1
|
Huang S, Liu K, Liu Q, Tao S, Wang H. Comprehensive analysis of ferroptosis-related long non-coding RNA and its association with tumor progression and ferroptosis in gastric cancer. BMC Gastroenterol 2025; 25:349. [PMID: 40340563 PMCID: PMC12063400 DOI: 10.1186/s12876-025-03951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with a poor prognosis. Ferroptosis is an distinct type of non-apoptotic cell death that is closely associated with tumor prognosis. Thus, we aimed to develop an novel prognosis risk model based on ferroptosis-related lncRNAs and excavate novel diagnostic markers. In this study, eight ferroptosis-related lncRNAs were obtained for constructing the prognosis model in GC based on TCGA database. The patients in the high-risk group had worse survival than those in the low-risk group, and the risk-grouping could be used as an independent prognostic factor for OS. Receiver operating characteristic curve analysis demonstrated this risk model was superior to traditional clinicopathological features in predicting GC prognosis. GSEA revealed that these lncRNAs were mainly involved in cell adhesion, cancer pathways, and immune function regulation. The key gene HAGLR of this risk signature was up-regulated in GC tissues and cells. Function assays showed that knockdown of HAGLR could effectively inhibit the GC cells proliferation and migration, whereas silencing HAGLR accelerated apoptosis and ferroptosis cell death process. In conclusion, we established a novel ferroptosis-related prognostic risk signature including eight lncRNAs, which may improve prognostic predictive accuracy for patients with GC.
Collapse
Affiliation(s)
- Shenglan Huang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Kan Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Queling Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Si Tao
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Hua Wang
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi Province, 330006, P.R. China.
| |
Collapse
|
2
|
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J, Xiao Y. Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). Int J Oncol 2025; 66:35. [PMID: 40116120 PMCID: PMC12002672 DOI: 10.3892/ijo.2025.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
The emergence of resistance to antitumor drugs in cancer cells presents a notable obstacle in cancer therapy. Metabolic reprogramming is characterized by enhanced glycolysis, disrupted lipid metabolism, glutamine dependence and mitochondrial dysfunction. In addition to promoting tumor growth and metastasis, metabolic reprogramming mediates drug resistance through diverse molecular mechanisms, offering novel opportunities for therapeutic intervention. Non‑coding RNAs (ncRNAs), a diverse class of RNA molecules that lack protein‑coding function, represent a notable fraction of the human genome. Due to their distinct expression profiles and multifaceted roles in various cancers, ncRNAs have relevance in cancer pathophysiology. ncRNAs orchestrate metabolic abnormalities associated with drug resistance in cancer cells. The present review provides a comprehensive analysis of the mechanisms by which metabolic reprogramming drives drug resistance, with an emphasis on the regulatory roles of ncRNAs in glycolysis, lipid metabolism, mitochondrial dysfunction and glutamine metabolism. Furthermore, the present review aimed to discuss the potential of ncRNAs as biomarkers for predicting chemotherapy responses, as well as emerging strategies to target ncRNAs that modulate metabolism, particularly in the context of combination therapy with anti‑cancer drugs.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yanyu Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Lin Fu
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Huiling Chen
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital of Southwest Medical University, Meishan, Sichuan 64200, P.R. China
| | - Zhongshu Wang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yan Zhang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yu Huang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jidong Miao
- Department of Oncology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yi Xiao
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
3
|
Zhang W, Xia M, Li J, Liu G, Sun Y, Chen X, Zhong J. Warburg effect and lactylation in cancer: mechanisms for chemoresistance. Mol Med 2025; 31:146. [PMID: 40264038 PMCID: PMC12016192 DOI: 10.1186/s10020-025-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
In the clinical management of cancers, the emergence of chemoresistance represents a profound and imperative "pain point" that requires immediate attention. Understanding the mechanisms of chemoresistance is essential for developing effective therapeutic strategies. Importantly, existing studies have demonstrated that glucose metabolic reprogramming, commonly referred to as the Warburg effect or aerobic glycolysis, is a major contributor to chemoresistance. Additionally, lactate, a byproduct of aerobic glycolysis, functions as a signaling molecule that supports lysine lactylation modification of proteins, which also plays a critical role in chemoresistance. However, it is insufficient to discuss the role of glycolysis or lactylation in chemoresistance from a single perspective. The intricate relationship between aerobic glycolysis and lactylation plays a crucial role in promoting chemoresistance. Thus, a thorough elucidation of the mechanisms underlying chemoresistance mediated by aerobic glycolysis and lactylation is essential. This review provides a comprehensive overview of these mechanisms and further outlines that glycolysis and lactylation exert synergistic effects, promoting the development of chemoresistance and creating a positive feedback loop that continues to mediate this resistance. The close link between aerobic glycolysis and lactylation suggests that the application of glycolysis-related drugs or inhibitors in cancer therapy may represent a promising anticancer strategy. Furthermore, the targeted application of lactylation, either alone or in combination with other treatments, may offer new therapeutic avenues for overcoming chemoresistance.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jiahui Li
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Sun
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xisha Chen
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Liu W, Wang W. LncRNA in gastric cancer drug resistance: deciphering the therapeutic strategies. Front Oncol 2025; 15:1552773. [PMID: 40236651 PMCID: PMC11996845 DOI: 10.3389/fonc.2025.1552773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
Gastric cancer (GC) is an exceedingly aggressive disease and ranks as the third leading cause of cancer-related deaths, which poses a huge health burden globally. Chemotherapy is commonly employed during the middle to advanced stages of cancer, although it faces frequent treatment failures attributed to drug resistance. Thus, it is imperative for researchers to identify potential targets for overcoming therapeutic resistance, thereby facilitating the development of novel anti-cancer agents for GC patients with advanced stages. Long noncoding RNAs (lncRNAs) are a diverse group of transcripts with limited protein-coding capacity, which have been recognized for functional molecules for regulating cancer progression including cell proliferation, metastasis, and drug resistance in GC. In this review, we examine the intricate molecular networks on the role of lncRNAs in drug resistance of GC. LncRNAs conferred cancer cell resistance to anti-cancer drug through various molecular mechanisms, therefore functioning as promising therapeutic targets for GC patients. Additionally, we discuss current advancements of strategies targeting lncRNAs in cancer therapy, which may pave the way for lncRNA-mediated precision medicine for this malignant disease.
Collapse
Affiliation(s)
| | - WeiFa Wang
- Department of Gastrointestinal Surgery, Chengdu Seventh People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Tao XY, Li QQ, Dong SS, Wang H, Yang YQ, Yang X, Zeng Y. Long noncoding HOXD-AS1: a crucial regulator of malignancy. Front Cell Dev Biol 2025; 13:1543915. [PMID: 40206400 PMCID: PMC11979210 DOI: 10.3389/fcell.2025.1543915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in the occurrence and progression of various cancers. HOXD-AS1, an antisense RNA 1 of the lncRNA HOXD cluster, (also known as HAGLR, MIR7704HG, Mdgt, and STEEL), is located at human chromosome 2q31.1. Recent studies have demonstrated that the abnormal expression of HOXD-AS1 is significantly correlated with the clinicopathological features of patients with various tumors. The expression of HOXD-AS1 is abnormal in various tumors, affecting tumor cell proliferation, apoptosis, metastasis, invasion, metabolism, and drug resistance. HOXD-AS1 is important for cancer diagnosis and prognosis evaluation. Detecting its expression level helps judge cancer progression and predict patient survival. It is a therapeutic target and biomarker for early diagnosis and prognosis, with good clinical application prospects. This article reviews the role, molecular mechanisms, and potential clinical value of HOXD-AS1 in malignant tumor development.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian-Qian Li
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shan-Shan Dong
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Wang
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu-Qing Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- Translational Medicine Center, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Tang L, Zhang W, Qi T, Jiang Z, Tang D. Exosomes play a crucial role in remodeling the tumor microenvironment and in the treatment of gastric cancer. Cell Commun Signal 2025; 23:82. [PMID: 39948541 PMCID: PMC11827163 DOI: 10.1186/s12964-024-02009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/21/2024] [Indexed: 02/16/2025] Open
Abstract
Gastric cancer (GC) is a common and frequent malignant cancer of the digestive system with a poor prognosis. In addition to common therapies such as surgical resection and chemotherapy, novel biological interventions are quite valuable for research. Exosomes are extracellular vesicles (EVs) that originate from various cell types and contain proteins, RNA, DNA, and other components that transmit biological signals and mediate intercellular communication. Numerous studies have shown that exosomes shape the tumor microenvironment (TME) by affecting hypoxia, inflammation, immunity, metabolism, and interstitial changes in the tumor, playing a crucial role in the development and metastasis of GC. This article reviews the important role of exosomes in the TME of GC and explores their potential clinical applications in GC treatment.
Collapse
Affiliation(s)
- Lingyun Tang
- Clinical Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Wenjie Zhang
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Teng Qi
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Zhengting Jiang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Northern Jiangsu People's Hospital; The Yangzhou Clinical Medical College of Xuzhou Medical University; The Yangzhou School of Clinical Medicine of Dalian Medical University; The Yangzhou School of Clinical Medicine of Nanjing Medical University; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Yangzhou, 225000, China.
| |
Collapse
|
7
|
Wang X, Zhang Q, Zhao D, Li X, Yi L, Li S, Wang X, Gu M, Gao J, Jia X. Identification of regulatory genes associated with POAG by integrating expression and sequencing data. Ophthalmic Genet 2025; 46:56-64. [PMID: 39568137 DOI: 10.1080/13816810.2024.2431103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Primary open-angle glaucoma (POAG) is a subtype of glaucoma that accounts for 60%~70% of all cases. Its pathogenic mechanism is intricate and its pathogenic process is concealed. Numerous significant biological processes associated with POAG continue to be elucidated. METHODS In this study, by exploring the expression data of POAG tissues and normal tissues, we mined the regulatory lncRNAs and mRNAs closely associated with the pathogenesis and progression of POAG by exploring a regulatory network of competing endogenous RNA (ceRNA), established by integrating gene expression data with the known lncRNA-miRNA and miRNA-mRNA-regulatory interactions. The key regulatory pathways and regulatory elements of POAG were identified by topological analysis. Simultaneously, the exome data of 28 cases with POAG and healthy controls were analyzed to identify high-frequency mutations and genes. RESULTS A total of 2712 differentially expressed genes were identified, including 1828 mRNAs and 884 lncRNAs. Network analysis suggested that lncRNAs such as HAGLR, HOTAIR and MIR29B2CHG, and mRNAs such as PPP6R3, BMPR2 and CFL2, may be involved in the onset and progression of POAG. In addition, 55 mutations with potential pathogenicity were identified. CONCLUSION These genes and mutations provide novel potential genetic heterogeneity and genetic susceptibility of POAG, as well as fresh suggestions for elucidating the molecular mechanism underlying the pathogenesis of POAG.
Collapse
Affiliation(s)
- Xizi Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Qiang Zhang
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Dongdong Zhao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaofen Li
- Liao Cheng 120 Medical Emergency Command and Dispatch Center, Liaocheng, Shandong, P.R. China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Siyuan Li
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xin Wang
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Jianlu Gao
- Department of Ophthalmology, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, P.R. China
| |
Collapse
|
8
|
Li X, Yang Y, Xu S, Gui Y, Chen J, Xu J. Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning. Neural Regen Res 2024; 19:2723-2734. [PMID: 38595290 PMCID: PMC11168503 DOI: 10.4103/1673-5374.391306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 11/06/2023] [Indexed: 04/11/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202412000-00028/figure1/v/2024-04-08T165401Z/r/image-tiff Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal cord injury. They can greatly affect nerve regeneration and functional recovery. However, there is still limited understanding of the peripheral immune inflammatory response in spinal cord injury. In this study, we obtained microRNA expression profiles from the peripheral blood of patients with spinal cord injury using high-throughput sequencing. We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus (GEO) database (GSE151371). We identified 54 differentially expressed microRNAs and 1656 differentially expressed genes using bioinformatics approaches. Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways, such as neutrophil extracellular trap formation pathway, T cell receptor signaling pathway, and nuclear factor-κB signal pathway, were abnormally activated or inhibited in spinal cord injury patient samples. We applied an integrated strategy that combines weighted gene co-expression network analysis, LASSO logistic regression, and SVM-RFE algorithm and identified three biomarkers associated with spinal cord injury: ANO10, BST1, and ZFP36L2. We verified the expression levels and diagnostic performance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve. Quantitative polymerase chain reaction results showed that ANO10 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients. We also constructed a small RNA-mRNA interaction network using Cytoscape. Additionally, we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal cord injury patients using the CIBERSORT tool. The proportions of naïve B cells, plasma cells, monocytes, and neutrophils were increased while the proportions of memory B cells, CD8+ T cells, resting natural killer cells, resting dendritic cells, and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects, and ANO10, BST1 and ZFP26L2 were closely related to the proportion of certain immune cell types. The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal cord injury and suggest that ANO10, BST1, and ZFP36L2 are potential biomarkers for spinal cord injury. The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200066985, December 12, 2022).
Collapse
Affiliation(s)
- Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ye Yang
- Department of Rehabilitation Medicine, Guilin People’s Hospital, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Senming Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Bardhan A, Banerjee A, Pal DK, Ghosh A. HAGLR, A Long Non-coding RNA of Potential Tumor Suppressive Function in Clear Cell Renal Cell Carcinoma: Diagnostic and Prognostic Implications. Mol Biotechnol 2024; 66:3485-3497. [PMID: 37955777 DOI: 10.1007/s12033-023-00948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Research works suggested the role of long non-coding RNAs (lncRNAs) in pathogenesis of clear cell renal cell carcinoma (ccRCC). lncRNA HAGLR is studied in several malignancies, but not in ccRCC. From The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset, we analyzed molecular alterations of HAGLR and constructed a competitive endogenous RNA (ceRNA) network with related miRNAs and mRNAs. Gene Ontology analysis was done to identify important pathways enriched with HAGLR recovered mRNAs. Clinical importance of HAGLR and related mRNAs was assessed and, the impact of selected mRNA-encoding genes on tumor immune infiltration was studied using TIMER. HAGLR expression was reduced in ccRCC than in normal kidneys, and correlated significantly with gene promoter methylation. Low HAGLR level in tumors showed diagnostic potency, and was associated with clinicopathological parameters (stage/grade/metastasis) and poor patient survival. The HAGLR-associated ceRNA network constituted 13 miRNAs and 23 mRNAs differentially expressed in the TCGA-KIRC dataset. From HAGLR recovered mRNA-encoding genes, we developed a 5-gene (PAQR5, ARHGAP24, HABP4, PDLIM5, and RPS6KA2) prognostic signature in the training dataset and validated it in testing as well as entire datasets. The expression level of signature genes showed negative correlation with tumor infiltration of immune cells having adverse impact on ccRCC prognosis and also with tumor derived chemokines facilitating the infiltration. In conclusion, HAGLR seemed to play a tumor suppressive role in ccRCC. HAGLR and associated gene signature may have implementation in improving existing prognostic measure and developing effective immunotherapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Abhishek Bardhan
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Anwesha Banerjee
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | | | - Amlan Ghosh
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
10
|
Khaleel AQ, Alshahrani MY, Rizaev JA, Malathi H, Devi S, Pramanik A, Mustafa YF, Hjazi A, Muazzamxon I, Husseen B. siRNA-based strategies to combat drug resistance in gastric cancer. Med Oncol 2024; 41:293. [PMID: 39428440 DOI: 10.1007/s12032-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences Jain (Deemed to be University), Bangalore, Karnataka, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ismoilova Muazzamxon
- Department of Propaedeutics of Internal Diseases, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
11
|
Wang J, Gao H, Fu P, Lin L, Wang L, Han Y. Knockdown of LncRNA-HAGLR restrains the viability and motility of pancreatic cancer via miR-625-5p/TAF15 axis in vitro and in vivo. Heliyon 2024; 10:e37254. [PMID: 39309830 PMCID: PMC11415852 DOI: 10.1016/j.heliyon.2024.e37254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) has been strongly involved to the development of pancreatic cancer (PC). However, the potential mechanisms by which lncRNA regulate PC development still need to be further explored. We attempted to elucidate the functional role and regulatory mechanism of lncRNA HAGLR on PC progression in vitro and vivo. RT-qPCR, Western blot, RNA pull-down, luciferase reporter assay, RNA immunoprecipitation assay, CCK-8 assay, EdU assay, flow cytometry, transwell assay and xenograft tumor experiment were performed in this study. We found that the expressions of HAGLR and TAF15 were increased in PC tissues and cells. HAGLR silencing restrained the PC cell growth and invasion, but induced cell apoptosis. Moreover, HAGLR targeted miR-625-5p to modulate the expression of TAF15. HAGLR overexpression partially eliminated the suppressive effect of TAF15 depletion on PC cell growth and the stimulative effect on apoptosis. In vivo assays showed that HAGLR knockdown inhibited PC cell growth by regulating the TAF15 expression. These findings suggest HAGLR could facilitate PC cell malignant behaviors through regulating the TAF15 expression, demonstrating that HAGLR might be a valuable target for the PC treatment.
Collapse
Affiliation(s)
- Jiafu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huiqi Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Lin
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lifan Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Han
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Li Q, Zhu Z, Zhang H, Wu X, Yang H, Li X, Li W, Zhao Y, Du F, Chen Y, Shen J, Xiao Z, Chen M, Wang F, Gu L, Sun Y, Lu L, Jia Y, Li M. LncRNA RP11-93B14.5 promotes gastric cancer cell growth through PI3K/AKT signaling pathway. Mol Biotechnol 2024; 66:2332-2340. [PMID: 37682457 DOI: 10.1007/s12033-023-00844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/29/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Emerging evidence indicates that long non-coding RNA (lncRNA) RP11-93B14.5 facilitates tumor progression in variety of malignancies. The present study proposed to study the functional effect of lncRNA RP11-93B14.5 in gastric cancer (GC) as well as the underlying mechanism. METHODS Bioinformatics analysis was utilized to analyze lncRNA expression in GC tissues. siRNA was used for knockdown of RP11-93B14.5 in GC cells MKN45 and KATO III. The stable knockdown cell lines were constructed by CRISPR-Cas9. Cell counting kit-8 (CCK-8) assay and soft agar colony formation assay were used to analyze GC cell viability. Flow cytometry analysis was performed to analyze the cell cycle distribution of MKN45 and KATO III. RNA sequencing (RNA-seq) was employed to detect differential genes after transfection with siRP11-93B14.5. Quantitative PCR (Q-PCR) was used to examine gene expression in GC cell lines. Western-blot assay was used to measure protein levels. RNA fluorescent in situ hybridization (FISH) was conducted for lncRNA cellular location and expression. RESULTS Based on the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database, RP11-93B14.5 was upregulated in GC tissue, which was also verified in GC cell lines in comparison to the normal gastric epithelial HFE145 cells. Knockdown of RP11-93B14.5 decreased cell viability and the colony number of MKN45 and KATO III cells, and altered cell cycle distribution in vitro. RNA-seq analysis revealed RP11-93B14.5 may modulate genes expression of S100A2 and TIMP2 in MKN45 and KATO III cells. Mechanistically, RP11-93B14.5 may drive the progression of GC via S100A2 related-PI3K/AKT signaling pathway. CONCLUSIONS LncRNA RP11-93B14.5 knockdown alleviated the malignant phenotypes of GC cells through regulating PI3K/AKT. Our results provide evidence for the role of lncRNAs in regulating tumor progression.
Collapse
Affiliation(s)
- Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Zhongxiu Zhu
- The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, 250000, Shandong, China
| | - Hanyu Zhang
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College, Nanchong Central Hospital, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Yuliang Jia
- Department of Gastroenterology, The first affiliated hospital of Wannan Medical College, Wuhu, 241000, Anhui, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, Sichuan, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
13
|
Meng X, Bai X, Ke A, Li K, Lei Y, Ding S, Dai D. Long Non-Coding RNAs in Drug Resistance of Gastric Cancer: Complex Mechanisms and Potential Clinical Applications. Biomolecules 2024; 14:608. [PMID: 38927012 PMCID: PMC11201466 DOI: 10.3390/biom14060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Gastric cancer (GC) ranks as the third most prevalent malignancy and a leading cause of cancer-related mortality worldwide. However, the majority of patients with GC are diagnosed at an advanced stage, highlighting the urgent need for effective perioperative and postoperative chemotherapy to prevent relapse and metastasis. The current treatment strategies have limited overall efficacy because of intrinsic or acquired drug resistance. Recent evidence suggests that dysregulated long non-coding RNAs (lncRNAs) play a significant role in mediating drug resistance in GC. Therefore, there is an imperative to explore novel molecular mechanisms underlying drug resistance in order to overcome this challenging issue. With advancements in deep transcriptome sequencing technology, lncRNAs-once considered transcriptional noise-have garnered widespread attention as potential regulators of carcinogenesis, including tumor cell proliferation, metastasis, and sensitivity to chemo- or radiotherapy through multiple regulatory mechanisms. In light of these findings, we aim to review the mechanisms by which lncRNAs contribute to drug therapy resistance in GC with the goal of providing new insights and breakthroughs toward overcoming this formidable obstacle.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Kaiqiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Yun Lei
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Siqi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; (X.M.); (X.B.); (K.L.); (Y.L.); (S.D.)
- Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
14
|
Jin Y, Fan Z. New insights into the interaction between m6A modification and lncRNA in cancer drug resistance. Cell Prolif 2024; 57:e13578. [PMID: 37961996 PMCID: PMC10984110 DOI: 10.1111/cpr.13578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Drug resistance is perhaps the greatest obstacle in improving outcomes for cancer patients, leading to recurrence, progression and metastasis of various cancers. Exploring the underlying mechanism worth further study. N6-methyladenosine (m6A) is the most common RNA modification found in eukaryotes, playing a vital role in RNA translation, transportation, stability, degradation, splicing and processing. Long noncoding RNA (lncRNA) refers to a group of transcripts that are longer than 200 nucleotides (nt) and typically lack the ability to code for proteins. LncRNA has been identified to play a significant role in regulating multiple aspects of tumour development and progression, including proliferation, metastasis, metabolism, and resistance to treatment. In recent years, a growing body of evidence has emerged, highlighting the crucial role of the interplay between m6A modification and lncRNA in determining the sensitivity of cancer cells to chemotherapeutic agents. In this review, we focus on the recent advancements in the interaction between m6A modification and lncRNA in the modulation of cancer drug resistance. Additionally, we aim to explore the underlying mechanisms involved in this process. The objective of this review is to provide valuable insights and suggest potential future directions for the reversal of chemoresistance in cancer.
Collapse
Affiliation(s)
- Yizhou Jin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of StomatologyCapital Medical UniversityBeijingChina
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of StomatologyCapital Medical UniversityBeijingChina
- Beijing Laboratory of Oral HealthCapital Medical UniversityBeijingChina
- Research Unit of Tooth Development and RegenerationChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
15
|
Luo R, Li L, Han Q, Fu J, Xiao F. HAGLR, stabilized by m6A modification, triggers PTEN-Akt signaling cascade-mediated RPE cell pyroptosis via sponging miR-106b-5p. J Biochem Mol Toxicol 2024; 38:e23596. [PMID: 38088496 DOI: 10.1002/jbt.23596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Consistent hyperglycaemia on retinal microvascular tissues is recognized as a vital inducer of diabetic retinopathy (DR) pathogenesis. In view of the essential functionality of long noncoding RNAs (lncRNAs) in multiple human diseases, we aim to figure out the exact role and underlying mechanisms of lncRNA HOXD Cluster Antisense RNA 1 (HAGLR) in DR pathogenesis. Serum specimens from patients with proliferative DR and healthy volunteers were collected for measuring HAGLR levels. Human primary retinal pigment epithelium (HRPE) cells kept in high glucose (HG) condition were applied to simulating hyperglycaemia of DR pathology in vitro. Cell proliferation, apoptosis, either pyroptosis was assess using Cell Counting Kit-8 TUNEL, flow cytometry, and enzyme-linked immunoassay assays. Bioinformatics analysis was subjected to examine the interaction between HAGLR and N6-methyladenosine (m6A)-bind protein IGF2BP2, as determined using RNA immunoprecipitation and RNA pull-down. Luciferase reporter assay was performed to assess the HAGLR-miR-106b-5p-PTEN axis. Levels of pyroptosis-associated biomarkers were detected using western blotting. Aberrantly overexpressed HAGLR was uncovered in the serum samples of DR patients and HG-induced HRPE cells, of which knockdown attenuated HG-induced cytotoxic impacts on cell apoptosis and pyroptosis. Whereas, reinforced HAGLR further aggravated these effects. IGF2BP2 positively regulated HAGLR in a m6A-dependent manner. HAGLR served as a sponge for miR-106b-5p to upregulate PTEN, thereby activating Akt signaling cascade. Rescue assays demonstrated that PTEN overexpression abolished the inhibition of silenced HAGLR on pyroptosis in HRPE cells. HAGLR, epigenetically modified by IGF2BP2 in an m6A-dependent manner, functioned as a sponge for miR-106b-5p, thereby activating PTEN/Akt signaling cascade to accelerate DR pathology.
Collapse
Affiliation(s)
- Rong Luo
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Lan Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Qingluan Han
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Jingsong Fu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Fan Xiao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
16
|
Hu J, Li A, Guo Y, Ma T, Feng S. The relationship between tumor metabolism and 5-fluorouracil resistance. Biochem Pharmacol 2023; 218:115902. [PMID: 37922975 DOI: 10.1016/j.bcp.2023.115902] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Jingyi Hu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Anqi Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yueyang Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Siqi Feng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
17
|
Kazemi A, Goodarzi M, Daneshipour K, Sarabadani H, Shahpar Z, Hajiagha BS, Kheradjoo H, Mohammadzadehsaliani S. Unrevealing the vital role of ncRNAs in Gastric Cancer chemoresistance. Pathol Res Pract 2023; 250:154761. [PMID: 37689003 DOI: 10.1016/j.prp.2023.154761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/11/2023]
Abstract
The high incidence of gastric cancer in many nations and poor overall survival rates has remained a serious global health concern. Chemoresistance in gastric cancer is a significant issue that hinders the efficacy of available treatment options. In gastric cancer, non-coding RNAs like microRNAs, long non-coding RNAs, and circular RNAs have become effective regulators of chemoresistance. These non-coding RNAs can influence several mechanisms, including drug efflux transporters, drug metabolism, and detoxification, cancer stem cells and the epithelial-mesenchymal transition, autophagy and apoptosis, and the tumor microenvironment. In this article review, we summarize the key roles non-coding RNAs play in the chemoresistance of gastric cancer and consider how they might be used in clinical settings as markers for diagnosis and prognosis, as well as potential targets and treatment plans. We also emphasize the need for additional study and collaborations in this area and highlight the difficulties and opportunities in non-coding RNA research for gastric cancer chemoresistance. This review offers crucial insights into the intricate relationship between non-coding RNAs and chemoresistance in gastric cancer, with implications for precision oncology and personalized medicine.
Collapse
Affiliation(s)
- Aida Kazemi
- Department of Biomedical Science, Monash University, Melbourne, Australia
| | - Masomeh Goodarzi
- Department of Biology, Zabol University of Medical Sciences, Zabol, Iran
| | - Kosar Daneshipour
- Department of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hoda Sarabadani
- Rajiv Gandhi Institute of Information Technology & Biotechnology, Bharati Vidyapeeth University, Pune, India
| | - Zahra Shahpar
- M.Sc, Technical Department, İstanbul University, İstanbul, Türkiye
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
18
|
Xu H, Ba Z, Liu C, Yu X. Long noncoding RNA DLEU1 promotes proliferation and glycolysis of gastric cancer cells via APOC1 upregulation by recruiting SMYD2 to induce trimethylation of H3K4 modification. Transl Oncol 2023; 36:101731. [PMID: 37478669 PMCID: PMC10375852 DOI: 10.1016/j.tranon.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023] Open
Abstract
OBJECTIVES APOC1 has been reported to promote tumor progression. Nevertheless, its impact on cell proliferation and glycolysis in gastric cancer (GC) remains to be probed. Hence, this study explored the related impacts and mechanisms. METHODS DLEU1, SMYD2, and APOC1 expression was detected in GC cells. Afterward, ectopic expression and knockdown experiments were conducted in GC cells, followed by measurement of cell proliferation, glucose uptake capability, lactic acid production, ATP content, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), and GLUT1, HK2, and LDHA expression. In addition, interactions between DLEU1 and SMYD2 were analyzed with RIP and RNA pull down assays, and the binding of SMYD2 to APOC1 promoter and the methylation modification of SMYD2 in H3K4me3 were assessed with a ChIP assay. The ectopic tumor formation experiment in nude mice was conducted for in vivo validation. RESULTS DLEU1, SMYD2, and APOC1 were highly expressed in GC cells. The downregulation of DLEU1 or APOC1 inhibited glucose uptake capability, lactic acid production, ECAR, the expression of GLUT1, HK2, and LDHA, ATP contents, and proliferation but augmented OCR in GC cells, which was also verified in animal experiments. Mechanistically, DLEU1 interacted with SMYD2 and recruited SMYD2 to APOC1 promoter to promote H3K4me3 modification, thus facilitating APOC1 expression. Furthermore, the effects of DLEU1 silencing on GC cell proliferation and glycolysis were negated by overexpressing SMYD2 or APOC1. CONCLUSION LncRNA DLEU1 recruited SMYD2 to upregulate APOC1 expression, thus boosting GC cell proliferation and glycolysis.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Zhichang Ba
- Department of Medical Imaging Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Chunxun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China
| | - Xuefeng Yu
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P. R. China.
| |
Collapse
|
19
|
Hou XR, Zhang ZD, Cao XL, Wang XP. Long noncoding RNAs, glucose metabolism and cancer (Review). Oncol Lett 2023; 26:340. [PMID: 37427347 PMCID: PMC10326653 DOI: 10.3892/ol.2023.13925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Cancer is a serious and potentially life-threatening disease, which, despite numerous advances over several decades, remains a challenge to treat that challenging to detect at an early stage or treat during the later stages. Long noncoding RNAs are >200 nucleotides long and do not possess protein-coding capacity, instead regulating cellular processes, such as proliferation, differentiation, maturation, apoptosis, metastasis, and sugar metabolism. Several studies have shown the role of lncRNAs and glucose metabolism in regulating several key glycolytic enzymes and the activity of multiple functional signaling pathways during tumor progression. Thus, it is possible to further learn about the effects of lncRNA and glycolytic metabolism on tumor diagnosis, treatment, and prognosis through a thorough investigation of the lncRNA expression profiles and glycolytic metabolism in tumors. This may provide a novel strategy for improving the management of several types of cancer.
Collapse
Affiliation(s)
- Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
20
|
Asfa S, Toy HI, Arshinchi Bonab R, Chrousos GP, Pavlopoulou A, Geronikolou SA. Soft Tissue Ewing Sarcoma Cell Drug Resistance Revisited: A Systems Biology Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6288. [PMID: 37444135 PMCID: PMC10341845 DOI: 10.3390/ijerph20136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023]
Abstract
Ewing sarcoma is a rare type of cancer that develops in the bones and soft tissues. Drug therapy represents an extensively used modality for the treatment of sarcomas. However, cancer cells tend to develop resistance to antineoplastic agents, thereby posing a major barrier in treatment effectiveness. Thus, there is a need to uncover the molecular mechanisms underlying chemoresistance in sarcomas and, hence, to enhance the anticancer treatment outcome. In this study, a differential gene expression analysis was conducted on high-throughput transcriptomic data of chemoresistant versus chemoresponsive Ewing sarcoma cells. By applying functional enrichment analysis and protein-protein interactions on the differentially expressed genes and their corresponding products, we uncovered genes with a hub role in drug resistance. Granted that non-coding RNA epigenetic regulators play a pivotal role in chemotherapy by targeting genes associated with drug response, we investigated the non-coding RNA molecules that potentially regulate the expression of the detected chemoresistance genes. Of particular importance, some chemoresistance-relevant genes were associated with the autonomic nervous system, suggesting the involvement of the latter in the drug response. The findings of this study could be taken into consideration in the clinical setting for the accurate assessment of drug response in sarcoma patients and the application of tailored therapeutic strategies.
Collapse
Affiliation(s)
- Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Halil Ibrahim Toy
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Reza Arshinchi Bonab
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - George P. Chrousos
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey; (S.A.); (H.I.T.); (R.A.B.)
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Izmir, Turkey
| | - Styliani A. Geronikolou
- Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
21
|
Hosseini SA, Haddadi MH, Fathizadeh H, Nemati F, Aznaveh HM, Taraj F, Aghabozorgizadeh A, Gandomkar G, Bazazzadeh E. Long non-coding RNAs and gastric cancer: An update of potential biomarkers and therapeutic applications. Biomed Pharmacother 2023; 163:114407. [PMID: 37100014 DOI: 10.1016/j.biopha.2023.114407] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/28/2023] Open
Abstract
The frequent metastasis of gastric cancer (GC) complicates the cure and therefore the development of effective diagnostic and therapeutic approaches is urgently necessary. In recent years, lncRNA has emerged as a drug target in the treatment of GC, particularly in the areas of cancer immunity, cancer metabolism, and cancer metastasis. This has led to the demonstration of the importance of these RNAs as prognostic, diagnostic and therapeutic agents. In this review, we provide an overview of the biological activities of lncRNAs in GC development and update the latest pathological activities, prognostic and diagnostic strategies, and therapeutic options for GC-related lncRNAs.
Collapse
Affiliation(s)
- Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran; USERN office, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran; Department of Laboratory sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Foroogh Nemati
- Department of Microbiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Farima Taraj
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - AmirArsalan Aghabozorgizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Golmaryam Gandomkar
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Elaheh Bazazzadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
22
|
Shen D, Deng Z, Liu W, Zhou F, Fang Y, Shan D, Wang G, Qian K, Yu M, Zhang Y, Ju L, Xiao Y, Wang X. Melatonin inhibits bladder tumorigenesis by suppressing PPARγ/ENO1-mediated glycolysis. Cell Death Dis 2023; 14:246. [PMID: 37024456 PMCID: PMC10079981 DOI: 10.1038/s41419-023-05770-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023]
Abstract
Melatonin is a well-known natural hormone, which shows a potential anticancer effect in many human cancers. Bladder cancer (BLCA) is one of the most malignant human cancers in the world. Chemoresistance is an increasingly prominent phenomenon that presents an obstacle to the clinical treatment of BLCA. There is an urgent need to investigate novel drugs to improve the current clinical status. In our study, we comprehensively explored the inhibitory effect of melatonin on BLCA and found that it could suppress glycolysis process. Moreover, we discovered that ENO1, a glycolytic enzyme involved in the ninth step of glycolysis, was the downstream effector of melatonin and could be a predictive biomarker of BLCA. We also proved that enhanced glycolysis simulated by adding exogenous pyruvate could induce gemcitabine resistance, and melatonin treatment or silencing of ENO1 could intensify the cytotoxic effect of gemcitabine on BLCA cells. Excessive accumulation of reactive oxygen species (ROS) mediated the inhibitory effect of melatonin on BLCA cells. Additionally, we uncovered that PPARγ was a novel upstream regulator of ENO1, which mediated the downregulation of ENO1 caused by melatonin. Our study offers a fresh perspective on the anticancer effect of melatonin and encourages further studies on clinical chemoresistance.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Liu
- Department of Urology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yayun Fang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Mengxue Yu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China.
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Human Genetic Resources Preservation Center of Hubei Province, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
23
|
Zhang Z, Su D, Thakur A, Zhang K, Xia F, Yan Y. Immune cell death-related lncRNA signature as a predictive factor of clinical outcomes and immune checkpoints in gastric cancer. Front Pharmacol 2023; 14:1162995. [PMID: 37081965 PMCID: PMC10110873 DOI: 10.3389/fphar.2023.1162995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Immune cell death (ICD) is a type of tumor cell death that has recently been shown to activate and regulate tumor immunity. However, the role of ICD-related long non-coding RNAs (lncRNAs) in gastric cancer remains to be clarified. Methods: We obtained 375 tumor samples from the Cancer Genome Atlas (TCGA) database and randomly assigned them to training and verification groups. LASSO and Cox regression analysis were utilized to identify ICD-related lncRNAs and establish a risk model. The changes in the immune microenvironment of the two groups were compared by examining the tumor-infiltrating immune cells. Results: We established a tumor signature based on nine ICD-related lncRNAs. In light of the receiver operating characteristic and Kaplan-Meier curves, the prognostic values of this risk model were verified. Multivariate regression analysis showed that the risk score was an independent risk factor for the prognosis of patients in both the training cohort (HR 2.52; 95% CI: 1.65-3.87) and validation cohort (HR 2.70; 95% CI: 1.54-4.8). A nomogram was developed to predict the 1-, 3-, and 5-year survival of patients with gastric cancer, and the signature was linked to high levels of immunological checkpoint expression (B7-H3, VSIR). Conclusions: An ICD-related lncRNA signature could predict the immune response and prognosis of patients with gastric cancer. This prognostic signature could be employed to independently monitor the efficacy of immunotherapy for gastric cancer patients.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Duntao Su
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Kalita A, Sikora-Skrabaka M, Nowakowska-Zajdel E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Curr Issues Mol Biol 2023; 45:2917-2936. [PMID: 37185715 PMCID: PMC10136553 DOI: 10.3390/cimb45040191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are some of the most common cancers in the world and their number is increasing. Their etiology and pathogenesis are still unclear. ADAM proteins are a family of transmembrane and secreted metalloproteinases that play a role in cancerogenesis, metastasis and neoangiogenesis. MicroRNAs are small single-stranded non-coding RNAs that take part in the post-transcriptional regulation of gene expression. Some ADAM proteins can be targets for microRNAs. In this review, we analyze the impact of microRNA/ADAM protein axes in GI cancers.
Collapse
Affiliation(s)
- Agnieszka Kalita
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Magdalena Sikora-Skrabaka
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| |
Collapse
|
25
|
Jiang M, Fang C, Ma Y. Prognosis Risk Model Based on Pyroptosis-Related lncRNAs for Gastric Cancer. Biomolecules 2023; 13:biom13030469. [PMID: 36979404 PMCID: PMC10046686 DOI: 10.3390/biom13030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor with a low survival rate, high recurrence rate, and poor prognosis. With respect to this, pyroptosis is a type of programmed cell death that can affect the occurrence and development of tumors. Indeed, long non-coding RNAs (lncRNAs) were broadly applied for the purposes of early diagnosis, treatment, and prognostic analysis in regard to cancer. Based on the association of these three purposes, we developed a novel prognosis risk model based on pyroptosis-related lncRNAs (PRlncRNAs) for GC. The PRlncRNAs were obtained via univariate and multivariate Cox regression in order to build the predictive signatures. The Kaplan–Meier and gene set enrichment analysis (GSEA) methods were used to evaluate the overall survival (OS) and functional differences between the high- and low-risk groups. Moreover, the correlation of the signatures with immune cell infiltration was determined through single-sample gene set enrichment analysis (ssGSEA). Finally, we analyzed this correlation with the treatment responses in the GC patients; then, we performed quantitative reverse transcription polymerase chain reactions (qRT-PCRs) in order to verify the risk model. The high-risk group received a worse performance in terms of prognosis and OS when compared to the low-risk group. With respect to this, the area under the receiver operating characteristic curve (ROC) was found to be 0.808. Through conducting the GSEA, it was found that the high-risk groups possessed a significant enrichment in terms of tumor–immunity pathways. Furthermore, the ssGSEA revealed that the predictive features possessed strong associations with immune cell infiltration in regard to GC. In addition, we highlighted that anti-immune checkpoint therapy, combined with conventional chemotherapy drugs, may be more suitable for high-risk patients. The expression levels of LINC01315, AP003392.1, AP000695.2, and HAGLR were significantly different between the GC cell lines and the normal cell lines. As such, the six PRlncRNAs could be regarded as important prognostic biomarkers for the purposes of subsequent diagnoses, treatments, prognostic predictions, and the mechanism research of GC.
Collapse
|
26
|
Siri G, Yazdani O, Esbati R, Akhavanfar R, Asadi F, Adili A, Ebrahimzadeh F, Hosseini SME. A comprehensive review of the role of lncRNAs in gastric cancer (GC) pathogenesis, immune regulation, and their clinical applications. Pathol Res Pract 2023; 241:154221. [PMID: 36563559 DOI: 10.1016/j.prp.2022.154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths worldwide. Although numerous studies have been conducted on advanced GC, the molecular mechanisms behind it remain obscure. Long non-coding RNAs (lncRNAs) are a family of RNA transcripts capable of regulating target genes at transcriptional, post-transcriptional, and translational stages. They do this by modifying mRNAs, miRNAs, and proteins. These RNAs are critical regulators of many biological processes, including gene epigenetics, transcription, and post-transcriptional levels. This article highlights recent results on lncRNAs involved in drug resistance, proliferation, migration, angiogenesis, apoptosis, autophagy, and immune response in GC. The potential clinical implications of lncRNAs as biomarkers and therapeutic targets in GC are also discussed.
Collapse
Affiliation(s)
- Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Esbati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
27
|
Development and Evaluation of a Novel Cuproptosis-Related lncRNA Signature for Gastric Cancer Prognosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:6354212. [PMID: 36820319 PMCID: PMC9938768 DOI: 10.1155/2023/6354212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 02/13/2023]
Abstract
Background According to a growing body of research, long noncoding RNAs (lncRNAs) participate in the progress of gastric cancer (GC). Cuproptosis is a distinct kind of programmed cell death, separating it from several other forms of programmed cell death that may be caused by genetic programming. Consequently, it is crucial to examine cuproptosis-related lncRNAs (CRLs) prognostic importance for the prognosis and treatment response in GC. Method The Cancer Genome Atlas (TCGA) database was used to retrieve RNA-seq data, pertinent clinical information, and somatic mutation data. A list of cuproptosis-related genes (CRGs) was obtained from prior work. We can distinguish prognostic CRLs using coexpression and univariate Cox analysis. Then, using CRLs, we developed a risk prediction model using multivariate Cox regression analysis and the least absolute shrinkage selection operator (LASSO) technique. To evaluate the diagnostic accuracy of this model, a Kaplan-Meier (K-M) survival analysis and a receiver operating characteristic (ROC) analysis were used. Moreover, the relationships between the risk model and immunological function, somatic mutation, and drug sensitivity were also investigated. Results Using the multivariate Cox analysis technique, we developed a signature based on cuproptosis-related four lncRNAs. We then classified patients into high-risk and low-risk groups based on the likelihood of unfavorable outcomes. The model was subjected to further testing, including K-M survival analysis, ROC analysis, and multivariate Cox regression analysis, all of which proved the model's exceptional robustness and predictive capacity. In addition, a nomogram that has a strong capacity for prediction ability was built. This nomogram included age, gender, clinical grade, pathologic stage, T stage, and risk score. Furthermore, we discovered substantial disparities in immune function and the number of mutations carried by tumors between the high-risk and low-risk groups. Moreover, this research also found that the IC50 values for 27 chemotherapeutic drugs varied widely across patients within high- and low-risk groups. Conclusion The proposed 4-CRLs signature is a promising biomarker to predict clinical outcomes in GC.
Collapse
|
28
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
29
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Eptaminitaki GC, Stellas D, Bonavida B, Baritaki S. Long Non-coding RNAs (lncRNAs) signaling in Cancer Chemoresistance: From Prediction to Druggability. Drug Resist Updat 2022; 65:100866. [DOI: 10.1016/j.drup.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
31
|
The Value of m5C-Related lncRNAs in the Prognostic Assessment and Immunotherapy of Stomach Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2747799. [PMID: 35711526 PMCID: PMC9197623 DOI: 10.1155/2022/2747799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/24/2022] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs (lncRNAs) are closely associated with a variety of tumors, including stomach adenocarcinoma (STAD). However, the role of 5-methylcytosine- (m5C-) related lncRNAs in STAD is still uncertain. This study investigated the value of m5C-related lncRNAs in prognostic evaluation and immunotherapy of STAD. STAD transcriptome sequencing data were downloaded from The Cancer Genome Atlas (TCGA) database, and m5C-related lncRNAs were screened by Pearson correlation analysis. A prognostic m5C-related lncRNA signature (m5CRLSig) associated with STAD was established using univariate and multivariate Cox regression analysis. We constructed a prognostic risk model for STAD with six m5C-related lncRNAs. The receiver operating characteristic (ROC) curve was used to examine the predictive efficacy. Univariate and multifactorial Cox regression analysis and principal component analysis (PCA) validated m5CRLSig as an independent factor of STAD prognosis. The clinicopathological characteristics of the model showed higher risk scores for stages II-IV, grade 3, N1-3, and death status. The calibration curve of a nomogram revealed that the nomogram had an excellent predictive function for survival risk. Furthermore, the expression of six m5C-related lncRNAs in STAD and paracancerous tissues was detected by quantitative real-time PCR (qRT-PCR), which verified the feasibility of the m5CRLSig as a prognostic marker for STAD. m5C-related lncRNAs were linked to multiple immune-associated pathways, according to gene set enrichment analysis (GSEA). CIBERSORT analysis indicated that m5CRLSig was involved in immune cell infiltration. Risk score was associated with immune checkpoint gene expression, immune function scores, and chemotherapeutic drug sensitivity. Therefore, m5CRLSig can efficiently assess the prognosis of STAD patients and can be used as a biological marker for immunotherapy.
Collapse
|
32
|
Chen G, Liao J, Xu Y, Chen Y, Li J, Bu G, Li Q. LINC01232 Promotes Metastasis and EMT by Regulating miR-506-5p/PAK1 Axis in Gastric Cancer. Cancer Manag Res 2022; 14:1729-1740. [PMID: 35592108 PMCID: PMC9113486 DOI: 10.2147/cmar.s352081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/28/2022] [Indexed: 01/19/2023] Open
Abstract
Background Long non-coding RNA LINC01232 plays an important role in the progression of metastasis in several cancers. However, the function of LINC01232 in gastric cancer is limited. Authors aimed to investigate the role and mechanism of LINC01232 in the metastasis of gastric cancer. Methods The expression levels and correlation of LINC01232, miR-506-5p, and PAK1 were analyzed by GEPIA or ENCORI, and the abundance of LINC01232 and miR-506-5p was measured in tissues and cells via qRT-PCR, the location of LINC01232 in gastric cells was analyzed by nuclear and cytoplasmic fractionation, while the protein levels of PAK1, E-cadherin and vimentin were additionally quantified by Western blotting. Interactions between LINC01232, miR-506-5p, and PAK1 were detected through luciferase reporter assays, qRT-PCR and Western blotting. Cellular viability was evaluated through CCK8 assays, migration ability was measured by transwell assays, invasion ability was tested by wound healing experiment. Results LINC01232 was overexpressed in gastric cancer tissues and cells, and mainly located in nucleus. The inhibition of LINC01232 could suppress migration, invasion and EMT of gastric cancer cells. MiR-506-5p was downregulated in gastric cancer tissues and cells. LINC01232 sponged miR-506-5p to accelerate migration and EMT. PAK1 was certified to be a target of miR-506-5p, inhibition of PAK1 could interrupt LINC01232 overexpression-induced migration of gastric cancer cells. Conclusion The LINC01232/miR-506-5p/PAK1 axis promotes metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Gang Chen
- Digestive System Department, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Jiangtao Liao
- Digestive System Department, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Yan Xu
- Geriatrics Departments, The Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yinyun Chen
- Digestive System Department, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Juan Li
- Digestive System Department, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Guangkui Bu
- Digestive System Department, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
| | - Qingqing Li
- Digestive System Department, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China
- Correspondence: Qingqing Li, Digestive System Department, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, People’s Republic of China, Email
| |
Collapse
|
33
|
Li C, Zhang Z, Peng E, Peng J. Role of an Exosomes-Related lncRNAs Signature in Tumor Immune Microenvironment of Gastric Cancer. Front Cell Dev Biol 2022; 10:873319. [PMID: 35465325 PMCID: PMC9019506 DOI: 10.3389/fcell.2022.873319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Exosomes plays a crucial role in intercellular communication of gastric cancer (GC), while long non-coding RNAs (lncRNAs) contributes to the tumorigenesis and progression of GC. This study aims to explore the prognostic exosomes-related lncRNAs of GC patients. Methods: Data of 375 GC patients were obtained from the TCGA database. The entire cohort was randomly divided into a training cohort and a validation cohort in a 2:1 ratio. Exosomes-related lncRNAs were identified by the Pearson correlation analysis with reported exosomes-related genes. LASSO Cox regression was used to construct the signature. Results: A prognostic signature consisting of 11 exosomes-related lncRNAs was identified, and patients with lower risk scores had a better prognosis than those with higher risk scores. ROC curves and multivariate Cox regression analysis showed that the signature was an independent risk factor for prognosis in both the training (HR: 3.254, 95% CI: 2.310–4.583) and validation cohorts (HR: 1.974, 95% CI: 1.108–3.517). Gene set enrichment analysis (GSEA) suggested associations between the signature and several immune-related pathways. The identified signature was shown to be associated with GC tumor microenvironment. The expression of two immune checkpoints was also increased in the high-risk group, including B7-H3 and VSIR, indicating the potential role of the identified signature in GC immunotherapies. Conclusion: A novel exosomes-related lncRNA signature, which may be associated with tumor immune microenvironment and potentially serve as an indicator for immunotherapy, has been identified to precisely predict the prognosis of GC patients.
Collapse
Affiliation(s)
- Chan Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Zhang
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Emin Peng
- Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Emin Peng, ; Jinwu Peng,
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- *Correspondence: Emin Peng, ; Jinwu Peng,
| |
Collapse
|
34
|
Liu Y, Ao X, Wang Y, Li X, Wang J. Long Non-Coding RNA in Gastric Cancer: Mechanisms and Clinical Implications for Drug Resistance. Front Oncol 2022; 12:841411. [PMID: 35155266 PMCID: PMC8831387 DOI: 10.3389/fonc.2022.841411] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with high recurrence and mortality rate. Chemotherapy, including 5-fluorouracil (5-FU), adriamycin (ADR), vincristine (VCR), paclitaxel (PTX), and platinum drugs, remains one of the fundamental methods of GC treatment and has efficiently improved patients’ prognosis. However, most patients eventually develop resistance to chemotherapeutic agents, leading to the failure of clinical treatment and patients’ death. Recent studies suggest that long non-coding RNAs (lncRNAs) are involved in the drug resistance of GC by modulating the expression of drug resistance-related genes via sponging microRNAs (miRNAs). Moreover, lncRNAs also play crucial roles in GC drug resistance via a variety of mechanisms, such as the regulation of the oncogenic signaling pathways, inhibition of apoptosis, induction of autophagy, modulation of cancer stem cells (CSCs), and promotion of the epithelial-to-mesenchymal transition (EMT) process. Some of lncRNAs exhibit great potential as diagnostic and prognostic biomarkers, as well as therapeutic targets for GC patients. Therefore, understanding the role of lncRNAs and their mechanisms in GC drug resistance may provide us with novel insights for developing strategies for individual diagnosis and therapy. In this review, we summarize the recent findings on the mechanisms underlying GC drug resistance regulated by lncRNAs. We also discuss the potential clinical applications of lncRNAs as biomarkers and therapeutic targets in GC.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
- *Correspondence: Ying Liu,
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yu Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|