1
|
Mozgawa B, Zasada F, Fedyna M, Góra-Marek K, Yin C, Zhao Z, Sojka Z, Pietrzyk P. First-Principles Thermodynamic Background of the Comprehensive Reaction Network of NO Oxidation over CuSSZ-13 Catalysts-Influence of Copper Speciation and Interpretation of TPD and TPSR Profiles. ACS Catal 2025; 15:2715-2734. [PMID: 40013253 PMCID: PMC11851786 DOI: 10.1021/acscatal.4c06619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
A thorough molecular DFT modeling coupled with first-principles thermodynamic (FPT), spectroscopic (EPR/IR), and catalytic investigations into a complex network of reactions involved in the interaction of NO and O2 with a comprehensive variety of active centers present in the CuSSZ-13 zeolites (Cu2+, Cu+, Cu2+-OH-, Cu2+-O2--Cu2+, Cu2+-O2 2--Cu2+, and segregated CuO) were carried out. The molecular structure, energetics, and electronic and magnetic properties of the identified profuse adspecies and intermediates were ascertained. Their thermal stability and reactivity at a wide range of experimental conditions were interpreted by using the constructed thermodynamic ΔG(p,T) diagrams. The course of selective catalytic oxidation of NO (NO-SCO) with 16O2 or 18O2 was examined by a temperature-programmed surface reaction (TPSR) using two types of CuSSZ-13 catalysts of intentionally diverse copper speciation. The results obtained, supported by the corroborative IR and EPR measurements, revealed multiple molecular pathways of the NO and O2 interactions with the single (Cu2+, Cu+, Cu2+-OH-) and dual (Cu2+-O2--Cu2+, Cu2+-O2 2--Cu2+) copper centers of the 6MR and 8MR topologies and with segregated CuO. The complex reaction network and temperature behavior of the critical intermediates (HONO, nitrate, and nitrite), and their evolvement routes into NO2, were rationalized using the calculated FPT thermodynamic profiles. The unraveled reactions were classified into metal (cationic) redox, ligand (anionic) redox, and HONO redox cycles. The Cu2+-OH- species were identified as prime active centers for the formation of NO2 via the HONO pathway. The elusive HONO intermediates allow for chemical communication between the individual redox cycles. Depending on the actual reaction conditions, HONO can act as a reduction agent for Cu2+ with the electroprotic formation of NO2, a source of nitrites upon deprotonation, or as an oxidant of Cu+ with the formation of H2O and NO. For the metal redox pathway, a significant difference in the reactivity between the Cu2+ cations accommodated in the 6MRs and 8MRs was observed, with the Cu2+/6MR being spectators and the Cu2+/8MR active species. Dimeric copper centers with bridging oxo and peroxy moieties can produce a variety of nitrates and nitrites via ligand redox mechanisms. Segregated CuO nanocrystals contribute to NO oxidation only at high temperatures (T > 400 °C), leading to the isotopic scrambling of 18O-labeled oxygen and nitric oxide. The established complex reaction network was successfully used to clarify the temperature dependence of the experimental NO-SCO profiles, also providing a suitable mechanistic background for interpreting the nature of the oxidative half-cycle of the selective catalytic reduction of NO over Cu-SSZ-13 catalysts.
Collapse
Affiliation(s)
- Bartosz Mozgawa
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Krakow 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, ul. prof.
S. Łojasiewicza 11, Krakow 30-348, Poland
| | - Filip Zasada
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Krakow 30-387, Poland
| | - Monika Fedyna
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Krakow 30-387, Poland
| | - Kinga Góra-Marek
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Krakow 30-387, Poland
| | - Chengyang Yin
- Institute
of Catalysis for Energy and Environment, College of Chemistry and
Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zhen Zhao
- Institute
of Catalysis for Energy and Environment, College of Chemistry and
Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning 110034, China
| | - Zbigniew Sojka
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Krakow 30-387, Poland
| | - Piotr Pietrzyk
- Faculty
of Chemistry, Jagiellonian University, ul. Gronostajowa 2, Krakow 30-387, Poland
| |
Collapse
|
2
|
Negri C, Usberti N, Contaldo G, Bracconi M, Nova I, Maestri M, Tronconi E. Quantitative Kinetic Insights from Operando-UV/Vis Spectroscopy: An Application to NH 3-SCR of NOx on Cu-CHA Catalysts. Angew Chem Int Ed Engl 2024; 63:e202408328. [PMID: 38829015 DOI: 10.1002/anie.202408328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
We employ UV/Vis Diffuse Reflectance spectroscopy directly coupled with a packed bed flow reactor to extract quantitative kinetic information. We use as a show-case the CuII/CuI redox dynamics during the reduction half cycle of the NH3-Selective Catalytic Reduction (SCR) on Cu-CHA catalysts. Our measurements enable quantification of the fraction of oxidized Cu, reconstructed by Multivariate Curve Resolution (MCR) together with monitoring of the gas-phase evolution during the reaction. These data both on the dynamics of the gas-phase and of the active site oxidation state have been used to assess the reduction half cycle rate equation and estimate the rate constant. Our results in terms of reaction orders and kinetic constant are in line with previous findings in the literature. Overall, our results demonstrate that the combined analysis of the UV spectra and of the gas-phase dynamics provides converging and unparalleled kinetic insight: this approach effectively resolves ambiguities concerning RHC kinetics and mechanism. More in general, this work provides evidence that operando spectroscopy can be used to extract quantitative kinetic information on catalytic cycles.
Collapse
Affiliation(s)
- Chiara Negri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Gabriele Contaldo
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Mauro Bracconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| |
Collapse
|
3
|
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024; 124:2352-2418. [PMID: 38408190 PMCID: PMC11809662 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This review highlights in situ UV-vis-NIR range absorption spectroscopy in catalysis. A variety of experimental techniques identifying reaction mechanisms, kinetics, and structural properties are discussed. Stopped flow techniques, use of laser pulses, and use of experimental perturbations are demonstrated for in situ studies of enzymatic, homogeneous, heterogeneous, and photocatalysis. They access different time scales and are applicable to different reaction systems and catalyst types. In photocatalysis, femto- and nanosecond resolved measurements through transient absorption are discussed for tracking excited states. UV-vis-NIR absorption spectroscopies for structural characterization are demonstrated especially for Cu and Fe exchanged zeolites and metalloenzymes. This requires combining different spectroscopies. Combining magnetic circular dichroism and resonance Raman spectroscopy is especially powerful. A multitude of phenomena can be tracked on transition metal catalysts on various supports, including changes in oxidation state, adsorptions, reactions, support interactions, surface plasmon resonances, and band gaps. Measurements of oxidation states, oxygen vacancies, and band gaps are shown on heterogeneous catalysts, especially for electrocatalysis. UV-vis-NIR absorption is burdened by broad absorption bands. Advanced analysis techniques enable the tracking of coking reactions on acid zeolites despite convoluted spectra. The value of UV-vis-NIR absorption spectroscopy to catalyst characterization and mechanistic investigation is clear but could be expanded.
Collapse
Affiliation(s)
- Max L Bols
- Laboratory for Chemical Technology (LCT), University of Ghent, Technologiepark Zwijnaarde 125, 9052 Ghent, Belgium
| | - Jing Ma
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Fatima Rammal
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xuejiao Wu
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Sara Navarro-Jaén
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Alexander J Heyer
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
4
|
Zhang N, Tong J, Miyazaki S, Zhao S, Kubota H, Jing Y, Mine S, Toyao T, Shimizu KI. Mechanism of NH 3-SCR over P/CeO 2 Catalysts Investigated by Operando Spectroscopies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16289-16295. [PMID: 37861445 DOI: 10.1021/acs.est.3c05787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
This study reports a comprehensive investigation into the active sites and reaction mechanism for the selective catalytic reduction of NO by NH3 (NH3-SCR) over phosphate-loaded ceria (P/CeO2). Catalyst characterization and density functional theory calculations reveal that H3PO4 and H2P2O6 species are the dominant phosphate species on the P/CeO2 catalysts under the experimental conditions. The reduction/oxidation half-cycles (RHC/OHC) were investigated using in situ X-ray absorption near-edge structure for Ce L3-edge, ultraviolet-visible, and infrared (IR) spectroscopies together with online analysis of outlet products (operando spectroscopy). The Ce4+(OH-) species, possibly adjacent to the phosphate species, are reduced by NO + NH3 to produce N2, H2O, and Ce3+ species (RHC). The Ce3+ species is reoxidized by aqueous O2 (OHC). The results from IR spectroscopy suggest that the RHC initiates with the reaction between NO and Ce4+(OH-) to yield Ce3+ and gaseous HONO, which then react with NH3 to produce N2 and H2O via NH4NO2 intermediates.
Collapse
Affiliation(s)
- Ningqiang Zhang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Jiahuan Tong
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinta Miyazaki
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shirun Zhao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Hiroe Kubota
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Chemical Process Technology, 4-2-1 Nigatake, Miyagino, Sendai 983-8551, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| |
Collapse
|
5
|
Radhakrishnan S, Smet S, Chandran CV, Sree SP, Duerinckx K, Vanbutsele G, Martens JA, Breynaert E. Prediction of Cu Zeolite NH 3-SCR Activity from Variable Temperature 1H NMR Spectroscopy. Molecules 2023; 28:6456. [PMID: 37764230 PMCID: PMC10537069 DOI: 10.3390/molecules28186456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Selective catalytic reduction (SCR) of NOx by ammonia is one of the dominant pollution abatement technologies for near-zero NOx emission diesel engines. A crucial step in the reduction of NOx to N2 with Cu zeolite NH3-SCR catalysts is the generation of a multi-electron donating active site, implying the permanent or transient dimerization of Cu ions. Cu atom mobility has been implicated by computational chemistry as a key factor in this process. This report demonstrates how variable temperature 1H NMR reveals the Cu induced generation of sharp 1H resonances associated with a low concentration of sites on the zeolite. The onset temperature of the appearance of these signals was found to strongly correlate with the NH3-SCR activity and was observed for a range of catalysts covering multiple frameworks (CHA, AEI, AFX, ERI, ERI-CHA, ERI-OFF, *BEA), with different Si/Al ratios and different Cu contents. The results point towards universal applicability of variable temperature NMR to predict the activity of a Cu-zeolite SCR catalyst. The unique relationship of a spectroscopic feature with catalytic behavior for zeolites with different structures and chemical compositions is exceptional in heterogeneous catalysis.
Collapse
Affiliation(s)
- Sambhu Radhakrishnan
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sam Smet
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - C. Vinod Chandran
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Sreeprasanth Pulinthanathu Sree
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Karel Duerinckx
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Gina Vanbutsele
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Johan A. Martens
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| | - Eric Breynaert
- Centre for Surface Chemistry and Catalysis—Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
- NMR/X-ray Platform for Convergence Research (NMRCoRe), KU Leuven, Celestijnenlaan 200F Box 2461, 3001 Heverlee, Belgium
| |
Collapse
|
6
|
Lei H, Chen D, Yang JY, Khetan A, Jiang J, Peng B, Simon U, Ye D, Chen P. Revealing the Formation and Reactivity of Cage-Confined Cu Pairs in Catalytic NO x Reduction over Cu-SSZ-13 Zeolites by In Situ UV-Vis Spectroscopy and Time-Dependent DFT Calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12465-12475. [PMID: 37556316 DOI: 10.1021/acs.est.3c00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The low-temperature mechanism of chabazite-type small-pore Cu-SSZ-13 zeolite, a state-of-the-art catalyst for ammonia-assisted selective reduction (NH3-SCR) of toxic NOx pollutants from heavy-duty vehicles, remains a debate and needs to be clarified for further improvement of NH3-SCR performance. In this study, we established experimental protocols to follow the dynamic redox cycling (i.e., CuII ↔ CuI) of Cu sites in Cu-SSZ-13 during low-temperature NH3-SCR catalysis by in situ ultraviolet-visible spectroscopy and in situ infrared spectroscopy. Further integrating the in situ spectroscopic observations with time-dependent density functional theory calculations allows us to identify two cage-confined transient states, namely, the O2-bridged Cu dimers (i.e., μ-η2:η2-peroxodiamino dicopper) and the proximately paired, chemically nonbonded CuI(NH3)2 sites, and to confirm the CuI(NH3)2 pair as a precursor to the O2-bridged Cu dimer. Comparative transient experiments reveal a particularly high reactivity of the CuI(NH3)2 pairs for NO-to-N2 reduction at low temperatures. Our study demonstrates direct experimental evidence for the transient formation and high reactivity of proximately paired CuI sites under zeolite confinement and provides new insights into the monomeric-to-dimeric Cu transformation for completing the Cu redox cycle in low-temperature NH3-SCR catalysis over Cu-SSZ-13.
Collapse
Affiliation(s)
- Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dongdong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, Qingdao 266237 China
| | - Abhishek Khetan
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275 China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum 44780 Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
7
|
Fernandes Pape Brito JC, Miletto I, Marchese L, Ali D, Azim MM, Mathisen K, Gianotti E. Hierarchical SAPO-34 Catalysts as Host for Cu Active Sites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5694. [PMID: 37629985 PMCID: PMC10456513 DOI: 10.3390/ma16165694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Cu-containing hierarchical SAPO-34 catalysts were synthesized by the bottom-up method using different mesoporogen templates: CTAB encapsulated within ordered mesoporous silica nanoparticles (MSNs) and sucrose. A high fraction of the Cu centers exchanged in the hierarchical SAPO-34 architecture with high mesopore surface area and volume was achieved when CTAB was embedded within ordered mesoporous silica nanoparticles. Physicochemical characterization was performed by using structural and spectroscopic techniques to elucidate the properties of hierarchical SAPO-34 before and after Cu introduction. The speciation of the Cu sites, investigated by DR UV-Vis, and the results of the catalytic tests indicated that the synergy between the textural properties of the hierarchical SAPO-34 framework, the high Cu loading, and the coordination and localization of the Cu sites in the hierarchical architecture is the key point to obtaining good preliminary results in the NO selective catalytic reduction with hydrocarbons (HC-SCR).
Collapse
Affiliation(s)
- Julio C. Fernandes Pape Brito
- Department for Sustainable Development and Ecological Transition, Università del Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| | - Ivana Miletto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Leonardo Marchese
- Department of Science and Technological Innovation, Università del Piemonte Orientale, Via T. Michel 11, 15100 Alessandria, Italy;
| | - Daniel Ali
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Muhammad Mohsin Azim
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Karina Mathisen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Enrica Gianotti
- Department for Sustainable Development and Ecological Transition, Università del Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| |
Collapse
|
8
|
Krishna SH, Goswami A, Wang Y, Jones CB, Dean DP, Miller JT, Schneider WF, Gounder R. Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3. Nat Catal 2023. [DOI: 10.1038/s41929-023-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Ting-ting X, Gang-gang L, Kai-hua Z, Xin-yan Z, Xin Z, Shao-qing Z. Effective reduction of nitric oxide over a core-shell Cu-SAPO-34@Fe-MOR zeolite catalyst. RSC Adv 2022; 13:638-651. [PMID: 36605656 PMCID: PMC9780741 DOI: 10.1039/d2ra06708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, a core-shell catalyst of Cu-SAPO-34@Fe-MOR was successfully prepared through a silica-sol adhesion method, and its performance for selective catalytic reduction of nitric oxide by NH3 (NH3-SCR) was evaluated in detail. The Fe-MOR coating has not only increased the high-temperature activity and broadened the reaction temperature window of Cu-SAPO-34 to a large extent, but also increased the hydrothermal stability of Cu-SAPO-34 markedly. It is demonstrated that a strong synergistic interaction effect exists between Cu2+ and Fe3+ ions and promotes the redox cycle and oxidation-reduction ability of copper ions, which greatly accelerates the catalytic performance of the core-shell Cu-SAPO-34@Fe-MOR catalyst. Abundant isolated Cu2+ ions and Fe3+ ions on the ion exchange sites performing NO x reduction at low and high temperature region lead to the broad reaction temperature window of Cu-SAPO-34@Fe-MOR. In addition, more weakly adsorbed NO x species formed and the increased number of Lewis acid sites may also contribute to the higher catalytic performance of Cu-SAPO-34@Fe-MOR. On the other hand, the better hydrothermal ageing stability of Cu-SAPO-34@Fe-MOR is related to its lighter structural collapse, fewer acidic sites lost, more active components (Cu2+ and Fe3+) maintained, and more monodentate nitrate species formed in the core-shell catalyst after hydrothermal ageing. Last, the mechanism study has found that both Langmuir-Hinshelwood ("L-H") and Eley-Rideal ("E-R") mechanisms play an essential role in the catalytic process of Cu-SAPO-34@Fe-MOR, and constitute another reason for its higher activity compared with that of Cu-SAPO-34 (only "L-H" mechanism).
Collapse
Affiliation(s)
- Xu Ting-ting
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Li Gang-gang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of SciencesBeijing 101408P. R. China
| | - Zheng Kai-hua
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Zhang Xin-yan
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152,Chongqing Research Institute, Changchun University of Science and TechnologyChongqing 401135P. R. China
| | - Zhang Xin
- School of Chemistry and Environmental Engineering, Changchun University of Science and TechnologyChangchun 130022P. R. China+86-431-8558-3152+86-431-8558-3152
| | - Zhang Shao-qing
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences4888 Shengbei Street, North District of Changchun High, ChangchunJilin 130102China
| |
Collapse
|
10
|
Nasello ND, Gramigni F, Nova I, Tronconi E, Hofmann F, Dieterich S, Crocoll M, Weibel M. Transient Redox Behavior of a NH3-SCR Cu-CHA SCR Catalyst: Effect of O2 Feed Content Variation. Top Catal 2022. [DOI: 10.1007/s11244-022-01715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Iacobone U, Nova I, Tronconi E, Villamaina R, Ruggeri MP, Collier J, Thompsett D. Appraising Multinuclear Cu 2+ Structure Formation in Cu-CHA SCR Catalysts via Low-T Dry CO Oxidation with Modulated NH 3 Solvation. ChemistryOpen 2022; 11:e202200186. [PMID: 36101494 PMCID: PMC9471058 DOI: 10.1002/open.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Cu2+ ions (ZCu2+ (OH)- , Z2 Cu2+ ) are regarded as the NH3 -SCR (SCR=selective catalytic reduction) active site precursors of Cu-exchanged chabazite (CHA) which is among the best available catalysts for the abatement of NOx from Diesel engines. During SCR operation, copper sites undergo reduction (Reduction half-cycle, RHC: Cu2+ →Cu+ ) and oxidation (Oxidaton half-cycle, OHC: Cu+ →Cu2+ ) semi cycles, whose associated mechanisms are still debated. We recently proposed CO oxidation to CO2 as an effective method to probe the formation of multinuclear Cu2+ species as the initial low-T RHC step. NH3 pre-adsorption determined a net positive effect on the CO2 production: by solvating ZCu2+ (OH)- ions, ammonia enhances their mobility, favoring their coupling to form binuclear complexes which can catalyze the reaction. In this work, dry CO oxidation experiments, preceded by modulated NH3 feed phases, clearly showed that CO2 production enhancements are correlated with the extent of Cu2+ ion solvation by NH3 . Analogies with the SCR-RHC phase are evidenced: the NH3 -Cu2+ presence ensures the characteristic dynamics associated with a second order kinetic dependence on the oxidized Cu2+ fraction. These findings provide novel information on the NH3 role in the low-T SCR redox mechanism and on the nature of the related active catalyst sites.
Collapse
Affiliation(s)
- Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes (LCCP)Dipartimento di EnergiaPolitecnico di MilanoVia Giuseppe La Masa 3420156MilanItaly
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes (LCCP)Dipartimento di EnergiaPolitecnico di MilanoVia Giuseppe La Masa 3420156MilanItaly
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes (LCCP)Dipartimento di EnergiaPolitecnico di MilanoVia Giuseppe La Masa 3420156MilanItaly
| | - Roberta Villamaina
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| | - Maria Pia Ruggeri
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| | - Jillian Collier
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| | - David Thompsett
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| |
Collapse
|
12
|
Dai S, Yang Y, Yang J, Chen S, Zhu L. Recent Advances in the Seed-Directed Synthesis of Zeolites without Addition of Organic Templates. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2873. [PMID: 36014738 PMCID: PMC9415991 DOI: 10.3390/nano12162873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Zeolites have been widely employed in fields of petroleum refining, fine chemicals and environmental protection, but their syntheses are always performed in the presence of organic templates, which have many drawbacks such as high cost and polluted wastes. In recent years, the seed-directed synthesis of zeolites has been paid much attention due to its low-cost and environmentally friendly features. In this review, the seed-directed synthesis of Al-rich zeolites with homonuclear and heteronuclear features, the seed-directed synthesis of Si-rich zeolites assisted with ethanol and the utility of seed-directed synthesis have been summarized. This review could help zeolite researchers understand the recent progress of seed-directed synthesis.
Collapse
Affiliation(s)
- Shujie Dai
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yichang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinghuai Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Shichang Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Longfeng Zhu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
13
|
Yasumura S, Qian Y, Kato T, Mine S, Toyao T, Maeno Z, Shimizu KI. In Situ/ Operando Spectroscopic Studies on the NH 3–SCR Mechanism over Fe–Zeolites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Taisetsu Kato
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- School of Advanced Engineering, KKogakuin University, Tokyo 192-0015, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| |
Collapse
|
14
|
Chen M, Li J, Xue W, Wang S, Han J, Wei Y, Mei D, Li Y, Yu J. Unveiling Secondary-Ion-Promoted Catalytic Properties of Cu-SSZ-13 Zeolites for Selective Catalytic Reduction of NO x. J Am Chem Soc 2022; 144:12816-12824. [PMID: 35802169 DOI: 10.1021/jacs.2c03877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incorporation of secondary metal ions into Cu-exchanged SSZ-13 zeolites could improve their catalytic properties in selective catalytic reduction of NOx with ammonia (NH3-SCR), but their essential roles remain unclear at the molecular level. Herein, a series of Cu-Sm-SSZ-13 zeolites have been prepared by ion-exchanging Sm ions followed by Cu ions, which exhibit superior NH3-SCR performance. The NO conversion of Cu-Sm-SSZ-13 is nearly 10% higher than that of conventional Cu-SSZ-13 (175-250 °C) after hydrothermal ageing, showing an enhanced low-temperature activity. The Sm ions are found to occupy the six-membered rings (6MRs) of SSZ-13 by X-ray diffraction Rietveld refinement and aberration-corrected scanning transmission electron microscopy. The Sm ions at 6MRs can facilitate the formation of more active [ZCu2+(OH)]+ ions at 8MRs, as revealed by temperature-programmed reduction of hydrogen. X-ray photoelectron spectroscopy and density functional theory (DFT) calculations indicate that there exists electron transfer from Sm3+ to [ZCu2+(OH)]+ ions, which promotes the activity of [ZCu2+(OH)]+ ions by decreasing the activation energy of the formation of intermediates (NH4NO2 and H2NNO). Meanwhile, the electrostatic interaction between Sm3+ and [ZCu2+(OH)]+ results in a high-reaction energy barrier for transforming [ZCu2+(OH)]+ ions into inactive CuOx species, thus enhancing the stability of [ZCu2+(OH)]+ ions. The influence of the ion-exchanging sequence of Sm and Cu ions into SSZ-13 is further investigated by combining both experiments and theoretical calculations. This work provides a mechanistic insight of secondary ions in regulating the distribution, activity, and stability of Cu active sites, which is helpful for the design of high-performance Cu-SSZ-13 catalysts for the NH3-SCR reaction.
Collapse
Affiliation(s)
- Mengyang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Wenjuan Xue
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Jinfeng Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yingzhen Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Donghai Mei
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, P. R. China
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Nakasaka Y, Kushima K, Yasumura S, Shimizu KI, Totani K, Shibata G, Masuda T. Experimental studies on intracrystalline diffusion of NO and NH3 in Cu-CHA. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Wu Y, Ma Y, Wang Y, Rappé KG, Washton NM, Wang Y, Walter ED, Gao F. Rate Controlling in Low-Temperature Standard NH 3-SCR: Implications from Operando EPR Spectroscopy and Reaction Kinetics. J Am Chem Soc 2022; 144:9734-9746. [PMID: 35605129 DOI: 10.1021/jacs.2c01933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yue Ma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
17
|
Daya R, Trandal D, Menon U, Deka DJ, Partridge WP, Joshi SY. Kinetic Model for the Reduction of Cu II Sites by NO + NH 3 and Reoxidation of NH 3-Solvated Cu I Sites by O 2 and NO in Cu-SSZ-13. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohil Daya
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Dylan Trandal
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Unmesh Menon
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Dhruba J. Deka
- Oak Ridge National Laboratory, 2360 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - William P. Partridge
- Oak Ridge National Laboratory, 2360 Cherahala Boulevard, Knoxville, Tennessee 37932, United States
| | - Saurabh Y. Joshi
- Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| |
Collapse
|
18
|
Hu W, Gramigni F, Nasello ND, Usberti N, Iacobone U, Liu S, Nova I, Gao X, Tronconi E. Dynamic Binuclear Cu II Sites in the Reduction Half-Cycle of Low-Temperature NH 3–SCR over Cu-CHA Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| |
Collapse
|
19
|
Yu R, Kong H, Zhao Z, Shi C, Meng X, Xiao FS, De Baerdemaeker T, Parvulescu AN, Müller U, Zhang W. Rare‐earth Yttrium Exchanged Cu‐SSZ‐39 Zeolite with Superior Hydrothermal Stability and SO2‐Tolerance in NH3‐SCR of NOx. ChemCatChem 2022. [DOI: 10.1002/cctc.202200228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rui Yu
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Haiyu Kong
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Zhenchao Zhao
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Chuan Shi
- Dalian University of Technology School of Chemical Engineering CHINA
| | - Xiangju Meng
- Zhejiang University Department of Chemistry CHINA
| | | | | | | | - Ulrich Müller
- BASF SE Process Research and Chemical Engineering GERMANY
| | - Weiping Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology State Key Laboratory of Fine Chemicals No.2 Linggong Road 116024 Dalian CHINA
| |
Collapse
|
20
|
Ohyama J, Tsuchimura Y, Hirayama A, Iwai H, Yoshida H, Machida M, Nishimura S, Kato K, Takahashi K. Relationships among the Catalytic Performance, Redox Activity, and Structure of Cu-CHA Catalysts for the Direct Oxidation of Methane to Methanol Investigated Using In Situ XAFS and UV–Vis Spectroscopies. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Yuka Tsuchimura
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Airi Hirayama
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroki Iwai
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Hiroshi Yoshida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masato Machida
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Shun Nishimura
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi 923-1292, Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Keisuke Takahashi
- Department of Chemistry, Hokkaido University, N-15 W-8, Sapporo 060-0815, Japan
| |
Collapse
|
21
|
Zhong C, Wu C, Zuo H, Gu Z. Theoretical analyses of
NH
3
‐SCR
reaction‐mass transfer over
Cu‐ZSM
‐5. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Zhong
- Hunan Provincial Key Laboratory of Vehicle Power and Transmission System Hunan Institute of Engineering Xiangtan China
- Hunan Engineering Research Center of New Energy Vehicle Lightweight Hunan Institute of Engineering Xiangtan China
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| | - Chenxi Wu
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| | - Hongyan Zuo
- Hunan Provincial Key Laboratory of Vehicle Power and Transmission System Hunan Institute of Engineering Xiangtan China
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| | - Zhong Gu
- School of Mechanical Engineering Hunan Institute of Engineering Xiangtan China
| |
Collapse
|
22
|
Temperature dependence of Cu(I) oxidation and Cu(II) reduction kinetics in the selective catalytic reduction of NOx with NH3 on Cu-chabazite zeolites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Han J, Wang A, Isapour G, Härelind H, Skoglundh M, Creaser D, Olsson L. N2O Formation during NH3-SCR over Different Zeolite Frameworks: Effect of Framework Structure, Copper Species, and Water. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joonsoo Han
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Aiyong Wang
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Ghodsieh Isapour
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Hanna Härelind
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Magnus Skoglundh
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Derek Creaser
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Louise Olsson
- Department of Chemistry and Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg 41296, Sweden
| |
Collapse
|
24
|
Millan R, Cnudde P, van Speybroeck V, Boronat M. Mobility and Reactivity of Cu + Species in Cu-CHA Catalysts under NH 3-SCR-NOx Reaction Conditions: Insights from AIMD Simulations. JACS AU 2021; 1:1778-1787. [PMID: 34723280 PMCID: PMC8549050 DOI: 10.1021/jacsau.1c00337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 05/25/2023]
Abstract
The mobility of the copper cations acting as active sites for the selective catalytic reduction of nitrogen oxides with ammonia in Cu-CHA catalysts varies with temperature and feed composition. Herein, the migration of [Cu(NH3)2]+ complexes between two adjacent cavities of the chabazite structure, including other reactant molecules (NO, O2, H2O, and NH3), in the initial and final cavities is investigated using ab initio molecular dynamics (AIMD) simulations combined with enhanced sampling techniques to describe hopping events from one cage to the other. We find that such diffusion is only significantly hindered by the presence of excess NH3 or NO in the initial cavity, since both reactants form with [Cu(NH3)2]+ stable intermediates which are too bulky to cross the 8-ring windows connecting the cavities. The presence of O2 modifies strongly the interaction of NO with Cu+. At low temperatures, we observe NO detachment from Cu+ and increased mobility of the [Cu(NH3)2]+ complex, while at high temperatures, NO reacts spontaneously with O2 to form NO2. The present simulations give evidence for recent experimental observations, namely, an NH3 inhibition effect on the SCR reaction at low temperatures, and transport limitations of NO and NH3 at high temperatures. Our first principle simulations mimicking operating conditions support the existence of two different reaction mechanisms operating at low and high temperatures, the former involving dimeric Cu(NH3)2-O2-Cu(NH3)2 species and the latter occurring by direct NO oxidation to NO2 in one single cavity.
Collapse
Affiliation(s)
- Reisel Millan
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| | - Pieter Cnudde
- Center
for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | | | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Avenida de los Naranjos s/n, 46022 València, Spain
| |
Collapse
|
25
|
Yasumura S, Toyao T, Maeno Z, Shimizu KI. Lean NO x Reduction by In-Situ-Formed NH 3 under Periodic Lean/Rich Conditions over Rhodium-Loaded Al-Rich Beta Zeolites. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
26
|
Negri C, Martini A, Deplano G, Lomachenko KA, Janssens TVW, Borfecchia E, Berlier G, Bordiga S. Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts. Phys Chem Chem Phys 2021; 23:18322-18337. [PMID: 34612374 PMCID: PMC8409503 DOI: 10.1039/d1cp01754c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022]
Abstract
The speciation of framework-interacting CuII sites in Cu-chabazite zeolite catalysts active in the selective catalytic reduction of NOx with NH3 is studied, to investigate the influence of the Al content on the copper structure and their reactivity towards a NO/O2 mixture. To this aim, three samples with similar Cu densities and different Si/Al ratios (5, 15 and 29) were studied using in situ X-ray absorption spectroscopy (XAS), FTIR and diffuse reflectance UV-Vis during pretreatment in O2 followed by the reaction. XAS and UV-Vis data clearly show the main presence of Z2CuII sites (with Z representing a framework negative charge) at a low Si/Al ratio, as predicted. EXAFS wavelet transform analysis showed a non-negligible fraction of proximal Z2CuII monomers, possibly stabilized into two 6-membered rings within the same cage. These sites are not able to form Cu-nitrates by interaction with NO/O2. By contrast, framework-anchored Z[CuII(NO3)] complexes with a chelating bidentate structure are formed in samples with a higher Si/Al ratio, by reaction of NO/O2 with Z[CuII(OH)] sites or structurally similar mono- or multi-copper Zx[CuIIxOy] sites. Linear combination fit (LCF) analysis of the XAS data showed good agreement between the fraction of Z[CuII(OH)]/Zx[CuIIxOy] sites formed during activation in O2 and that of Z[CuII(NO3)] complexes formed by reaction with NO/O2, further confirming the chemical inertia of Z2CuII towards these reactants in the absence of solvating NH3 molecules.
Collapse
Affiliation(s)
- Chiara Negri
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Andrea Martini
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
- The Smart Materials Research Institute, Southern Federal UniversitySladkova 178/24344090 Rostov-on-DonRussia
| | - Gabriele Deplano
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Kirill A. Lomachenko
- European Synchrotron Radiation Facility71 Avenue des Martyrs, CS 4022038043 Grenoble Cedex 9France
| | | | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| |
Collapse
|
27
|
Hu W, Iacobone U, Gramigni F, Zhang Y, Wang X, Liu S, Zheng C, Nova I, Gao X, Tronconi E. Unraveling the Hydrolysis of Z2Cu2+ to ZCu2+(OH)− and Its Consequences for the Low-Temperature Selective Catalytic Reduction of NO on Cu-CHA Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| | - Yu Zhang
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Xiaoxiang Wang
- Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Chenghang Zheng
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, Milano 20156, Italy
| |
Collapse
|
28
|
Kubota H, Liu C, Amada T, Kon K, Toyao T, Maeno Z, Ueda K, Satsuma A, Tsunoji N, Sano T, Shimizu K. In situ/operando spectroscopic studies on NH3–SCR reactions catalyzed by a phosphorus-modified Cu-CHA zeolite. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Sánchez-López P, Kotolevich Y, Yocupicio-Gaxiola RI, Antúnez-García J, Chowdari RK, Petranovskii V, Fuentes-Moyado S. Recent Advances in Catalysis Based on Transition Metals Supported on Zeolites. Front Chem 2021; 9:716745. [PMID: 34434919 PMCID: PMC8380812 DOI: 10.3389/fchem.2021.716745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
This article reviews the current state and development of thermal catalytic processes using transition metals (TM) supported on zeolites (TM/Z), as well as the contribution of theoretical studies to understand the details of the catalytic processes. Structural features inherent to zeolites, and their corresponding properties such as ion exchange capacity, stable and very regular microporosity, the ability to create additional mesoporosity, as well as the potential chemical modification of their properties by isomorphic substitution of tetrahedral atoms in the crystal framework, make them unique catalyst carriers. New methods that modify zeolites, including sequential ion exchange, multiple isomorphic substitution, and the creation of hierarchically porous structures both during synthesis and in subsequent stages of post-synthetic processing, continue to be discovered. TM/Z catalysts can be applied to new processes such as CO2 capture/conversion, methane activation/conversion, selective catalytic NOx reduction (SCR-deNOx), catalytic depolymerization, biomass conversion and H2 production/storage.
Collapse
Affiliation(s)
- Perla Sánchez-López
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Yulia Kotolevich
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | | | - Joel Antúnez-García
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Ramesh Kumar Chowdari
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Vitalii Petranovskii
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Sergio Fuentes-Moyado
- Departamento de Nanocatálisis, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| |
Collapse
|
30
|
Kubota H, Toyao T, Maeno Z, Inomata Y, Murayama T, Nakazawa N, Inagaki S, Kubota Y, Shimizu KI. Analogous Mechanistic Features of NH 3-SCR over Vanadium Oxide and Copper Zeolite Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroe Kubota
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yusuke Inomata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Toru Murayama
- Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Naoto Nakazawa
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Satoshi Inagaki
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshihiro Kubota
- Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
31
|
Krishna SH, Jones CB, Gounder R. Dynamic Interconversion of Metal Active Site Ensembles in Zeolite Catalysis. Annu Rev Chem Biomol Eng 2021; 12:115-136. [PMID: 33826852 DOI: 10.1146/annurev-chembioeng-092120-010920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catalysis science is founded on understanding the structure, number, and reactivity of active sites. Kinetic models that consider active sites to be static and noninteracting entities are routinely successful in describing the behavior of heterogeneous catalysts. Yet, active site ensembles often restructure in response to their external environment and even during steady-state catalytic turnover, sometimes requiring non-mean-field kinetic treatments to describe distance-dependent interactions among sites. Such behavior is being recognized more frequently in modern catalysis research, with the advent of experimental methods to quantify turnover rates with increasing precision, an expanding arsenal of operando characterization tools, and computational descriptions of atomic structure and motion at chemical potentials and timescales increasingly relevant to reaction conditions. This review focuses on dynamic changes to metal active site ensembles on zeolite supports, which are silica-based crystalline materials substituted with Al that generate binding sites for isolated and low-nuclearity metal site ensembles. Metal sites can become solvated and mobilized during reaction, facilitating interactions among sites that change their nuclearity and function. Such intersite communication can be regulated by the zeolite support, resulting in non-single-site and potentially non-mean-field kinetic behavior arising from mechanisms of catalytic action that combine elements of those canonically associated with homogeneous and heterogeneous catalysis.We discuss recent literature examples that document dynamic active site behavior in metal-zeolites and outline methodologies to identify and interpret such behavior. We conclude with our outlook on future research directions to develop this evolving branch of catalysis science and harness it for practical applications.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
32
|
Gramigni F, Nasello ND, Usberti N, Iacobone U, Selleri T, Hu W, Liu S, Gao X, Nova I, Tronconi E. Transient Kinetic Analysis of Low-Temperature NH 3-SCR over Cu-CHA Catalysts Reveals a Quadratic Dependence of Cu Reduction Rates on Cu II. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Tommaso Selleri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| |
Collapse
|
33
|
Hu W, Selleri T, Gramigni F, Fenes E, Rout KR, Liu S, Nova I, Chen D, Gao X, Tronconi E. On the Redox Mechanism of Low-Temperature NH 3 -SCR over Cu-CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angew Chem Int Ed Engl 2021; 60:7197-7204. [PMID: 33400829 DOI: 10.1002/anie.202014926] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/20/2020] [Indexed: 11/07/2022]
Abstract
Cu-CHA is the state-of-the-art catalyst for the Selective Catalytic Reduction (SCR) of NOx in vehicle applications. Although extensively studied, diverse mechanistic proposals still stand in terms of the nature of active Cu-ions and reaction pathways in SCR working conditions. Herein we address the redox mechanism underlying Low-Temperature (LT) SCR on Cu-CHA by an integration of chemical-trapping techniques, transient-response methods, operando UV/Vis-NIR spectroscopy with modelling tools based on transient kinetic analysis and density functional theory calculations. We show that the rates of the Reduction Half-Cycle (RHC) of LT-SCR display a quadratic dependence on CuII , thus questioning mechanisms based on isolated CuII -ions. We propose, instead, a CuII -pair mediated LT-RHC pathway, in which NO oxidative activation to mobile nitrite-precursor intermediates accounts for CuII reduction. These results highlight the role of dinuclear Cu complexes not only in the oxidation part of LT-SCR, but also in the RHC reaction cascade.
Collapse
Affiliation(s)
- Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Tommaso Selleri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Endre Fenes
- Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Saelands vei 4, 7491, Trondheim, Norway
| | - Kumar R Rout
- Kinetic and Catalysis, SINTEF Industry, Sem Saelands Vei 2A, 7491, Trondheim, Norway
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, Sem Saelands vei 4, 7491, Trondheim, Norway
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| |
Collapse
|
34
|
Ohata Y, Ohnishi T, Moteki T, Ogura M. High NH 3-SCR reaction rate with low dependence on O 2 partial pressure over Al-rich Cu-*BEA zeolite. RSC Adv 2021; 11:10381-10384. [PMID: 35423523 PMCID: PMC8695709 DOI: 10.1039/d1ra00943e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 11/21/2022] Open
Abstract
Dependence of NH3-SCR reaction rate on O2 partial pressure was investigated at 473 K over Cu ion-exchanged MOR, MFI, CHA and *BEA zeolites with varying “Cu density in micropores”. Among the zeolites, Cu–*BEA zeolite demonstrated promising potential as an effective catalyst for NH3-SCR over a wide range of O2 partial pressure. It was revealed that Al-rich Cu–*BEA zeolite exhibit high reaction rate for NH3-SCR at 473 K in low PO2 reaction condition.![]()
Collapse
Affiliation(s)
- Yusuke Ohata
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan
| | - Takeshi Ohnishi
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan
| | - Takahiko Moteki
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University Katsura Kyoto 615-8520 Japan
| | - Masaru Ogura
- Institute of Industrial Science, The University of Tokyo Komaba, Meguro Tokyo 153-8505 Japan .,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
35
|
Ma Y, Wu X, Ding J, Liu L, Jin B, Walter ED, Ran R, Si Z, Gao F, Weng D. Quasi- operando quantification of Cu(II) ions in Cu-SSZ-13 catalyst by an NH 3 temperature-programmed reduction method. Chem Commun (Camb) 2021; 57:1891-1894. [PMID: 33491687 DOI: 10.1039/d0cc07346f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A quasi-operando NH3 temperature-programmed reduction method (NH3-TPR), with N2:Cu = 1:1, is developed to quantify total Cu(ii) ions in Cu-SSZ-13 quenched from SCR-relevant reactions, and its accuracy is confirmed by in situ EPR. [Cu(OH)]+-Z and Cu2+-2Z can be further distinguished by NH3 reduction temperatures, and their different reducibility in SCR is revealed.
Collapse
Affiliation(s)
- Yue Ma
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Xiaodong Wu
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Jiancai Ding
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Liping Liu
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Baofang Jin
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Eric D Walter
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, WA 99354, USA
| | - Rui Ran
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhichun Si
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Duan Weng
- The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. and Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
36
|
Hu W, Selleri T, Gramigni F, Fenes E, Rout KR, Liu S, Nova I, Chen D, Gao X, Tronconi E. On the Redox Mechanism of Low‐Temperature NH
3
‐SCR over Cu‐CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Tommaso Selleri
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - Endre Fenes
- Department of Chemical Engineering Norwegian University of Science and Technology Sem Sælands vei 4 7491 Trondheim Norway
| | - Kumar R. Rout
- Kinetic and Catalysis SINTEF Industry Sem Saelands Vei 2A 7491 Trondheim Norway
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa 34 20156 Milano Italy
| | - De Chen
- Department of Chemical Engineering Norwegian University of Science and Technology Sem Sælands vei 4 7491 Trondheim Norway
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes Dipartimento di Energia Politecnico di Milano Via La Masa 34 20156 Milano Italy
| |
Collapse
|
37
|
Liu C, Kubota H, Amada T, Toyao T, Maeno Z, Ogura M, Nakazawa N, Inagaki S, Kubota Y, Shimizu KI. Selective catalytic reduction of NO over Cu-AFX zeolites: mechanistic insights from in situ/ operando spectroscopic and DFT studies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00282a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ/operando spectroscopic experiments and DFT calculations unravel the redox mechanism of NH3-SCR over Cu-AFX zeolites.
Collapse
Affiliation(s)
- Chong Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hiroe Kubota
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takehiro Amada
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Masaru Ogura
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
- Kyoto 615-8520
- Japan
- Institute of Industrial Science
| | - Naoto Nakazawa
- Division of Materials Science and Chemical Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Satoshi Inagaki
- Division of Materials Science and Chemical Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Yoshihiro Kubota
- Division of Materials Science and Chemical Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|
38
|
Ohata Y, Kubota H, Toyao T, Shimizu KI, Ohnishi T, Moteki T, Ogura M. Kinetic and spectroscopic insights into the behaviour of Cu active site for NH 3-SCR over zeolites with several topologies. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01838d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zeolite topology has a great effect on the dependence of NH3-SCR rates over Cu–zeolites at 473 K on Cu density. It is revealed by the time-resolved UV-vis measurements that zeolites mainly affect the oxidation property of Cu ion by O2.
Collapse
Affiliation(s)
- Yusuke Ohata
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Hiroe Kubota
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Takeshi Ohnishi
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Takahiko Moteki
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Masaru Ogura
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|
39
|
Abstract
Dynamic motion of NH3-solvated Cu sites in Cu-chabazite (Cu-CHA) zeolites, which are the most promising and state-of-the-art catalysts for ammonia-assisted selective reduction of NOx (NH3-SCR) in the aftertreatment of diesel exhausts, represents a unique phenomenon linking heterogeneous and homogeneous catalysis. This review first summarizes recent advances in the theoretical understanding of such low-temperature Cu dynamics. Specifically, evidence of both intra-cage and inter-cage Cu motions, given by ab initio molecular dynamics (AIMD) or metadynamics simulations, will be highlighted. Then, we will show how, among others, synchrotron-based X-ray spectroscopy, vibrational and optical spectroscopy (diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) and diffuse reflection ultraviolet-visible spectroscopy (DRUVS)), electron paramagnetic spectroscopy (EPR), and impedance spectroscopy (IS) can be combined and complement each other to follow the evolution of coordinative environment and the local structure of Cu centers during low-temperature NH3-SCR reactions. Furthermore, the essential role of Cu dynamics in the tuning of low-temperature Cu redox, in the preparation of highly dispersed Cu-CHA catalysts by solid-state ion exchange method, and in the direct monitoring of NH3 storage and conversion will be presented. Based on the achieved mechanistic insights, we will discuss briefly the new perspectives in manipulating Cu dynamics to improve low-temperature NH3-SCR efficiency as well as in the understanding of other important reactions, such as selective methane-to-methanol oxidation and ethene dimerization, catalyzed by metal ion-exchanged zeolites.
Collapse
|
40
|
Paolucci C, Di Iorio JR, Schneider WF, Gounder R. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Acc Chem Res 2020; 53:1881-1892. [PMID: 32786332 DOI: 10.1021/acs.accounts.0c00328] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ConspectusCopper-exchanged chabazite (Cu-CHA) zeolites are catalysts used in diesel emissions control for the abatement of nitrogen oxides (NOx) via selective catalytic reduction (SCR) reactions with ammonia as the reductant. The discovery of these materials in the early 2010s enabled a step-change improvement in diesel emissions aftertreatment technology. Key advantages of Cu-CHA zeolites over prior materials include their effectiveness at the lower temperatures characteristic of diesel exhaust, their durability under high-temperature hydrothermal conditions, and their resistance to poisoning from residual hydrocarbons present in exhaust. Fundamental catalysis research has since uncovered mechanistic and kinetic features that underpin the ability of Cu-CHA to selectively reduce NOx under strongly oxidizing conditions and to achieve improved NOx conversion relative to other zeolite frameworks, particularly at low exhaust temperatures and with ammonia instead of other reductants.One critical mechanistic feature is the NH3 solvation of exchanged Cu ions at low temperatures (<523 K) to create cationic Cu-amine coordination complexes that are ionically tethered to anionic Al framework sites. This ionic tethering confers regulated mobility that facilitates interconversion between mononuclear and binuclear Cu complexes, which is necessary to propagate SCR through a Cu2+/Cu+ redox cycle during catalytic turnover. This dynamic catalytic mechanism, wherein single and dual metal sites interconvert to mediate different half-reactions of the redox cycle, combines features canonically associated with homogeneous and heterogeneous reaction mechanisms.In this Account, we describe how a unified experimental and theoretical interrogation of Cu-CHA catalysts in operando provided quantitative evidence of regulated Cu ion mobility and its role in the SCR mechanism. This approach relied on new synthetic methods to prepare model Cu-CHA zeolites with varied active-site structures and spatial densities in order to verify that the kinetic and mechanistic models describe the catalytic behavior of a family of materials of diverse composition, and on new computational approaches to capture the active-site structure and dynamics under conditions representative of catalysis. Ex situ interrogation revealed that the Cu structure depends on the conditions for the zeolite synthesis, which influence the framework Al substitution patterns, and that statistical and electronic structure models can enumerate Cu site populations for a known Al distribution. This recognition unifies seemingly disparate spectroscopic observations and inferences regarding Cu ion structure and responses to different external conditions. SCR rates depend strongly on the Cu spatial density and zeolite composition in kinetic regimes where Cu+ oxidation with O2 becomes rate-limiting, as occurs at lower temperatures and under fuel-rich conditions. Transient experiments, ab initio molecular dynamics simulations, and statistical models relate these sensitivities to the mobility constraints imposed by the CHA framework on NH3-solvated Cu ions, which regulate the pore volume accessible to these ions and their ability to pair and complete the catalytic cycle. This highlights the key characteristics of the CHA framework that enable superior performance under low-temperature SCR reaction conditions.This work illustrates the power of precise control over a catalytic material, simultaneous kinetic and spectroscopic interrogation over a wide range of reaction conditions, and computational strategies tailored to capture those reaction conditions to reveal in microscopic detail the mechanistic features of a complex and widely practiced catalysis. In doing so, it highlights the key role of ion mobility in catalysis and thus potentially a more general phenomenon of reactant solvation and active site mobilization in reactions catalyzed by exchanged metal ions in zeolites.
Collapse
Affiliation(s)
- Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - John R. Di Iorio
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Jones CB, Khurana I, Krishna SH, Shih AJ, Delgass WN, Miller JT, Ribeiro FH, Schneider WF, Gounder R. Effects of dioxygen pressure on rates of NOx selective catalytic reduction with NH3 on Cu-CHA zeolites. J Catal 2020. [DOI: 10.1016/j.jcat.2020.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Krishna SH, Jones CB, Miller JT, Ribeiro FH, Gounder R. Combining Kinetics and Operando Spectroscopy to Interrogate the Mechanism and Active Site Requirements of NO x Selective Catalytic Reduction with NH 3 on Cu-Zeolites. J Phys Chem Lett 2020; 11:5029-5036. [PMID: 32496798 DOI: 10.1021/acs.jpclett.0c00903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
NOx selective catalytic reduction (SCR) with NH3 on Cu-zeolites is a commercial emissions control technology for diesel and lean-burn engines. Mitigating low-temperature emissions remains an outstanding challenge, motivating an improved understanding of the reaction mechanism, active site requirements, and rate-determining processes at low temperatures (<523 K). In this Perspective, we discuss how operando spectroscopy provides crucial information about how the structures, coordination environments, and oxidation states of Cu active sites depend on reaction conditions and sample composition; when combined with kinetic measurements, such operando data provide insights into the Cu site and spatial density requirements for reduction and oxidation steps relevant to the Cu(II)/Cu(I) SCR redox cycle. Isolated Cu ions coordinated to zeolite oxygen atoms ex situ become coordinated to NH3 in situ and dynamically interconvert between mononuclear and binuclear NH3-solvated Cu complexes to catalyze SCR turnovers. We conclude with future research directions that can benefit from combining quantitative kinetic measurements with operando spectroscopy.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jeffrey T Miller
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Fabio H Ribeiro
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
43
|
Liu C, Kubota H, Toyao T, Maeno Z, Shimizu KI. Mechanistic insights into the oxidation of copper(i) species during NH3-SCR over Cu-CHA zeolites: a DFT study. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00379d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
DFT calculations suggest that Cu(i) oxidation with O2 as the sole oxidant plays a major role in the oxidation half cycle of standard NH3-SCR over Cu-CHA zeolites.
Collapse
Affiliation(s)
- Chong Liu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Hiroe Kubota
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|