1
|
Shen F, Xiao X, Dai Q, Li H, Zhang X, Huang K, Zhou Y, Xue S, Zhao X. Combining enzymatic biofuel cells with supercapacitors to self-charging hybrid devices. CHEM REC 2025:e202400248. [PMID: 40200663 DOI: 10.1002/tcr.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Enzymatic biofuel cells are energy conversion devices utilizing biocatalysts to directly convert chemical energy to electricity. Due to their biocompatible, sustainable and maintenance-free properties, they hold the promise as attractive energy sources for powering next generation medical electronics for personalized healthcare. Low current and power output are main bottlenecks of enzymatic biofuel cells to hinder their practical applications. Supercapacitors are able to harness ambitious energy and deliver high-power pulses. Combining enzymatic biofuel cells with supercapacitors to establish self-charging energy-conversion/energy-storage hybrid systems are considered as an effective strategy to improve the current and power output. This design enables the hybrid electric devices to scavenge ambient energy and simultaneously store it and thus increases the efficiency and facilitates the miniaturization for practical application. In this review, we first discuss various structural configurations of these self-charging hybrid systems, and then focus on explaining their charge storage mechanisms, including electrochemical double-layer capacitance, pseudocapacitance and hybrids. Several proof-of-concept applications as implantable and wearable power sources are enumerated. Finally, we provide an overview of challenges and opportunities for research and development of self-charging hybrid devices.
Collapse
Affiliation(s)
- Fei Shen
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Qiming Dai
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Hailin Li
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Xinyang Zhang
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Kang Huang
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Yuanbo Zhou
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xiaohui Zhao
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| |
Collapse
|
2
|
Guan S, Yang Y, Wang Y, Zhu X, Ye D, Chen R, Liao Q. A Dual-Functional MXene-Based Bioanode for Wearable Self-Charging Biosupercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305854. [PMID: 37671789 DOI: 10.1002/adma.202305854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/30/2023] [Indexed: 09/07/2023]
Abstract
As a reliable energy-supply platform for wearable electronics, biosupercapacitors combine the characteristics of biofuel cells and supercapacitors to harvest and store the energy from human's sweat. However, the bulky preparation process and deep embedding of enzyme active sites in bioelectrodes usually limit the energy-harvesting process, retarding the practical power-supply sceneries especially during the complicated in vivo motion. Herein, a MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure as the dual-functional bioanode is designed, which can not only provide a superior 3D catalytic microenvironment for enzyme accommodation to harvest energy from sweat, but also offers sufficient capacitance to store energy via the electrical double-layer capacitor. A wearable biosupercapacitor is fabricated in the "island-bridge" structure with a composite bioanode, active carbon/Pt cathode, polyacrylamide hydrogel substrate, and liquid metal conductor. The device exhibits an open-circuit voltage of 0.48 V and the high power density of 220.9 µW cm-2 at 0.5 mA cm-2 . The compact conformal adhesion with skin is successfully maintained under stretching/bending conditions. After repeatedly stretching the devices, there is no significant power attenuation in pulsed output. The unique bioelectrode structure and attractive energy harvesting/storing properties demonstrate the promising potential of this biosupercapacitor as a micro self-powered platform of wearable electronics.
Collapse
Affiliation(s)
- Shoujie Guan
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yang Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Yuyang Wang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Dingding Ye
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Rong Chen
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing, 400030, China
- Institute of Engineering Thermophysics, School of Energy and Powering Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
3
|
Zhang L, Laurent CVF, Schwaiger L, Wang L, Ma S, Ludwig R. Interdomain Linker of the Bioelecrocatalyst Cellobiose Dehydrogenase Governs the Electron Transfer. ACS Catal 2023; 13:8195-8205. [PMID: 37342832 PMCID: PMC10278072 DOI: 10.1021/acscatal.3c02116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Direct bioelectrocatalysis applied in biosensors, biofuel cells, and bioelectrosynthesis is based on an efficient electron transfer between enzymes and electrodes in the absence of redox mediators. Some oxidoreductases are capable of direct electron transfer (DET), while others achieve the enzyme to electrode electron transfer (ET) by employing an electron-transferring domain. Cellobiose dehydrogenase (CDH) is the most-studied multidomain bioelectrocatalyst and features a catalytic flavodehydrogenase domain and a mobile, electron-transferring cytochrome domain connected by a flexible linker. The ET to the physiological redox partner lytic polysaccharide monooxygenase or, ex vivo, electrodes depends on the flexibility of the electron transferring domain and its connecting linker, but the regulatory mechanism is little understood. Studying the linker sequences of currently characterized CDH classes we observed that the inner, mobile linker sequence is flanked by two outer linker regions that are in close contact with the adjacent domain. A function-based definition of the linker region in CDH is proposed and has been verified by rationally designed variants of Neurospora crassa CDH. The effect of linker length and its domain attachment on electron transfer rates has been determined by biochemical and electrochemical methods, while distances between the domains of CDH variants were computed. This study elucidates the regulatory mechanism of the interdomain linker on electron transfer by determining the minimum linker length, observing the effects of elongated linkers, and testing the covalent stabilization of a linker part to the flavodehydrogenase domain. The evolutionary guided, rational design of the interdomain linker provides a strategy to optimize electron transfer rates in multidomain enzymes and maximize their bioelectrocatalytic performance.
Collapse
Affiliation(s)
- Lan Zhang
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Christophe V. F.
P. Laurent
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
- Institute
of Molecular Modeling and Simulation, Department of Material Sciences
and Process Engineering, University of Natural
Resources and Life Sciences (BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Lorenz Schwaiger
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Lushan Wang
- State
Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, Qingdao 266237, China
| | - Su Ma
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
- State
Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72/N2, Qingdao 266237, China
| | - Roland Ludwig
- Department
of Food Science and Technology, Biocatalysis and Biosensing Laboratory, University of Natural Resources and Life Sciences
(BOKU), Vienna, Muthgasse 18, Vienna 1190, Austria
| |
Collapse
|
4
|
Karoń K, Zabłocka-Godlewska E, Krukiewicz K. Recent advances in the design of bacteria-based supercapacitors: Current limitations and future opportunities. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Cellobiose dehydrogenase in biofuel cells. Curr Opin Biotechnol 2022; 73:205-212. [PMID: 34482156 PMCID: PMC7613715 DOI: 10.1016/j.copbio.2021.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023]
Abstract
Enzymatic biofuel cells utilize oxidoreductases as highly specific and highly active electrocatalysts to convert a fuel and an oxidant even in complex biological matrices like hydrolysates or physiological fluids into electric energy. The hemoflavoenzyme cellobiose dehydrogenase is investigated as a versatile bioelectrocatalyst for the anode reaction of biofuel cells, because it is robust, converts a range of different carbohydrates, and can transfer electrons to the anode by direct electron transfer or via redox mediators. The versatility of cellobiose dehydrogenase has led to the development of various electrode modifications to create biofuel cells and biosupercapacitors that are capable to power small electronic devices like biosensors and connect them wireless to a receiver.
Collapse
|
6
|
Aleksejeva O, Nilsson N, Genevskiy V, Thulin K, Shleev S. Photobioanodes Based on Nanoimprinted Electrodes and Immobilized Chloroplasts. ChemElectroChem 2022. [DOI: 10.1002/celc.202101219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olga Aleksejeva
- Department of Biomedical Science Malmö University 205 06 Malmö Sweden
| | | | | | | | - Sergey Shleev
- Department of Biomedical Science Malmö University 205 06 Malmö Sweden
| |
Collapse
|
7
|
Pankratova G, Bollella P, Pankratov D, Gorton L. Supercapacitive biofuel cells. Curr Opin Biotechnol 2021; 73:179-187. [PMID: 34481244 DOI: 10.1016/j.copbio.2021.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Supercapacitive biofuel cells' (SBFCs) most recent advancements are herein disclosed. In conventional SBFCs the biocomponent is employed as the pseudocapacitive component, while in self-charging biodevices it also works as the biocatalyst. The performance of different types of SBFCs are summarized according to the categorization based on the biocatalyst employed: supercapacitive microbial fuel cells (s-MFCs), supercapacitive biophotovoltaics (SBPV) and supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be considered as promising 'alternative' energy devices (low-cost, environmentally friendly, and technically undemanding electric power sources etc.) being suitable for powering a new generation of miniaturized electronic applications.
Collapse
Affiliation(s)
- Galina Pankratova
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Paolo Bollella
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Dmitry Pankratov
- Department of Bioengineering, University of Antwerp, B-2020 Antwerp, Belgium
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
8
|
Kizling M, Dzwonek M, Więckowska A, Stolarczyk K, Bilewicz R. Biosupercapacitor with an enzymatic cascade at the anode working in a sucrose solution. Biosens Bioelectron 2021; 186:113248. [PMID: 33971526 DOI: 10.1016/j.bios.2021.113248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 01/03/2023]
Abstract
In this report, we demonstrate the advantages of the dual-mode operation of an enzymatic biosupercapacitor with nanostructured polypyrrole/nanocellulose, gold nanoparticle-based paper electrodes, sucrose as the anode fuel and molecular oxygen as the oxidant. The device allowed conversion of the sucrose biofuel, and offered storage of the generated power in the same, small-scale device. The external and internal biosupercapacitor re-charging modes were compared. The specific capacitance of the device was 1.8 F cm-2 at a discharge current density of 1 mA cm-2. The cell used in the charge/discharge mode of operation allowed retention of 49% of the initial capacitance after eight days of exhaustive discharging under external load. The discontinuous capacitive mode, preserved the biocatalysts activity for much longer time. The use of such enzyme-based electrical energy sources in the capacitive mode i.e. under discontinuous charging was demonstrated as a solution for preserving high specific capacitance and long-term operational stability.
Collapse
Affiliation(s)
- Michał Kizling
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Maciej Dzwonek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | | | | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
9
|
Liu L, Choi S. Miniature microbial solar cells to power wireless sensor networks. Biosens Bioelectron 2021; 177:112970. [PMID: 33429201 DOI: 10.1016/j.bios.2021.112970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/28/2022]
Abstract
Conventional wireless sensor networks (WSNs) powered by traditional batteries or energy storage devices such as lithium-ion batteries and supercapacitors have challenges providing long-term and self-sustaining operation due to their limited energy budgets. Emerging energy harvesting technologies can achieve the longstanding vision of self-powered, long-lived sensors. In particular, miniature microbial solar cells (MSCs) can be the most feasible power source for small and low-power sensor nodes in unattended working environments because they continuously scavenge power from microbial photosynthesis by using the most abundant resources on Earth; solar energy and water. Even with low illumination, the MSC can harvest electricity from microbial respiration. Despite the vast potential and promise of miniature MSCs, their power and lifetime remain insufficient to power potential WSN applications. In this overview, we will introduce the field of miniature MSCs, from early breakthroughs to current achievements, with a focus on emerging techniques to improve their performance. Finally, challenges and perspectives for the future direction of miniature MSCs to self-sustainably power WSN applications will be given.
Collapse
Affiliation(s)
- Lin Liu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA; Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, 4400, Vestal Pkwy East, Binghamton, NY, USA.
| |
Collapse
|
10
|
Autotolerant ceruloplasmin based biocathodes for implanted biological power sources. Bioelectrochemistry 2021; 140:107794. [PMID: 33744681 DOI: 10.1016/j.bioelechem.2021.107794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/23/2022]
Abstract
High-performance autotolerant bioelectrodes should be ideally suited to design implantable bioelectronic devices. Because of its high redox potential and ability to reduce oxygen directly to water, human ceruloplasmin, HCp, the only blue multicopper oxidase present in human plasma, appears to be the ultimate biocatalyst for oxygen biosensors and also biocathodes in biological power sources. In comparison to fungal and plant blue multicopper oxidases, e.g. Myrothecium verrucaria bilirubin oxidase and Rhus vernicifera laccase, respectively, the inflammatory response to HCp in human blood is significantly reduced. Partial purification of HCp allowed to preserve the native conformation of the enzyme and its biocatalytic activity. Therefore, electrochemical studies were carried out with the partially purified enzyme immobilised on nanostructured graphite electrodes at physiological pH and temperature. Amperometric investigations revealed low reductive current densities, i.e. about 1.65 µA cm-2 in oxygenated electrolyte and in the absence of any mediator, demonstrating nevertheless direct electron transfer based O2 bioelectroreduction by HCp for the first time. The reductive current density obtained in the mediated system was about 12 µA cm-2. Even though the inflammatory response of HCp is diminished in human blood, inadequate bioelectrocatalytic performance hinders its use as a cathodic bioelement in a biofuel cell.
Collapse
|
11
|
Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. BIOSENSORS-BASEL 2021; 11:bios11020041. [PMID: 33557146 PMCID: PMC7913944 DOI: 10.3390/bios11020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/02/2022]
Abstract
Biofuel cells use chemical reactions and biological catalysts (enzymes or microorganisms) to produce electrical energy, providing clean and renewable energy. Enzymatic biofuel cells (EBFCs) have promising characteristics and potential applications as an alternative energy source for low-power electronic devices. Over the last decade, researchers have focused on enhancing the electrocatalytic activity of biosystems and on increasing energy generation and electronic conductivity. Self-powered biosensors can use EBFCs while eliminating the need for an external power source. This review details improvements in EBFC and catalyst arrangements that will help to achieve complete substrate oxidation and to increase the number of collected electrons. It also describes how analytical techniques can be employed to follow the intermediates between the enzymes within the enzymatic cascade. We aim to demonstrate how a high-performance self-powered sensor design based on EBFCs developed for ethanol detection can be adapted and implemented in power devices for biosensing applications.
Collapse
|
12
|
Ramanavicius S, Ramanavicius A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:371. [PMID: 33540587 PMCID: PMC7912793 DOI: 10.3390/nano11020371] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Charge transfer (CT) is a very important issue in the design of biosensors and biofuel cells. Some nanomaterials can be applied to facilitate the CT in these bioelectronics-based devices. In this review, we overview some CT mechanisms and/or pathways that are the most frequently established between redox enzymes and electrodes. Facilitation of indirect CT by the application of some nanomaterials is frequently applied in electrochemical enzymatic biosensors and biofuel cells. More sophisticated and still rather rarely observed is direct charge transfer (DCT), which is often addressed as direct electron transfer (DET), therefore, DCT/DET is also targeted and discussed in this review. The application of conducting polymers (CPs) for the immobilization of enzymes and facilitation of charge transfer during the design of biosensors and biofuel cells are overviewed. Significant attention is paid to various ways of synthesis and application of conducting polymers such as polyaniline, polypyrrole, polythiophene poly(3,4-ethylenedioxythiophene). Some DCT/DET mechanisms in CP-based sensors and biosensors are discussed, taking into account that not only charge transfer via electrons, but also charge transfer via holes can play a crucial role in the design of bioelectronics-based devices. Biocompatibility aspects of CPs, which provides important advantages essential for implantable bioelectronics, are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
13
|
Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021; 26:748. [PMID: 33535493 PMCID: PMC7867046 DOI: 10.3390/molecules26030748] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
With the increasing prevalence of growing population, aging and chronic diseases continuously rising healthcare costs, the healthcare system is undergoing a vital transformation from the traditional hospital-centered system to an individual-centered system. Since the 20th century, wearable sensors are becoming widespread in healthcare and biomedical monitoring systems, empowering continuous measurement of critical biomarkers for monitoring of the diseased condition and health, medical diagnostics and evaluation in biological fluids like saliva, blood, and sweat. Over the past few decades, the developments have been focused on electrochemical and optical biosensors, along with advances with the non-invasive monitoring of biomarkers, bacteria and hormones, etc. Wearable devices have evolved gradually with a mix of multiplexed biosensing, microfluidic sampling and transport systems integrated with flexible materials and body attachments for improved wearability and simplicity. These wearables hold promise and are capable of a higher understanding of the correlations between analyte concentrations within the blood or non-invasive biofluids and feedback to the patient, which is significantly important in timely diagnosis, treatment, and control of medical conditions. However, cohort validation studies and performance evaluation of wearable biosensors are needed to underpin their clinical acceptance. In the present review, we discuss the importance, features, types of wearables, challenges and applications of wearable devices for biological fluids for the prevention of diseased conditions and real-time monitoring of human health. Herein, we summarize the various wearable devices that are developed for healthcare monitoring and their future potential has been discussed in detail.
Collapse
Affiliation(s)
- Atul Sharma
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Budhera, Gurugram, Haryana 122505, India
| | - Mihaela Badea
- Fundamental, Prophylactic and Clinical Specialties Department, Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania;
| | - Swapnil Tiwari
- School of Studies in Chemistry, Pt Ravishankar Shukla University, Raipur, CHATTISGARH 492010, India;
| | - Jean Louis Marty
- University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
14
|
Bollella P, Boeva Z, Latonen RM, Kano K, Gorton L, Bobacka J. Highly sensitive and stable fructose self-powered biosensor based on a self-charging biosupercapacitor. Biosens Bioelectron 2020; 176:112909. [PMID: 33385803 DOI: 10.1016/j.bios.2020.112909] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Herein, we present an alternative approach to obtain a highly sensitive and stable self-powered biosensor that was used to detect D-fructose as proof of concept.In this platform, we perform a two-step process, viz. self-charging the biosupercapacitor for a constant time by using D-fructose as fuel and using the stored charge to realize the detection of D-fructose by performing several polarization curves at different D-fructose concentrations. The proposed BSC shows an instantaneous power density release of 17.6 mW cm-2 and 3.8 mW cm-2 in pulse mode and at constant load, respectively. Moreover, the power density achieved for the self-charging BSC in pulse mode or under constant load allows for an enhancement of the sensitivity of the device up to 10 times (3.82 ± 0.01 mW cm-2 mM-1, charging time = 70 min) compared to the BSC in continuous operation mode and 100 times compared to the normal enzymatic fuel cell. The platform can potentially be employed as a self-powered biosensor in food or biomedical applications.
Collapse
Affiliation(s)
- Paolo Bollella
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Zhanna Boeva
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Rose-Marie Latonen
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland
| | - Kenji Kano
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Biskopsgatan 8, FIN-20500, Turku-Åbo, Finland.
| |
Collapse
|
15
|
Abstract
Bioelectrocatalysis has become one of the most important research fields in electrochemistry and provided a firm base for the application of important technology in various bioelectrochemical devices, such as biosensors, biofuel cells, and biosupercapacitors. The understanding and technology of bioelectrocatalysis have greatly improved with the introduction of nanostructured electrode materials and protein-engineering methods over the last few decades. Recently, the electroenzymatic production of renewable energy resources and useful organic compounds (bioelectrosynthesis) has attracted worldwide attention. In this review, we summarize recent progress in the applications of enzymatic bioelectrocatalysis.
Collapse
|
16
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Wang D, Hu J, Hu S, Wu L, Xu J, Hou H, Yang J, Liang S, Xiao K, Liu B. Enhance cathodic capacitance to eliminate power overshoot in microbial fuel cells. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Panda PK, Grigoriev A, Mishra YK, Ahuja R. Progress in supercapacitors: roles of two dimensional nanotubular materials. NANOSCALE ADVANCES 2020; 2:70-108. [PMID: 36133979 PMCID: PMC9419609 DOI: 10.1039/c9na00307j] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/28/2019] [Indexed: 05/03/2023]
Abstract
Overcoming the global energy crisis due to vast economic expansion with the advent of human reliance on energy-consuming labor-saving devices necessitates the demand for next-generation technologies in the form of cleaner energy storage devices. The technology accelerates with the pace of developing energy storage devices to meet the requirements wherever an unanticipated burst of power is indeed needed in a very short time. Supercapacitors are predicted to be future power vehicles because they promise faster charging times and do not rely on rare elements such as lithium. At the same time, they are key nanoscale device elements for high-frequency noise filtering with the capability of storing and releasing energy by electrostatic interactions between the ions in the electrolyte and the charge accumulated at the active electrode during the charge/discharge process. There have been several developments to increase the functionality of electrodes or finding a new electrolyte for higher energy density, but this field is still open to witness the developments in reliable materials-based energy technologies. Nanoscale materials have emerged as promising candidates for the electrode choice, especially in 2D sheet and folded tubular network forms. Due to their unique hierarchical architecture, excellent electrical and mechanical properties, and high specific surface area, nanotubular networks have been widely investigated as efficient electrode materials in supercapacitors, while maintaining their inherent characteristics of high power and long cycling life. In this review, we briefly present the evolution, classification, functionality, and application of supercapacitors from the viewpoint of nanostructured materials to apprehend the mechanism and construction of advanced supercapacitors for next-generation storage devices.
Collapse
Affiliation(s)
- Pritam Kumar Panda
- Department of Physics and Astronomy, Uppsala University Box 516 SE-75120 Uppsala Sweden
| | - Anton Grigoriev
- Department of Physics and Astronomy, Uppsala University Box 516 SE-75120 Uppsala Sweden
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark Alsion 2 DK-6400 Denmark
| | - Rajeev Ahuja
- Department of Materials and Engineering, Royal Institute of Technology (KTH) SE-10044 Stockholm Sweden
| |
Collapse
|
19
|
Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. Biotechnol Adv 2019; 39:107456. [PMID: 31618667 PMCID: PMC7068652 DOI: 10.1016/j.biotechadv.2019.107456] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Bioelectrochemical systems combine electrodes and reactions driven by microorganisms for many different applications. The conversion of organic material in wastewater into electricity occurs in microbial fuel cells (MFCs). The power densities produced by MFCs are still too low for application. One way of increasing their performance is to combine them with electrochemical capacitors, widely used for charge storage purposes. Capacitive MFCs, i.e. the combination of capacitors and MFCs, allow for energy harvesting and storage and have shown to result in improved power densities, which facilitates the up scaling and application of the technology. This manuscript summarizes the state-of-the-art of combining capacitors with MFCs, starting with the theory and working principle of electrochemical capacitors. We address how different electrochemical measurements can be used to determine (bio)electrochemical capacitance and show how the measurement data can be interpreted. In addition, we present examples of the combination of electrochemical capacitors, both internal and external, that have been used to enhance MFC performance. Finally, we discuss the most promising applications and the main existing challenges for capacitive MFCs.
Collapse
|
20
|
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry 2019; 131:107345. [PMID: 31494387 DOI: 10.1016/j.bioelechem.2019.107345] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome with a history of bioelectrochemical research dating back to 1992. During the years, it has been shown to be capable of mediated electron transfer (MET) and direct electron transfer (DET) to a variety of electrodes. This versatility of CDH originates from the separation of the catalytic flavodehydrogenase domain and the electron transferring cytochrome domain. This uncoupling of the catalytic reaction from the electron transfer process allows the application of CDH on many different electrode materials and surfaces, where it shows robust DET. Recent X-ray diffraction and small angle scattering studies provided insights into the structure of CDH and its domain mobility, which can change between a closed-state and an open-state conformation. This structural information verifies the electron transfer mechanism of CDH that was initially established by bioelectrochemical methods. A combination of DET and MET experiments has been used to investigate the catalytic mechanism and the electron transfer process of CDH and to deduce a protein structure comprising of mobile domains. Even more, electrochemical methods have been used to study the redox potentials of the FAD and the haem b cofactors of CDH or the electron transfer rates. These electrochemical experiments, their results and the application of the characterised CDHs in biosensors, biofuel cells and biosupercapacitors are combined with biochemical and structural data to provide a thorough overview on CDH as versatile bioelectrocatalyst.
Collapse
Affiliation(s)
- Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
21
|
Supercapacitor/biofuel cell hybrid device employing biomolecules for energy conversion and charge storage. Bioelectrochemistry 2019; 128:94-99. [DOI: 10.1016/j.bioelechem.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
|
22
|
Xiao X, Xia HQ, Wu R, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu Z, Liu A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem Rev 2019; 119:9509-9558. [PMID: 31243999 DOI: 10.1021/acs.chemrev.9b00115] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ever-increasing demands for clean and sustainable energy sources combined with rapid advances in biointegrated portable or implantable electronic devices have stimulated intensive research activities in enzymatic (bio)fuel cells (EFCs). The use of renewable biocatalysts, the utilization of abundant green, safe, and high energy density fuels, together with the capability of working at modest and biocompatible conditions make EFCs promising as next generation alternative power sources. However, the main challenges (low energy density, relatively low power density, poor operational stability, and limited voltage output) hinder future applications of EFCs. This review aims at exploring the underlying mechanism of EFCs and providing possible practical strategies, methodologies and insights to tackle these issues. First, this review summarizes approaches in achieving high energy densities in EFCs, particularly, employing enzyme cascades for the deep/complete oxidation of fuels. Second, strategies for increasing power densities in EFCs, including increasing enzyme activities, facilitating electron transfers, employing nanomaterials, and designing more efficient enzyme-electrode interfaces, are described. The potential of EFCs/(super)capacitor combination is discussed. Third, the review evaluates a range of strategies for improving the stability of EFCs, including the use of different enzyme immobilization approaches, tuning enzyme properties, designing protective matrixes, and using microbial surface displaying enzymes. Fourth, approaches for the improvement of the cell voltage of EFCs are highlighted. Finally, future developments and a prospective on EFCs are envisioned.
Collapse
Affiliation(s)
- Xinxin Xiao
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Hong-Qi Xia
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Lu Bai
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lu Yan
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute , University of Limerick , Limerick V94 T9PX , Ireland
| | - Serge Cosnier
- Université Grenoble-Alpes , DCM UMR 5250, F-38000 Grenoble , France.,Département de Chimie Moléculaire , UMR CNRS, DCM UMR 5250, F-38000 Grenoble , France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, Bioénergétique et Ingénierie des Protéines UMR7281 , Institut de Microbiologie de la Méditerranée, IMM , FR 3479, 31, chemin Joseph Aiguier 13402 Marseille , Cedex 20 , France
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences , 32 West seventh Road, Tianjin Airport Economic Area , Tianjin 300308 , China
| | - Aihua Liu
- Institute for Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,College of Chemistry & Chemical Engineering , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China.,School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
23
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine. Electrochim Acta 2019; 307:241-252. [PMID: 31217626 PMCID: PMC6559283 DOI: 10.1016/j.electacta.2019.03.194] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
A self-stratified microbial fuel cell fed with human urine with a total internal volume of 0.55 ml was investigated as an internal supercapacitor, for the first time. The internal self-stratification allowed the development of two zones within the cell volume. The oxidation reaction occurred on the bottom electrode (anode) and the reduction reaction on the top electrode (cathode). The electrodes were discharged galvanostatically at different currents and the two electrodes were able to recover their initial voltage value due to their red-ox reactions. Anode and cathode apparent capacitance was increased after introducing high surface area activated carbon embedded within the electrodes. Peak power produced was 1.20 ± 0.04 mW (2.19 ± 0.06 mW ml-1) for a pulse time of 0.01 s that decreased to 0.65 ± 0.02 mW (1.18 ± 0.04 mW ml-1) for longer pulse periods (5 s). Durability tests were conducted over 44 h with ≈2600 discharge/recharge cycles. In this relatively long-term test, the equivalent series resistance increased only by 10% and the apparent capacitance decreased by 18%.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
24
|
Liu L, Choi S. A self-charging cyanobacterial supercapacitor. Biosens Bioelectron 2019; 140:111354. [PMID: 31154252 DOI: 10.1016/j.bios.2019.111354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
Abstract
Microliter-scale photosynthetic microbial fuel cells (micro-PMFC) can be the most suitable power source for unattended environmental sensors because the technique can continuously generate electricity from microbial photosynthesis and respiration through day-night cycles, offering a clean and renewable power source with self-sustaining potential. However, the promise of this technology has not been translated into practical applications because of its relatively low performance. By creating an innovative supercapacitive micro-PMFC device with maximized bacterial photoelectrochemical activities in a well-controlled, tightly enclosed micro-chamber, this work established innovative strategies to revolutionize micro-PMFC performance to attain stable high power and current density (38 μW/cm2 and 120 μA/cm2) that then potentially provides a practical and sustainable power supply for the environmental sensing applications. The proposed technique is based on a 3-D double-functional bio-anode concurrently exhibiting bio-electrocatalytic energy harvesting and charge storing. It offers the high-energy harvesting functionality of micro-PMFCs with the high-power operation of an internal supercapacitor for charging and discharging. The performance of the supercapacitive micro-PMFC improved significantly through miniaturizing innovative device architectures and connecting multiple miniature devices in series.
Collapse
Affiliation(s)
- Lin Liu
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
| |
Collapse
|
25
|
Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosens Bioelectron 2019; 126:275-291. [DOI: 10.1016/j.bios.2018.10.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022]
|
26
|
Challenges for successful implantation of biofuel cells. Bioelectrochemistry 2018; 124:57-72. [DOI: 10.1016/j.bioelechem.2018.05.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 05/11/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023]
|
27
|
Triguero J, Zanuy D, Alemán C. Impact of Protein-Polymer Interactions in the Antimicrobial Activity of Lysozyme/Poly(3,4-ethylenedioxythiophene) Biocapacitors. ChemistrySelect 2018. [DOI: 10.1002/slct.201801956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jordi Triguero
- Departament d'Enginyeria Química; niversitat Politècnica de Catalunya, EEBE; C/ Eduard Maristany, 10-14, Ed. I2; 08019 Barcelona Spain
| | - David Zanuy
- Departament d'Enginyeria Química; niversitat Politècnica de Catalunya, EEBE; C/ Eduard Maristany, 10-14, Ed. I2; 08019 Barcelona Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química; niversitat Politècnica de Catalunya, EEBE; C/ Eduard Maristany, 10-14, Ed. I2; 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and Engineering; Universitat Politècnica de Catalunya, EEBE; C/ Eduard Maristany, 10-14, Ed. C; 08019 Barcelona Spain
| |
Collapse
|
28
|
González-Arribas E, Falk M, Aleksejeva O, Bushnev S, Sebastián P, Feliu JM, Shleev S. A conventional symmetric biosupercapacitor based on rusticyanin modified gold electrodes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Abstract
Self-powered electrochemical biosensors utilize biofuel cells as a simultaneous power source and biosensor, which simplifies the biosensor system, because it no longer requires a potentiostat, power for the potentiostat, and/or power for the signaling device. This review article is focused on detailing the advances in the field of self-powered biosensors and discussing their advantages and limitations compared to other types of electrochemical biosensors. The review will discuss self-powered biosensors formed from enzymatic biofuel cells, organelle-based biofuel cells, and microbial fuel cells. It also discusses the different mechanisms of sensing, including utilizing the analyte being the substrate/fuel for the biocatalyst, the analyte binding the biocatalyst to the electrode surface, the analyte being an inhibitor of the biocatalyst, the analyte resulting in the blocking of the bioelectrocatalytic response, the analyte reactivating the biocatalyst, Boolean logic gates, and combining affinity-based biorecognition elements with bioelectrocatalytic power generation. The final section of this review details areas of future investigation that are needed in the field, as well as problems that still need to be addressed by the field.
Collapse
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Pankratov D, Shen F, Ortiz R, Toscano MD, Thormann E, Zhang J, Gorton L, Chi Q. Fuel-independent and membrane-less self-charging biosupercapacitor. Chem Commun (Camb) 2018; 54:11801-11804. [DOI: 10.1039/c8cc06688d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A fuel-independent self-charging biosupercapacitor consisting of an enzymatic biocathode and a bioelectrode employing supercapacitive features of immobilized myoglobin is described.
Collapse
Affiliation(s)
- Dmitry Pankratov
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Fei Shen
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Roberto Ortiz
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | | | - Esben Thormann
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Jingdong Zhang
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| | - Lo Gorton
- Department of Biochemistry and Structural Biology
- Lund University
- SE-22100 Lund
- Sweden
| | - Qijin Chi
- Department of Chemistry
- Technical University of Denmark
- DK-2800 Kongens Lyngby
- Denmark
| |
Collapse
|
31
|
Xiao X, Magner E. A quasi-solid-state and self-powered biosupercapacitor based on flexible nanoporous gold electrodes. Chem Commun (Camb) 2018; 54:5823-5826. [DOI: 10.1039/c8cc02555j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A quasi-solid-state and flexible biofuel cell using a hydrogel electrolyte preloaded with sugar as a fuel is described.
Collapse
Affiliation(s)
- Xinxin Xiao
- Department of Chemical Sciences and Bernal Institute
- University of Limerick
- Limerick V94 T9PX
- Ireland
| | - Edmond Magner
- Department of Chemical Sciences and Bernal Institute
- University of Limerick
- Limerick V94 T9PX
- Ireland
| |
Collapse
|
32
|
An oxygen-independent and membrane-less glucose biobattery/supercapacitor hybrid device. Biosens Bioelectron 2017; 98:421-427. [DOI: 10.1016/j.bios.2017.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 11/30/2022]
|
33
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
34
|
Hou C, Liu A. An integrated device of enzymatic biofuel cells and supercapacitor for both efficient electric energy conversion and storage. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.05.136] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Santoro C, Kodali M, Kabir S, Soavi F, Serov A, Atanassov P. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell. JOURNAL OF POWER SOURCES 2017; 356:371-380. [PMID: 28717262 PMCID: PMC5465940 DOI: 10.1016/j.jpowsour.2017.03.135] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 05/21/2023]
Abstract
Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mounika Kodali
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sadia Kabir
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum Universita’ di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Alexey Serov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Plamen Atanassov
- Department of Chemical and Biological Engineering, Center Micro-Engineered Materials (CMEM), MSC01 1120 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
36
|
Xiao X, Conghaile PÓ, Leech D, Ludwig R, Magner E. A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator. Biosens Bioelectron 2017; 90:96-102. [DOI: 10.1016/j.bios.2016.11.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/21/2016] [Accepted: 11/05/2016] [Indexed: 11/15/2022]
|
37
|
Alsaoub S, Ruff A, Conzuelo F, Ventosa E, Ludwig R, Shleev S, Schuhmann W. An Intrinsic Self-Charging Biosupercapacitor Comprised of a High-Potential Bioanode and a Low-Potential Biocathode. Chempluschem 2017; 82:576-583. [DOI: 10.1002/cplu.201700114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sabine Alsaoub
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätstrasse 150 44780 Bochum Germany
| | - Adrian Ruff
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätstrasse 150 44780 Bochum Germany
| | - Felipe Conzuelo
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätstrasse 150 44780 Bochum Germany
| | - Edgar Ventosa
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätstrasse 150 44780 Bochum Germany
| | - Roland Ludwig
- Department of Food Sciences and Technology; Vienna Institute of Biotechnology; BOKU-University of Natural Resources and Life Sciences; Muthgasse 11/1/56 1190 Vienna Austria
| | - Sergey Shleev
- Biomedical Science; Faculty of Health and Society; Malmö University; Södra Förstadsgatan 101 20506 Malmö Sweden
- Kurchatov's Complex of NBICS-Technologies; National Research Center “Kurchatov Institute”; Akademika Kurchatova Square 1 123 182 Moscow Russia
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätstrasse 150 44780 Bochum Germany
| |
Collapse
|
38
|
González-Arribas E, Aleksejeva O, Bobrowski T, Toscano MD, Gorton L, Schuhmann W, Shleev S. Solar biosupercapacitor. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2016.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Parunova YM, Bushnev SO, Gonzalez-Arribas E, Falkman P, Lipkin AV, Popov VO, Shleev SV, Pankratov DV. Potentially implantable biocathode with the function of charge accumulation based on nanocomposite of polyaniline/carbon nanotubes. RUSS J ELECTROCHEM+ 2016. [DOI: 10.1134/s1023193516120119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Narvaez Villarrubia CW, Soavi F, Santoro C, Arbizzani C, Serov A, Rojas-Carbonell S, Gupta G, Atanassov P. Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosens Bioelectron 2016; 86:459-465. [DOI: 10.1016/j.bios.2016.06.084] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
41
|
Bioelectrodes based on pseudocapacitive cellulose/polypyrrole composite improve performance of biofuel cell. Bioelectrochemistry 2016; 112:184-90. [DOI: 10.1016/j.bioelechem.2016.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/13/2016] [Accepted: 01/26/2016] [Indexed: 11/17/2022]
|
42
|
Pankratov D, Conzuelo F, Pinyou P, Alsaoub S, Schuhmann W, Shleev S. A Nernstian Biosupercapacitor. Angew Chem Int Ed Engl 2016; 55:15434-15438. [PMID: 27805779 PMCID: PMC5132130 DOI: 10.1002/anie.201607144] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/01/2016] [Indexed: 11/15/2022]
Abstract
We propose the very first “Nernstian biosupercapacitor”, a biodevice based on only one redox polymer: poly(vinyl imidazole‐co‐allylamine)[Os(bpy)2Cl], and two biocatalysts. At the bioanode PQQ‐dependent glucose dehydrogenase reduces the Os3+ moieties at the polymer to Os2+ shifting the Nernst potential of the Os3+/Os2+ redox couple to negative values. Concomitantly, at the biocathode the reduction of O2 by means of bilirubin oxidase embedded in the same redox polymer leads to the oxidation of Os2+ to Os3+ shifting the Nernst potential to higher values. Despite the use of just one redox polymer an open circuit voltage of more than 0.45 V was obtained during charging and the charge is stored in the redox polymer at both the bioanode and the biocathode. By connecting both electrodes via a predefined resistor a high power density is obtained for a short time exceeding the steady state power of a corresponding biofuel cell by a factor of 8.
Collapse
Affiliation(s)
- Dmitry Pankratov
- Biomedical Science, Faculty of Health and Society, Malmö University, Södra Förstadsgatan 101, 20506, Malmö, Sweden.,Kurchatov's Complex of NBICS-technologies, National Research Center "Kurchatov Institute", Akademika Kurchatova Sq. 1, 123 182, Moscow, Russia
| | - Felipe Conzuelo
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Piyanut Pinyou
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sabine Alsaoub
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sergey Shleev
- Biomedical Science, Faculty of Health and Society, Malmö University, Södra Förstadsgatan 101, 20506, Malmö, Sweden.,Kurchatov's Complex of NBICS-technologies, National Research Center "Kurchatov Institute", Akademika Kurchatova Sq. 1, 123 182, Moscow, Russia
| |
Collapse
|
43
|
Pankratov D, Conzuelo F, Pinyou P, Alsaoub S, Schuhmann W, Shleev S. Ein Nernst-Biosuperkondensator. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dmitry Pankratov
- Biomedical Science, Faculty of Health and Society; Malmö University; Södra Förstadsgatan 101 20506 Malmö Schweden
- Kurchatov's Complex of NBICS-technologies; National Research Center “Kurchatov Institute”; Akademika Kurchatova Sq. 1 123 182 Moskau Russland
| | - Felipe Conzuelo
- Analytische Chemie - Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Piyanut Pinyou
- Analytische Chemie - Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Sabine Alsaoub
- Analytische Chemie - Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Wolfgang Schuhmann
- Analytische Chemie - Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum; Universitätsstr. 150 44780 Bochum Deutschland
| | - Sergey Shleev
- Biomedical Science, Faculty of Health and Society; Malmö University; Södra Förstadsgatan 101 20506 Malmö Schweden
- Kurchatov's Complex of NBICS-technologies; National Research Center “Kurchatov Institute”; Akademika Kurchatova Sq. 1 123 182 Moskau Russland
| |
Collapse
|
44
|
González-Arribas E, Pankratov D, Gounel S, Mano N, Blum Z, Shleev S. Transparent and Capacitive Bioanode Based on Specifically Engineered Glucose Oxidase. ELECTROANAL 2016. [DOI: 10.1002/elan.201600096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Self-powered supercapacitive microbial fuel cell: The ultimate way of boosting and harvesting power. Biosens Bioelectron 2016; 78:229-235. [DOI: 10.1016/j.bios.2015.11.026] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022]
|
46
|
|
47
|
Zheng M, Griveau S, Dupont-Gillain C, Genet MJ, Jolivalt C. Oxidation of laccase for improved cathode biofuel cell performances. Bioelectrochemistry 2015; 106:77-87. [DOI: 10.1016/j.bioelechem.2015.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/07/2015] [Accepted: 06/01/2015] [Indexed: 11/27/2022]
|
48
|
Ramadoss A, Saravanakumar B, Lee SW, Kim YS, Kim SJ, Wang ZL. Piezoelectric-driven self-charging supercapacitor power cell. ACS NANO 2015; 9:4337-4345. [PMID: 25794521 DOI: 10.1021/acsnano.5b00759] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, we have fabricated a piezoelectric-driven self-charging supercapacitor power cell (SCSPC) using MnO2 nanowires as positive and negative electrodes and a polyvinylidene difluoride (PVDF)-ZnO film as a separator (as well as a piezoelectric), which directly converts mechanical energy into electrochemical energy. Such a SCSPC consists of a nanogenerator, a supercapacitor, and a power-management system, which can be directly used as a power source. The self-charging capability of SCSPC was demonstrated by mechanical deformation under human palm impact. The SCSPC can be charged to 110 mV (aluminum foil) in 300 s under palm impact. In addition, the green light-emitting diode glowed using serially connected SCSPC as the power source. This finding opens up the possibility of making self-powered flexible hybrid electronic devices.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhong Lin Wang
- ⊥Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Filip J, Tkac J. Effective bioelectrocatalysis of bilirubin oxidase on electrochemically reduced graphene oxide. Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
50
|
Sekretaryova AN, Beni V, Eriksson M, Karyakin AA, Turner APF, Vagin MY. Cholesterol self-powered biosensor. Anal Chem 2014; 86:9540-7. [PMID: 25164485 DOI: 10.1021/ac501699p] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M(-1) cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.
Collapse
Affiliation(s)
- Alina N Sekretaryova
- Department of Physics, Chemistry and Biology, Linköping University , SE-581 83 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|