93A had broad substrate specificity. Escherichia coli (E. coli) cells harboring plain vector enabled selective reduction of biobased furans to target alcohols, with the conversions of 35–95% and the selectivities of >93%. The introduction of variant N93A to E. coli resulted in improved substrate conversions (>98%) and selectivities (>99%).
Collapse
Affiliation(s)
- Hao-Yu Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Zi-Yue Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
11
|
Tseliou V, Schilder D, Masman MF, Knaus T, Mutti FG. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry 2021; 27:3315-3325. [PMID: 33073866 PMCID: PMC7898336 DOI: 10.1002/chem.202003140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/17/2020] [Indexed: 11/12/2022]
Abstract
The l-lysine-ϵ-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ϵ-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot "hydrogen-borrowing" cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing "alcohol aminase" activity.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Don Schilder
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Marcelo F. Masman
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
12
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
13
|
Stockinger P, Roth S, Müller M, Pleiss J. Systematic Evaluation of Imine-Reducing Enzymes: Common Principles in Imine Reductases, β-Hydroxy Acid Dehydrogenases, and Short-Chain Dehydrogenases/ Reductases. Chembiochem 2020; 21:2689-2695. [PMID: 32311225 PMCID: PMC7540600 DOI: 10.1002/cbic.202000213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/16/2020] [Indexed: 12/26/2022]
Abstract
The enzymatic, asymmetric reduction of imines is catalyzed by imine reductases (IREDs), members of the short-chain dehydrogenase/reductase (SDR) family, and β-hydroxy acid dehydrogenase (βHAD) variants. Systematic evaluation of the structures and substrate-binding sites of the three enzyme families has revealed four common principles for imine reduction: structurally conserved cofactor-binding domains; tyrosine, aspartate, or glutamate as proton donor; at least four characteristic flanking residues that adapt the donor's pKa and polarize the substrate; and a negative electrostatic potential in the substrate-binding site to stabilize the transition state. As additional catalytically relevant positions, we propose alternative proton donors in IREDs and βHADs as well as proton relays in IREDs, βHADs, and SDRs. The functional role of flanking residues was experimentally confirmed by alanine scanning of the imine-reducing SDR from Zephyranthes treatiae. Mutating the "gatekeeping" phenylalanine at standard position 200 resulted in a tenfold increase in imine-reducing activity.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Sebastian Roth
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
14
|
Roth S, Stockinger P, Steff J, Steimle S, Sautner V, Tittmann K, Pleiss J, Müller M. Crossing the Border: From Keto- to Imine Reduction in Short-Chain Dehydrogenases/Reductases. Chembiochem 2020; 21:2615-2619. [PMID: 32315494 PMCID: PMC7540013 DOI: 10.1002/cbic.202000233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/10/2022]
Abstract
The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the "classical" SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Jakob Steff
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Simon Steimle
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Viktor Sautner
- Department of Molecular EnzymologyUniversity of GöttingenJulia-Lermontowa-Weg 337077GöttingenGermany
| | - Kai Tittmann
- Department of Molecular EnzymologyUniversity of GöttingenJulia-Lermontowa-Weg 337077GöttingenGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Michael Müller
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstrasse 2579104FreiburgGermany
| |
Collapse
|
15
|
Roth S, Stockinger P, Steff J, Steimle S, Sautner V, Tittmann K, Pleiss J, Müller M. Crossing the Border: From Keto- to Imine Reduction in Short-Chain Dehydrogenases/Reductases. CHEMBIOCHEM : A EUROPEAN JOURNAL OF CHEMICAL BIOLOGY 2020. [PMID: 32315494 DOI: 10.1002/cbic.202000233.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDRs) comprises numerous biocatalysts capable of C=O or C=C reduction. The highly homologous noroxomaritidine reductase (NR) from Narcissus sp. aff. pseudonarcissus and Zt_SDR from Zephyranthes treatiae, however, are SDRs with an extended imine substrate scope. Comparison with a similar SDR from Asparagus officinalis (Ao_SDR) exhibiting keto-reducing activity, yet negligible imine-reducing capability, and mining the Short-Chain Dehydrogenase/Reductase Engineering Database indicated that NR and Zt_SDR possess a unique active-site composition among SDRs. Adapting the active site of Ao_SDR accordingly improved its imine-reducing capability. By applying the same strategy, an unrelated SDR from Methylobacterium sp. 77 (M77_SDR) with distinct keto-reducing activity was engineered into a promiscuous enzyme with imine-reducing activity, thereby confirming that the ability to reduce imines can be rationally introduced into members of the "classical" SDR enzyme family. Thus, members of the SDR family could be a promising starting point for protein approaches to generate new imine-reducing enzymes.
Collapse
Affiliation(s)
- Sebastian Roth
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Peter Stockinger
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Steff
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Simon Steimle
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Viktor Sautner
- Department of Molecular Enzymology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
16
|
Mordhorst S, Andexer JN. Round, round we go - strategies for enzymatic cofactor regeneration. Nat Prod Rep 2020; 37:1316-1333. [PMID: 32582886 DOI: 10.1039/d0np00004c] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to the beginning of 2020Enzymes depending on cofactors are essential in many biosynthetic pathways of natural products. They are often involved in key steps: catalytic conversions that are difficult to achieve purely with synthetic organic chemistry. Hence, cofactor-dependent enzymes have great potential for biocatalysis, on the condition that a corresponding cofactor regeneration system is available. For some cofactors, these regeneration systems require multiple steps; such complex enzyme cascades/multi-enzyme systems are (still) challenging for in vitro biocatalysis. Further, artificial cofactor analogues have been synthesised that are more stable, show an altered reaction range, or act as inhibitors. The development of bio-orthogonal systems that can be used for the production of modified natural products in vivo is an ongoing challenge. In light of the recent progress in this field, this review aims to provide an overview of general strategies involving enzyme cofactors, cofactor analogues, and regeneration systems; highlighting the current possibilities for application of enzymes using some of the most common cofactors.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | | |
Collapse
|
17
|
Biocatalysis in drug discovery and development. Curr Opin Chem Biol 2020; 55:151-160. [DOI: 10.1016/j.cbpa.2020.01.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
|
18
|
Germer P, Gauchenova E, Walter L, Müller M. Thiamine Diphosphate Dependent KdcA‐Catalysed Formyl Elongation of Aldehydes. ChemCatChem 2019. [DOI: 10.1002/cctc.201900712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Philipp Germer
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| | - Ekaterina Gauchenova
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| | - Lydia Walter
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| | - Michael Müller
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität Freiburg Albertstrasse 25 Freiburg 79104 Germany
| |
Collapse
|
19
|
Sheldon RA, Brady D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. CHEMSUSCHEM 2019; 12:2859-2881. [PMID: 30938093 DOI: 10.1002/cssc.201900351] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/05/2019] [Accepted: 03/04/2019] [Indexed: 05/21/2023]
Abstract
This Review is aimed at synthetic organic chemists who may be familiar with organometallic catalysis but have no experience with biocatalysis, and seeks to provide an answer to the perennial question: if it is so attractive, why wasn't it extensively used in the past? The development of biocatalysis in industrial organic synthesis is traced from the middle of the last century. Advances in molecular biology in the last two decades, in particular genome sequencing, gene synthesis and directed evolution of proteins, have enabled remarkable improvements in scope and substantially reduced biocatalyst development times and cost contributions. Additionally, improvements in biocatalyst recovery and reuse have been facilitated by developments in enzyme immobilization technologies. Biocatalysis has become eminently competitive with chemocatalysis and the biocatalytic production of important pharmaceutical intermediates, such as enantiopure alcohols and amines, has become mainstream organic synthesis. The synthetic space of biocatalysis has significantly expanded and is currently being extended even further to include new-to-nature biocatalytic reactions.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
20
|
Tseliou V, Masman MF, Böhmer W, Knaus T, Mutti FG. Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines. Chembiochem 2019; 20:800-812. [PMID: 30489013 PMCID: PMC6472184 DOI: 10.1002/cbic.201800626] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 12/18/2022]
Abstract
Biocatalytic asymmetric amination of ketones, by using amine dehydrogenases (AmDHs) or transaminases, is an efficient method for the synthesis of α-chiral primary amines. A major challenge is to extend amination to the synthesis of secondary and tertiary amines. Herein, for the first time, it is shown that AmDHs are capable of accepting other amine donors, thus giving access to enantioenriched secondary amines with conversions up to 43 %. Surprisingly, in several cases, the promiscuous formation of enantiopure primary amines, along with the expected secondary amines, was observed. By conducting practical laboratory experiments and computational experiments, it is proposed that the promiscuous formation of primary amines along with secondary amines is due to an unprecedented nicotinamide (NAD)-dependent formal transamination catalysed by AmDHs. In nature, this type of mechanism is commonly performed by pyridoxal 5'-phosphate aminotransferase and not by dehydrogenases. Finally, a catalytic pathway that rationalises the promiscuous NAD-dependent formal transamination activity and explains the formation of the observed mixture of products is proposed. This work increases the understanding of the catalytic mechanism of NAD-dependent aminating enzymes, such as AmDHs, and will aid further research into the rational engineering of oxidoreductases for the synthesis of α-chiral secondary and tertiary amines.
Collapse
Affiliation(s)
- Vasilis Tseliou
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Marcelo F. Masman
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Wesley Böhmer
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- van 't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
21
|
Gräff M, Buchholz PC, Stockinger P, Bommarius B, Bommarius AS, Pleiss J. The Short‐chain Dehydrogenase/Reductase Engineering Database (SDRED): A classification and analysis system for a highly diverse enzyme family. Proteins 2019; 87:443-451. [DOI: 10.1002/prot.25666] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Maike Gräff
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| | - Patrick C.F. Buchholz
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| | - Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| | - Bettina Bommarius
- Department of Chemical and Biomolecular EngineeringGeorgia Institute of Technology Atlanta Georgia
| | - Andreas S. Bommarius
- Department of Chemical and Biomolecular EngineeringGeorgia Institute of Technology Atlanta Georgia
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryUniversity of Stuttgart Stuttgart Germany
| |
Collapse
|
22
|
Zumbrägel N, Machui P, Nonnhoff J, Gröger H. Enantioselective Biocatalytic Reduction of 2 H-1,4-Benzoxazines Using Imine Reductases. J Org Chem 2019; 84:1440-1447. [PMID: 30562025 DOI: 10.1021/acs.joc.8b02867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A biocatalytic reduction of 2 H-1,4-benzoxazines using imine reductases is reported. This process enables a smooth and enantioselective synthesis of the resulting cyclic amines under mild conditions in aqueous media by means of a catalytic amount of the cofactor NADPH as hydride source as well as glucose as the reducing agent used in stoichiometric amounts for in situ cofactor recycling. Several substrates were studied, and the 3,4-dihydro-2 H-1,4-benzoxazines were obtained with up to 99% ee. In addition, the efficiency of this reduction process based on imine reductases as catalysts has been demonstrated for one 2 H-1,4-benzoxazine on an elevated laboratory scale running at a substrate loading of 10 g L-1 in the presence of a tailor-made whole-cell catalyst.
Collapse
Affiliation(s)
- Nadine Zumbrägel
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Paul Machui
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Jannis Nonnhoff
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| |
Collapse
|
23
|
Lenz M, Fademrecht S, Sharma M, Pleiss J, Grogan G, Nestl BM. New imine-reducing enzymes from β-hydroxyacid dehydrogenases by single amino acid substitutions. Protein Eng Des Sel 2018; 31:109-120. [PMID: 29733377 DOI: 10.1093/protein/gzy006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/10/2018] [Indexed: 11/14/2022] Open
Abstract
We report the exploration of the evolutionary relationship between imine reductases (IREDs) and other dehydrogenases. This approach is informed by the sequence similarity between these enzyme families and the recently described promiscuous activity of IREDs for the highly reactive carbonyl compound 2,2,2-trifluoroacetophenone. Using the structure of the R-selective IRED from Streptosporangium roseum (R-IRED-Sr) as a model, β-hydroxyacid dehydrogenases (βHADs) were identified as the dehydrogenases most similar to IREDs. To understand how active site differences in IREDs and βHADs enable the reduction of predominantly C = N or C = O bonds respectively, we substituted amino acid residues in βHADs with the corresponding residues from the R-IRED-Sr and were able to increase the promiscuous activity of βHADs for C = N functions by a single amino acid substitution. Variants βHADAt_K170D and βHADAt_K170F lost mainly their keto acid reduction activity and gained the ability to catalyze the reduction of imines. Moreover, the product enantiomeric purity for a bulky imine substrate could be increased from 23% ee (R-IRED-Sr) to 97% ee (βHADAt_K170D/F_F231A) outcompeting already described IRED selectivity.
Collapse
Affiliation(s)
- Maike Lenz
- Institute of Biochemistry and Technical Biochemistry, Department of Chemistry, Universitaet Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Silvia Fademrecht
- Institute of Biochemistry and Technical Biochemistry, Department of Chemistry, Universitaet Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Mahima Sharma
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, Department of Chemistry, Universitaet Stuttgart, Allmandring 31, Stuttgart, Germany
| | - Gideon Grogan
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - Bettina M Nestl
- Institute of Biochemistry and Technical Biochemistry, Department of Chemistry, Universitaet Stuttgart, Allmandring 31, Stuttgart, Germany
| |
Collapse
|
24
|
Vilím J, Knaus T, Mutti FG. Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angew Chem Int Ed Engl 2018; 57:14240-14244. [PMID: 30176101 PMCID: PMC6220830 DOI: 10.1002/anie.201809411] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 11/26/2022]
Abstract
We report an unprecedented catalytically promiscuous activity of the copper-dependent enzyme galactose oxidase. The enzyme catalyses the one-pot conversion of alcohols into the related nitriles under mild reaction conditions in ammonium buffer, consuming ammonia as the source of nitrogen and dioxygen (from air at atmospheric pressure) as the only oxidant. Thus, this green method does not require either cyanide salts, toxic metals, or undesired oxidants in stoichiometric amounts. The substrate scope of the reaction includes benzyl and cinnamyl alcohols as well as 4- and 3-pyridylmethanol, giving access to valuable chemical compounds. The oxidation proceeds through oxidation from alcohol to aldehyde, in situ imine formation, and final direct oxidation to nitrile.
Collapse
Affiliation(s)
- Jan Vilím
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
25
|
Vilím J, Knaus T, Mutti FG. Catalytic Promiscuity of Galactose Oxidase: A Mild Synthesis of Nitriles from Alcohols, Air, and Ammonia. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jan Vilím
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-Biocat; University of Amsterdam; Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
26
|
Velikogne S, Resch V, Dertnig C, Schrittwieser JH, Kroutil W. Sequence-Based In-silico Discovery, Characterisation, and Biocatalytic Application of a Set of Imine Reductases. ChemCatChem 2018; 10:3236-3246. [PMID: 30197686 PMCID: PMC6120462 DOI: 10.1002/cctc.201800607] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 11/17/2022]
Abstract
Imine reductases (IREDs) have recently become a primary focus of research in biocatalysis, complementing other classes of amine-forming enzymes such as transaminases and amine dehydrogenases. Following in the footsteps of other research groups, we have established a set of IRED biocatalysts by sequence-based in silico enzyme discovery. In this study, we present basic characterisation data for these novel IREDs and explore their activity and stereoselectivity using a panel of structurally diverse cyclic imines as substrates. Specific activities of >1 U/mg and excellent stereoselectivities (ee>99 %) were observed in many cases, and the enzymes proved surprisingly tolerant towards elevated substrate loadings. Co-expression of the IREDs with an alcohol dehydrogenase for cofactor regeneration led to whole-cell biocatalysts capable of efficiently reducing imines at 100 mM initial concentration with no need for the addition of extracellular nicotinamide cofactor. Preparative biotransformations on gram scale using these 'designer cells' afforded chiral amines in good yield and excellent optical purity.
Collapse
Affiliation(s)
- Stefan Velikogne
- University of GrazInstitute of ChemistryNAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Verena Resch
- University of GrazInstitute of ChemistryNAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Carina Dertnig
- University of GrazInstitute of ChemistryNAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Joerg H. Schrittwieser
- University of GrazInstitute of ChemistryNAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| | - Wolfgang Kroutil
- University of GrazInstitute of ChemistryNAWI Graz, BioTechMed GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
27
|
Hughes DL. Biocatalysis in Drug Development—Highlights of the Recent Patent Literature. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00232] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David L. Hughes
- Cidara Therapeutics, Inc., 6310 Nancy Ridge Drive, Suite 101, San Diego, California 92121, United States
| |
Collapse
|
28
|
Roth S, Kilgore MB, Kutchan TM, Müller M. Exploiting the Catalytic Diversity of Short-Chain Dehydrogenases/Reductases: Versatile Enzymes from Plants with Extended Imine Substrate Scope. Chembiochem 2018; 19:1849-1852. [PMID: 29931726 DOI: 10.1002/cbic.201800291] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 01/20/2023]
Abstract
Numerous short-chain dehydrogenases/reductases (SDRs) have found biocatalytic applications in C=O and C=C (enone) reduction. For NADPH-dependent C=N reduction, imine reductases (IREDs) have primarily been investigated for extension of the substrate range. Here, we show that SDRs are also suitable for a broad range of imine reductions. The SDR noroxomaritidine reductase (NR) is involved in Amaryllidaceae alkaloid biosynthesis, serving as an enone reductase. We have characterized NR by using a set of typical imine substrates and established that the enzyme is active with all four tested imine compounds (up to 99 % conversion, up to 92 % ee). Remarkably, NR reduced two keto compounds as well, thus highlighting this enzyme family's versatility. Using NR as a template, we have identified an as yet unexplored SDR from the Amaryllidacea Zephyranthes treatiae with imine-reducing activity (≤95 % ee). Our results encourage the future characterization of SDR family members as a means of discovering new imine-reducing enzymes.
Collapse
Affiliation(s)
- Sebastian Roth
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Matthew B Kilgore
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Toni M Kutchan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
29
|
Enantioselective reduction of sulfur-containing cyclic imines through biocatalysis. Nat Commun 2018; 9:1949. [PMID: 29769523 PMCID: PMC5955971 DOI: 10.1038/s41467-018-03841-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/12/2018] [Indexed: 11/21/2022] Open
Abstract
The 3-thiazolidine ring represents an important structural motif in life sciences molecules. However, up to now reduction of 3-thiazolines as an attractive approach failed by means of nearly all chemical reduction technologies for imines. Thus, the development of an efficient general and enantioselective synthetic technology giving access to a range of such heterocycles remained a challenge. Here we present a method enabling the reduction of 3-thiazolines with high conversion and high to excellent enantioselectivity (at least 96% and up to 99% enantiomeric excess). This technology is based on the use of imine reductases as catalysts, has a broad substrate range, and is also applied successfully to other sulfur-containing heterocyclic imines such as 2H-1,4-benzothiazines. Moreover the effiency of this biocatalytic technology platform is demonstrated in an initial process development leading to 99% conversion and 99% enantiomeric excess at a substrate loading of 18 g/L in the presence of designer cells. The 3-thiazolidine ring, a pharmaceutically interesting cyclic structural element found e.g. in some antibiotics, is hard to obtain via currently used approaches. Here, the authors developed a straightforward method to efficiently synthesize a variety of defined, pure 3-thiazolidines.
Collapse
|
30
|
Beer B, Pick A, Döring M, Lommes P, Sieber V. Substrate scope of a dehydrogenase from Sphingomonas species A1 and its potential application in the synthesis of rare sugars and sugar derivatives. Microb Biotechnol 2018; 11:747-758. [PMID: 29697194 PMCID: PMC6011931 DOI: 10.1111/1751-7915.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
Rare sugars and sugar derivatives that can be obtained from abundant sugars are of great interest to biochemical and pharmaceutical research. Here, we describe the substrate scope of a short‐chain dehydrogenase/reductase from Sphingomonas species A1 (SpsADH) in the oxidation of aldonates and polyols. The resulting products are rare uronic acids and rare sugars respectively. We provide insight into the substrate recognition of SpsADH using kinetic analyses, which show that the configuration of the hydroxyl groups adjacent to the oxidized carbon is crucial for substrate recognition. Furthermore, the specificity is demonstrated by the oxidation of d‐sorbitol leading to l‐gulose as sole product instead of a mixture of d‐glucose and l‐gulose. Finally, we applied the enzyme to the synthesis of l‐gulose from d‐sorbitol in an in vitro system using a NADH oxidase for cofactor recycling. This study shows the usefulness of exploring the substrate scope of enzymes to find new enzymatic reaction pathways from renewable resources to value‐added compounds.
Collapse
Affiliation(s)
- Barbara Beer
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - André Pick
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Manuel Döring
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Petra Lommes
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technical University of Munich, Schulgasse 16, 94315, Straubing, Germany.,Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer-Str. 1, 85748, Garching, Germany.,Fraunhofer Institute of Interfacial Engineering and Biotechnology (IGB), Bio-, Electro- and Chemo Catalysis (BioCat) Branch, Schulgasse 11a, Straubing, 94315, Germany.,School of Chemistry and Molecular Biosciences, The University of Queensland, 68 Cooper Road, St. Lucia, 4072, Qld, Australia
| |
Collapse
|
31
|
Matzel P, Krautschick L, Höhne M. Photometric Characterization of the Reductive Amination Scope of the Imine Reductases from Streptomyces tsukubaensis and Streptomyces ipomoeae. Chembiochem 2017; 18:2022-2027. [PMID: 28833946 DOI: 10.1002/cbic.201700257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/08/2022]
Abstract
Imine reductases (IREDs) have emerged as promising enzymes for the asymmetric synthesis of secondary and tertiary amines starting from carbonyl substrates. Screening the substrate specificity of the reductive amination reaction is usually performed by time-consuming GC analytics. We found two highly active IREDs in our enzyme collection, IR-20 from Streptomyces tsukubaensis and IR-Sip from Streptomyces ipomoeae, that allowed a comprehensive substrate screening with a photometric NADPH assay. We screened 39 carbonyl substrates combined with 17 amines as nucleophiles. Activity data from 663 combinations provided a clear picture about substrate specificity and capabilities in the reductive amination of these enzymes. Besides aliphatic aldehydes, the IREDs accepted various cyclic (C4 -C8 ) and acyclic ketones, preferentially with methylamine. IR-Sip also accepted a range of primary and secondary amines as nucleophiles. In biocatalytic reactions, IR-Sip converted (R)-3-methylcyclohexanone with dimethylamine or pyrrolidine with high diastereoselectivity (>94-96 % de). The nucleophile acceptor spectrum depended on the carbonyl substrate employed. The conversion of well-accepted substrates could also be detected if crude lysates were employed as the enzyme source.
Collapse
Affiliation(s)
- Philipp Matzel
- Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Lukas Krautschick
- Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Matthias Höhne
- Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|