1
|
Thömmes AL, Büttner T, Morgenstern B, Janka O, Kickelbick G, Niebuur BJ, Kraus T, Gallei M, Scheschkewitz D. Near-Infinite-Chain Polymers with Ge=Ge Double Bonds. Angew Chem Int Ed Engl 2024; 63:e202415103. [PMID: 39441828 DOI: 10.1002/anie.202415103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Despite considerable interest in heteroatom-containing conjugated polymers, there are only few examples with heavier p-block elements in the conjugation path. The recently reported heavier acyclic diene metathesis (HADMET) allowed for the synthesis of a polymer containing Ge=Ge double bonds-albeit insoluble and with limited degree of polymerization. By incorporation of long alkyl chains, we now obtained soluble representatives, which exhibit degrees of polymerization near infinity according to diffusion-ordered NMR spectroscopy (DOSY) and dynamic light scattering (DLS). UV/Vis and NMR data confirm the presence of σ,π-conjugation across the silylene-phenylene linkers between the Ge=Ge double bonds. Favorable intermolecular dispersion interactions lead to ladder-like cylindrical assemblies as confirmed by X-ray diffraction (XRD), small angle X-ray scattering (SAXS) and DLS. AFM and TEM images of deposited thin films reveal lamellar ordering of extended polymer bundles.
Collapse
Affiliation(s)
- Anna-Lena Thömmes
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Thomas Büttner
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bernd Morgenstern
- Inorganic Solid-State Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Oliver Janka
- Inorganic Solid-State Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Guido Kickelbick
- Inorganic Solid-State Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Bart-Jan Niebuur
- INM-Leibniz-Institute for New Materials, 66123, Saarbrücken, Germany
| | - Tobias Kraus
- INM-Leibniz-Institute for New Materials, 66123, Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Saarland University, 66123, Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Chair for General and Inorganic Chemistry, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
2
|
Doleschal ME, Kostenko A, Liu JY, Inoue S. Isolation of a NHC-stabilized heavier nitrile and its conversion into an isonitrile analogue. Nat Chem 2024; 16:2009-2016. [PMID: 39256544 PMCID: PMC11611736 DOI: 10.1038/s41557-024-01618-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Nitriles (R-C≡N) have been investigated since the late eighteenth century and are ubiquitous encounters in organic and inorganic syntheses. In contrast, heavier nitriles, which contain the heavier analogues of carbon and nitrogen, are sparsely investigated species. Here we report the synthesis and isolation of a phosphino-silylene featuring an N-heterocyclic carbene-phosphinidene and a highly sterically demanding silyl group as substituents. Due to its unique structural motif, it can be regarded as a Lewis base-stabilized heavier nitrile. The Si-P bond displays multiple bond character and a bent R-Si-P geometry, the latter indicating fundamental differences between heavier and classical nitriles. In solution, a quantitative unusual rearrangement to a phosphasilenylidene occurs. This rearrangement is consistent with theoretical predictions of rearrangements from heavier nitriles to heavier isonitriles. Our preliminary reactivity studies revealed that both isomers exhibit highly nucleophilic silicon centres capable of oxidative addition and coordination to iron tetracarbonyl.
Collapse
Affiliation(s)
- Martin E Doleschal
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Jin Yu Liu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Wacker Institute of Silicon Chemistry, Technische Universität Müchen, Garching, Germany.
| |
Collapse
|
3
|
Churchill O, Dase A, Taylor LJ, Argent SP, Coles NT, Walker GS, Kays DL. Synthesis of the Bulky Phosphanide [P(Si iPr 3) 2] - and Its Stabilization of Low-Coordinate Group 12 Complexes. Inorg Chem 2024; 63:20286-20294. [PMID: 39388151 PMCID: PMC11523236 DOI: 10.1021/acs.inorgchem.4c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Here, we report an improved synthesis of the bulky phosphanide anion [P(SiiPr3)2]- in synthetically useful yields and its complexation to group 12 metals. The ligand is obtained as the sodium salt NaP(SiiPr3)2 1 in a 42% isolated yield and a single step from red phosphorus and sodium. This is a significantly higher-yielding and safer preparation compared to the previously reported synthesis of this ligand, and we have thus applied 1 to the synthesis of the two-coordinate complexes M[P(SiiPr3)2]2 (M = Zn, Cd, Hg). These group 12 complexes are all monomeric and with nonlinear P-M-P angles in the solid state, with DFT calculations suggesting that this bending is due to the steric demands of the ligand. Multinuclear NMR spectroscopy revealed complex second-order splitting patterns due to strong PP' coupling. This work demonstrates that the synthesis of 1 is viable and provides a springboard for the synthesis of low-coordinate complexes featuring this unusual bulky ligand.
Collapse
Affiliation(s)
- Olivia
P. Churchill
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Antonia Dase
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Laurence J. Taylor
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Stephen P. Argent
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Nathan T. Coles
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Gavin S. Walker
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2GA, U.K.
| | - Deborah L. Kays
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| |
Collapse
|
4
|
Hendi Z, Pradhan R, Rachuy K, Mahmoudi S, Pandey MK, Kushvaha SK, Herbst-Irmer R, Lourderaj U, Stalke D, Roesky HW. Phosphasilene mediated CO activation and deoxygenative homo coupling of CO molecules in reactions with metal carbonyls. Chem Sci 2024:d4sc05491a. [PMID: 39430926 PMCID: PMC11485134 DOI: 10.1039/d4sc05491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Herein, we report the synthesis of a new sterically demanding hyper-coordinate phosphasilene (Mes*PSi(SiMe3)(PhC(N t Bu)2) (1) and its unprecedented reactivity with metal carbonyls (M = Fe, Mo, W). The reaction of 1 with Fe(CO)5 involves the deoxygenative homocoupling of two CO molecules, forming a rare ketene (μ-CCO) inserted Fe complex 2. Contrastingly, reactions with M(CO)6 (M = Mo, W) entail the deoxygenated activation of one CO molecule, with the second CO molecule being trapped between Si and P atoms. All the compounds including their crystal structures, are thoroughly characterized and potential energy profiles for the reaction mechanisms are also explored.
Collapse
Affiliation(s)
- Zohreh Hendi
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - Renuka Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar Bhubaneswar India
| | - Katharina Rachuy
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - Soheil Mahmoudi
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry Waehringer Str. 42 Vienna 1090 Austria
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42 1090 Vienna Austria
| | - Madhusudan K Pandey
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - Upakarasamy Lourderaj
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar Bhubaneswar India
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen Göttingen 37077 Germany
| |
Collapse
|
5
|
Ackermann MT, Szlosek R, Riesinger C, Seidl M, Timoshkin AY, Rivard E, Scheer M. NHC-Stabilized Mixed Group 13/14/15 Element Hydrides. Chemistry 2024; 30:e202303680. [PMID: 38009601 DOI: 10.1002/chem.202303680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The syntheses of novel N-heterocyclic carbene (NHC) adducts of group 13, 14 and 15 element hydrides are reported. Salt metathesis reactions between NaPH2 and IDipp ⋅ GeH2 BH2 OTf (1) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) led to mixtures of the two isomers IDipp ⋅ GeH2 BH2 PH2 (2 a) and IDipp ⋅ BH2 GeH2 PH2 (2 b); by altering the reaction conditions an almost exclusive formation of 2 b was achieved. Attempts to purify mixtures of 2 a and 2 b by re-crystallization from THF afforded a salt [IDipp ⋅ GeH2 BH2 ⋅ IDipp][PHGeH2 BH2 PH2 BH2 GeH2 ] (4) that contains the novel anionic cyclohexyl-like inorganic heterocycle [PHGeH2 BH2 PH2 BH2 GeH2 ]- . In addition, the borane adducts IDipp ⋅ GeH2 BH2 PH2 BH3 (3 a) and IDipp ⋅ BH2 GeH2 PH2 BH3 (3 b) as even longer chain compounds were obtained from reactions of 2 a/2 b with H3 B ⋅ SMe2 and were studied by NMR spectroscopy. Accompanying DFT computations give insight into the mechanism and energetics associated with 2 a/2 b isomerization as well as their decomposition pathways.
Collapse
Affiliation(s)
- Matthias T Ackermann
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Robert Szlosek
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Michael Seidl
- Institute of General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Alexey Y Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, St Petersburg, Russia
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
6
|
Sarkar D, Dutta S, Hanusch F, Koley D, Inoue S. Synthesis and reactivity of N-heterocyclic carbene (NHC)-supported heavier nitrile ylides. Chem Sci 2024; 15:2391-2397. [PMID: 38362429 PMCID: PMC10866356 DOI: 10.1039/d3sc06430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
The synthesis and isolation of stable heavier analogues of nitrile ylide as N-heterocyclic carbene (NHC) adducts of phosphasilenyl-tetrylene [(NHC)(TerAr)Si(H)PE14(TerAr)] (E14 = Ge 1, Sn 2; TerAr = 2,6-Mes2C6H3, NHC = IMe4) are reported. The delocalized Si-P-E14 π-conjugation was examined experimentally and computationally. Interestingly, the germanium derivative 1 exhibits a 1,3-dipolar nature, leading to an unprecedented [3 + 2] cycloaddition with benzaldehyde, resulting in unique heterocycles containing four heteroatoms from group 14, 15, and 16. Further exploiting the nucleophilicity of germanium, activation of the P-P bond of P4 was achieved, leading to a [(NHC)(phosphasilenyl germapolyphide)] complex. Moreover, the [3 + 2] cycloaddition and the σ-bond activation by 1 resemble the characteristics of the classic nitrile ylide.
Collapse
Affiliation(s)
- Debotra Sarkar
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741 246 India
| | - Franziska Hanusch
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741 246 India
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
7
|
Reveley MJ, Feld J, Temerova D, Yang ES, Goicoechea JM. Hydroelementation and Phosphinidene Transfer: Reactivity of Phosphagermenes and Phosphastannenes Towards Small Molecule Substrates. Chemistry 2023; 29:e202301542. [PMID: 37589485 PMCID: PMC10946619 DOI: 10.1002/chem.202301542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/18/2023]
Abstract
We describe the facile synthesis of [(Me3 Si)2 CH]2 E=PMes* (E=Ge, Sn) from the reaction of the tetrylenes with the phospha-Wittig reagent, Me3 P-PMes*. Their reactivity towards a range of substrates with protic and hydridic E-H bonds (E=N, O, Si) is described. In addition to hydroelementation reactions of the E=P bonds, we show that these compounds, particularly [(Me3 Si)2 CH]2 Sn=PMes*, also act as base-stabilized phosphinidenes, allowing phosphinidene transfer to other nucleophiles.
Collapse
Affiliation(s)
- Matthew J. Reveley
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Joey Feld
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Diana Temerova
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Eric S. Yang
- Department of ChemistryUniversity of Oxford Chemistry Research Laboratory12 Mansfield Rd.OxfordOX1 3TAUK
| | - Jose M. Goicoechea
- Department of ChemistryIndiana University800 E. Kirkwood Ave.BloomingtonIN., 47405USA
| |
Collapse
|
8
|
Lin J, Liu S, Zhang J, Grützmacher H, Su CY, Li Z. Room temperature stable E, Z-diphosphenes: their isomerization, coordination, and cycloaddition chemistry. Chem Sci 2023; 14:10944-10952. [PMID: 37829033 PMCID: PMC10566463 DOI: 10.1039/d3sc04506d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/09/2023] [Indexed: 10/14/2023] Open
Abstract
E,Z-isomers display distinct physical properties and chemical reactivities. However, investigations on heavy main group elements remain limited. In this work, we present the isolation and X-ray crystallographic characterization of N-heterocyclic vinyl (NHV) substituted diphosphenes as both E- and Z-isomers (L[double bond, length as m-dash]CH-P[double bond, length as m-dash]P-CH[double bond, length as m-dash]L, E,Z-2b; L = N-heterocyclic carbene). E-2b is thermodynamically more stable and undergoes reversible photo-stimulated isomerization to Z-2b. The less stable Z-isomer Z-2b can be thermally reverted to E-2b. Theoretical studies support the view that this E ↔ Z isomerization proceeds via P[double bond, length as m-dash]P bond rotation, reminiscent of the isomerization observed in alkenes. Furthermore, both E,Z-2b coordinate to an AuCl fragment affording the complex [AuCl(η2-Z-2b)] with the diphosphene ligand in Z-conformation, exclusively. In contrast, E,Z-2b undergo [2 + 4] and [2 + 1] cycloadditions with dienes or diazo compounds, respectively, yielding identical cycloaddition products in which the phosphorus bound NHV groups are in trans-position to each other. DFT calculations provide insight into the E/Z-isomerisation and stereoselective formation of Au(i) complexes and cycloaddition products.
Collapse
Affiliation(s)
- Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Jie Zhang
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
9
|
Nazish M, Legendre CM, Herbst-Irmer R, Muhammed S, Parameswaran P, Stalke D, Roesky HW. Synthesis and Characterization of Substituted Phosphasilenes and its Rare Homologue Stibasilene >Si=Sb. Chemistry 2023; 29:e202300791. [PMID: 37382048 DOI: 10.1002/chem.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Herein we report the reduction of R-EX2 (E=P, Sb) with two equivalents of KC8 in the presence of silylene (LSiR; L=PhC(NtBu)2 ) to give Trip-P=SiL(C6 H4 PPh2 ) (1), Ter Ph-P=(tBu)SiL (2) and Ter Ph-Sb=(tBu)SiL (3). The last (3) belongs to a new class of heavier analogues of Schiff bases (>C=N-), containing a formal >Si=Sb- double bond. The theoretical calculations suggest that lone pairs on the dicoordinated group-15 centers are stabilized by hyperconjugative interactions resulting in pseudo-Si-P/Si-Sb multiple bonds which are highly reactive as indicated by the high first and second proton affinities.
Collapse
Affiliation(s)
- Mohd Nazish
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Christina M Legendre
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Shahila Muhammed
- National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India
| | | | - Dietmar Stalke
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Li T, Zhang L, He Y, Chen Y, Wang D, Liu J, Tan G. A germanimidoyl chloride: synthesis, characterization and reactivity. Chem Commun (Camb) 2023; 59:1533-1536. [PMID: 36661338 DOI: 10.1039/d2cc05970c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The first germanimidoyl chloride MsFluindtBu-Ge(Cl)NMes (2, where MsFluindtBu is a bulky hydrindacene skeleton) was synthesized through the reaction of MsFluindtBu-GeCl (1) and mesityl azide (MesN3). In contrast, treatment of 1 with a less bulky azide ArN3 (Ar = 4-tBuC6H4) produced a germatetrazole chloride MsFluindtBu-Ge(Cl)N4Ar2 (3), and a salt [MsFluindtBu-GeN4Ar2]+[BArF4]- (4; ArF = 3,5-(CF3)2C6H3) followed by chloride abstraction with NaBArF4, both bearing a five-membered GeN4 ring. Functionalization of 2 with Ar'Li (Ar' = 3,5-tBu2C6H3) or MeLi furnished a germanimine MsFluindtBu-Ge(Ar')NMes (5) or an amide lithium salt MsFluindtBu-Ge(Me)2-N(Mes)Li(thf) (6).
Collapse
Affiliation(s)
- Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Li Zhang
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China
| | - Yuhao He
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jingjing Liu
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China. .,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
11
|
Nag E, Francis M, Battuluri S, Sinu BB, Roy S. Isolation of Elusive Phosphinidene‐Chlorotetrylenes: The Heavier Cyanogen Chloride Analogues. Chemistry 2022; 28:e202201242. [DOI: 10.1002/chem.202201242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ekta Nag
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Maria Francis
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sridhar Battuluri
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Bhavya Bini Sinu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati 517507 India
| |
Collapse
|
12
|
Xiong Y, Dong S, Yao S, Dai C, Zhu J, Kemper S, Driess M. An Isolable 2,5‐Disila‐3,4‐Diphosphapyrrole and a Conjugated Si=P−Si=P−Si=N Chain Through Degradation of White Phosphorus with a
N,N
‐Bis(Silylenyl)Aniline. Angew Chem Int Ed Engl 2022; 61:e202209250. [PMID: 35876267 PMCID: PMC9545316 DOI: 10.1002/anie.202209250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/08/2022]
Abstract
White phosphorus (P4) undergoes degradation to P2 moieties if exposed to the new N,N‐bis(silylenyl)aniline PhNSi21 (Si=Si[N(tBu)]2CPh), furnishing the first isolable 2,5‐disila‐3,4‐diphosphapyrrole 2 and the two novel functionalized Si=P doubly bonded compounds 3 and 4. The pathways for the transformation of the non‐aromatic 2,5‐disila‐3,4‐diphosphapyrrole PhNSi2P22 into 3 and 4 could be uncovered. It became evident that 2 reacts readily with both reactants P4 and 1 to afford either the polycyclic Si=P‐containing product [PhNSi2P2]2P23 or the unprecedented conjugated Si=P−Si=P−Si=NPh chain‐containing compound 4, depending on the employed molar ratio of 1 and P4 as well as the reaction conditions. Compounds 3 and 4 can be converted into each other by reactions with 1 and P4, respectively. All new compounds 1–4 were unequivocally characterized including by single‐crystal X‐ray diffraction analysis. In addition, the electronic structures of 2–4 were established by Density Functional Theory (DFT) calculations.
Collapse
Affiliation(s)
- Yun Xiong
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Shenglai Yao
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Sebastian Kemper
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganic and Inorganic Materials Technische Universität Berlin Strasse des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
13
|
Xiong Y, Dong S, Yao S, Dai C, Zhu J, Kemper S, Driess M. An Isolable 2,5‐Disila‐3,4‐Diphosphapyrrole and a Conjugated Si=P‐Si=P‐Si=N Chain Through Degradation of White Phosphorus with a N,N‐Bis(Silylenyl)Aniline. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yun Xiong
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | | | - Shenglai Yao
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | | | - Jun Zhu
- Xiamen University Chemistry CHINA
| | - Sebastian Kemper
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Matthias Driess
- Technische Universität Berlin Chemie Strasse des 17. Juni 135, Sekr. C2 10623 Berlin GERMANY
| |
Collapse
|
14
|
Fischer M, Roy MMD, Wales LL, Ellwanger MA, Heilmann A, Aldridge S. Structural Snapshots in Reversible Phosphinidene Transfer: Synthetic, Structural, and Reaction Chemistry of a Sn═P Double Bond. J Am Chem Soc 2022; 144:8908-8913. [PMID: 35536684 PMCID: PMC9136930 DOI: 10.1021/jacs.2c03302] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of amido-substituted stannylenes with phospha-Wittig reagents (Me3PPR) results in release of hexamethyldisilazane and tethering of the resulting -CH2PMe2PR fragment to the tin center to give P-donor stabilized stannylenes featuring four-membered Sn,C,P,P heterocycles. Through systematic increases in steric loading, the structures of these systems in the solid state can be tuned, leading to successive P-P bond lengthening and Sn-P contraction and, in the most encumbered case, to complete P-to-Sn transfer of the phosphinidene fragment. The resulting stannaphosphene features a polar Sn═P double bond as determined by structural and computational studies. The reversibility of phosphinidene transfer can be established by solution phase measurements and reactivity studies.
Collapse
Affiliation(s)
- Malte Fischer
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Matthew M D Roy
- Department of Chemistry, Catalysis Research Center and Institute for Silicon Chemistry, Technische Universität München, 85748 Garching bei München, Germany
| | - Lewis L Wales
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Andreas Heilmann
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| |
Collapse
|
15
|
Riu MLY, Eckhardt AK, Cummins CC. Reactions of Tri- tert-Butylphosphatetrahedrane as a Spring-Loaded Phosphinidene Synthon Featuring Nickel-Catalyzed Transfer to Unactivated Alkenes. J Am Chem Soc 2022; 144:7578-7582. [PMID: 35437987 DOI: 10.1021/jacs.2c02236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cage-opening reactions of the highly strained tri-tert-butylphosphatetrahedrane (1), shown here to function as a synthon of (tri-tert-butylcyclopropenyl)phosphinidene, are described. Treatment of 1 with a base-stabilized silylene led to the corresponding phosphasilene, which was isolated in 72% yield as a red crystalline solid. Phosphinidene transfer was also observed when 1 (2 equiv) was combined with the Wittig reagent Ph3PCH2 to form a diphosphirane (50% isolated yield). The reaction is proposed to proceed through a generated phosphaalkene intermediate, which was characterized by NMR spectroscopy. In addition, we report on nickel-catalyzed phosphinidene transfer to styrene, ethylene, neohexene, and 1,3-cyclohexadiene; the corresponding phosphiranes were isolated in 51-64% yield. Computational studies suggest the intermediacy of a nickel phosphinidene species. Treatment of the ethylene-derived phosphirane product with triflic acid delivered elimination of [tBu3C3]OTf and formation of a P-H bond, illustrating the ability of the tri-tert-butyl cyclopropenyl group to serve as a protecting group that is removable following phosphinidene transfer.
Collapse
Affiliation(s)
- Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - André K Eckhardt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
He Y, Dai C, Wang D, Zhu J, Tan G. Phosphine-Stabilized Germylidenylpnictinidenes as Synthetic Equivalents of Heavier Nitrile and Isocyanide in Cycloaddition Reactions with Alkynes. J Am Chem Soc 2022; 144:5126-5135. [PMID: 35263091 DOI: 10.1021/jacs.2c00305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reactions of chlorogermylene MsFluindtBu-GeCl 1, supported by a sterically encumbered hydrindacene ligand MsFluindtBu, with NaPCO(dioxane)2.5 and NaAsCO(18-c-6) in the presence of trimethylphosphine afforded trimethylphosphine-stabilized germylidenyl-phosphinidene 2 and -arsinidene 3, respectively. Structural and computational investigations reveal that the Ge-E' bond (E' = P and As) features a multiple-bond character. 2 and 3 exhibit diverse reactivity toward trimethylsilylacetylene and 4-tetrabutylphenylacetylene. Specifically, 2 underwent cycloadditions with both alkynes affording the first six-membered aromatic phosphagermabenzen-1-ylidenes 4 and 5, respectively, through the heavier isocyanide intermediate MsFluindtBu-PGe. In contrast, 3 could serve as a synthetic equivalent of heavier isocyanides and nitriles when treated with trimethylsilylacetylene and 4-tetrabutylphenylacetylene yielding arsagermene 6 and arsolylgermylene 7, respectively. The reaction mechanisms for the cycloadditions were investigated through density functional theory calculations. The reactivity studies highlight the potential of 2 and 3 in accessing heavy main-group element-containing heterocycles.
Collapse
Affiliation(s)
- Yuhao He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongmin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
η2-Phosphasilene transition metal complexes – a novel building block for hetero-multimetallic complexes. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Stoy A, Arrowsmith M, Eyßelein M, Dellermann T, Mies J, Radacki K, Kupfer T, Braunschweig H. NHC-Stabilized 1,2-Dihalodiborenes: Synthesis, Characterization, and Reactivity Toward Elemental Chalcogens. Inorg Chem 2021; 60:12625-12633. [PMID: 34042444 DOI: 10.1021/acs.inorgchem.1c01169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The 2-fold reduction of B2X4(NHC)2 (X = Cl, Br, I; NHC = (un)saturated N-heterocyclic carbene) yields the corresponding green-colored 1,2-dihalodiborenes B2X2(NHC)2, the 11B NMR resonances of which are strongly upfield-shifted upon descending the halide group. The diborenes crystallize as the trans isomers, with relatively short B═B double bonds (1.513(9) to 1.568(4) Å). Cyclic voltammetric experiments with these diborenes reveal reversible one-electron oxidation processes to the corresponding diboron radical cation (E1/2 = -1.16 to -1.50 V); the reducing power of B2X2(NHC)2 increasing with the electronegativity of the halide and for the less π-accepting unsaturated NHCs. The main UV-vis absorption (393-463 nm), which corresponds mainly to a highest occupied molecular orbital (HOMO) → lowest unoccupied molecular orbital (LUMO) transition, undergoes a blueshift upon descending the halide group and shows some dependence on the stereoelectronics of the NHC ligands. Computational analyses show that the HOMO of B2X2(NHC)2 is mostly localized on the B═B π bond, with the contribution from halide p orbitals decreasing down the group, and the saturated NHCs affording some π-bonding delocalization over the B-CNHC bonds. The calculated HOMO and LUMO energies decrease upon descending the halide group, while the HOMO-LUMO gap also decreases, correlating well with the cyclovoltammetry and UV-vis data. The reactions of B2Br2(NHC)2 with elemental sulfur and red selenium lead to the formation of the corresponding diborathiiranes and seleniranes, respectively, which were characterized by NMR and UV-vis spectroscopy, cyclic voltammetry, and X-ray diffraction analyses. In one case, an additional one-electron oxidation yields a unique cyclic B2Se radical cation. Computational analyses show that the localization of the HOMO and HOMO - 1 of the diboraseleniranes is inverted compared to the diborathiiranes.
Collapse
Affiliation(s)
- Andreas Stoy
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Eyßelein
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Theresa Dellermann
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Mies
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Krzysztof Radacki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Kupfer
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
19
|
Liu Y, Keil H, Zhong M, Li J, Yang Z, Herbst‐Irmer R, Stalke D, Roesky HW. MesPX
2
/IsPX
2
as Precursors for the Preparation of Phosphasilenes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yashuai Liu
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 P. R. China
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Helena Keil
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Mingdong Zhong
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Jiancheng Li
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 102488 P. R. China
| | - Regine Herbst‐Irmer
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
20
|
Guo R, Jiang J, Ke Z, Tung CH, Kong L. Incorporation of H 2O and CO 2 into a BN-embedded 3 aH-3 a1H-acephenanthrylene derivative. Chem Commun (Camb) 2021; 57:1226-1229. [PMID: 33416813 DOI: 10.1039/d0cc07276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fused tetracyclic BN-species 1 featuring nucleophilic nitrogen and electrophilic boron centers behaves as a reactive N/B frustrated Lewis pair (FLP) for small molecule activation. Specifically, the O-H and C[double bond, length as m-dash]O bonds have been cleaved by 1 with the formation of fused borinic acid 2, borenium species 3, anionic boranuidacarboxylic acid 4 and oxadiazaborolidinone 5, respectively. Quantum-mechanical calculations are conducted to comprehensively understand the activation processes of small molecules by 1.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| | - Jingxing Jiang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
21
|
Gorantla SMNVT, Francis M, Roy S, Mondal KC. Bonding and stability of donor ligand-supported heavier analogues of cyanogen halides (L')PSi(X)(L). RSC Adv 2021; 11:6586-6603. [PMID: 35423226 PMCID: PMC8694932 DOI: 10.1039/d0ra10338a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
Abstract
Fluoro- and chloro-phosphasilynes [X-Si[triple bond, length as m-dash]P (X = F, Cl)] belong to a class of illusive chemical species which are expected to have Si[triple bond, length as m-dash]P multiple bonds. Theoretical investigations of the bonding and stability of the corresponding Lewis base-stabilized species (L')PSi(X)(L) [L' = cAACMe (cyclic alkyl(amino) carbene); L = cAACMe, NHCMe (N-heterocyclic carbene), PMe3, aAAC (acyclic alkyl(amino) carbene); X = Cl, F] have been studied using the energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) method. The variation of the ligands (L) on the Si-atom leads to different bonding scenarios depending on their σ-donation and π-back acceptance properties. The ligands with higher lying HOMOs prefer profoundly different bonding scenarios than the ligands with lower lying HOMOs. The type of halogen (Cl or F) on the Si-atom was also found to have a significant influence on the overall bonding scenario. The reasonably higher value and endergonic nature of the dissociation energies along with the appreciable HOMO-LUMO energy gap may corroborate to the synthetic viability of the homo and heteroleptic ligand-stabilized elusive PSi(Cl/F) species in the laboratory.
Collapse
Affiliation(s)
| | - Maria Francis
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | - Sudipta Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati 517507 India
| | | |
Collapse
|
22
|
Abstract
Since the discovery that the so-called "double-bond" rule could be broken, the field of molecular main group multiple bonds has expanded rapidly. With the majority of homodiatomic double and triple bonds realised within the p-block, along with many heterodiatomic combinations, this Minireview examines the reactivity of these compounds with a particular emphasis on small molecule activation. Furthermore, whilst their ability to act as transition metal mimics has been explored, their catalytic behaviour is somewhat limited. This Minireview aims to highlight the potential of these complexes towards catalytic application and their role as synthons in further functionalisations making them a versatile tool for the modern synthetic chemist.
Collapse
Affiliation(s)
- Catherine Weetman
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
23
|
Li B, Wölper C, Haberhauer G, Schulz S. Synthesis and Reactivity of Heteroleptic Ga-P-C Allyl Cation Analogues. Angew Chem Int Ed Engl 2021; 60:1986-1991. [PMID: 33034935 PMCID: PMC7894565 DOI: 10.1002/anie.202012595] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 11/28/2022]
Abstract
Oxidative addition of cyclic alkyl(amino)carbene-coordinated phosphinidenes (Me cAAC)PX to LGa affords gallium-coordinated phosphinidenes LGa(X)-P(Me cAAC) (L=HC[C(Me)N(2,6-i-Pr2 C6 H3 )]2 ; X=Cl 1, Br 2), which react with NaBArF 4 and LiAl(ORF )4 to [LGaP(Me cAAC)][An] (An=B(C6 H3 (CF3 )2 )4 3, B(C6 F5 )4 4, Al(OC(CF3 )3 )4 5). The cations in 3-5 show substantial Ga-P double bond character and represent heteronuclear analogues of allyl cations according to quantum chemical calculations. The reaction of 4 with 4-dimethylaminopyridine (dmap) to adduct 6 confirms the strong electrophilic nature of the gallium center, whereas 5 reacts with ethyl isocyanate with C-C bond formation to the γ-C atom of the β-diketiminate ligand and formation of compound 7.
Collapse
Affiliation(s)
- Bin Li
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745141EssenGermany
| |
Collapse
|
24
|
Li B, Wölper C, Haberhauer G, Schulz S. Synthesis and Reactivity of Heteroleptic Ga‐P‐C Allyl Cation Analogues. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bin Li
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45141 Essen Germany
| |
Collapse
|
25
|
Agarwal A, Bose SK. Bonding Relationship between Silicon and Germanium with Group 13 and Heavier Elements of Groups 14-16. Chem Asian J 2020; 15:3784-3806. [PMID: 33006219 DOI: 10.1002/asia.202001043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Indexed: 11/10/2022]
Abstract
The topic of heavier main group compounds possessing multiple bonds is the subject of momentous interest in modern organometallic chemistry. Importantly, there is an excitement involving the discovery of unprecedented compounds with unique bonding modes. The research in this area is still expanding, particularly the reactivity aspects of these compounds. This article aims to describe the overall developments reported on the stable derivatives of silicon and germanium involved in multiple bond formation with other group 13, and heavier groups 14, 15, and 16 elements. The synthetic strategies, structural features, and their reactivity towards different nucleophiles, unsaturated organic substrates, and in small molecule activation are discussed. Further, their physical and chemical properties are described based on their spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Abhishek Agarwal
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University) Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
26
|
Samedov K, Heider Y, Cai Y, Willmes P, Mühlhausen D, Huch V, West R, Scheschkewitz D, Percival PW. Free Radical Chemistry of Phosphasilenes. Angew Chem Int Ed Engl 2020; 59:16007-16012. [PMID: 32488930 PMCID: PMC7540504 DOI: 10.1002/anie.202006289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Indexed: 11/25/2022]
Abstract
Understanding the characteristics of radicals formed from silicon-containing heavy analogues of alkenes is of great importance for their application in radical polymerization. Steric and electronic substituent effects in compounds such as phosphasilenes not only stabilize the Si=P double bond, but also influence the structure and species of the formed radicals. Herein we report our first investigations of radicals derived from phosphasilenes with Mes, Tip, Dur, and NMe2 substituents on the P atom, using muon spin spectroscopy and DFT calculations. Adding muonium (a light isotope of hydrogen) to phosphasilenes reveals that: a) the electron-donor NMe2 and the bulkiest Tip-substituted phosphasilenes form several muoniated radicals with different rotamer conformations; b) bulky Dur-substituted phosphasilene forms two radicals (Si- and P-centred); and c) Mes-substituted phosphasilene mainly forms one species of radical, at the P centre. These significant differences result from intramolecular substituent effects.
Collapse
Affiliation(s)
- Kerim Samedov
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouverBCV6T 1Z1Canada
| | - Yannic Heider
- Krupp-Chair for General and Inorganic ChemistrySaarland UniversityCampus, C4.166123SaarbrückenGermany
| | - Yuanjing Cai
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Philipp Willmes
- Krupp-Chair for General and Inorganic ChemistrySaarland UniversityCampus, C4.166123SaarbrückenGermany
| | - Daniel Mühlhausen
- Krupp-Chair for General and Inorganic ChemistrySaarland UniversityCampus, C4.166123SaarbrückenGermany
| | - Volker Huch
- Krupp-Chair for General and Inorganic ChemistrySaarland UniversityCampus, C4.166123SaarbrückenGermany
| | - Robert West
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AvenueMadisonWI53706USA
| | - David Scheschkewitz
- Krupp-Chair for General and Inorganic ChemistrySaarland UniversityCampus, C4.166123SaarbrückenGermany
| | - Paul W. Percival
- Department of ChemistrySimon Fraser University8888 University DriveBurnabyBCV5A 1S6Canada
- Centre for Molecular and Materials Science, TRIUMF4004 Wesbrook MallVancouverBCV6T 2A3Canada
| |
Collapse
|
27
|
Samedov K, Heider Y, Cai Y, Willmes P, Mühlhausen D, Huch V, West R, Scheschkewitz D, Percival PW. Chemie freier Radikale von Phosphasilenen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kerim Samedov
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Peking 100029 China
- Department of Chemistry University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Kanada
| | - Yannic Heider
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie Universität des Saarlandes Campus, C4.1 66123 Saarbrücken Deutschland
| | - Yuanjing Cai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Peking 100029 China
| | - Philipp Willmes
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie Universität des Saarlandes Campus, C4.1 66123 Saarbrücken Deutschland
| | - Daniel Mühlhausen
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie Universität des Saarlandes Campus, C4.1 66123 Saarbrücken Deutschland
| | - Volker Huch
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie Universität des Saarlandes Campus, C4.1 66123 Saarbrücken Deutschland
| | - Robert West
- Department of Chemistry University of Wisconsin-Madison 1101 University Avenue Madison WI 53706 USA
| | - David Scheschkewitz
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie Universität des Saarlandes Campus, C4.1 66123 Saarbrücken Deutschland
| | - Paul W. Percival
- Department of Chemistry Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Kanada
- Centre for Molecular and Materials Science, TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 Kanada
| |
Collapse
|
28
|
Liu Y, Keil H, Yang Z, Herbst‐Irmer R, Roesky HW, Stalke D. Phosphorus Silicon Compounds from the Reduction of MesP(H)SiCl
2
Ph/Carbene with and without Metal. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yashuai Liu
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
- School of Chemistry and Chemical Engineering Beijing Institute of Technology 102488 Beijing P. R. China
| | - Helena Keil
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Zhi Yang
- School of Chemistry and Chemical Engineering Beijing Institute of Technology 102488 Beijing P. R. China
| | - Regine Herbst‐Irmer
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Herbert W. Roesky
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| | - Dietmar Stalke
- Institute of Inorganic Chemistry University of Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
29
|
Nesterov V, Baierl R, Hanusch F, Ferao AE, Inoue S. N-Heterocyclic Carbene-Stabilized Germanium and Tin Analogues of Heavier Nitriles: Synthesis, Reactivity, and Catalytic Application. J Am Chem Soc 2019; 141:14576-14580. [DOI: 10.1021/jacs.9b08741] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Ramona Baierl
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Franziska Hanusch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
30
|
Ballestero‐Martínez E, Szilvási T, Hadlington TJ, Driess M. From
As
‐Zincoarsasilene (LZn‐As=SiL′) to Arsaethynolato (As≡C−O) and Arsaketenylido (O=C=As) Zinc Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ernesto Ballestero‐Martínez
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Tibor Szilvási
- Department of Chemical & Biological EngineeringUniversity of Wisconsin-Madison 1415 Engineering Drive Madison WI 53706 USA
| | - Terrance J. Hadlington
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität Berlin Straße des 17. Juni 135, Sekr. C2 10623 Berlin Germany
| |
Collapse
|
31
|
Ballestero-Martínez E, Szilvási T, Hadlington TJ, Driess M. From As-Zincoarsasilene (LZn-As=SiL') to Arsaethynolato (As≡C-O) and Arsaketenylido (O=C=As) Zinc Complexes. Angew Chem Int Ed Engl 2019; 58:3382-3386. [PMID: 30620428 DOI: 10.1002/anie.201813521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 11/10/2022]
Abstract
The reactivity of the As-zincosilaarsene LZn-As=SiL' A (L=[CH(CMeNDipp)2 ]- , Dipp=2,6-i Pr2 C6 H3 , L'=[{C(H)N(2,6-i Pr2 -C6 H3 )}2 ]2- ) towards small molecules was investigated. Due to the pronounced zwitterionic character of the Si=As bond of A, it undergoes addition reactions with H2 O and NH3 , forming LZnAs(H)SiOH(L') 1 and LZnAs(H)SiNH2 (L') 2. Oxygenation of A with N2 O at -60 °C furnishes the deep blue 1,2-disiloxydiarsene, [LZnOSi(L')As]2 4, presumably via dimerization of the arsinidene intermediate LZnOSi(L')As 3. Oxygenation of A with CO2 leads to the monomeric arsaethynolato siloxido zinc complex LZnOSi(L')(OC≡As) 5, essentially trapping the intermediary arsinidene 3 with liberated CO following initial oxidation of the Si=As bond. DFT calculations confirm the ambident coordination mode of the anionic [AsCO] ligand in solution, with the O-arsaethynolato [As≡C-O].- in 5, and the As-arsaketenylido ligand mode [O=C=As]- present in LZnO-Si(L')(-As=C=O) 5' akin to the analogous phosphorus system, [PCO]- .
Collapse
Affiliation(s)
- Ernesto Ballestero-Martínez
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Tibor Szilvási
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Terrance J Hadlington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
32
|
Heider Y, Willmes P, Mühlhausen D, Klemmer L, Zimmer M, Huch V, Scheschkewitz D. A Three-Membered Cyclic Phosphasilene. Angew Chem Int Ed Engl 2019; 58:1939-1944. [PMID: 30548984 DOI: 10.1002/anie.201811944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/29/2018] [Indexed: 11/07/2022]
Abstract
Small unsaturated phosphacycles are versatile reagents owing to their strain and the added functionality of the double bond and the phosphorus lone pair. Herein we report the synthesis and isolation of the smallest possible cyclic phosphasilene as a stable adduct with an N-heterocyclic carbene (NHC). First reactivity studies show a) that the PSi2 ring is a competent ligand to the Fe(CO)4 fragment via the phosphorus lone pair and b) that the abstraction of the NHC by BPh3 results in the rapid head-to-head or head-to-tail dimerization of the PSi2 unit. The relatively facile NHC cleavage indicates that the P=Si double bond is available for further manipulation.
Collapse
Affiliation(s)
- Yannic Heider
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus, C4.1, 66123, Saarbrücken, Germany
| | - Philipp Willmes
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus, C4.1, 66123, Saarbrücken, Germany
| | - Daniel Mühlhausen
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus, C4.1, 66123, Saarbrücken, Germany
| | - Lukas Klemmer
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus, C4.1, 66123, Saarbrücken, Germany
| | - Michael Zimmer
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus, C4.1, 66123, Saarbrücken, Germany
| | - Volker Huch
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus, C4.1, 66123, Saarbrücken, Germany
| | - David Scheschkewitz
- Krupp-Lehrstuhl für Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus, C4.1, 66123, Saarbrücken, Germany
| |
Collapse
|
33
|
Hadlington TJ, Szilvási T, Driess M. Versatile Tautomerization of EH2-Substituted Silylenes (E = N, P, As) in the Coordination Sphere of Nickel. J Am Chem Soc 2019; 141:3304-3314. [DOI: 10.1021/jacs.9b00159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Terrance J. Hadlington
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623 Berlin, Germany
| | - Tibor Szilvási
- Department of Chemical & Biological Engineering, University of Wisconsin−Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 135, Sekr. C2, 10623 Berlin, Germany
| |
Collapse
|
34
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
35
|
Guddorf BJ, Mück-Lichtenfeld C, Hepp A, Lips F. Formation of an NHC-stabilized heterocyclic housane and its isomerization into a cyclopentenyl anion analogue. Chem Commun (Camb) 2019; 55:12896-12899. [DOI: 10.1039/c9cc07109a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
:PC–tBu reacts with Si3Mes4NHCiPr2Me2E to afford a so-called “housane” 1, that rearranges upon irradiation with a high-pressure mercury lamp or at 60 °C to an NHC-stabilized cyclopentenyl anion analogue 2 with a three-center four-electron π-bond.
Collapse
Affiliation(s)
- Benedikt J. Guddorf
- Westfälische Wilhelms-Universität Münster
- Institut für Anorganische und Analytische Chemie
- 48149 Münster
- Germany
| | | | - Alexander Hepp
- Westfälische Wilhelms-Universität Münster
- Institut für Anorganische und Analytische Chemie
- 48149 Münster
- Germany
| | - Felicitas Lips
- Westfälische Wilhelms-Universität Münster
- Institut für Anorganische und Analytische Chemie
- 48149 Münster
- Germany
| |
Collapse
|
36
|
Sarkar D, Nesterov V, Szilvási T, Altmann PJ, Inoue S. The Quest for Stable Silaaldehydes: Synthesis and Reactivity of a Masked Silacarbonyl. Chemistry 2018; 25:1198-1202. [PMID: 30444958 DOI: 10.1002/chem.201805604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 11/09/2022]
Abstract
The first donor-acceptor complex of a silaaldehyde, with the general formula (NHC)(Ar)Si(H)OGaCl3 (NHC=N-heterocyclic carbene), was synthesized using the reaction of silyliumylidene-NHC complex [(NHC)2 (Ar)Si]Cl with water in the presence of GaCl3 . Conversion of this complex to the corresponding silacarboxylate dimer [(NHC)(Ar)SiO2 GaCl2 ]2 , free silaacetal ArSi(H)(OR)2 , silaacyl chloride (NHC)(Ar)Si(Cl)OGaCl3 , and phosphasilene-NHC adduct (NHC)(Ar)Si(H)PTMS unveil its true potential as a synthon in silacarbonyl chemistry.
Collapse
Affiliation(s)
- Debotra Sarkar
- WACKER-Institute of Silicon Chemistry and, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| | - Vitaly Nesterov
- WACKER-Institute of Silicon Chemistry and, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706-1607, USA
| | - Philipp J Altmann
- WACKER-Institute of Silicon Chemistry and, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- WACKER-Institute of Silicon Chemistry and, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching bei München, Germany
| |
Collapse
|
37
|
Nesterov V, Reiter D, Bag P, Frisch P, Holzner R, Porzelt A, Inoue S. NHCs in Main Group Chemistry. Chem Rev 2018; 118:9678-9842. [PMID: 29969239 DOI: 10.1021/acs.chemrev.8b00079] [Citation(s) in RCA: 556] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since the discovery of the first stable N-heterocyclic carbene (NHC) in the beginning of the 1990s, these divalent carbon species have become a common and available class of compounds, which have found numerous applications in academic and industrial research. Their important role as two-electron donor ligands, especially in transition metal chemistry and catalysis, is difficult to overestimate. In the past decade, there has been tremendous research attention given to the chemistry of low-coordinate main group element compounds. Significant progress has been achieved in stabilization and isolation of such species as Lewis acid/base adducts with highly tunable NHC ligands. This has allowed investigation of numerous novel types of compounds with unique electronic structures and opened new opportunities in the rational design of novel organic catalysts and materials. This Review gives a general overview of this research, basic synthetic approaches, key features of NHC-main group element adducts, and might be useful for the broad research community.
Collapse
Affiliation(s)
- Vitaly Nesterov
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Dominik Reiter
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Prasenjit Bag
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Philipp Frisch
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Richard Holzner
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Amelie Porzelt
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center , Technische Universität München , Lichtenbergstrasse 4 , Garching bei München 85748 , Germany
| |
Collapse
|
38
|
Yildiz CB. Oxidation of hydro-silaimine, phosphasilene, and arsasilene structures (CH3)HSi E(CH3) (E: N, P, or As) via concerted 1,3-dipolar cycloaddition of nitrous oxide: A DFT study. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Lee VY, Kawai M, Gapurenko OA, Minkin VI, Gornitzka H, Sekiguchi A. Arsagermene, a compound with an –AsGe double bond. Chem Commun (Camb) 2018; 54:10947-10949. [DOI: 10.1039/c8cc05630g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsagermene, a stable compound featuring an AsGe double bond, was synthesized, isolated, and structurally characterized for the first time.
Collapse
Affiliation(s)
- Vladimir Ya. Lee
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Manami Kawai
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Olga A. Gapurenko
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov on Don 344090
- Russian Federation
| | - Vladimir I. Minkin
- Institute of Physical and Organic Chemistry
- Southern Federal University
- Rostov on Don 344090
- Russian Federation
| | | | - Akira Sekiguchi
- Department of Chemistry
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| |
Collapse
|
40
|
Dostál L. Quest for stable or masked pnictinidenes: Emerging and exciting class of group 15 compounds. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|