1
|
Qin Z, Zhou Y, Li Z, Höhne M, Bornscheuer UT, Wu S. Production of Biobased Ethylbenzene by Cascade Biocatalysis with an Engineered Photodecarboxylase. Angew Chem Int Ed Engl 2024; 63:e202314566. [PMID: 37947487 DOI: 10.1002/anie.202314566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Production of commodity chemicals, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), from renewable resources is key for a sustainable society. Biocatalysis enables one-pot multistep transformation of bioresources under mild conditions, yet it is often limited to biochemicals. Herein, we developed a non-natural three-enzyme cascade for one-pot conversion of biobased l-phenylalanine into ethylbenzene. The key rate-limiting photodecarboxylase was subjected to structure-guided semirational engineering, and a triple mutant CvFAP(Y466T/P460A/G462I) was obtained with a 6.3-fold higher productivity. With this improved photodecarboxylase, an optimized two-cell sequential process was developed to convert l-phenylalanine into ethylbenzene with 82 % conversion. The cascade reaction was integrated with fermentation to achieve the one-pot bioproduction of ethylbenzene from biobased glycerol, demonstrating the potential of cascade biocatalysis plus enzyme engineering for the production of biobased commodity chemicals.
Collapse
Affiliation(s)
- Zhaoyang Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Yi Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Matthias Höhne
- Institute of Chemistry, Technische Universität Berlin, Müller-Breslau-Str. 10, 10623, Berlin, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan, 430070, P. R. China
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Felix Hausdorff-Str. 4, 17489, Greifswald, Germany
| |
Collapse
|
2
|
Sigg A, Klimacek M, Nidetzky B. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development. Biotechnol Bioeng 2024; 121:580-592. [PMID: 37983971 DOI: 10.1002/bit.28602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.
Collapse
Affiliation(s)
- Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
3
|
Zhang W, Dong H, Wang X, Zhang L, Chen C, Wang P. Engineered Escherichia coli Consortia Function in a Programmable Pattern for Multiple Enzymatic Biosynthesis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45886-45894. [PMID: 37738613 DOI: 10.1021/acsami.3c09123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Coordinating microbial consortia to realize complex synthetic pathways is an area of great interest in the rapidly growing field of biomanufacturing. This work presents a programmable method for assembling living cells based on the surface display of affinity groups, enabling whole-cell catalysis with optimized catalytic efficiency through the rational arrangement of cell assemblies and enzymes. In the context of d-phenyllactic acid (d-PLA) synthesis, four enzymes were rationally arranged considering substrate channeling and protein expression levels. The production efficiencies of d-PLA catalyzed by engineered microbial consortia were 1.31- and 2.55-fold higher than those of biofilm and whole-cell catalysts, respectively. Notably, substrate channeling was identified between the coimmobilized rate-limiting enzymes, resulting in a 3.67-fold improvement in catalytic efficiency compared with hybrid catalysts (free enzymes coupled with whole-cell catalysts). The highest yield of d-PLA catalyzed by microbial consortia was 102.85 ± 3.39 mM with 140 mM benzaldehyde as the substrate. This study proposes a novel approach to cell enzyme assembly for coordinating microbial consortia in multiple enzymatic biosynthesis processes.
Collapse
Affiliation(s)
- Wenxue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Dong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Liting Zhang
- Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, United States
| |
Collapse
|
4
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
5
|
Knaus T, Corrado ML, Mutti FG. One-Pot Biocatalytic Synthesis of Primary, Secondary, and Tertiary Amines with Two Stereocenters from α,β-Unsaturated Ketones Using Alkyl-Ammonium Formate. ACS Catal 2022; 12:14459-14475. [PMID: 36504913 PMCID: PMC9724091 DOI: 10.1021/acscatal.2c03052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The efficient asymmetric catalytic synthesis of amines containing more than one stereogenic center is a current challenge. Here, we present a biocatalytic cascade that combines ene-reductases (EReds) with imine reductases/reductive aminases (IReds/RedAms) to enable the conversion of α,β-unsaturated ketones into primary, secondary, and tertiary amines containing two stereogenic centers in very high chemical purity (up to >99%), a diastereomeric ratio, and an enantiomeric ratio (up to >99.8:<0.2). Compared with previously reported strategies, our strategy could synthesize two, three, or even all four of the possible stereoisomers of the amine products while precluding the formation of side-products. Furthermore, ammonium or alkylammonium formate buffer could be used as the only additional reagent since it acted both as an amine donor and as a source of reducing equivalents. This was achieved through the implementation of an NADP-dependent formate dehydrogenase (FDH) for the in situ recycling of the NADPH coenzyme, thus leading to increased atom economy for this biocatalytic transformation. Finally, this dual-enzyme ERed/IRed cascade also exhibits a complementarity with the recently reported EneIRED enzymes for the synthesis of cyclic six-membered ring amines. The ERed/IRed method yielded trans-1,2 and cis-1,3 substituted cyclohexylamines in high optical purities, whereas the EneIRED method was reported to yield one cis-1,2 and one trans-1,3 enantiomer. As a proof of concept, when 3-methylcyclohex-2-en-1-one was converted into secondary and tertiary chiral amines with different amine donors, we could obtain all the four possible stereoisomer products. This result exemplifies the versatility of this method and its potential for future wider utilization in asymmetric synthesis by expanding the toolbox of currently available dehydrogenases via enzyme engineering and discovery.
Collapse
Affiliation(s)
- Tanja Knaus
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Maria L. Corrado
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Francesco G. Mutti
- Van’t Hoff Institute for Molecular
Sciences, HIMS-Biocat, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Deng RX, Yue SJ, Wang W, Hu HB, Zhang XH. Identification, biological evaluation, and improved biotransformation of a phenazine antioxidant using Streptomyces lomondensis S015 whole cells. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Toward modular construction of cell-free multienzyme systems. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Benítez-Mateos AI, Roura Padrosa D, Paradisi F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat Chem 2022; 14:489-499. [PMID: 35513571 DOI: 10.1038/s41557-022-00931-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
Enzyme cascades are a powerful technology to develop environmentally friendly and cost-effective synthetic processes to manufacture drugs, as they couple different biotransformations in sequential reactions to synthesize the product. These biocatalytic tools can address two key parameters for the pharmaceutical industry: an improved selectivity of synthetic reactions and a reduction of potential hazards by using biocompatible catalysts, which can be produced from sustainable sources, which are biodegradable and, generally, non-toxic. Here we outline a broad variety of enzyme cascades used either in vivo (whole cells) or in vitro (purified enzymes) to specifically target pharmaceutically relevant molecules, from simple building blocks to complex drugs. We also discuss the advantages and requirements of multistep enzyme cascades and their combination with chemical catalysts through a series of reported examples. Finally, we examine the efficiency of enzyme cascades and how they can be further improved by enzyme engineering, process intensification in flow reactors and/or enzyme immobilization to meet all the industrial requirements.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
9
|
Woodley JM. Ensuring the Sustainability of Biocatalysis. CHEMSUSCHEM 2022; 15:e202102683. [PMID: 35084801 DOI: 10.1002/cssc.202102683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Biocatalysis offers many attractive features for the synthetic chemist. In many cases, the high selectivity and ability to tailor specific enzyme features via protein engineering already make it the catalyst of choice. From the perspective of sustainability, several features such as catalysis under mild conditions and use of a renewable and biodegradable catalyst also look attractive. Nevertheless, to be sustainable at a larger scale it will be essential to develop processes operating at far higher concentrations of product, and which make better use of the enzyme via improved stability. In this Concept, it is argued that a particular emphasis on these specific metrics is of particular importance for the future implementation of biocatalysis in industry, at a level that fulfills its true potential.
Collapse
Affiliation(s)
- John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
10
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
11
|
Li Y, Hu N, Xu Z, Cui Y, Feng J, Yao P, Wu Q, Zhu D, Ma Y. Asymmetric Synthesis of N-Substituted 1,2-Amino Alcohols from Simple Aldehydes and Amines by One-Pot Sequential Enzymatic Hydroxymethylation and Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022; 61:e202116344. [PMID: 35166000 DOI: 10.1002/anie.202116344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 01/10/2023]
Abstract
The chiral N-substituted 1,2-amino alcohol motif is found in many natural and synthetic bioactive compounds. In this study, enzymatic asymmetric reductive amination of α-hydroxymethyl ketones with enantiocomplementary imine reductases (IREDs) enabled the synthesis of chiral N-substituted 1,2-amino alcohols with excellent ee values (91-99 %) in moderate to high yields (41-84 %). Furthermore, a one-pot, two-step enzymatic process involving benzaldehyde lyase-catalyzed hydroxymethylation of aldehydes and subsequent asymmetric reductive amination was developed, offering an environmentally friendly and economical way to produce N-substituted 1,2-amino alcohols from readily available simple aldehydes and amines. This methodology was then applied to rapidly access a key synthetic intermediate of anti-malaria and cytotoxic tetrahydroquinoline alkaloids.
Collapse
Affiliation(s)
- Yu Li
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Na Hu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Zefei Xu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peiyuan Yao
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
12
|
Li Y, Hu N, Xu Z, Cui Y, Feng J, Yao P, Wu Q, Zhu D, Ma Y. Asymmetric Synthesis of
N
‐Substituted 1,2‐Amino Alcohols from Simple Aldehydes and Amines by One‐Pot Sequential Enzymatic Hydroxymethylation and Asymmetric Reductive Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Li
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Na Hu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Zefei Xu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Peiyuan Yao
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences National Technology Innovation Center for Synthetic Biology Tianjin 300308 China
| |
Collapse
|
13
|
Wahart AJC, Staniland J, Miller GJ, Cosgrove SC. Oxidase enzymes as sustainable oxidation catalysts. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211572. [PMID: 35242351 PMCID: PMC8753158 DOI: 10.1098/rsos.211572] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Oxidation is one of the most important processes used by the chemical industry. However, many of the methods that are used pose significant sustainability and environmental issues. Biocatalytic oxidation offers an alternative to these methods, with a now significant enzymatic oxidation toolbox on offer to chemists. Oxidases are one of these options, and as they only depend on molecular oxygen as a terminal oxidant offer perfect atom economy alongside the selectivity benefits afforded by enzymes. This review will focus on examples of oxidase biocatalysts that have been used for the sustainable production of important molecules and highlight some important processes that have been significantly improved through the use of oxidases. It will also consider emerging classes of oxidases, and how they might fit in a future biorefinery approach for the sustainable production of important chemicals.
Collapse
Affiliation(s)
- Alice J. C. Wahart
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | | | - Gavin J. Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| | - Sebastian C. Cosgrove
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, Staffordshire, ST5 5BG, UK
- The Keele Centre for Glycoscience Research and Training, Keele University, Staffordshire, ST5 5BG, UK
| |
Collapse
|
14
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
15
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
16
|
Mattey AP, Ford GJ, Citoler J, Baldwin C, Marshall JR, Palmer RB, Thompson M, Turner NJ, Cosgrove SC, Flitsch SL. Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades*. Angew Chem Int Ed Engl 2021; 60:18660-18665. [PMID: 33856106 PMCID: PMC8453870 DOI: 10.1002/anie.202103805] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Indexed: 01/14/2023]
Abstract
A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.
Collapse
Affiliation(s)
- Ashley P. Mattey
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Grayson J. Ford
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Joan Citoler
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Christopher Baldwin
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ryan B. Palmer
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | | | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sebastian C. Cosgrove
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Lennard-Jones LaboratorySchool of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireST5 5BGUK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
17
|
Mattey AP, Ford GJ, Citoler J, Baldwin C, Marshall JR, Palmer RB, Thompson M, Turner NJ, Cosgrove SC, Flitsch SL. Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:18808-18813. [PMID: 38505092 PMCID: PMC10947180 DOI: 10.1002/ange.202103805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Indexed: 12/20/2022]
Abstract
A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.
Collapse
Affiliation(s)
- Ashley P. Mattey
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Grayson J. Ford
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Joan Citoler
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Christopher Baldwin
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ryan B. Palmer
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | | | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sebastian C. Cosgrove
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Lennard-Jones LaboratorySchool of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireST5 5BGUK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
18
|
Xiong J, Chen H, Liu R, Yu H, Zhuo M, Zhou T, Li S. Tuning a bi-enzymatic cascade reaction in Escherichia coli to facilitate NADPH regeneration for ε-caprolactone production. BIORESOUR BIOPROCESS 2021; 8:32. [PMID: 38650214 PMCID: PMC10992311 DOI: 10.1186/s40643-021-00370-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
ε-Caprolactone is a monomer of poly(ε-caprolactone) which has been widely used in tissue engineering due to its biodegradability and biocompatibility. To meet the massive demand for this monomer, an efficient whole-cell biocatalytic approach was constructed to boost the ε-caprolactone production using cyclohexanol as substrate. Combining an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO) in Escherichia coli, a self-sufficient NADPH-cofactor regeneration system was obtained. Furthermore, some improved variants with the better substrate tolerance and higher catalytic ability to ε-caprolactone production were designed by regulating the ribosome binding sites. The best mutant strain exhibited an ε-caprolactone yield of 0.80 mol/mol using 60 mM cyclohexanol as substrate, while the starting strain only got a conversion of 0.38 mol/mol when 20 mM cyclohexanol was supplemented. The engineered whole-cell biocatalyst was used in four sequential batches to achieve a production of 126 mM ε-caprolactone with a high molar yield of 0.78 mol/mol.
Collapse
Affiliation(s)
- Jinghui Xiong
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ran Liu
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Hao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Min Zhuo
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Ting Zhou
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
20
|
Lukito BR, Wang Z, Sundara Sekar B, Li Z. Production of (R)-mandelic acid from styrene, L-phenylalanine, glycerol, or glucose via cascade biotransformations. BIORESOUR BIOPROCESS 2021; 8:22. [PMID: 38650227 PMCID: PMC10992357 DOI: 10.1186/s40643-021-00374-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
(R)-mandelic acid is an industrially important chemical, especially used for producing antibiotics. Its chemical synthesis often uses highly toxic cyanide to produce its racemic form, followed by kinetic resolution with 50% maximum yield. Here we report a green and sustainable biocatalytic method for producing (R)-mandelic acid from easily available styrene, biobased L-phenylalanine, and renewable feedstocks such as glycerol and glucose, respectively. An epoxidation-hydrolysis-double oxidation artificial enzyme cascade was developed to produce (R)-mandelic acid at 1.52 g/L from styrene with > 99% ee. Incorporation of deamination and decarboxylation into the above cascade enables direct conversion of L-phenylalanine to (R)-mandelic acid at 913 mg/L and > 99% ee. Expressing the five-enzyme cascade in an L-phenylalanine-overproducing E. coli NST74 strain led to the direct synthesis of (R)-mandelic acid from glycerol or glucose, affording 228 or 152 mg/L product via fermentation. Moreover, coupling of E. coli cells expressing L-phenylalanine biosynthesis pathway with E. coli cells expressing the artificial enzyme cascade enabled the production of 760 or 455 mg/L (R)-mandelic acid from glycerol or glucose. These simple, safe, and green methods show great potential in producing (R)-mandelic acid from renewable feedstocks.
Collapse
Affiliation(s)
- Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
21
|
Burns M, Bi W, Kim H, Lall MS, Li C, O’Neill BT. Ketoreductase/Transaminase, One-Pot, Multikilogram Biocatalytic Cascade Reaction. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michael Burns
- Pfizer Worldwide Research, Development & Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Wenying Bi
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P.R. China
| | - Hui Kim
- Pfizer Worldwide Research, Development & Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Manjinder S. Lall
- Pfizer Worldwide Research, Development & Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Chao Li
- Pfizer Worldwide Research, Development & Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brian T. O’Neill
- Pfizer Worldwide Research, Development & Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
22
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
23
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 646] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
24
|
Sekar BS, Mao J, Lukito BR, Wang Z, Li Z. Bioproduction of Enantiopure (
R
)‐ and (
S
)‐2‐Phenylglycinols from Styrenes and Renewable Feedstocks. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Jiwei Mao
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
| | - Zilong Wang
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive Singapore 117585 Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI) Life Sciences Institute National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| |
Collapse
|
25
|
González‐Martínez D, Gotor V, Gotor‐Fernández V. Chemo‐ and Stereoselective Synthesis of Fluorinated Amino Alcohols through One‐pot Reactions using Alcohol Dehydrogenases and Amine Transaminases. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Vicente Gotor
- Organic and Inorganic Chemistry Department Universidad de Oviedo 33006 Oviedo Asturias Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry Department Universidad de Oviedo 33006 Oviedo Asturias Spain
| |
Collapse
|
26
|
Eidenschenk C, Cheruzel L. Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. J Inorg Biochem 2020; 213:111254. [PMID: 32979791 PMCID: PMC7686262 DOI: 10.1016/j.jinorgbio.2020.111254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
With a growing interest in utilizing visible light to drive biocatalytic processes, several light-harvesting units and approaches have been employed to harness the synthetic potential of heme monooxygenases and carry out selective oxyfunctionalization of a wide range of substrates. While the fields of cytochrome P450 and Ru(II) photochemistry have separately been prolific, it is not until the turn of the 21st century that they converged. Non-covalent and subsequently covalently attached Ru(II) complexes were used to promote rapid intramolecular electron transfer in bacterial P450 enzymes. Photocatalytic activity with Ru(II)-modified P450 enzymes was achieved under reductive conditions with a judicious choice of a sacrificial electron donor. The initial concept of Ru(II)-modified P450 enzymes was further improved using protein engineering, photosensitizer functionalization and was successfully applied to other P450 enzymes. In this review, we wish to present the recent contributions from our group and others in utilizing Ru(II) complexes coupled with P450 enzymes in the broad context of photobiocatalysis, protein assemblies and chemoenzymatic reactions. The merging of chemical catalysts with the synthetic potential of P450 enzymes has led to the development of several chemoenzymatic approaches. Moreover, strained Ru(II) compounds have been shown to selectively inhibit P450 enzymes by releasing aromatic heterocycle containing molecules upon visible light excitation taking advantage of the rapid ligand loss feature in those complexes.
Collapse
Affiliation(s)
- Celine Eidenschenk
- Department Biochemical and Cellular Pharmacology, Genentech, One DNA Way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- San José State University, Department of Chemistry, One Washington Square, San José, CA 95192-0101, USA.
| |
Collapse
|
27
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
28
|
Caparco AA, Bommarius BR, Bommarius AS, Champion JA. Protein-inorganic calcium-phosphate supraparticles as a robust platform for enzyme co-immobilization. Biotechnol Bioeng 2020; 117:1979-1989. [PMID: 32255509 DOI: 10.1002/bit.27348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 01/16/2023]
Abstract
Immobilization of enzymes provides many benefits, including facile separation and recovery of enzymes from reaction mixtures, enhanced stability, and co-localization of multiple enzymes. Calcium-phosphate-protein supraparticles imbued with a leucine zipper binding domain (ZR ) serve as a modular immobilization platform for enzymes fused to the complementary leucine zipper domain (ZE ). The zippers provide high-affinity, specific binding, separating enzymatic activity from the binding event. Using fluorescent model proteins (mCherryZE and eGFPZE ), an amine dehydrogenase (AmDHZE ), and a formate dehydrogenase (FDHZE ), the efficacy of supraparticles as a biocatalytic solid support was assessed. Supraparticles demonstrated several benefits as an immobilization support, including predictable loading of multiple proteins, structural integrity in a panel of solvents, and the ability to elute and reload proteins without damaging the support. The dual-enzyme reaction successfully converted ketone to amine on supraparticles, highlighting the efficacy of this system.
Collapse
Affiliation(s)
- Adam A Caparco
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Bettina R Bommarius
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andreas S Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
29
|
Zhou Y, Sekar BS, Wu S, Li Z. Benzoic acid production via cascade biotransformation and coupled fermentation‐biotransformation. Biotechnol Bioeng 2020; 117:2340-2350. [DOI: 10.1002/bit.27366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Zhou
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
| | - Balaji Sundara Sekar
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Shuke Wu
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| | - Zhi Li
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences InstituteNational University of Singapore Singapore Singapore
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore Singapore
| |
Collapse
|
30
|
Koesoema AA, Standley DM, Senda T, Matsuda T. Impact and relevance of alcohol dehydrogenase enantioselectivities on biotechnological applications. Appl Microbiol Biotechnol 2020; 104:2897-2909. [PMID: 32060695 DOI: 10.1007/s00253-020-10440-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
Abstract
Alcohol dehydrogenases (ADHs) catalyze the reversible reduction of a carbonyl group to its corresponding alcohol. ADHs are widely employed for organic synthesis due to their lack of harm to the environment, broad substrate acceptance, and high enantioselectivity. This review focuses on the impact and relevance of ADH enantioselectivities on their biotechnological application. Stereoselective ADHs are beneficial to reduce challenging ketones such as ketones owning two bulky substituents or similar-sized substituents to the carbonyl carbon. Meanwhile, in cascade reactions, non-stereoselective ADHs can be utilized for the quantitative oxidation of racemic alcohol to ketone and dynamic kinetic resolution.
Collapse
Affiliation(s)
- Afifa Ayu Koesoema
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan
| | - Daron M Standley
- Department of Genome Informatics, Genome Information Research Center, Research Institute of Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tomoko Matsuda
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
31
|
Heuson E, Dumeignil F. The various levels of integration of chemo- and bio-catalysis towards hybrid catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00696c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hybrid catalysis is an emerging concept that combines chemo- and biocatalysts in a wide variety of approaches. Combining the specifications and advantages of multiple disciplines, it is a very promising way to diversify tomorrow's catalysis.
Collapse
Affiliation(s)
- Egon Heuson
- Univ. Lille
- INRA
- ISA
- Univ. Artois
- Univ. Littoral Côte d'Opale
| | | |
Collapse
|
32
|
Affiliation(s)
- Elaine O'Reilly
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - James Ryan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Huo J, He G, Chen W, Hu X, Deng Q, Chen D. A minireview of hydroamination catalysis: alkene and alkyne substrate selective, metal complex design. BMC Chem 2019; 13:89. [PMID: 31384836 PMCID: PMC6661821 DOI: 10.1186/s13065-019-0606-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023] Open
Abstract
Organic compounds that contain nitrogen are very important intermediates in pharmaceutical and chemical industry. Hydroamination is the reaction that can form C-N bond with high atom economy. The research progress in metals catalyzed hydroamination of alkenes and alkynes from the perspective of reaction mechanism is categorized and summarized.
Collapse
Affiliation(s)
- Jingpei Huo
- Institute of Electrochemical Corrosion, College of Materials Science and Energy Engineering, Foshan University, Foshan, 528000 People’s Republic of China
| | - Guozhang He
- Institute of Electrochemical Corrosion, College of Materials Science and Energy Engineering, Foshan University, Foshan, 528000 People’s Republic of China
| | - Weilan Chen
- Institute of Electrochemical Corrosion, College of Materials Science and Energy Engineering, Foshan University, Foshan, 528000 People’s Republic of China
| | - Xiaohong Hu
- Institute of Electrochemical Corrosion, College of Materials Science and Energy Engineering, Foshan University, Foshan, 528000 People’s Republic of China
| | - Qianjun Deng
- Institute of Electrochemical Corrosion, College of Materials Science and Energy Engineering, Foshan University, Foshan, 528000 People’s Republic of China
| | - Dongchu Chen
- Institute of Electrochemical Corrosion, College of Materials Science and Energy Engineering, Foshan University, Foshan, 528000 People’s Republic of China
| |
Collapse
|
34
|
Bitterwolf P, Ott F, Rabe KS, Niemeyer CM. Imine Reductase Based All-Enzyme Hydrogel with Intrinsic Cofactor Regeneration for Flow Biocatalysis. MICROMACHINES 2019; 10:E783. [PMID: 31731666 PMCID: PMC6915733 DOI: 10.3390/mi10110783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022]
Abstract
All-enzyme hydrogels are biocatalytic materials, with which various enzymes can be immobilized in microreactors in a simple, mild, and efficient manner to be used for continuous flow processes. Here we present the construction and application of a cofactor regenerating hydrogel based on the imine reductase GF3546 from Streptomyces sp. combined with the cofactor regenerating glucose-1-dehydrogenase from Bacillus subtilis. The resulting hydrogel materials were characterized in terms of binding kinetics and viscoelastic properties. The materials were formed by rapid covalent crosslinking in less than 5 min, and they showed a typical mesh size of 67 ± 2 nm. The gels were applied for continuous flow biocatalysis. In a microfluidic reactor setup, the hydrogels showed excellent conversions of imines to amines for up to 40 h in continuous flow mode. Variation of flow rates led to a process where the gels showed a maximum space-time-yield of 150 g·(L·day)-1 at 100 μL/min.
Collapse
Affiliation(s)
| | | | | | - Christof M. Niemeyer
- Institute for Biological Interfaces (IBG1), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (P.B.); (F.O.); (K.S.R.)
| |
Collapse
|
35
|
Bitterwolf P, Gallus S, Peschke T, Mittmann E, Oelschlaeger C, Willenbacher N, Rabe KS, Niemeyer CM. Valency engineering of monomeric enzymes for self-assembling biocatalytic hydrogels. Chem Sci 2019; 10:9752-9757. [PMID: 32055344 PMCID: PMC6993604 DOI: 10.1039/c9sc04074a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
All-enzyme hydrogels are efficient reagents for continuous flow biocatalysis. These materials can be obtained by self-assembly of two oligomeric enzymes, modified with the complementary SpyTag and SpyCatcher units. To facilitate access to the large proportion of biocatalytically relevant monomeric enzymes, we demonstrate that the tagging valency of the monomeric (S)-stereoselective ketoreductase Gre2p from Saccharomyces cerevisiae can be designed to assemble stable, active hydrogels with the cofactor-regenerating glucose 1-dehydrogenase GDH from Bacillus subtilis. Mounted in microfluidic reactors, these gels revealed high conversion rates and stereoselectivity in the reduction of prochiral methylketones under continuous flow for more than 8 days. The sequential use as well as parallelization by 'numbering up' of the flow reactor modules demonstrate that this approach is suitable for syntheses on the semipreparative scale.
Collapse
Affiliation(s)
- Patrick Bitterwolf
- Institute for Biological Interfaces (IBG1) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany .
| | - Sabrina Gallus
- Institute for Biological Interfaces (IBG1) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany .
| | - Theo Peschke
- Novartis AG , Kohlestrasse WSJ 103 , CH-4002 Basel , Switzerland
| | - Esther Mittmann
- Institute for Biological Interfaces (IBG1) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany .
| | - Claude Oelschlaeger
- Institute for Mechanical Process Engineering and Mechanics , Karlsruhe Institute of Technology (KIT) , Gotthard-Franz-Straße 3 , D-76131 Karlsruhe , Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics , Karlsruhe Institute of Technology (KIT) , Gotthard-Franz-Straße 3 , D-76131 Karlsruhe , Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces (IBG1) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany .
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG1) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , D-76344 Eggenstein-Leopoldshafen , Germany .
| |
Collapse
|
36
|
Heine T, Scholtissek A, Hofmann S, Koch R, Tischler D. Accessing Enantiopure Epoxides and Sulfoxides: Related Flavin‐Dependent Monooxygenases Provide Reversed Enantioselectivity. ChemCatChem 2019. [DOI: 10.1002/cctc.201901353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Heine
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Anika Scholtissek
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Sarah Hofmann
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
| | - Rainhard Koch
- Engineering & TechnologyBayer AG Leverkusen 51368 Germany
| | - Dirk Tischler
- Institute of BiosciencesTU Bergakademie Freiberg Freiberg 09599 Germany
- Microbial BiotechnologyRuhr University Bochum Bochum 44780 Germany
| |
Collapse
|
37
|
Hartley CJ, Williams CC, Scoble JA, Churches QI, North A, French NG, Nebl T, Coia G, Warden AC, Simpson G, Frazer AR, Jensen CN, Turner NJ, Scott C. Engineered enzymes that retain and regenerate their cofactors enable continuous-flow biocatalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0353-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Sun Z, Zhang Z, Li F, Nie Y, Yu H, Xu J. One Pot Asymmetric Synthesis of (
R
)‐Phenylglycinol from Racemic Styrene Oxide via Cascade Biocatalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zai‐Bao Sun
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Zhi‐Jun Zhang
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Fu‐Long Li
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Yao Nie
- School of BiotechnologyKey laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University Wuxi 214122 P.R. China
| | - Hui‐Lei Yu
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| | - Jian‐He Xu
- State Key Laboratory of Bioreactor EngineeringShanghai Collaborative Innovation Center for BiomanufacturingEast China University of Science and Technology 130 Meilong Road Shanghai 200237 P.R. China
| |
Collapse
|
39
|
An Z, Dai Y, Jiang Y, He J. Asymmetric Knoevenagel‐Phospha‐Michael Tandem Reaction Synergistically Catalyzed by Achiral Silanols and Grafted Chiral Amines on Mesoporous Silica. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhe An
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yan Dai
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yitao Jiang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
40
|
Peschke T, Bitterwolf P, Rabe KS, Niemeyer CM. Self‐Immobilizing Oxidoreductases for Flow Biocatalysis in Miniaturized Packed‐Bed Reactors. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Theo Peschke
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Patrick Bitterwolf
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
41
|
Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process. Catalysts 2019. [DOI: 10.3390/catal9060547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chemoenzymatic processes have been gaining interest to implement sustainable reaction steps or even create new synthetic routes. In this study, we combined Grubbs’ second-generation catalyst with pig liver esterase and conducted a chemoenzymatic one-pot process in a tandem mode. To address sustainability, we encapsulated the catalysts in biopolymer hydrogel beads and conducted the reaction cascade in an aqueous medium. Unfortunately, conducting the process in tandem led to increased side product formation. We then created core-shell beads with catalysts located in different compartments, which notably enhanced the selectivity towards the desired product compared to homogeneously distributing both catalysts within the matrix. Finally, we designed a specific large-sized bead with a diameter of 13.5 mm to increase the diffusion route of the Grubbs’ catalyst-containing shell. This design forced the ring-closing metathesis to occur first before the substrate could diffuse into the pig liver esterase-containing core, thus enhancing the selectivity to 75%. This study contributes to addressing reaction-related issues by designing specific immobilisates for chemoenzymatic processes.
Collapse
|
42
|
Schmermund L, Jurkaš V, Özgen FF, Barone GD, Büchsenschütz HC, Winkler CK, Schmidt S, Kourist R, Kroutil W. Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00656] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Valentina Jurkaš
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - F. Feyza Özgen
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Hanna C. Büchsenschütz
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Christoph K. Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| | - Sandy Schmidt
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|
43
|
Abstract
Maximizing space–time yields (STY) of biocatalytic flow processes is essential for the establishment of a circular biobased economy. We present a comparative study in which different biocatalytic flow reactor concepts were tested with the same enzyme, the (R)-selective alcohol dehydrogenase from Lactobacillus brevis (LbADH), that was used for stereoselective reduction of 5-nitrononane-2,8-dione. The LbADH contained a genetically encoded streptavidin (STV)-binding peptide to enable self-immobilization on STV-coated surfaces. The purified enzyme was immobilized by physisorption or chemisorption as monolayers on the flow channel walls, on magnetic microbeads in a packed-bed format, or as self-assembled all-enzyme hydrogels. Moreover, a multilayer biofilm with cytosolic-expressed LbADH served as a whole-cell biocatalyst. To enable cross-platform comparison, STY values were determined for the various reactor modules. While mono- and multilayer coatings of the reactor surface led to STY < 10, higher productivity was achieved with packed-bed reactors (STY ≈ 100) and the densely packed hydrogels (STY > 450). The latter modules could be operated for prolonged times (>6 days). Given that our approach should be transferable to other enzymes, we anticipate that compartmentalized microfluidic reaction modules equipped with self-immobilizing biocatalysts would be of great utility for numerous biocatalytic and even chemo-enzymatic cascade reactions under continuous flow conditions.
Collapse
|
44
|
Wu S, Zhou Y, Li Z. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chem Commun (Camb) 2019; 55:883-896. [PMID: 30566124 DOI: 10.1039/c8cc07828a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkenes are excellent starting materials for organic synthesis due to the versatile reactivity of C[double bond, length as m-dash]C bonds and the easy availability of many unfunctionalised alkenes. Direct regio- and/or enantioselective conversion of alkenes into functionalised (chiral) compounds has enormous potential for industrial applications, and thus has attracted the attention of researchers for extensive development using chemo-catalysis over the past few years. On the other hand, many enzymes have also been employed for conversion of alkenes in a highly selective and much greener manner to offer valuable products. Herein, we review recent advances in seven well-known types of biocatalytic conversion of alkenes. Remarkably, recent mechanism-guided directed evolution and enzyme cascades have enabled the development of seven novel types of single-step and one-pot multi-step functionalisation of alkenes, some of which are even unattainable via chemo-catalysis. These new reactions are particularly highlighted in this feature article. Overall, we present an ever-expanding enzyme toolbox for various alkene functionalisations inspiring further research in this fast-developing theme.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | | | | |
Collapse
|