1
|
Wang Y, Huang D, Li M, Yang M. MicroRNA-99 family in cancer: molecular mechanisms for clinical applications. PeerJ 2025; 13:e19188. [PMID: 40161350 PMCID: PMC11955196 DOI: 10.7717/peerj.19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA sequences that regulate gene expression post-transcriptionally. The miR-99 family, which is highly evolutionarily conserved, comprises three homologs: miR-99a, miR-99b, and miR-100. Its members are under-expressed in most cancerous tissues, suggesting their cancer-repressing properties in multiple cancers; however, in some contexts, they also promote malignant lesion progression. MiR-99 family members target numerous genes involved in various tumor-related processes such as tumorigenesis, proliferation, cell-cycle regulation, apoptosis, invasion, and metastasis. We review the recent research on this family, summarize its implications in cancer, and explore its potential as a biomarker and cancer therapeutic target. This review contributes to the clinical translation of the miR-99 family members.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Dan Huang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| |
Collapse
|
2
|
Yu H, Xu PF, Liu Y, Jia ZS, Li YY, Tang HW. LRET-Based Simultaneous Detection of Dual miRNAs via Multitrap Optical Tweezers Assisted Suspension Array Tagged by Two Different Luminescent Quenchable UCNPs Combining CRISPR/Cas12a Amplification. Anal Chem 2025; 97:602-612. [PMID: 39711046 DOI: 10.1021/acs.analchem.4c04895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Nowadays, optical tweezers play a vital role not only in optical manipulation but also in bioassay. As principal optical trapping objects, microbeads can combine optical tweezers with suspension array technology, with amply focused laser beams and adequately concentrated tags contributing to highly sensitive detection. In view of the inefficiency of conventional single-trap optical tweezers, multitrap systems are developed. Here, green- and blue-emitting core-shell-shell upconversion nanoparticles (UCNPs) are adopted to encode microbeads and determine dual miRNAs, with the internal shells leading the luminescence process to facilitate quenching through luminescence resonance energy transfer (LRET). Utilizing the trans cleavage of CRISPR/Cas12a, quenched luminescence signals are recovered and amplified, causing further enhanced detection sensitivity. Ultimately, limits of detection (LOD) of 17 and 22 aM are obtained with excellent specificities verified. Furthermore, dual miRNAs from MCF-7, A549, and MCF-10A cells are extracted and detected, with results consistent with those obtained by PCR. Notably, miR-155 in MCF-7 and A549 cells is detectable at the single-cell level. Thus, the differences in the measured miRNA levels between MCF-7 and MCF-10A cells imply the potential of this method to discriminate breast cancer cells from epithelial cells despite the difficulty in distinguishing different cancer cells due to similar miRNA levels.
Collapse
Affiliation(s)
- He Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Peng-Fei Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zeng-Shuai Jia
- School of Information Management, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
3
|
Choudhury AR, Nagesh AM, Gupta S, Chaturvedi PK, Kumar N, Sandeep K, Pandey D. MicroRNA signature of stromal-epithelial interactions in prostate and breast cancers. Exp Cell Res 2024; 441:114171. [PMID: 39029573 DOI: 10.1016/j.yexcr.2024.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Stromal-epithelial communication is an absolute necessity when it comes to the morphogenesis and pathogenesis of solid tissues, including the prostate and breast. So far, signalling pathways of several growth factors have been investigated. Besides such chemical factors, non-coding RNAs such as miRNAs have recently gained much interest because of their variety and complexity of action. Prostate and breast tissues being highly responsive to steroid hormones such as androgen and estrogen, respectively, it is not surprising that a huge set of available literature critically investigated the interplay between such hormones and miRNAs, especially in carcinogenesis. This review showcases our effort to highlight hormonally-related miRNAs that also somehow perturb the regular stromal-epithelial interactions during carcinogenesis in the prostate and breast. In future, we look forward to exploring how hormonal changes in the tissue microenvironment bring about miRNA-mediated changes in stromal-epithelial interactome in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- Ankit Roy Choudhury
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India; Department of Biology, Philipps University, Marburg, Germany
| | - A Muni Nagesh
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Kumar Sandeep
- Department of Preventive Oncology, Dr. Bhim Rao Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Pandey
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
Piergentili R, Marinelli E, Cucinella G, Lopez A, Napoletano G, Gullo G, Zaami S. miR-125 in Breast Cancer Etiopathogenesis: An Emerging Role as a Biomarker in Differential Diagnosis, Regenerative Medicine, and the Challenges of Personalized Medicine. Noncoding RNA 2024; 10:16. [PMID: 38525735 PMCID: PMC10961778 DOI: 10.3390/ncrna10020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Breast Cancer (BC) is one of the most common cancer types worldwide, and it is characterized by a complex etiopathogenesis, resulting in an equally complex classification of subtypes. MicroRNA (miRNA or miR) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to tumor development and angiogenesis in different types of cancer. Recently, complex interactions among coding and non-coding RNA have been elucidated, further shedding light on the complexity of the roles these molecules fulfill in cancer formation. In this context, knowledge about the role of miR in BC has significantly improved, highlighting the deregulation of these molecules as additional factors influencing BC occurrence, development and classification. A considerable number of papers has been published over the past few years regarding the role of miR-125 in human pathology in general and in several types of cancer formation in particular. Interestingly, miR-125 family members have been recently linked to BC formation as well, and complex interactions (competing endogenous RNA networks, or ceRNET) between this molecule and target mRNA have been described. In this review, we summarize the state-of-the-art about research on this topic.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy;
| | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Alessandra Lopez
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy; (G.C.); (A.L.); (G.G.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy;
| |
Collapse
|
5
|
Ahram M, Abu Alragheb B, Abushukair H, Bawadi R, Al-Hussaini M. MicroRNAs Associated with Androgen Receptor and Metastasis in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:665. [PMID: 38339416 PMCID: PMC10854913 DOI: 10.3390/cancers16030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It is crucial to identify novel molecular biomarkers and therapeutic targets for triple-negative breast cancer (TNBC). The androgen receptor (AR) is a regulator of TNBC, acting partially via microRNA molecules (miRNAs). In this study, we used PCR arrays to profile the expression of 84 miRNAs in 24 TNBC tissue samples, which were equally classified according to AR expression and/or metastasis. Several bioinformatics tools were then utilized to determine the potentially affected protein targets and signaling pathways. Seven miRNAs were found to be significantly more highly expressed in association with AR expression, including miR-328-3p and miR-489-3p. Increased expression of miR-205-3p was found to be significantly associated with metastasis. Certain miRNAs were specifically found to be differentially expressed in either metastatic or non-metastatic AR-positive tumors. A gene ontology (GO) analysis indicated biological roles in the regulation of transcription, cellular response to DNA damage, and the transforming growth factor-beta (TGF-beta) signaling pathway. The GO analysis also showed enrichment in kinase and transcription factor activities. The TGF-beta and a number of kinase-dependent pathways were also retrieved using the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. This study offers an understanding of the role of AR in TNBC and further implicates miRNAs in mediating the effects of AR on TNBC.
Collapse
Affiliation(s)
- Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | | | - Hassan Abushukair
- School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Randa Bawadi
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Maysa Al-Hussaini
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| |
Collapse
|
6
|
Chamandi G, El-Hajjar L, El Kurdi A, Le Bras M, Nasr R, Lehmann-Che J. ER Negative Breast Cancer and miRNA: There Is More to Decipher Than What the Pathologist Can See! Biomedicines 2023; 11:2300. [PMID: 37626796 PMCID: PMC10452617 DOI: 10.3390/biomedicines11082300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer (BC), the most prevalent cancer in women, is a heterogenous disease. Despite advancements in BC diagnosis, prognosis, and therapeutics, survival rates have drastically decreased in the metastatic setting. Therefore, BC still remains a medical challenge. The evolution of high-throughput technology has highlighted gaps in the classification system of BCs. Of particular interest is the notorious triple negative BC, which was recounted as being heterogenous itself and it overlaps with distinct subtypes, namely molecular apocrine (MA) and luminal androgen (LAR) BCs. These subtypes are, even today, still misdiagnosed and poorly treated. As such, researchers and clinicians have been looking for ways through which to refine BC classification in order to properly understand the initiation, development, progression, and the responses to the treatment of BCs. One tool is biomarkers and, specifically, microRNA (miRNA), which are highly reported as associated with BC carcinogenesis. In this review, the diverse roles of miRNA in estrogen receptor negative (ER-) and androgen receptor positive (AR+) BC are depicted. While highlighting their oncogenic and tumor suppressor functions in tumor progression, we will discuss their diagnostic, prognostic, and predictive biomarker potentials, as well as their drug sensitivity/resistance activity. The association of several miRNAs in the KEGG-reported pathways that are related to ER-BC carcinogenesis is presented. The identification and verification of accurate miRNA panels is a cornerstone for tackling BC classification setbacks, as is also the deciphering of the carcinogenesis regulators of ER - AR + BC.
Collapse
Affiliation(s)
- Ghada Chamandi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Layal El-Hajjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon
| | - Abdallah El Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon;
| | - Morgane Le Bras
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 11-0236 Beirut, Lebanon; (G.C.); (L.E.-H.)
| | - Jacqueline Lehmann-Che
- Pathophysiology of Breast Cancer Team, INSERM U976, Immunologie Humaine, Pathophysiologie, Immunothérapie (HIPI), Université Paris Cité, 75010 Paris, France;
| |
Collapse
|
7
|
Stella S, Martorana F, Massimino M, Vitale SR, Manzella L, Vigneri P. Potential Therapeutic Targets for Luminal Androgen Receptor Breast Cancer: What We Know so Far. Onco Targets Ther 2023; 16:235-247. [PMID: 37056632 PMCID: PMC10089148 DOI: 10.2147/ott.s379867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Luminal Androgen Receptor Breast Cancers (LAR BCs) are characterized by a triple negative phenotype and by the expression of Androgen Receptor (AR), coupled with luminal-like genomic features. This unique BC subtype, accounting for about 10% of all triple negative BC, has raised considerable interest given its ill-defined clinical behavior and the chance to exploit AR as a therapeutic target. The complexity of AR activity in BC cells, as revealed by decades of mechanistic studies, holds promise to offer additional therapeutic options beyond mere AR inhibition. Indeed, preclinical and translational evidence showed that several pathways and mediators, including PI3K/mToR, HER2, BRCA1, cell cycle and immune modulation, can be tackled in LAR BCs. Moving from bench to bedside, several clinical trials tested anti-androgen therapies in LAR BCs, but their results are inconsistent and often disappointing. More recently, studies exploring combinations of anti-androgen agents with other targeted therapies have been designed and are currently ongoing. While the results from these trials are awaited, a concerted effort will be needed to find the biological vulnerabilities of LAR BCs which may disclose new and effective therapeutic targets, eventually improving patients' outcomes.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Correspondence: Stefania Stella, University of Catania, Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Via S. Sofia, 78, Edificio 8D/2, Catania, Italy, Tel +39 95 378 1946, Email ;
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| |
Collapse
|
8
|
Alsawalha L, Ahram M, Abdullah MS, Dalmizrak O. Enzalutamide Overcomes Dihydrotestosterone Induced Chemo-Resistance In Triple-Negative Breast Cancer Cells via Apoptosis. Anticancer Agents Med Chem 2022; 22:3038-3048. [DOI: 10.2174/1871520622666220509123505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Background:
Triple-negative breast cancer is challenging to treat due to its heterogeneity and lack of therapeutic targets. Hence, systemic chemotherapy is still the mainstay in TNBC treatment. Unfortunately, patients commonly develop chemo-resistance. Androgen signalling through its receptor is an essential player in breast cancer where it has been shown to confer chemo-resistance to TNBC cells
Objective:
To elucidate the mechanistic effects of enzalutamide in the chemoresponse of TNBC cells to doxorubicin through the apoptosis pathway.
Results:
Enzalutamide decreased the viability of MDA-MB-231 and MDA-MB- 453 cells and reduced DHT-induced chemo-resistance of both cell lines. It also increased the chemo-sensitivity towards doxorubicin in MDA-MB-231 cells. Increasing DNA degradation and caspase 3/7 activity were concomitant with these outcomes. Moreover, enzalutamide downregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in MDA-MB-231 cells. Moreover, increase the pro-apoptotic gene bid. On the other hand, DHT upregulated the expression of the anti-apoptosis genes, mcl1 and bcl2, in both cell lines.
Conclusion:
DHT increases the expression of the anti-apoptosis mcl1 and bcl2 in the TNBC cells, presumably leading to cell survival via the prevention of doxorubicin-induced apoptosis. On the other hand, enzalutamide may sensitize the cells to doxorubicin through downregulation of the bid/bcl2/mcl1 axis that normally activates the executive caspases, caspase 3/7. The activities of the latter enzymes were apparent in DNA degradation at the late stages of
Collapse
Affiliation(s)
| | - Mamoun Ahram
- School of Medicine, The University of Jordan, Amman
| | | | | |
Collapse
|
9
|
Alsafadi DB, Abdullah MS, Bawadi R, Ahram M. The Association of RGS2 and Slug in the Androgen-induced Acquisition of Mesenchymal Features of Breast MDA-MB-453 Cancer Cells. Endocr Res 2022; 47:64-79. [PMID: 35168462 DOI: 10.1080/07435800.2022.2036752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) of tumor cells is a prerequisite to cancer cell invasion and metastasis. This process involves a network of molecular alterations. Androgen receptor (AR) plays an important role in the biology of breast cancers, particularly those dependent on AR expression like luminal AR (LAR) breast cancer subtype. We have recently reported that the AR agonist, dihydrotestosterone (DHT), induces a mesenchymal transition of MDA-MB-453 cells, concomitant with transcriptional up-regulation of Slug and regulator of G protein signaling 2 (RGS2). OBJECTIVE The role of Slug and RGS2 in mediating the DHT-induced effects in these cells was investigated. METHODS MDA-MB-453 cells were used as a model system of LAR breast cancer. Immunofluorescence was used to examine cell morphology and protein localization. Protein expression was analyzed by immunoblotting. Protein localization was confirmed by cell fractionation followed by immunoblotting. Protein-protein interaction was confirmed by co-immunoprecipitation followed by immunoblotting. Transwell membranes were used to assess cell migration. Transfection of cells with siRNA molecules that target Slug and RGS2 mRNA was utilized to delineate the modes of action of these two molecules. RESULTS Treatment of MDA-MB-453 cells with DHT induced the expression of both proteins. In addition, AR-Slug, AR-RGS2, and Slug-RGS2 interactions were observed shortly after AR activation. Knocking down Slug abrogated the basal, but not the DHT-induced, cell migration and blocked DHT-induced mesenchymal transition. On the other hand, RGS2 knocked-down cells had an increased level of Slug protein and assumed mesenchymal cell morphology with induced migration, and the addition of DHT further elongated cell morphology and stimulated their migration. Inhibition of AR or β-catenin reverted the RGS2 knocked-down cells to the epithelial phenotype, but only inhibition of AR blocked their DHT-induced migration. CONCLUSIONS These results suggest the involvement of RGS2 and Slug in a complex molecular network regulating the DHT-induced mesenchymal features in MDA-MB-453 cells. The study may offer a better understanding of the biological role of AR in breast cancer toward devising AR-based therapeutic strategies.
Collapse
Affiliation(s)
- Dana B Alsafadi
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Randa Bawadi
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|
10
|
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022; 23:ijms23031553. [PMID: 35163477 PMCID: PMC8835816 DOI: 10.3390/ijms23031553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.
Collapse
|
11
|
Ahram M, Abdullah MS, Mustafa SA, Alsafadi DB, Battah AH. Androgen down-regulates desmocollin 2 in association with induction of mesenchymal transition of breast MDA-MB-453 cancer cells. Cytoskeleton (Hoboken) 2022; 78:391-399. [PMID: 35023302 DOI: 10.1002/cm.21691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/06/2022]
Abstract
Desmosomes are cellular structures that are critical in cell-cell adhesion and in maintaining tissue architecture. Changes in the expression of desmocollin-2 (DSC2) have been noted during tumor progression into an invasive phenotype and as cells undergo epithelial-mesenchymal transition. We have previously reported that breast MDA-MB-453 cancer cells, a luminal androgen receptor model of triple-negative breast cancer, acquire mesenchymal features when treated with the androgen receptor (AR) agonist, dihydrotestosterone (DHT). We have therefore investigated androgen regulation of the expression and cellular localization of DSC2 in MDA-MB-453 cells. Treatment of the cells with DHT resulted in a dose-dependent reduction in DSC2 protein levels and dispersion of its membrane localization concomitant with AR- and β-catenin-mediated mesenchymal transition of cells. A significant correlation was revealed between decreased expression of AR and increased expression of DSC2 in patient samples. In addition, whereas lower expression of AR was associated with a reduced overall and recurrence-free survival of breast cancer patients, higher expression of DSC2 was found in invasive breast tumors than in normal breast cells and was correlated with lower patient survival. Upon knocking down DSC2, the cells became elongated, mesenchymal-like, and slightly, but insignificantly, more migratory. The addition of DHT further stimulated cell elongation and migration. DSC2 siRNA-transfected cells reverted to a normal epithelial morphology upon inhibition of β-catenin. These results highlight the role of DSC2 in maintaining the epithelial morphology of MDA-MB-453 cells and the negative regulation of the desmosomal protein by DHT during stimulation of the androgen-induced, β-catenin-mediated mesenchymal transition of the cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Shahed A Mustafa
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Dana B Alsafadi
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdelkader H Battah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
12
|
Ravaioli S, Maltoni R, Pasculli B, Parrella P, Giudetti AM, Vergara D, Tumedei MM, Pirini F, Bravaccini S. Androgen receptor in breast cancer: The "5W" questions. Front Endocrinol (Lausanne) 2022; 13:977331. [PMID: 36111296 PMCID: PMC9468319 DOI: 10.3389/fendo.2022.977331] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
Androgen receptor (AR) is expressed in 60-70% of breast cancers (BCs) and the availability of anti-AR compounds, currently used for treating prostate cancer, paves the way to tackle specifically AR-positive BC patients. The prognostic and predictive role of AR in BC is a matter of debate, since the results from clinical trials are not striking, probably due to both technical and biological reasons. In this review, we aimed to highlight WHAT is AR, describing its structure and functions, WHAT to test and HOW to detect AR, WHERE AR should be tested (on primary tumor or metastasis) and WHY studying this fascinating hormone receptor, exploring and debating on its prognostic and predictive role. We considered AR and its ratio with other hormone receptors, analyzing also studies including patients with ductal carcinoma in situ and with early and advanced BC, as well. We also emphasized the effects that both other hormone receptors and the newly emerging androgen-inducible non coding RNAs may have on AR function in BC pathology and the putative implementation in the clinical setting. Moreover, we pointed out the latest results by clinical trials and we speculated about the use of anti-AR therapies in BC clinical practice.
Collapse
Affiliation(s)
- Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Sara Ravaioli,
| | - Roberta Maltoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Barbara Pasculli
- Laboratorio di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Parrella
- Laboratorio di Oncologia, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
13
|
Ahram M, Bawadi R, Abdullah MS, Alsafadi DB, Abaza H, Abdallah S, Mustafa E. Involvement of β-catenin in Androgen-induced Mesenchymal Transition of Breast MDA-MB-453 Cancer Cells. Endocr Res 2021; 46:114-128. [PMID: 33703980 DOI: 10.1080/07435800.2021.1895829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose The cellular and molecular dynamics of DHT-induced EMT in MDA-MB-453 cells were investigated.Methods:PCR arrays were used to examine the expression of EMT-regulatory genes. Immunoblotting was used to detect protein levels and confirm protein-protein interaction following immunoprecipitation. Immunofluorescence was used to observe rearrangement of the actin cytoskeleton and cell morphology. Cell migration was assessed by transwell assayResults: Change of cell morphology was concomitant with increased cell migration after treating cells with DHT. Exposure of cells to DHT for one hour was sufficient to induce changes in cell morphology and actin cytoskeleton after 72 hours indicating altered gene expression. A long-term lasting nuclear translocation of AR was observed after a short exposure of cells to DHT. Investigating the expression of 84 EMT-related genes revealed down-expression of β-catenin, N-cadherin, and TCF-4 and increased expression of Slug, all of which were confirmed at the protein level. Yet, not only early interaction of AR and β-catenin was observed following AR activation, inhibition of β-catenin blocked DHT-induced mesenchymal transition and migration. Wnt signaling was found to be partially important in DHT-induced morphological alteration. The mesenchymal transition of cells could be induced by treating cells with an inhibitor of glycogen synthase kinase-3β, an enzyme that inhibits β-catenin; this morphological transition could be reversed by antagonizing AR suggesting that AR functions downstream of β-catenin.Conclusions: These results suggest that MDA-MB-453 cells undergo partial EMT induced by DHT, β-catenin is critical for this phenotypic change, and AR probably reciprocally mediates the mesenchymal transition of these cells upon activation of GSK-3 β.
Collapse
Affiliation(s)
- Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| | - Randa Bawadi
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| | - Mohammad S Abdullah
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Dana B Alsafadi
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Haneen Abaza
- Department of Microbiology, Pathology, and Forensic Medicine, School of Medicine, the University of Jordan, Amman, Jordan
| | - Sallam Abdallah
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| | - Ebtihal Mustafa
- Department of Physiology and Biochemistry, School of Medicine, the University of Jordan, Amman, Jordan
| |
Collapse
|
14
|
Wang X, Yang D. The regulation of RNA metabolism in hormone signaling and breast cancer. Mol Cell Endocrinol 2021; 529:111221. [PMID: 33711334 PMCID: PMC8262629 DOI: 10.1016/j.mce.2021.111221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
As the most frequent women's cancer, breast cancer causes the second most cancer-related death in women worldwide. Majority of the breast cancers are hormone receptor-positive and commonly treated by hormone therapy. Thus, the expression levels of hormone receptors signaling pathways are pivotal in the development and therapy of breast cancer. The expression of hormone receptors signaling pathways is not only regulated at the transcription level but also at the post-transcription level by both proteins and RNAs. In addition to that, the function of hormone receptors can also be regulated by RNAs. In this review, we summarize the roles of RNAs in hormone receptor-positive breast cancer. We introduce how mRNA stability and protein function of genes in hormone receptors signaling pathways are regulated by RNA-binding proteins, miRNAs, and lncRNAs. We believe these proteins and RNAs can be potential therapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, PA, 15261, USA; UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
15
|
Javed Z, Khan K, Rasheed A, Sadia H, Shahwani MN, Irshad A, Raza S, Salehi B, Sharifi-Rad J, Suleria HAR, Cruz-Martins N, Quispe C. Targeting androgen receptor signaling with MicroRNAs and Curcumin: a promising therapeutic approach for Prostate Cancer Prevention and intervention. Cancer Cell Int 2021; 21:77. [PMID: 33499881 PMCID: PMC7836194 DOI: 10.1186/s12935-021-01777-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Amna Rasheed
- School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, PR China
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammad Naeem Shahwani
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, DHA, Sector-C, Phase VI, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador.
| | - Hafiz A R Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010, Parkville, VIC, Australia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal. .,Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135, Porto, Portugal. .,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135, Porto, Portugal.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile.
| |
Collapse
|
16
|
Al-Othman N, Ahram M, Alqaraleh M. Role of androgen and microRNA in triple-negative breast cancer. Breast Dis 2020; 39:15-27. [PMID: 31839601 DOI: 10.3233/bd-190416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is the most frequent type of malignancy affecting females worldwide. Molecular-based studies resulted in an identification of at least four subtypes of breast carcinoma, including luminal A and luminal B, Human growth factor receptor (HER-2)-enriched and triple-negative tumors (basal-like and normal breast-like). A proportion of BC cases are of the triple-negative breast cancer (TNBC) type. TNBC lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and HER-2, and is known to express androgen receptor (AR) at considerable levels. AR has been shown to promote the progression of TNBC. However, the exact mechanisms have yet to be unraveled. One of these mechanisms could be through regulating the expression of microRNA (miRNA) molecules, which play an important regulatory role in BC through post-transcriptional gene silencing. Activation of AR controls the expression of miRNA molecules, which target selective mRNAs, consequently, affecting protein expression. In this review we attempt to elucidate the relations between AR and miRNA in TNBC.
Collapse
Affiliation(s)
- Nihad Al-Othman
- Division of Anatomy, Biochemistry and Genetic, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Moath Alqaraleh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
17
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
18
|
Androgen-Regulated microRNAs (AndroMiRs) as Novel Players in Adipogenesis. Int J Mol Sci 2019; 20:ijms20225767. [PMID: 31744106 PMCID: PMC6888160 DOI: 10.3390/ijms20225767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
The development, homeostasis, or increase of the adipose tissue is driven by the induction of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs). Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the transcription of protein-coding genes but also the transcription of several non-coding microRNAs involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied. In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is summarized, and putative cross-links are drawn, which are still prone to experimental validation.
Collapse
|
19
|
Yu X, Liang C, Zhang Y, Zhang W, Chen H. Inhibitory short peptides targeting EPS8/ABI1/SOS1 tri-complex suppress invasion and metastasis of ovarian cancer cells. BMC Cancer 2019; 19:878. [PMID: 31488087 PMCID: PMC6727365 DOI: 10.1186/s12885-019-6087-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background We aimed to develop inhibitory short peptides that can prevent protein interactions of SOS1/EPS8/ABI1 tri-complex, a key component essential for ovarian cancer metastasis. Methods Plasmids containing various regions of HA-tagged ABI1 were co-transfected into ovarian cancer cells with Flag-tagged SOS1 or Myc-tagged EPS8. Co-immunoprecipitation and GST-pulldown assay were used to identify the regions of ABI1 responsible for SOS1 and EPS8 binding. Inhibitory short peptides of these binding regions were synthesized and modified with HIV-TAT sequence. The blocking effects of the peptides on ABI1-SOS1 or ABI1-EPS8 interactions in vitro and in vivo were determined by GST-pulldown assay. The capability of these short peptides in inhibiting invasion and metastasis of ovarian cancer cell was tested by Matrigel invasion assay and peritoneal metastatic colonization assay. Results The formation of endogenous SOS1/EPS8/ABI1 tri-complex was detected in the event of LPA-induced ovarian cancer cell invasion. In the tri-complex, ABI1 acted as a scaffold protein holding together SOS1 and EPS8. The SH3 and poly-proline+PxxDY regions of ABI1 were responsible for SOS1 and EPS8 binding, respectively. Inhibitory short peptides p + p-8 (ppppppppvdyedee) and SH3–3 (ekvvaiydytkdkddelsfmegaii) could block ABI1-SOS1 and ABI1-EPS8 interaction in vitro. TAT-p + p-8 peptide could disrupt ABI1-EPS8 interaction and suppress the invasion and metastasis of ovarian cancer cells in vivo. Conclusions TAT-p + p-8 peptide could efficiently disrupt the ABI1-EPS8 interaction, tri-complex formation, and block the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xuechen Yu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Chuan Liang
- Department of Cardiothoracic vascular surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Wei Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Huijun Chen
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
20
|
Saiganesh S, Saathvika R, Arumugam B, Vishal M, Udhaya V, Ilangovan R, Selvamurugan N. TGF-β1-stimulation of matrix metalloproteinase-13 expression by down-regulation of miR-203a-5p in rat osteoblasts. Int J Biol Macromol 2019; 132:541-549. [PMID: 30951775 DOI: 10.1016/j.ijbiomac.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta1 (TGF-β1) is a pleiotropic and ubiquitous cytokine involved in bone development and bone remodeling. Matrix metalloproteinase-13 (MMP13) plays a role in the degradation of the extracellular matrix (ECM), and the regulation of this gene is critical in bone remodeling. We previously reported that TGF-β1 stimulates MMP13 expression in rat osteoblasts. Recently, studies have examined the regulation of bone metabolism by microRNAs (miRNAs) to determine their therapeutic potential in osteogenesis. Here, we assessed the effect of TGF-β1 on down-regulation of miRNAs that target MMP13 and stimulation of MMP13 expression in osteoblasts. We used in silico analysis and identified 11 specific miRNAs which directly target rat MMP13. Among these miRNAs, miR-203a-5p expression was significantly decreased by TGF-β1-treatment in rat osteoblasts. Transient transfection of a miR-203a-5p mimic into rat osteoblasts reduced MMP13 expression. A luciferase reporter assay confirmed a direct targeting of miR-miR-203a-5p with the 3' untranslated regions of the MMP13 gene. Hence, we suggest that TGF-β1 stimulated down-regulation of miR-203a-5p, resulting in the stimulation of MMP13 expression in rat osteoblasts. Thus, identification of the role of miR-203a-5p via TGF-β1 and MMP13 in bone remodeling indicated its potential as a biomarker or therapeutic agent for treating bone and bone-related diseases.
Collapse
Affiliation(s)
- S Saiganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Saathvika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - M Vishal
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - V Udhaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Ilangovan
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
21
|
Bandini E, Fanini F. MicroRNAs and Androgen Receptor: Emerging Players in Breast Cancer. Front Genet 2019; 10:203. [PMID: 30941159 PMCID: PMC6433747 DOI: 10.3389/fgene.2019.00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most common cause of cancer among women, with a high incidence rate occurrence every year worldwide despite advances in its management. BC is characterized by a spectrum of subtypes which respond differently to treatments due to their biological features, representing the main issue in the control of this type of malignancy. Androgen receptor (AR) is emerging as a target to investigate among hormone receptors, since it seems to play a role at various stages of development of specific BC subsets. For this reason, in recent years AR has become very important in the clinical practice, although its role remains controversial. A number of studies have proposed a correlation between microRNAs (miRNAs), a class of gene expression modulators, and AR in prostate cancer (PC), but there are still few evidences about the relationship between miRNAs and AR in BC. The purpose of this review is to present a state of the art scenario with consideration to the most recent discoveries about miRNAs involved in the AR associated pathogenesis of BC, in order to provide new insights into the role of miRNAs as key drivers in the modulation of AR, and possible actors in the development and progression of BC. Moreover, we consider findings about involvement of AR signaling in all stages of BC, highlighting its association with different subsets of breast carcinomas and with pre- and postmenopausal state of patients.
Collapse
Affiliation(s)
| | - Francesca Fanini
- Biosciences Laboratory, Department of Clinical and Experimental Oncology and Hematology, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.) S.r.l. IRCCS, Meldola, Italy
| |
Collapse
|
22
|
Vasiliou SK, Diamandis EP. Androgen receptor: A promising therapeutic target in breast cancer. Crit Rev Clin Lab Sci 2019; 56:200-223. [PMID: 30821186 DOI: 10.1080/10408363.2019.1575643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BCa) is the second most common cancer worldwide and the most prevalent cancer in women. The majority of BCa cases are positive (+) for the estrogen receptor (ER+, 80%) and progesterone receptor (PR+, 65%). Estrogen and progesterone hormones are known to be involved in cancer progression, and thus hormonal deprivation is used as an effective treatment for ER+PR+ BCa subtypes. However, some ER+PR+ BCa patients develop resistance to such therapies. Meanwhile, chemotherapy is the only available treatment for ER-PR- BCa tumors. Another hormone receptor known as the androgen receptor (AR) has also been found to be widely expressed in human breast carcinomas. However, the mechanisms of AR and its endogenous androgen ligands is not well-understood in BCa and its biological role in this hormone-related disease remains unclear. In this review, we aim to address the importance of the AR in BCa diagnosis and prognosis, current AR-targeting approaches in BCa, and the potential for AR-downstream molecules to serve as therapeutic targets.
Collapse
Affiliation(s)
- Stella K Vasiliou
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada.,b Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , Canada
| | - Eleftherios P Diamandis
- a Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Canada.,b Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , Canada.,c Department of Clinical Biochemistry , University Health Network , Toronto , Canada
| |
Collapse
|
23
|
Al-Othman N, Hammad H, Ahram M. Dihydrotestosterone regulates expression of CD44 via miR-328-3p in triple-negative breast cancer cells. Gene 2018; 675:128-135. [DOI: 10.1016/j.gene.2018.06.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 12/17/2022]
|
24
|
Ahram M, Mustafa E, Abu Hammad S, Alhudhud M, Bawadi R, Tahtamouni L, Khatib F, Zihlif M. The cellular and molecular effects of the androgen receptor agonist, Cl-4AS-1, on breast cancer cells. Endocr Res 2018; 43:203-214. [PMID: 29578828 DOI: 10.1080/07435800.2018.1455105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE The androgen receptor (AR) has attracted attention in the treatment of breast cancer. Due to the undesirable side effects of AR agonists, attempts have been undertaken to develop selective AR modulators. One of these compounds is Cl-4AS-1. This study examined this compound more closely at the cellular and molecular levels. METHODS Three different breast cancer cell lines were utilized, namely the luminal MCF-7 cells, the molecular apocrine MDA-MB-453 cells, and the triple negative, basal MDA-MB-231 cells. RESULTS High and significant concordance between dihydrotestosterone (DHT) and Cl-4AS-1 in regulation of gene expression in MDA-MB-453 cells was found. However, some differences were noted including the expression of AR, which was upregulated by DHT, but not Cl-4AS-1. In addition, both DHT and Cl-4AS-1 caused a similar morphological change and reorganization of the actin structure of MDA-MB-453 cells into a mesenchymal phenotype. Treatment of cells with DHT resulted in induction of proliferation of MCF-7 and MDA-MB-453 cells, but no effect was observed on the growth of MDA-MB-231 cells. On the other hand, increasing doses of Cl-4AS-1 resulted in a dose-dependent inhibition on the growth of the three cell lines. This inhibition was a result of induction of apoptosis whereby Cl-4AS-1 caused a block in entry of cells into the S-phase followed by DNA degradation. CONCLUSIONS These results indicate that although Cl-4AS-1 has characteristics of classical AR agonist, it has dissimilar properties that may make it useful in treating breast cancer.
Collapse
Affiliation(s)
- Mamoun Ahram
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Ebtihal Mustafa
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Shatha Abu Hammad
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Mariam Alhudhud
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Randa Bawadi
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Lubna Tahtamouni
- c Department of Biology and Biotechnology, Faculty of Science , Hashemite University , Zarqa , Jordan
| | - Faisal Khatib
- a Department of Physiology and Biochemistry , School of Medicine, The University of Jordan , Amman , Jordan
| | - Malek Zihlif
- b Department of Pharmacology, School of Medicine , The University of Jordan , Amman , Jordan
| |
Collapse
|
25
|
Mohanakrishnan V, Balasubramanian A, Mahalingam G, Partridge NC, Ramachandran I, Selvamurugan N. Parathyroid hormone-induced down-regulation of miR-532-5p for matrix metalloproteinase-13 expression in rat osteoblasts. J Cell Biochem 2018; 119:6181-6193. [PMID: 29626351 DOI: 10.1002/jcb.26827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
Parathyroid hormone (PTH) acts on osteoblasts and functions as an essential regulator of calcium homeostasis and as a mediator of bone remodeling. We previously reported that PTH stimulates the expression of matrix metalloproteinase-13 (MMP-13) in rat osteoblasts and that MMP-13 plays a key role in bone remodeling, endochondral bone formation, and bone repair. Recent evidence indicated that microRNAs (miRNAs) have regulatory functions in bone metabolism. In this study, we hypothesized that the down-regulation of miRNAs that target MMP-13 by PTH leads to the stimulation of MMP-13 expression in osteoblasts. We used various bioinformatic tools to identify miRNAs that putatively target rat MMP-13. Among these miRNAs, the expression of miR-532-5p in rat osteoblasts decreased at 4 h of PTH-treatment, whereas MMP-13 mRNA expression was maximal at the same time point. When an miR-532-5p mimic was transiently transfected into UMR-106-01 cells, MMP-13 mRNA and protein expression decreased. Using a luciferase reporter assay system, we also identified that miR-532-5p directly targeted the 3' UTRs of MMP-13 gene. Based on these results, we suggest that PTH-induced down-regulation of miR-532-5p resulted in the stimulation of MMP-13 expression in rat osteoblasts. This study identified a significant role of miRNA in controlling bone remodeling via PTH-stimulated MMP-13 expression. This finding enhances our understanding of bone metabolism and bone-related diseases and it could provide information regarding the usage of miRNAs as therapeutic agents or biomarkers.
Collapse
Affiliation(s)
- Vishal Mohanakrishnan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Arumugam Balasubramanian
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Gokulnath Mahalingam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nicola Chennell Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York University, New York
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|