1
|
Wang X, Li N, Zheng M, Yu Y, Zhang S. Acetylation and deacetylation of histone in adipocyte differentiation and the potential significance in cancer. Transl Oncol 2024; 39:101815. [PMID: 37935080 PMCID: PMC10654249 DOI: 10.1016/j.tranon.2023.101815] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/09/2023] Open
Abstract
Adipocytes are derived from pluripotent mesenchymal stem cells and can develop into several cell types including adipocytes, myocytes, chondrocytes, and osteocytes. Adipocyte differentiation is regulated by a variety of transcription factors and signaling pathways. Various epigenetic factors, particularly histone modifications, play key roles in adipocyte differentiation and have indispensable functions in altering chromatin conformation. Histone acetylases and deacetylases participate in the regulation of protein acetylation, mediate transcriptional and post-translational modifications, and directly acetylate or deacetylate various transcription factors and regulatory proteins. The adipocyte differentiation of stem cells plays a key role in various metabolic diseases. Cancer stem cells(CSCs) play an important function in cancer metastasis, recurrence, and drug resistance, and have the characteristics of stem cells. They are expressed in various cell lineages, including adipocytes. Recent studies have shown that cancer stem cells that undergo epithelial-mesenchymal transformation can undergo adipocytic differentiation, thereby reducing the degree of malignancy. This opens up new possibilities for cancer treatment. This review summarizes the regulation of acetylation during adipocyte differentiation, involving the functions of histone acetylating and deacetylating enzymes as well as non-histone acetylation modifications. Mechanistic studies on adipogenesis and acetylation during the differentiation of cancer cells into a benign cell phenotype may help identify new targets for cancer treatment.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Na Li
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China; Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China.
| |
Collapse
|
2
|
Yao X, Li P, Deng Y, Yang Y, Luo H, He B. Role of p53 in promoting BMP9‑induced osteogenic differentiation of mesenchymal stem cells through TGF‑β1. Exp Ther Med 2023; 25:248. [PMID: 37153899 PMCID: PMC10160913 DOI: 10.3892/etm.2023.11947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/24/2023] [Indexed: 05/10/2023] Open
Abstract
Known as a tumour suppressor gene, p53 also plays a key role in controlling the differentiation of mesenchymal stem cells (MSCs). Bone morphogenetic protein 9 (BMP9) has been identified as a potent factor in inducing osteogenic differentiation of MSCs, but its relationship with p53 remains unclear. The present study revealed that TP53 was expressed at higher levels in MSCs from patients with osteoporosis and was associated with the top 10 core central genes found in the current osteoporosis genetic screen. p53 was expressed in C2C12, C3H10T1/2, 3T3-L1, MEFs, and MG-63 cell lines, and could be upregulated by BMP9, as measured by western blotting and reverse-transcription quantitative PCR (RT-qPCR). Furthermore, overexpression of p53 increased the mRNA and protein levels of osteogenic marker Runx2 and osteopontin, as evaluated by western blotting and RT-qPCR in BMP9-induced MSCs, whereas the p53 inhibitor pifithrin (PFT)-α attenuated these effects. The same trend was found in alkaline phosphatase activities and matrix mineralization, as measured by alkaline phosphatase staining and alizarin red S staining. Moreover, p53 overexpression reduced adipo-differentiation markers of PPARγ and lipid droplet formation, as measured by western blotting, RT-qPCR and oil red O staining, respectively, whereas PFT-α facilitated adipo-differentiation in MSCs. In addition, p53 promoted TGF-β1 expression and inhibition of TGF-β1 by LY364947 partially attenuated the effects of p53 on promoting BMP9-induced MSC osteo-differentiation and inhibiting adipo-differentiation. The inhibitory effect of PFT-α on osteogenic markers and the promoting effect on adipogenic markers can be reversed when combined with TGF-β1. TGF-β1 may enhance the promotion of osteo-differentiation of MSCs by p53 through inhibition of adipo-differentiation. Collectively, by promoting BMP9-induced MSCs bone differentiation and inhibiting adipose differentiation, p53 may be a novel therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Xintong Yao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peipei Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yixuan Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuanyuan Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Honghong Luo
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Baicheng He
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
- Correspondence to: Professor Baicheng He, College of Pharmacy, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
3
|
Zhao Y, Qin R. Vitamin D3 affects browning of white adipocytes by regulating autophagy via PI3K/Akt/mTOR/p53 signaling in vitro and in vivo. Apoptosis 2022; 27:992-1003. [DOI: 10.1007/s10495-022-01765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
|
4
|
Liu DW, Ye YS, Huang CG, Lu Q, Yang L, Wang Q, Wang H, Liu X, Jing CB, Xu G, Xiong WY. Sampsonione F suppresses adipogenesis via activating p53 pathway during the mitotic clonal expansion progression of adipocyte differentiation. Eur J Pharmacol 2022; 925:175002. [DOI: 10.1016/j.ejphar.2022.175002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
|
5
|
Zhang J, Liu P, He M, Wang Y, Kui H, Jin L, Li D, Li M. Reorganization of 3D genome architecture across wild boar and Bama pig adipose tissues. J Anim Sci Biotechnol 2022; 13:32. [PMID: 35277200 PMCID: PMC8917667 DOI: 10.1186/s40104-022-00679-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A growing body of evidence has revealed that the mammalian genome is organized into hierarchical layers that are closely correlated with and may even be causally linked with variations in gene expression. Recent studies have characterized chromatin organization in various porcine tissues and cell types and compared them among species and during the early development of pigs. However, how chromatin organization differs among pig breeds is poorly understood. RESULTS In this study, we investigated the 3D genome organization and performed transcriptome characterization of two adipose depots (upper layer of backfat [ULB] and greater omentum [GOM]) in wild boars and Bama pigs; the latter is a typical indigenous pig in China. We found that over 95% of the A/B compartments and topologically associating domains (TADs) are stable between wild boars and Bama pigs. In contrast, more than 70% of promoter-enhancer interactions (PEIs) are dynamic and widespread, involving over a thousand genes. Alterations in chromatin structure are associated with changes in the expression of genes that are involved in widespread biological functions such as basic cellular functions, endocrine function, energy metabolism and the immune response. Approximately 95% and 97% of the genes associated with reorganized A/B compartments and PEIs in the two pig breeds differed between GOM and ULB, respectively. CONCLUSIONS We reported 3D genome organization in adipose depots from different pig breeds. In a comparison of Bama pigs and wild boar, large-scale compartments and TADs were mostly conserved, while fine-scale PEIs were extensively reorganized. The chromatin architecture in these two pig breeds was reorganized in an adipose depot-specific manner. These results contribute to determining the regulatory mechanism of phenotypic differences between Bama pigs and wild boar.
Collapse
Affiliation(s)
- Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Pengliang Liu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mengnan He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
6
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021. [DOI: https://doi.org/10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol 2021; 192:45-54. [PMID: 34619274 DOI: 10.1016/j.ijbiomac.2021.09.188] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Reprogrammed cell metabolism is a well-accepted hallmark of cancer. Metabolism changes provide energy and precursors for macromolecule biosynthesis to satisfy the survival needs of cancer cells. The specific changes in different aspects of lipid metabolism in cancer cells have been focused in recent years. These changes can affect cell growth, proliferation, differentiation and motility through affecting membranes synthesis, energy homeostasis and cell signaling. The tumor suppressor p53 plays vital roles in the control of cell proliferation, senescence, DNA repair, and cell death in cancer through various transcriptional and non-transcriptional activities. Accumulating evidences indicate that p53 also regulates cellular metabolism, which appears to contribute to its tumor suppressive functions. Particularly the role of p53 in regulating lipid metabolism has gained more and more attention in recent decades. In this review, we summarize recent advances in the function of p53 on lipid metabolism in cancer. Further understanding and research on the role of p53 in lipid metabolism regulation will provide a potential therapeutic window for cancer treatment.
Collapse
Affiliation(s)
- Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
8
|
Palmitic Acid Methyl Ester Enhances Adipogenic Differentiation in Rat Adipose Tissue-Derived Mesenchymal Stem Cells through a G Protein-Coupled Receptor-Mediated Pathway. Stem Cells Int 2021; 2021:9938649. [PMID: 34650609 PMCID: PMC8510814 DOI: 10.1155/2021/9938649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/29/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022] Open
Abstract
Adipogenic differentiation from stem cells has become a research target due to the increasing interest in obesity. It has been indicated that adipocytes can secrete palmitic acid methyl ester (PAME), which is able to regulate stem cell proliferation. However, the effects of PAME on adipogenic differentiation in stem cell remain unclear. Here, we present that the adipogenic differentiation medium supplemented with PAME induced the differentiation of rat adipose tissue-derived mesenchymal stem cells (rAD-MSCs) into adipocyte. rAD-MSCs were treated with PAME for 12 days and then subjected to various analyses. The results from the present study show that PAME significantly increased the levels of adipogenic differentiation markers, PPARγ and Gpd1, and enhanced adipogenic differentiation in rAD-MSCs. Furthermore, the level of GPR40/120 protein increased during induction of adipocyte differentiation in rAD-MSCs. Cotreatment with PAME and a GPR40/120 antagonist together inhibited the PAME-enhanced adipogenic differentiation. Moreover, PAME significantly increased phosphorylation of extracellular signal-regulated kinases (ERK), but not AKT and mTOR. Cotreatment with PAME and a GPR40/120 antagonist together inhibited the PAME-enhanced ERK phosphorylation and adipogenic differentiation. PAME also increased the intracellular Ca2+ levels. Cotreatment with PAME and a Ca2+ chelator or a phospholipase C (PLC) inhibitor prevented the PAME-enhanced ERK phosphorylation and adipogenic differentiation. Our data suggest that PAME activated the GPR40/120/PLC-mediated pathway, which in turn increased the intracellular Ca2+ levels, thereby activating the ERK, and eventually enhanced adipogenic differentiation in rAD-MSCs. The findings from the present study might help get insight into the physiological roles and molecular mechanism of PAME in regulating stem cell differentiation.
Collapse
|
9
|
Palmer AK, Tchkonia T, Kirkland JL. Senolytics: Potential for Alleviating Diabetes and Its Complications. Endocrinology 2021; 162:6168435. [PMID: 33705532 PMCID: PMC8234500 DOI: 10.1210/endocr/bqab058] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 12/28/2022]
Abstract
Therapeutics that target cellular senescence, including novel "senolytic" compounds, hold significant promise for treating or preventing obesity-induced metabolic dysfunction, type 2 diabetes, and the multiple complications of diabetes and obesity. Senolytics selectively clear senescent cells, which accumulate with aging and obesity and represent a fundamental mechanism of aging that contributes to metabolic dysfunction and diabetes pathogenesis. In addition to improving metabolic function, targeting senescent cells holds promise as a preventive strategy to reduce the incidence and severity of diabetes complications. The intermittent administration schedule used for senolytic therapy may confer benefits in terms of improving adherence and limiting adverse effects. It is necessary to design effective clinical trials that will safely translate discoveries from preclinical models into human studies that may pave the way for a novel therapeutic class for treating obesity, diabetes, and their complications. In this review, we outline what is known regarding the role of cellular senescence in the pathogenesis of type 2 diabetes and its complications, present evidence from preclinical models that targeting cellular senescence is beneficial, review senolytic drugs, and outline the features of clinical trials investigating the role of targeting senescent cells for diabetes.
Collapse
Affiliation(s)
- Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA
- Correspondence: James L. Kirkland, MD, PhD, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
10
|
The Intricate Role of p53 in Adipocyte Differentiation and Function. Cells 2020; 9:cells9122621. [PMID: 33297294 PMCID: PMC7762213 DOI: 10.3390/cells9122621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
For more than three decades, numerous studies have demonstrated the function of p53 in cell cycle, cellular senescence, autophagy, apoptosis, and metabolism. Among diverse functions, the essential role of p53 is to maintain cellular homeostatic response to stress by regulating proliferation and apoptosis. Recently, adipocytes have been studied with increasing intensity owing to the increased prevalence of metabolic diseases posing a serious public health concern and because metabolic dysfunction can directly induce tumorigenesis. The prevalence of metabolic diseases has steadily increased worldwide, and a growing interest in these diseases has led to the focus on the role of p53 in metabolism and adipocyte differentiation with or without metabolic stress. However, our collective understanding of the direct role of p53 in adipocyte differentiation and function remains insufficient. Therefore, this review focuses on the newly discovered roles of p53 in adipocyte differentiation and function.
Collapse
|
11
|
Zhao Q, Zhang Z, Rong W, Jin W, Yan L, Jin W, Xu Y, Cui X, Tang QQ, Pan D. KMT5c modulates adipocyte thermogenesis by regulating Trp53 expression. Proc Natl Acad Sci U S A 2020; 117:22413-22422. [PMID: 32839323 PMCID: PMC7486735 DOI: 10.1073/pnas.1922548117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brown and beige adipocytes harbor the thermogenic capacity to adapt to environmental thermal or nutritional changes. Histone methylation is an essential epigenetic modification involved in the modulation of nonshivering thermogenesis in adipocytes. Here, we describe a molecular network leading by KMT5c, a H4K20 methyltransferase, that regulates adipocyte thermogenesis and systemic energy expenditure. The expression of Kmt5c is dramatically induced by a β3-adrenergic signaling cascade in both brown and beige fat cells. Depleting Kmt5c in adipocytes in vivo leads to a decreased expression of thermogenic genes in both brown and subcutaneous (s.c.) fat tissues. These mice are prone to high-fat-diet-induced obesity and develop glucose intolerance. Enhanced transformation related protein 53 (Trp53) expression in Kmt5c knockout (KO) mice, that is due to the decreased repressive mark H4K20me3 on its proximal promoter, is responsible for the metabolic phenotypes. Together, these findings reveal the physiological role for KMT5c-mediated H4K20 methylation in the maintenance and activation of the thermogenic program in adipocytes.
Collapse
Affiliation(s)
- Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Zhe Zhang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Weiqiong Rong
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Weiwei Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Linyu Yan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Wenfang Jin
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Yingjiang Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, 200032 Shanghai, People's Republic of China
| |
Collapse
|
12
|
Wu W, Ji M, Xu K, Zhang D, Yin Y, Huang X, Peng Y, Zhang J. Knockdown of CTRP6 reduces the deposition of intramuscular and subcutaneous fat in pigs via different signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158729. [PMID: 32360289 DOI: 10.1016/j.bbalip.2020.158729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
The regulation of porcine subcutaneous (SC) and intramuscular (IM) fat deposition significantly affects pork quality and the lean meat percentage of the carcass, respectively. The adipokine C1q/tumor necrosis factor-related protein 6 (CTRP6), plays a significant role in regulating animal fat deposition. The purpose of this study was to understand the effects of CTRP6 gene knockdown in IM and SC adipocytes by RNA-seq analysis. A total of 1830 and 2936 differentially expressed genes (DEGs) were identified in SC and IM adipocytes, respectively. 844 were down- and 2092 were upregulated in SC adipocytes, while 648 were down- and 1182 were upregulated in IM adipocytes. Furthermore, 1778 DEGs were detected only in SC adipocytes, 672 DEGs only in IM adipocytes, and 1158 DEGs in both types of adipocytes. GO analysis indicated that DEGs involved in adipocyte differentiation were significantly enriched in both SC and IM adipocytes following treatment with CTRP6-siRNA. Moreover, KEGG pathway enrichment analysis revealed differences of metabolic regulation between IM and SC adipocytes. With CTRP6-silencing, the signaling pathways related to Ras and arachidonic acid metabolism were significantly enriched in IM adipocytes, while four other signaling pathways, encompassing the TNF, MAPK, p53 and adipokine pathway were specifically enriched in SC adipocytes. Interestingly, the effect of CTRP6-siRNA treatment was attenuated by the specific Ras activator ML-097 in IM adipocytes, while the specific p53 activator SJ-172550 had the corresponding effect in SC adipocytes. Altogether, we suggest that CTRP6 may be a differential regulator of the development and metabolism of IM and SC adipose tissues.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Miao Ji
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Ke Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Dawei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yajun Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xin Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
13
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
14
|
Al-Qarakhli AMA, Yusop N, Waddington RJ, Moseley R. Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche. BMC Mol Cell Biol 2019; 20:51. [PMID: 31752674 PMCID: PMC6873668 DOI: 10.1186/s12860-019-0235-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mesenchymal stromal cells in the endosteal niche lining compact bone (CB-MSCs) represent a heterogeneous population, all of which contribute to bone repair and remodelling. Hyperglycaemia associated with type 2 diabetes mellitus (T2DM) can delay and impair the bone healing process. Therefore, this study investigated the influences of high (25 mM) glucose conditions on CB-MSC populations isolated from male Wistar rats, versus normal (5.5 mM) glucose conditions; in terms of proliferation (population doublings, PDs), senescence characteristics, stem cell marker expression, colony forming efficiencies (CFEs); and osteogenic/adipogenic differentiation, following extended culture in vitro. Results CB-MSCs under both normoglycaemic and hyperglycaemic conditions demonstrated similar morphologies and rapid exponential growth to >300PDs, although high glucose conditions promoted more rapid and persistent proliferation beyond ~50PDs, with few indications of senescence. Limited senescence was confirmed by minimal SA-β-galactosidase staining, low senescence marker (p53, p21waf1, p16INK4a) expression and positive telomere maintenance marker (rTERT, TR) expression. However, telomere lengths varied throughout culture expansion, with hyperglycaemia significantly reducing telomere lengths at PD50 and PD200. Furthermore, CB-MSCs expanded in normal and high glucose conditions remained non-transformed, exhibiting similar MSC (CD73/CD90/CD105), multipotency (CD146) and embryonic (Slug, Snail) markers throughout extended culture, but negligible hematopoietic (CD34/CD45) or pluripotency (Nanog, Oct4) markers. Hyperglycaemia significantly increased CFEs at PD50 and PD100, which decreased at PD200. CB-MSC osteogenic differentiation was also inhibited by hyperglycaemia at PD15, PD100 and PD200, but not at PD50. Hyperglycaemia inhibited CB-MSC adipogenic differentiation to a lesser extent at PD15 and PD50, with reduced adipogenesis overall at PD100 and PD200. Conclusion This study demonstrates the limited negative impact of hyperglycaemia on the proliferative and stem cell characteristics of heterogeneous CB-MSC populations, although minor sub-population(s) appear more susceptible to these conditions leading to impaired osteogenic/adipogenic differentiation capabilities. Such findings potentially highlight the impact of hyperglycaemia on CB-MSC bone repair capabilities in situ.
Collapse
Affiliation(s)
- Ahmed Makki A Al-Qarakhli
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,College of Dentistry, University of Anbar, Anbar, Iraq
| | - Norhayati Yusop
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.,School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Rachel J Waddington
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
| | - Ryan Moseley
- School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.
| |
Collapse
|
15
|
p53 Functions in Adipose Tissue Metabolism and Homeostasis. Int J Mol Sci 2018; 19:ijms19092622. [PMID: 30181511 PMCID: PMC6165290 DOI: 10.3390/ijms19092622] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
As a tumor suppressor and the most frequently mutated gene in cancer, p53 is among the best-described molecules in medical research. As cancer is in most cases an age-related disease, it seems paradoxical that p53 is so strongly conserved from early multicellular organisms to humans. A function not directly related to tumor suppression, such as the regulation of metabolism in nontransformed cells, could explain this selective pressure. While this role of p53 in cellular metabolism is gradually emerging, it is imperative to dissect the tissue- and cell-specific actions of p53 and its downstream signaling pathways. In this review, we focus on studies reporting p53’s impact on adipocyte development, function, and maintenance, as well as the causes and consequences of altered p53 levels in white and brown adipose tissue (AT) with respect to systemic energy homeostasis. While whole body p53 knockout mice gain less weight and fat mass under a high-fat diet owing to increased energy expenditure, modifying p53 expression specifically in adipocytes yields more refined insights: (1) p53 is a negative regulator of in vitro adipogenesis; (2) p53 levels in white AT are increased in diet-induced and genetic obesity mouse models and in obese humans; (3) functionally, elevated p53 in white AT increases senescence and chronic inflammation, aggravating systemic insulin resistance; (4) p53 is not required for normal development of brown AT; and (5) when p53 is activated in brown AT in mice fed a high-fat diet, it increases brown AT temperature and brown AT marker gene expression, thereby contributing to reduced fat mass accumulation. In addition, p53 is increasingly being recognized as crucial player in nutrient sensing pathways. Hence, despite existence of contradictory findings and a varying density of evidence, several functions of p53 in adipocytes and ATs have been emerging, positioning p53 as an essential regulatory hub in ATs. Future studies need to make use of more sophisticated in vivo model systems and should identify an AT-specific set of p53 target genes and downstream pathways upon different (nutrient) challenges to identify novel therapeutic targets to curb metabolic diseases.
Collapse
|
16
|
Liu P, Hsieh P, Lin H, Liu T, Wu H, Chen C, Chen Y. Grail is involved in adipocyte differentiation and diet-induced obesity. Cell Death Dis 2018; 9:525. [PMID: 29743578 PMCID: PMC5943410 DOI: 10.1038/s41419-018-0596-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023]
Abstract
Grail is a crucial regulator of various biological processes, including the development of T-cell anergy, antiviral innate immune response, and cancer. However, the role of Grail in adipogenesis and obesity remains unclear. Here, we demonstrated that Grail knockdown in vitro leads to a decrease in PPARγ expression, resulting in adipogenesis inhibition. However, Grail overexpression induced the same effects. Grail was shown to interact with PPARγ, targeting it for degradation and modulating its adipogenic activity. PPARγ expression was shown to be considerably reduced in Grail knockout (KO) mice fed normal diet or high-fat diet (HFD). The administration of both normal diet or HFD to Grail KO mice led to lower adipose mass and body weight than those in the wild-type mice. HFD-fed Grail KO mice had improved glucose and insulin tolerance. Taken together, our results indicate that Grail plays a pivotal role in adipogenesis and diet-induced obesity by regulating PPARγ activity.
Collapse
Affiliation(s)
- Peiyao Liu
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China
| | - Poshiuan Hsieh
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China.,Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Huitsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Tejung Liu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei, Taiwan, 114, Republic of China.,Department of Physical Medicine and Rehabilitation, School of Medicine, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China.,Department of Physical Medicine and Rehabilitation, Taoyuan Armed Force General Hospital, Taoyuan, Taiwan, 114, Republic of China
| | - Hsuehling Wu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Chengcheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Yingchuan Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China.
| |
Collapse
|
17
|
Behera AK, Bhattacharya A, Vasudevan M, Kundu TK. p53 mediated regulation of coactivator associated arginine methyltransferase 1 (CARM1) expression is critical for suppression of adipogenesis. FEBS J 2018; 285:1730-1744. [PMID: 29575726 DOI: 10.1111/febs.14440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/31/2018] [Accepted: 03/19/2018] [Indexed: 11/27/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1/PRMT4) is a type I arginine methyltransferase that mediates transcriptional activation via methylation of histone H3 on R17, R26, and R42. CARM1 is also a coactivator of transcription of various transcription factors such as NF-kB, MEF2C, β-catenin, p53, PPAR-gamma etc. CARM1 has been functionally implicated in maintenance of pluripotency, cellular differentiation, and tumorigenesis; where its expression status plays an important role. Although its expression has been shown to be regulated by a few miRNAs in different contexts at post-transcriptional level, transcriptional regulation of CARM1 gene is still unexplored. In this report we demonstrate that CARM1 is a p53 responsive gene, where p53 could suppress CARM1 promoter-driven luciferase expression. CARM1 gene expression was found to be repressed by p53 in 3T3L1 preadipocytes when activated with Nutlin-3a treatment. Ectopic overexpression of CARM1 could rescue inhibitory effect of p53 on adipogenesis, suggesting a role of p53-CARM1 axis of regulation operational in the context of adipocyte differentiation. p53 and CARM1 showed antagonistic regulatory influence on PPAR-gamma expression; which suggests that p53-mediated suppression of adipogenesis could be partly via repression of CARM1 expression. Taken together these observations provide convincing mechanistic explanation for p53 function in the context of adipocyte differentiation process.
Collapse
Affiliation(s)
- Amit K Behera
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Aditya Bhattacharya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
18
|
Contreras EG, Sierralta J, Glavic A. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development. PLoS One 2018; 13:e0194344. [PMID: 29621246 PMCID: PMC5886404 DOI: 10.1371/journal.pone.0194344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. RESULTS Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. CONCLUSIONS Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.
Collapse
Affiliation(s)
- Esteban G. Contreras
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
| | - Jimena Sierralta
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- * E-mail: (AG); (JS)
| | - Alvaro Glavic
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
- * E-mail: (AG); (JS)
| |
Collapse
|
19
|
Yusop N, Battersby P, Alraies A, Sloan AJ, Moseley R, Waddington RJ. Isolation and Characterisation of Mesenchymal Stem Cells from Rat Bone Marrow and the Endosteal Niche: A Comparative Study. Stem Cells Int 2018; 2018:6869128. [PMID: 29765418 PMCID: PMC5885338 DOI: 10.1155/2018/6869128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/20/2017] [Accepted: 11/05/2017] [Indexed: 12/28/2022] Open
Abstract
Within bone, mesenchymal stromal cells (MSCs) exist within the bone marrow stroma (BM-MSC) and the endosteal niche, as cells lining compact bone (CB-MSCs). This study isolated and characterised heterogeneous MSC populations from each niche and subsequently investigated the effects of extensive cell expansion, analysing population doublings (PDs)/cellular senescence, colony-forming efficiencies (CFEs), MSC cell marker expression, and osteogenic/adipogenic differentiation. CB-MSCs and BM-MSCs demonstrated similar morphologies and PDs, reaching 100 PDs. Both populations exhibited consistent telomere lengths (12-17 kb), minimal senescence, and positive telomerase expression. CB-MSCs (PD15) had significantly lower CFEs than PD50. CB-MSCs and BM-MSCs both expressed MSC (CD73/CD90/CD105); embryonic (Nanog) and osteogenic markers (Runx2, osteocalcin) but no hematopoietic markers (CD45). CB-MSCs (PD15) strongly expressed Oct4 and p16INK4A. At early PDs, CB-MSCs possessed a strong osteogenic potency and low potency for adipogenesis, whilst BM-MSCs possessed greater overall bipotentiality for osteogenesis and adipogenesis. At PD50, CB-MSCs demonstrated reduced potency for both osteogenesis and adipogenesis, compared to BM-MSCs at equivalent PDs. This study demonstrates similarities in proliferative and mesenchymal cell characteristics between CB-MSCs and BM-MSCs, but contrasting multipotentiality. Such findings support further comparisons of human CB-MSCs and BM-MSCs, facilitating selection of optimal MSC populations for regenerative medicine purposes.
Collapse
Affiliation(s)
- Norhayati Yusop
- Oral and Biomedical Sciences, School of Dentistry and Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
- School of Dental Sciences, University Sains Malaysia, Kelantan, Malaysia
| | - Paul Battersby
- Oral and Biomedical Sciences, School of Dentistry and Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Amr Alraies
- Oral and Biomedical Sciences, School of Dentistry and Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Alastair J. Sloan
- Oral and Biomedical Sciences, School of Dentistry and Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Ryan Moseley
- Oral and Biomedical Sciences, School of Dentistry and Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| | - Rachel J. Waddington
- Oral and Biomedical Sciences, School of Dentistry and Cardiff Institute Tissue Engineering and Repair, Cardiff University, Cardiff, UK
| |
Collapse
|
20
|
Lopez-Mejia IC, Castillo-Armengol J, Lagarrigue S, Fajas L. Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cell Mol Life Sci 2018; 75:975-987. [PMID: 28988292 PMCID: PMC11105252 DOI: 10.1007/s00018-017-2668-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 05/22/2024]
Abstract
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.
Collapse
Affiliation(s)
- I C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - J Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - S Lagarrigue
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - L Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
21
|
Zwezdaryk K, Sullivan D, Saifudeen Z. The p53/Adipose-Tissue/Cancer Nexus. Front Endocrinol (Lausanne) 2018; 9:457. [PMID: 30158901 PMCID: PMC6104444 DOI: 10.3389/fendo.2018.00457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Obesity and the resultant metabolic complications have been associated with an increased risk of cancer. In addition to the systemic metabolic disturbances in obesity that are associated with cancer initiation and progression, the presence of adipose tissue in the tumor microenvironment (TME) contributes significantly to malignancy through direct cell-cell interaction or paracrine signaling. This chronic inflammatory state can be maintained by p53-associated mechanisms. Increased p53 levels that are observed in obesity exacerbate the release of inflammatory cytokines that fuel cancer initiation and progression. Dysregulated adipose tissue signaling from the TME can reprogram tumor cell metabolism. The links between p53, cellular metabolism and adipose tissue dysfunction and how they relate to cancer, will be presented in this review.
Collapse
Affiliation(s)
- Kevin Zwezdaryk
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Kevin Zwezdaryk
| | - Deborah Sullivan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Deborah Sullivan
| | - Zubaida Saifudeen
- Department of Pediatrics, Section of Nephrology, Tulane University School of Medicine, New Orleans, LA, United States
- Zubaida Saifudeen
| |
Collapse
|
22
|
He D, Jiang Z, Tian Y, Han H, Xia M, Wei W, Zhang L, Chen J. Genetic variants in IL15 promoter affect transcription activity and intramuscular fat deposition in longissimus dorsi muscle of pigs. Anim Genet 2017; 49:19-28. [PMID: 29168191 DOI: 10.1111/age.12611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 01/11/2023]
Abstract
Intramuscular fat (IMF) content is a key aspect of pork quality. Elucidation of intramuscular adipocyte regulation mechanisms is important for improving IMF content. Intramuscular adipocytes are dispersed among muscle fibers, so they are inclined to be affected by muscle-derived factors. Interleukin-15 is a major muscle-secreted factor. In this study, the genetic and physiological impacts of IL15 on adipogenesis is investigated. The promoter region of IL15 was scanned by comparative sequencing using two DNA pools of high- and low-IMF individuals. Two SNPs, c.-342C>T (ss2137497757) and c.-334G>A (ss2137497756) (the translation start site is designated as +1), were identified with reverse allele distribution in these two groups. Genotyping by allele-specific PCR revealed that the two SNPs were completely linked. The IMF content of TA/TA individuals was lower than that for CG/CG ones, whereas the IL15 expression level was higher in T-A/T-A individuals. Luciferase assaying also revealed that the T-A haplotype promoter had higher transcription activity. Meanwhile, the effect of interleukin-15 on adipocyte differentiation was further assessed in vitro. Results showed that interleukin-15 suppressed preadipocyte proliferation in a dose-dependent manner. The cell cycle of preadipocytes was arrested, and apoptosis was induced. Oil Red O staining and triglyceride quantification indicated that adipocyte differentiation was also inhibited by interleukin-15. The mRNA levels of PPARG and FABP4 decreased markably upon interleukin-15 treatment. Taken together, we identified two completely linked SNPs in the porcine IL15 promoter region that could alter IL15 transcription activity. As interleukin-15 can inhibit porcine adipocyte differentiation, these promoter mutations could affect IMF deposition by producing differential levels of muscle-derived interleukin-15.
Collapse
Affiliation(s)
- D He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y Tian
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - H Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - M Xia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - W Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - J Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Molecular connections of obesity and aging: a focus on adipose protein 53 and retinoblastoma protein. Biogerontology 2017; 18:321-332. [PMID: 28357524 DOI: 10.1007/s10522-017-9698-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022]
Abstract
Obesity is an induced health problem that human beings have been facing with non-optimal treatment so far. Humans are on average getting fatter with age, and obesity and aging interact each other to shorten lifetime and decrease life quality. Obesity also causes several aging related-disorders such as cancer, strokes, cardiovascular disease, high blood pressure and type 2 diabetes. So, the molecular connections between aging and obesity are promising targets for bio-medical researches and innovative therapies of many health problems. In this review, we discuss the findings of adipose p53 and Rb-two central molecular linkages between aging and obesity-on lipid metabolism and obesity.
Collapse
|
24
|
Ambele MA, Pepper MS. Identification of transcription factors potentially involved in human adipogenesis in vitro. Mol Genet Genomic Med 2017; 5:210-222. [PMID: 28546992 PMCID: PMC5441431 DOI: 10.1002/mgg3.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/26/2016] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increased adiposity in humans leads to obesity, which is a major risk factor for cardiovascular disease, type 2 diabetes, and cancer. We previously conducted an extensive unbiased in vitro transcriptomic analysis of adipogenesis, using human adipose-derived stromal cells (ASCs). Here, we have applied computational methods to these data to identify transcription factors (TFs) that constitute the upstream gene regulatory networks potentially, driving adipocyte formation in human ASCs. METHODS We used Affymetrix Transcription Analysis Console™ v3.0 for calculating differentially expressed genes. MATCH™ and F-MATCH™ algorithms for TF identification. STRING v10 to predict protein-protein interactions between TFs. RESULTS A number of TFs that were reported to have a significant role in adipogenesis, as well as novel TFs that have not previously been described in this context, were identified. Thus, 32 upstream TFs were identified, with most belonging to the C2H2-type zinc finger and HOX families, which are potentially involved in regulating most of the differentially expressed genes observed during adipocyte differentiation. Furthermore, 17 important upstream TFs were found to have increased regulatory effects on their downstream target genes and were consistently up-regulated during the differentiation process. A strong hypothetical functional interaction was observed among these TFs, which supports their common role in the downstream regulation of gene expression during adipogenesis. CONCLUSION Our results support several previous findings on TFs involved in adipogenesis and thereby validate the comprehensive and systematic in silico approach described in this study. In silico analysis also allowed for the identification of novel regulators of adipocyte differentiation.
Collapse
Affiliation(s)
- Melvin Anyasi Ambele
- Department of Immunology and Institute for Cellular and Molecular MedicineSAMRC Extramural Unit for Stem Cell Research and TherapyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael Sean Pepper
- Department of Immunology and Institute for Cellular and Molecular MedicineSAMRC Extramural Unit for Stem Cell Research and TherapyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
25
|
Zhang T, Zhang X, Han K, Zhang G, Wang J, Xie K, Xue Q, Fan X. Analysis of long noncoding RNA and mRNA using RNA sequencing during the differentiation of intramuscular preadipocytes in chicken. PLoS One 2017; 12:e0172389. [PMID: 28199418 PMCID: PMC5310915 DOI: 10.1371/journal.pone.0172389] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/03/2017] [Indexed: 02/04/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate metabolic tissue development and function, including adipogenesis. However, little is known about the function and profile of lncRNAs in intramuscular preadipocyte differentiation in chicken. Here, we identified lncRNAs in chicken intramuscular preadipocytes at different differentiation stages using RNA sequencing. A total of 1,311,382,604 clean reads and 25,435 lncRNAs were obtained from 12 samples. In total, 7,433 differentially expressed genes (4,698 lncRNAs and 2,735 mRNAs) were identified by pairwise comparison. These 7,433 differentially expressed genes were grouped into 11 clusters based on their expression patterns by K-means clustering. Using Weighted Gene Coexpression Network Analysis, we identified four stage-specific modules positively related to I0, I2, I4, and I6 stages and two stage-specific modules negatively related to I0 and I2 stages, respectively. Many well-known and novel pathways associated with intramuscular preadipocyte differentiation were identified. We also identified hub genes in each stage-specific module and visualized them in Cytoscape. Our analysis revealed many highly-connected genes, including XLOC_058593, BMP3, MYOD1, and LAMP3. This study provides a valuable resource for chicken lncRNA study and improves our understanding of the biology of preadipocyte differentiation in chicken.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiangqian Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Kunpeng Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
- * E-mail:
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Qian Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Yangzhou, Jiangsu, China
| | - Xiaomei Fan
- Vazyme Biotech Co.,Ltd., Economic and Technological Development Zone, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Strycharz J, Drzewoski J, Szemraj J, Sliwinska A. Is p53 Involved in Tissue-Specific Insulin Resistance Formation? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9270549. [PMID: 28194257 PMCID: PMC5282448 DOI: 10.1155/2017/9270549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
p53 constitutes an extremely versatile molecule, primarily involved in sensing the variety of cellular stresses. Functional p53 utilizes a plethora of mechanisms to protect cell from deleterious repercussions of genotoxic insults, where senescence deserves special attention. While the impressive amount of p53 roles has been perceived solely by the prism of antioncogenic effect, its presence seems to be vastly connected with metabolic abnormalities underlain by cellular aging, obesity, and inflammation. p53 has been found to regulate multiple biochemical processes such as glycolysis, oxidative phosphorylation, lipolysis, lipogenesis, β-oxidation, gluconeogenesis, and glycogen synthesis. Notably, p53-mediated metabolic effects are totally up to results of insulin action. Accumulating amount of data identifies p53 to be a factor activated upon hyperglycemia or excessive calorie intake, thus contributing to low-grade chronic inflammation and systemic insulin resistance. Prominent signs of its actions have been observed in muscles, liver, pancreas, and adipose tissue being associated with attenuation of insulin signalling. p53 is of crucial importance for the regulation of white and brown adipogenesis simultaneously being a repressor for preadipocyte differentiation. This review provides a profound insight into p53-dependent metabolic actions directed towards promotion of insulin resistance as well as presenting experimental data regarding obesity-induced p53-mediated metabolic abnormalities.
Collapse
Affiliation(s)
- Justyna Strycharz
- Diabetes Student Scientific Society at the Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Fullston T, Ohlsson-Teague EMC, Print CG, Sandeman LY, Lane M. Sperm microRNA Content Is Altered in a Mouse Model of Male Obesity, but the Same Suite of microRNAs Are Not Altered in Offspring's Sperm. PLoS One 2016; 11:e0166076. [PMID: 27814400 PMCID: PMC5096664 DOI: 10.1371/journal.pone.0166076] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of obesity is increasing worldwide and has tripled in men of reproductive age since the 1970s. Concerningly, obesity is not only comorbid with other chronic diseases, but there is mounting evidence that it increases the non-communicable disease load in their children (eg mortality, obesity, autism). Animal studies have demonstrated that paternal obesity increases the risk of metabolic (eg glucose metabolism defects, obesity) and reproductive disorders in offspring. Epigenetic changes within sperm are clear mechanistic candidates that are associated with both changes to the father’s environment and offspring phenotype. Specifically there is emerging evidence that a father’s sperm microRNA content both responds to paternal environmental cues and alters the gene expression profile and subsequent development of the early embryo. We used a mouse model of high fat diet (HFD) induced obesity to investigate whether male obesity could modulate sperm microRNA content. We also investigated whether this alteration to a father’s sperm microRNA content lead to a similar change in the sperm of male offspring. Our investigations were initially guided by a Taqman PCR array, which indicated the differential abundance of 28 sperm borne microRNAs in HFD mice. qPCR confirmation in a much larger cohort of founder males demonstrated that 13 of these microRNAs were differentially abundant (11 up-regulated; 2 down-regulated) due to HFD feeding. Despite metabolic and reproductive phenotypes also being observed in grand-offspring fathered via the male offspring lineage, there was no evidence that any of the 13 microRNAs were also dysregulated in male offspring sperm. This was presumably due to the variation seen within both groups of offspring and suggests other mechanisms might act between offspring and grand-offspring. Thus 13 sperm borne microRNAs are modulated by a father’s HFD and the presumed transfer of this altered microRNA payload to the embryo at fertilisation potentially acts to alter the embryonic molecular makeup post-fertilisation, altering its growth trajectory, ultimately affecting adult offspring phenotype and may contribute to paternal programming.
Collapse
Affiliation(s)
- Tod Fullston
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Freemason’s Foundation Centre for Men’s Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
- * E-mail:
| | - E. Maria C. Ohlsson-Teague
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cristin G. Print
- Department of Molecular Medicine & Pathology and New Zealand Bioinformatics Institute, University of Auckland, Auckland 1142, New Zealand
| | - Lauren Y. Sandeman
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Michelle Lane
- Discipline of Obstetrics & Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Freemason’s Foundation Centre for Men’s Health, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Monash IVF Group, Melbourne, Victoria 3168, Australia
| |
Collapse
|
28
|
Al-Massadi O, Porteiro B, Kuhlow D, Köhler M, Gonzalez-Rellan MJ, Garcia-Lavandeira M, Díaz-Rodríguez E, Quiñones M, Senra A, Alvarez CV, López M, Diéguez C, Schulz TJ, Nogueiras R. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice. Endocrinology 2016; 157:2735-49. [PMID: 27183316 DOI: 10.1210/en.2016-1209] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Begoña Porteiro
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Doreen Kuhlow
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Markus Köhler
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - María J Gonzalez-Rellan
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Montserrat Garcia-Lavandeira
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Esther Díaz-Rodríguez
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Mar Quiñones
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Ana Senra
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Clara V Alvarez
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Miguel López
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Carlos Diéguez
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Tim J Schulz
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| | - Rubén Nogueiras
- Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany
| |
Collapse
|
29
|
Zeng F, Yu X, Sherry JP, Dixon B, Duncker BP, Bols NC. The p53 inhibitor, pifithrin-α, disrupts microtubule organization, arrests growth, and induces polyploidy in the rainbow trout gill cell line, RTgill-W1. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:1-10. [PMID: 26291498 DOI: 10.1016/j.cbpc.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 11/16/2022]
Abstract
Pifithrin-α (PFT-α) blocks p53-dependent transcription and is an example of the many drugs being developed to target the p53 pathway in humans that could be released into the environment with potential impacts on aquatic animals if they were to become successful pharmaceuticals. In order to understand how p53 drugs might act on fish, the effects of PFT-α on rainbow trout gill epithelial cell line, RTgill-W1, were studied. PFT-α was not cytotoxic to RTgill-W1 in cultures with or without fetal bovine serum (FBS), but at 5.25μg/ml, PFT-α completely arrested proliferation. When FBS was present, PFT-α increased the number of polyploid cells over 12days. Those results suggest that like in mammals, p53 appears to regulate ploidy in fish. However, several effects were seen that have not been observed with mammalian cells. PFT-α caused a transient rise in the mitotic index and a disruption in cytoskeletal microtubules. These results suggest that in fish cells PFT-α affects microtubules either directly through an off-target action on tubulin or indirectly through an on-target action on p53-regulated transcription.
Collapse
Affiliation(s)
- Fanxing Zeng
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Xiang Yu
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - James P Sherry
- Aquatic Contaminants Research Division, Environment Canada, Burlington, ON, Canada L7R 4A6
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Bernard P Duncker
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
30
|
Wang X, Hai C. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity. Free Radic Biol Med 2015; 89:99-125. [PMID: 26187871 DOI: 10.1016/j.freeradbiomed.2015.07.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 02/08/2023]
Abstract
In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.
Collapse
Affiliation(s)
- Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|