1
|
Sarkar R, Bandyopadhyay A, Brahmachari G. Residue-specific protein-glycan conjugation strategies for the development of pharmaceutically promising glycoconjugate vaccines: A recent update. Carbohydr Res 2025; 552:109476. [PMID: 40188503 DOI: 10.1016/j.carres.2025.109476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/08/2025]
Abstract
Covalent coupling between a carbohydrate antigen and a protein carrier leads to the formation of pharmaceutically promising glycoconjugate vaccines. Most licensed glycoconjugate vaccines are acquired by random bioconjugation of native or sized glycans with the surface-exposed amino acid residues of proteins, such as lysine, cysteine, aspartic acid, glutamic amino acid, etc. In the last two decades, considerable momentum has been gained in the glycoconjugate vaccine development by discovering several residue-specific bioconjugation strategies. As a result, glycoconjugate chemistry reaches the verge of discovering well-defined and "real" homogeneous vaccines, which may be more potent to generate antimicrobial resistance against "bad-bugs". Through this literature survey, we intend to highlight the state of the art of residue-specific bioconjugation of proteins with glycans to obtain glycoconjugate vaccines. The review will also identify a potential roadmap to address the gap and the prospects in the medicinal domain.
Collapse
Affiliation(s)
- Rajib Sarkar
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Muragachha Government College, Nadia, 741154, West Bengal, India
| | - Ayan Bandyopadhyay
- Department of Higher Education, Government of West Bengal, India; Department of Chemistry, Chapra Government College, Nadia, 741123, West Bengal, India
| | - Goutam Brahmachari
- Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan, 731 235, West Bengal, India.
| |
Collapse
|
2
|
Myres GJ, Kitt JP, Harris JM. Stoichiometric Control of Bismaleimide Conjugation of DNA to Silica Surfaces Through Quantitative Fluorescence Analysis of Thiolated DNA. APPLIED SPECTROSCOPY 2025:37028251332617. [PMID: 40241546 DOI: 10.1177/00037028251332617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Surface immobilization of DNA for biosensing or separations applications requires covalent attachment chemistry that is efficient, reproducible, and stable. In this work, an approach to link thiol-functionalized DNA to thiol-modified silica surfaces using N,N'-1,4-phenylene-bismaleimide is optimized by developing an efficient, one-pot synthesis of the maleimide-conjugated DNA followed by its immediate reaction with thiolated porous silica particles. The methodology takes advantage of a Michael addition reaction that couples a phenyl-bismaleimide cross-linking reagent and thiol-modified DNA to form a monomeric DNA-maleimide conjugate. The 1:1 stoichiometry of this reaction must be carefully controlled to avoid excess thiol-DNA, which generates unreactive bismaleimide-linked DNA dimers, or excess bismaleimide, which competes with the DNA-maleimide conjugate for reaction with the thiolated silica surface. To achieve control over the reaction forming the DNA conjugate, we adapt a fluorescence assay for free-thiols using 7-diethylamino-3-(4-maleimidophenyl)-4-methyl-coumarin (CPM) to determine the concentration of thiol-modified DNA that emerges from its synthesis, disulfide labeling, reduction to a thiol, and purification. The fluorescence response of the CPM reagent was calibrated using reduced glutathione as a standard, which allowed determination of the concentrations of thiolated-DNA and control over the stoichiometry of its reaction with a bismaleimide linker. The maleimide-conjugated DNA product thus formed was then reacted with thiolated-silica in order to bind the DNA to the internal surfaces of porous silica, whose surface populations were determined in individual particles by confocal Raman microscopy. Self-modeling curve resolution of the Raman spectra of surface-bound molecules validated the efficiency of the bismaleimide:thiolated DNA reaction, which provided stoichiometric control over formation of the monomeric DNA-maleimide conjugate and its optimized reaction with thiolated-silica surfaces.
Collapse
Affiliation(s)
- Grant J Myres
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Jay P Kitt
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Joel M Harris
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Shen LW, Lei SL, Wang HY, Wang X, Lu LM, Wang GW, Jia YQ, Xiang M. Metal-free amination of alkenes based on maleimides. Org Biomol Chem 2025; 23:3865-3869. [PMID: 40114611 DOI: 10.1039/d5ob00201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A metal-free amination of alkenes based on maleimides has been developed. This method features mild reaction conditions and broad substrate scope, and aminomaleimides with EWGs have been synthesized in up to 99% yield. The gram-scale reaction and successful derivatization of the products further demonstrate the applicability of this methodology.
Collapse
Affiliation(s)
- Li-Wen Shen
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Shuang-Ling Lei
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Hong-Yan Wang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Xin Wang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Lin-Mu Lu
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Guang-Wei Wang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Yun-Qing Jia
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| | - Min Xiang
- Department of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563002, China.
| |
Collapse
|
4
|
Ahn J, Kim T, Bae J, Jung J, Lee J, Lee H, Mun J, Kim S, Park J, Kim J, Koh M. Reversible Protein Labeling via Genetically Encoded Dithiolane-Containing Amino Acid and Organoarsenic Probes. Bioconjug Chem 2025. [PMID: 40213874 DOI: 10.1021/acs.bioconjchem.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Conventional protein labeling techniques often rely on irreversible covalent bonds, limiting dynamic control over protein modifications. Here, we present a reversible protein labeling strategy using genetically encoded dithiolane-containing amino acid (dtF) and organoarsenic conjugation chemistry. Using dithiarsolane dicarboxylic acid probe A2, we achieved near-quantitative labeling and ethanedithiol-mediated removal within 1 h at room temperature. A2 exhibited reduced toxicity with a 7-fold higher IC50 compared to arsenoxide, and its fluorescent derivative A2-FB showed no cytotoxicity up to 100 μM, enabling live-cell applications. This is the first demonstration of dithiol-arsenic chemistry at a single amino acid residue, providing a structural alternative to dicysteine motifs. Reversible labeling was validated in purified proteins (sfGFP-Y151dtF and MYO-K99dtF) and live Escherichia coli, offering a versatile tool for dynamic protein modifications and molecular tracking in biological systems.
Collapse
Affiliation(s)
- Jiyeun Ahn
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Taegwan Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jieun Bae
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jinjoo Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeongeun Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Hwiyoung Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jinhee Mun
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sohee Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Kimura K, Shimizu Y, Kanno K, Sato I, Mori S, Oriyama T. Highly Enantioselective Organocatalytic Mannich Reaction of α-Benzylidene Succinimides with N-Boc Imines: Experimental and Theoretical Studies. J Org Chem 2025; 90:4591-4598. [PMID: 40128142 DOI: 10.1021/acs.joc.4c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The development of efficient and practical methods for the construction of chiral succinimide frameworks, which are the backbone of various natural products and widely studied in the field of pharmaceuticals, attracts considerable research attention. In this study, an asymmetric Mannich reaction of α-benzylidene succinimides with N-Boc imines was successfully performed using a bifunctional squaramide-type organocatalyst derived from quinine, affording the corresponding Mannich adduct with two contiguous stereocenters in high yields (up to 98%) with high diastereoselectivities (up to >20:1 dr) and excellent enantioselectivities (up to 99% ee). This protocol provides a direct approach to prepare chiral succinimide derivatives from simple starting material. Density Functional Theory (DFT) calculations with conformational search using an autosampling program revealed that the enantioselectivity profile was dominated by the deformation of the organocatalyst.
Collapse
Affiliation(s)
- Kodai Kimura
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yuto Shimizu
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Katsuya Kanno
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Itaru Sato
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- Research and Education Center for Atomic Sciences, Ibaraki University, Tokai, Ibaraki 319-1106, Japan
| | - Takeshi Oriyama
- Department of Chemistry, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
6
|
Wu Y, Wong Y, Yeung Y, Lam P, Chau H, Tam W, Zhang Q, Tai WCS, Wong K. Peptide Multifunctionalization via Modular Construction of Trans-AB 2C Porphyrin on Resin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409771. [PMID: 39973068 PMCID: PMC11984925 DOI: 10.1002/advs.202409771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/16/2024] [Indexed: 02/21/2025]
Abstract
Peptide multifunctionalization is a crucial technique to develop peptide-based agents for various purposes. Porphyrin-peptide conjugates are a class of popular multifunctional peptides renowned for their multifunctional and multimodal properties. However, the tedious synthetic works for porphyrin building blocks are involved in most previous studies. In this work, a modular solid-phase synthetic approach is reported to construct trans-AB2C porphyrin on peptide chains without presynthesized porphyrin building blocks. The products from this approach, which inherit both functionalities from the porphyrins and the modules employed for constructing porphyrins, show potential in biomedical and biomaterial applications. Furthermore, by extending this synthetic approach, the first example of "resin-to-resin" reaction is reported to link two peptides together along the construction of porphyrin motifs to give porphyrin-peptide conjugates with two different peptide chains.
Collapse
Affiliation(s)
- Yue Wu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Yuen‐Ting Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Yik‐Hoi Yeung
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Pak‐Lun Lam
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Ho‐Fai Chau
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Wing‐Sze Tam
- Department of ChemistryHong Kong Baptist University224 Waterloo Rd, Kowloon TongHong KongSARChina
| | - Qian Zhang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - William C. S. Tai
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| | - Ka‐Leung Wong
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University11 Yuk Choi Rd, Hung HomHong KongSARChina
| |
Collapse
|
7
|
Kirkpatrick BE, Anseth KS, Hebner TS. Diverse reactivity of maleimides in polymer science and beyond. POLYM INT 2025; 74:296-306. [PMID: 40255264 PMCID: PMC12007691 DOI: 10.1002/pi.6715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 04/22/2025]
Abstract
Maleimides are remarkably versatile functional groups, capable of participating in homo- and copolymerizations, Diels-Alder and (photo)cycloadditions, Michael additions, and other reactions. Their reactivity has afforded materials ranging from polyimides with high upper service temperatures to hydrogels for regenerative medicine applications. Moreover, maleimides have proven to be an enabling chemistry for pharmaceutical development and bioconjugation via straightforward modification of cysteine residues. To exert spatiotemporal control over reactions with maleimides, multiple approaches have been developed to photocage nucleophiles, dienes, and dipoles. Additionally, further substitution of the maleimide alkene (e.g., mono- and di-halo-, thio-, amino-, and methyl-maleimides, among other substituents) confers tunable reactivity and dynamicity, as well as responsive mechanical and optical properties. In this mini-review, we highlight the diverse functionality of maleimides, underscoring their notable impact in polymer science. This moiety and related heterocycles will play an important role in future innovations in chemistry, biomedical, and materials research.
Collapse
Affiliation(s)
- Bruce E. Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
- Materials Science and Engineering Program, University of Colorado Boulder
| | | |
Collapse
|
8
|
Schauenburg D, Weil T. Not So Bioorthogonal Chemistry. J Am Chem Soc 2025; 147:8049-8062. [PMID: 40017419 PMCID: PMC11912343 DOI: 10.1021/jacs.4c15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
The advent of bioorthogonal chemistry has transformed scientific research, offering a powerful tool for selective and noninvasive labeling of (bio)molecules within complex biological environments. This innovative approach has facilitated the study of intricate cellular processes, protein dynamics, and interactions. Nevertheless, a number of challenges remain to be addressed, including the need for improved reaction kinetics, enhanced biocompatibility, and the development of a more diverse and orthogonal set of reactions. While scientists continue to search for veritable solutions, bioorthogonal chemistry remains a transformative tool with a vast potential for advancing our understanding of biology and medicine. This Perspective offers insights into reactions commonly classified as "bioorthogonal", which, however, may not always demonstrate the desired selectivity regarding the interactions between their components and the additives or catalysts used under the reaction conditions.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
9
|
Vozgirdaite D, Allard-Vannier E, Velge-Roussel F, Douez E, Jolivet L, Boursin F, Chourpa I, Aubrey N, Hervé-Aubert K. Metformin-encapsulating immunoliposomes conjugated with anti-TROP 2 antibody fragments for the active targeting of triple-negative breast cancer. NANOSCALE 2025; 17:4058-4072. [PMID: 39775761 DOI: 10.1039/d4nr03224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Trophoblast cell-surface antigen 2 (TROP 2) has re-emerged as a promising biomarker in triple-negative breast cancer (TNBC), with high overexpression in many TNBC cases. However, despite its potential and approval as an antibody-drug-conjugate for TNBC treatment, TROP 2-targeted delivery systems are currently underexplored. Therefore, this study was aimed at exploiting the potential of TROP 2 targeting by encapsulating metformin (Met), an antidiabetic drug associated with tumor growth inhibitory properties, inside liposomes decorated with TROP 2-targeting single-chain variable fragments (scFvs). The optimization of scFv grafting resulted in Met-immunoliposomes with an average diameter of less than 200 nm, low polydispersity index (∼0.1), negative surface charge (<-10 mV), high Met drug loading (>150 mg g-1), and high affinity towards TROP 2 binding. Furthermore, Met-immunoliposomes were reproducible, and the scFv conjugation was stable in the presence of serum for five days. Their cellular uptake increased 4 folds in two-dimensional and 9 folds in three-dimensional TNBC models owing to the high affinity towards TROP 2 binding. Finally, it was observed that the therapeutic effect of Met in suppressing cancer cell growth and proliferation was superior when using anti-TROP 2 scFv-grafted Met-immunoliposomes, which completely stopped the spheroid growth and inhibited the expression of adenosine triphosphate. This study is one of the first reports to explore the combination of nanoparticle-based drug delivery systems to target the TROP 2 protein in TNBC, and to the best of our knowledge, this is the first report to specifically combine the use of scFvs with TROP 2 targeting to deliver therapeutics for TNBC treatment.
Collapse
Affiliation(s)
- Daiva Vozgirdaite
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | | | | | - Emmanuel Douez
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
- Pharmacy Department, University Hospital Center of Tours, 37200 Tours, France
| | - Louis Jolivet
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Fanny Boursin
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Igor Chourpa
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| | - Nicolas Aubrey
- ISP UMR 1282, INRAE, BioMAP team, University of Tours, 37200 Tours, France
| | - Katel Hervé-Aubert
- UPR 4301 CBM, CNRS, NMNS Department, University of Tours, 37200 Tours, France.
| |
Collapse
|
10
|
Mancini F, Cahova H. The Mysterious World of Non-Canonical Caps - What We Know and Why We Need New Sequencing Techniques. Chembiochem 2025; 26:e202400604. [PMID: 39248054 PMCID: PMC11823360 DOI: 10.1002/cbic.202400604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
It was long believed that viral and eukaryotic mRNA molecules are capped at their 5' end solely by the N7-methylguanosine cap, which regulates various aspects of the RNA life cycle, from its biogenesis to its decay. However, the recent discovery of a variety of non-canonical RNA caps derived from metabolites and cofactors - such as NAD, FAD, CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleoside polyphosphates - has expanded the known repertoire of RNA modifications. These non-canonical caps are found across all domains of life and can impact multiple aspects of RNA metabolism, including stability, translation initiation, and cellular stress responses. The study of these modifications has been facilitated by sophisticated methodologies such as liquid chromatography-mass spectrometry, which have unveiled their presence in both prokaryotic and eukaryotic organisms. The identification of these novel RNA caps highlights the need for advanced sequencing techniques to characterize the specific RNA types bearing these modifications and understand their roles in cellular processes. Unravelling the biological role of non-canonical RNA caps will provide insights into their contributions to gene expression, cellular adaptation, and evolutionary diversity. This review emphasizes the importance of these technological advancements in uncovering the complete spectrum of RNA modifications and their implications for living systems.
Collapse
Affiliation(s)
- Flaminia Mancini
- Chemical Biology of Nucleic AcidsInstitute of Organic Chemistry and Biochemistry of the CASFlemingovo náměstí 2Prague 6Czech Republic
- Charles UniversityFaculty of ScienceDepartment of Cell BiologyVinicna 7Prague 2Czech Republic
| | - Hana Cahova
- Chemical Biology of Nucleic AcidsInstitute of Organic Chemistry and Biochemistry of the CASFlemingovo náměstí 2Prague 6Czech Republic
| |
Collapse
|
11
|
Hanaya K, Taguchi K, Wada Y, Kawano M. One-Step Maleimide-Based Dual Functionalization of Protein N-Termini. Angew Chem Int Ed Engl 2025; 64:e202417134. [PMID: 39564713 PMCID: PMC11773299 DOI: 10.1002/anie.202417134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Maleimide derivatives are privileged reagents for chemically modifying proteins through the Michael addition reaction with cysteine due to their selectivity, operational simplicity, and commercial availability. However, since accessible free cysteine is rarely found in natural proteins, it is highly desirable to find alternative targets to enable direct bioconjugation of proteins with maleimides. In this study, we have developed an operationally simple and straightforward method for the N-terminal modification of proteins without the need for mutagenesis via a copper(II)-mediated [3+2] cycloaddition reaction with maleimides and 2-pyridinecarboxaldehyde (2-PCA) derivatives under non-denaturing conditions at pH 6 and 37 °C in aqueous media. Our method utilizes commercially available maleimides to attach diverse functionalities to various N-terminal amino acids. We demonstrate the preparation of a ternary protein complex cross-linked at the N-termini and dually modified trastuzumab equipped with monomethyl auristatin E (MMAE), a cytotoxic agent, and a Cy5 fluorophore (MMAE-Cy5-trastuzumab). MMAE-Cy5-trastuzumab retained human epidermal growth factor receptor 2 (HER2) recognition activity and exerted cytotoxicity against HER2-positive cells. Furthermore, MMAE-Cy5-trastuzumab allowed successful visualization of HER2-positive cancer cells in mouse tumors. This straightforward method will expand the accessibility of protein conjugates with well-defined structures in a wide range of research fields.
Collapse
Affiliation(s)
- Kengo Hanaya
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Kazuaki Taguchi
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Yuki Wada
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| | - Masaki Kawano
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| |
Collapse
|
12
|
Diao W, Lu J, Li J, Wu X, Cai H, He X, Pan L, Cheng Z, Wu H, Jia Z, Mao W. Cysteine-Specific 18F and NIR Dual Labeling of Peptides via Vinyltetrazine Bioorthogonal Conjugation for Molecular Imaging. J Med Chem 2025; 68:1526-1539. [PMID: 39754584 DOI: 10.1021/acs.jmedchem.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Radiolabeled peptides are vital for positron emission tomography (PET) imaging, yet the 18F-labeling peptides remain challenging due to harsh conditions and time-consuming premodification requirements. Herein, we developed a novel vinyltetrazine-mediated bioorthogonal approach for highly efficient 18F-radiolabeling of a native peptide under mild conditions. This approach enabled radiosynthesis of various tumor-targeting PET tracers, including targeting the neurofibromin receptor (18F-P10a), the integrin αvβ3 (18F-P12a), and the platelet-derived growth factor receptor β (18F-ZPDGFRβ), with a radiochemical yield exceeding 90%. Preliminary evaluations revealed excellent hydrophilicity across these tracers, with 18F-P12a effectively visualizing integrin αvβ3 expression (tumor uptake: 1.57 ± 0.54%ID/g at 2 h). Additionally, we explored the potential for development of PET/near-infrared (NIR) dual-labeling agents using this method. The dual-modality agent 18F-Cy5-P12d enables specificity and colocalized imaging integrin αvβ3 expression (tumor uptake: 1.35 ± 0.24%ID/g at 2 h). Overall, this strategy offers a versatile platform for peptide radiolabeling and dual-modality agent development.
Collapse
Affiliation(s)
- Wei Diao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Nuclear Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Elctronic Science and Technology of China, Chengdu 610041, China
| | - Jing Lu
- Medical Insurance Office, West China Hospital of Sichuan University, Chengdu 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xinyu He
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zhuzhong Cheng
- Department of Nuclear Medicine, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Elctronic Science and Technology of China, Chengdu 610041, China
| | - Haoxing Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Chang M, Xu H, Dong Y, Gnawali G, Bi F, Wang W. Dual-Performing Vinyltetrazine for Rapid, Selective Bioconjugation and Functionalization of Cysteine Proteins. ACS Chem Biol 2025; 20:153-161. [PMID: 39707969 PMCID: PMC11747768 DOI: 10.1021/acschembio.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Although methods for Cys-specific bioconjugation and functionalization of proteins have been developed and widely utilized in biomolecule engineering and therapeutic development, reagents for this purpose are generally designed to accomplish bioconjugation only. Consequently, additional clickable groups must be attached to these reagents to accomplish functionalization. Herein, we describe a new, simple, dual-performing bioconjugation-functionalization reagent, VMeTz, which possesses an electron-withdrawing tetrazine (Tz) substituted vinyl (V) moiety to serve as both a Michael receptor for selective conjugation with Cys and a site for click with TCO derivatives to introduce functionality. Critically, VMeTz contains a methyl group that prevents the formation of multiple Tz-containing Cys-adducts. Reactions of VMeTz with Cys-containing peptides and proteins both in vitro and in live cells produce single stable Michael adducts with high selectivity. Moreover, the Cys-VMeTz peptide and protein conjugates undergo facile click reactions with TCO-functionalized reagents for labeling and protein profiling. Furthermore, VMeTz selectively activates and delivers the TCO-caged toxic substances Dox and PROTAC ARV-771 to cancer cells to produce therapeutic effects that are comparable to those of the parent drugs. Collectively, the studies demonstrate that VMeTz is a useful reagent for therapeutically significant Cys-specific protein bioconjugation and functionalization.
Collapse
Affiliation(s)
- Mengyang Chang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Hang Xu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Yue Dong
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Giri Gnawali
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Fangchao Bi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
14
|
Esteve F, Schmitt JL, Kolodych S, Koniev O, Lehn JM. Selective Protein (Post-)modifications through Dynamic Covalent Chemistry: Self-activated S NAr Reactions. J Am Chem Soc 2025; 147:2049-2060. [PMID: 39746158 DOI: 10.1021/jacs.4c15421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
SNAr reactions were remarkably accelerated using a pretargeting and activating unit based on dynamic covalent chemistry (DCvC). A Cys attack at the C-F bond on the aromatic ring of salicylaldehyde derivatives was only observed upon iminium formation with a neighboring Lys residue of model small peptides. Such self-activation was ascribed to the stronger electron-withdrawing capability of the iminium bond with respect to that of the parent aldehyde that stabilized the transition state of the reaction, together with the higher preorganization of the reactive groups in the cationic aldiminium species. This approach was further applied for the functionalization of two antibodies. In both cases, the presence of the aldehyde group in close proximity to the reactive C-F bond resulted in a noteworthy increase in bioconjugation yields, with excellent chemo-selectivity. Whereas the modification of an IgG1 antibody led to stochastic product distributions, microenvironment selectivity was noted when employing IgG4, in line with the lower number of Lys residues in the hinge region of the latter. Additionally, the postfunctionalization of the modified antibodies was attained through the dynamic covalent exchange of the tethered iminium derivative with hydrazides, representing an unprecedented "tag and modify" selective bioconjugation strategy based on DCvC.
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France
| | - Jean-Louis Schmitt
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France
| | | | | | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
15
|
Sun Y, Jin Y, Gu Y, Liu J, Wang L, Jin Y. Enantioselective Synthesis of Spiro[Indoline-3,4-Pyrrolo[3,4-b]Pyridines] Via an Organocatalysed Three-Component Cascade Reaction. Chemistry 2024; 30:e202403349. [PMID: 39380168 DOI: 10.1002/chem.202403349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Asymmetric synthesis of derivatives of spiro[indoline-3,4-pyrrolo[3,4-b]pyridines] were first developed through the organocatalytic cascade of Knoevenagel/Michael/cyclization reactions using a quinidine-derived squaramide. Under the optimized conditions, the three-component reactions of isatins, cyanoacetates, and 3-aminomaleimides yield the desired heterocycle-fused spirooxindoles in good yields (78-91 %) with 53 %-99 % enantiomeric excess (ee). Notably, this reaction enables a broad substrate scope under mild conditions and provides a convenient method for the enantioselective construction of diverse spirooxindoles combined with dihydropyridine and maleimide skeletons, which has great potential for the construction of new bioactive chemical entities.
Collapse
Affiliation(s)
- Yuhong Sun
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| | - Yan Jin
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| | - Yingying Gu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Jinming Liu
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Liming Wang
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Ying Jin
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China
- College of Science, Yanbian University, Yanji, Jilin, 133000, China
| |
Collapse
|
16
|
Resto M, Vinitsky A, Schneck NA, Wolff JJ, Shajahan A, Cibelli N, Zhang Y, Li Y, Gulla K, Gowetski DB, Gall JG, Lei QP. Determination of degradation for sulfo-SIAB, SM(PEG) 2, and sulfo-GMBS by RPLC-UV analysis. J Pharm Biomed Anal 2024; 251:116455. [PMID: 39232447 DOI: 10.1016/j.jpba.2024.116455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Bi-functional N-Hydroxysuccinimide (NHS) linkers are widely used in the conjugation processes linking an immunogen with a carrier protein capable of boosting immunity. A potential vaccine candidate against HIV-1, called fusion peptide (FP), is covalently linked to the recombinant tetanus toxoid heavy-chain fragment C (rTTHC) via this type of linker. A reversed-phase liquid chromatography (RPLC-UV) method was used to monitor the linker's degradation kinetics in various buffers, mimicking the steps in the conjugation process. The kinetics of the reactivities of the linkers are revealed in this study and can provide a good guidance to help effective conjugation process before these linkers are completely hydrolyze to the inactive degradants. Three cross-linkers degradation pathways were evaluated: Sulfosuccinimidyl (4-iodoacetyl) aminobenzoate (Sulfo-SIAB), PEGylated SMCC (SM(PEG)2), and N-γ-maleimidobutyryl-oxysulfosuccinimide ester (Sulfo-GMBS). We have reported kinetics for Sulfo-SIAB.
Collapse
Affiliation(s)
- Melissa Resto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alison Vinitsky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nicole A Schneck
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jeremy J Wolff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Asif Shajahan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nicole Cibelli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yaqiu Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yile Li
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Krishna Gulla
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daniel B Gowetski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason G Gall
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Q Paula Lei
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
17
|
Engelhardt D, Nordberg P, Knerr L, Malins LR. Accessing Therapeutically-Relevant Multifunctional Antisense Oligonucleotide Conjugates Using Native Chemical Ligation. Angew Chem Int Ed Engl 2024; 63:e202409440. [PMID: 39128879 DOI: 10.1002/anie.202409440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Antisense oligonucleotide (ASO) therapies hold significant promise in the realm of molecular medicine. By precisely targeting RNA molecules, ASOs offer an approach to modulate gene expression and protein production, making them valuable tools for treating a wide range of genetic and acquired diseases. As the precise intracellular targeting and delivery of ASOs is challenging, strategies for preparing ASO-ligand conjugates are in exceedingly high demand. This work leverages the utility of native chemical ligation to conjugate ASOs with therapeutically relevant chemical modifications including locked nucleic acids and phosphorothioate backbone modifications to peptides and sugars via a stable amide linkage. A suite of post-ligation functionalizations through modification of the cysteine ligation handle are highlighted, including chemoselective radical desulfurization, lipidation, and alkylation with a range of valuable handles (e.g. alkyne, biotin, and radionuclide chelating ligands), affording multifunctional constructs for further applications in biology and medicine. Application of the methodology to a clinically-relevant triantennary-GalNAc ASO conjugate and validation of its binding and functional activity underpins the applicability of the technique to oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Daniel Engelhardt
- Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, 2601, Canberra, ACT, Australia
| | - Peter Nordberg
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83, Gothenburg, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83, Gothenburg, Sweden
| | - Lara R Malins
- Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, 2601, Canberra, ACT, Australia
| |
Collapse
|
18
|
Sakhaii P, Bohorc B, Olpp T, Mohnicke M, Rieke-Zapp J, Dhal PK. Radio frequency gradient enhanced diffusion-edited semi-solid state NMR spectroscopy for detailed structural characterization of chemically modified hyaluronic acid hydrogels. Sci Rep 2024; 14:28612. [PMID: 39562623 PMCID: PMC11577061 DOI: 10.1038/s41598-024-78731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Applications of functionalized hyaluronic acid (HA) hydrogels for numerous biomedical applications requires their detailed structural characterization. Since these materials are prepared by multistep chemical modifications in the solid phase and not amenable to characterization by standard analytical tools, we employed high-resolution solid-state NMR spectroscopy to gain detailed insights into the structures of the functionalized HA hydrogels. Divinyl sulfone crosslinked HA hydrogels were converted into maleimide-functionalized hydrogels, which were subjected to chemoselective thiol-maleimide reaction using L-cysteine as the protein mimetic thiol reagent. To overcome challenges associated with obtaining high-resolution NMR spectra of crosslinked hydrogels (such as line broadening and overlapping of signals of the hydrogel with those of residual reagents and solvents used during multi-step reaction processes on insoluble polymer matrices), we devised a radio frequency mediated diffusion-edited semi solid-state NMR technique. This technique enabled us to record NMR spectra of hydrogels exclusively by effectively suppressing signals associated with low molecular weight impurities. Thus, it became possible to perform in-depth characterization of these chemically modified HA hydrogels including quantification of reaction outcome for each reaction step.
Collapse
Affiliation(s)
- Peyman Sakhaii
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany.
| | - Bojan Bohorc
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Thomas Olpp
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Mandy Mohnicke
- Global CMC Development, Global R&D, Sanofi, Industrial Park Hoechst, D-65926, Frankfurt/Main, Germany
| | - Joerg Rieke-Zapp
- Manufacturing Science and Analytical Technology, Sanofi, Industrial Park Hoechst, D- 65926, Frankfurt/Main, Germany
| | - Pradeep K Dhal
- Global CMC Development, Global R&D, Sanofi, 350 Water Street, MA 02141, Cambridge, USA.
| |
Collapse
|
19
|
Zhang C, Zhou C, Magassa A, Jin X, Fang D, Zhang X. A platform for mapping reactive cysteines within the immunopeptidome. Nat Commun 2024; 15:9698. [PMID: 39516457 PMCID: PMC11549463 DOI: 10.1038/s41467-024-54139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
The major histocompatibility complex class I antigen presentation pathways play pivotal roles in orchestrating immune responses. Recent studies have begun to explore the therapeutic potential of cysteines within the immunopeptidome, such as the use of covalent ligands to generate haptenated peptide neoepitopes for immunotherapy. In this work, we report a platform for mapping reactive cysteines on MHC-I-bound peptide antigens. We develop cell-impermeable sulfonated maleimide probes capable of capturing reactive cysteines on these antigens. Using these probes in chemoproteomic experiments, we discover that cysteines on MHC-I-bound antigens exhibit various degrees of reactivity. Moreover, interferon-gamma stimulation enhances the reactivity of cysteines at position 8 of 9-mer MHC-I-bound antigens. Finally, we demonstrate that targeting reactive cysteines on MHC-I-bound antigens with a maleimide-conjugated Fc-binding cyclic peptide contributes to the induction of antibody-dependent cellular phagocytosis.
Collapse
Affiliation(s)
- Chenlu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Chen Zhou
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Assa Magassa
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaokang Jin
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Ali SH, Ali H, Aziz MA. Computational identification of PDL1 inhibitors and their cytotoxic effects with silver and gold nanoparticles. Sci Rep 2024; 14:26610. [PMID: 39496756 PMCID: PMC11535480 DOI: 10.1038/s41598-024-77868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Immunotherapy is a promising treatment for cancer that aims to boost the immune system's response to cancer cells. This can be achieved by blocking Programmed cell death protein 1/Programmed death-ligand 1 (PD1/PDL1), which activates T cells. In this work, the aim was to find high-affinity drugs against PDL1 using computational tools and conjugate nanoparticles with them. The cytotoxic activity of the nanoparticle conjugated drugs was then tested. The screening of 100,000 drugs from the ZINC database and FDA-approved drugs was done computationally. The physicochemical properties and toxicity of the drugs were analyzed using SwissADME and ProTox-II, respectively. Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using extracts of Catharanthus roseus flowers and Juglans regia shells, respectively. The characterization of AgNPs and AuNPs was performed using UV-Vis spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Their conjugation with the drugs Irinotecan, Imatinib, and Methotrexate was also confirmed using UV-Vis, FTIR, and Dynamic light scattering (DLS). The top screened drugs were ZINC1098661 and 3 FDA-approved drugs (Irinotecan, Imatinib, and Methotrexate). Docking studies revealed that Irinotecan had the highest binding affinity towards PDL1 when conjugated with silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). The Irinotecan-PDL1 complex was confirmed as the most stable through molecular dynamics simulations. The result of the methylthiazol tetrazolium (MTT) assay showed that conjugated AgNPs and AuNPs with Irinotecan had a higher toxic effect on the A549 cancer cell line than AgNPs and AuNPs conjugated with Imatinib. This study provides a promising avenue for further investigation and development of nanoparticle-drug conjugates as a potential cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Syed Hammad Ali
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Hiba Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Azhar Aziz
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India.
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
21
|
Zhang R, Li B, Dong L, Hu Z, Li X, Yao X, Zheng J, Lin A, Gao S, Hang T, Wu X, Chu Q. Fast and Selective Cysteine Conjugation Using para-Quinone Methides. Org Lett 2024; 26:8951-8955. [PMID: 39373401 DOI: 10.1021/acs.orglett.4c03452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
An efficient and selective method for cysteine conjugation utilizing para-quinone methides (p-QMs) was developed. p-QM labeling exhibits high specificity toward the cysteine residue, as evidenced by its reactivity with various amino acid derivatives, peptides, and proteins. Notably, the p-QM-cysteine reactions display robust kinetics with rate constants up to 1.67 × 104 M-1·s-1. Furthermore, p-QM conjugation enables us to attach a fluorescent probe to a HER2 nanobody, resulting in selective labeling of HER2-positive SK-BR-3 cells.
Collapse
Affiliation(s)
- Ruimin Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Bo Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Liuli Dong
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhaoliang Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xue Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xueyu Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jia Zheng
- Shimadzu (China) Co., Ltd., Shanghai 200233, P. R. China
| | - Aijun Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shang Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Taijun Hang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
22
|
Tarab-Ravski D, Stotsky-Oterin L, Elisha A, Kundoor GR, Ramishetti S, Hazan-Halevy I, Haas H, Peer D. The future of genetic medicines delivered via targeted lipid nanoparticles to leukocytes. J Control Release 2024; 376:286-302. [PMID: 39401676 DOI: 10.1016/j.jconrel.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Genetic medicines hold vast therapeutic potential, offering the ability to silence or induce gene expression, knock out genes, and even edit DNA fragments. Applying these therapeutic modalities to leukocytes offers a promising path for treating various conditions yet overcoming the obstacles of specific and efficient delivery to leukocytes remains a major bottleneck in their clinical translation. Lipid nanoparticles (LNPs) have emerged as the leading delivery system for nucleic acids due to their remarkable versatility and ability to improve their in vivo stability, pharmacokinetics, and therapeutic benefits. Equipping LNPs with targeting moieties can promote their specific cellular uptake and internalization to leukocytes, making targeted LNPs (tLNPs) an inseparable part of developing leukocyte-targeted gene therapy. However, despite the significant advancements in research, genetic medicines for leukocytes using targeted delivery approaches have not been translated into the clinic yet. Herein, we discuss the important aspects of designing tLNPs and highlight the considerations for choosing an appropriate bioconjugation strategy and targeting moiety. Furthermore, we provide our insights on limiting challenges and identify key areas for further research to advance these exciting therapies for patient care.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Elisha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Govinda Reddy Kundoor
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Inbal Hazan-Halevy
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Heinrich Haas
- NeoVac Ltd. 127 Olympic Ave., OX14 4SA, Milton Park, Oxfordshire, UK; Department of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg-University, Mainz, Germany
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
23
|
Vanermen M, Ligeour M, Oliveira MC, Gestin JF, Elvas F, Navarro L, Guérard F. Astatine-211 radiolabelling chemistry: from basics to advanced biological applications. EJNMMI Radiopharm Chem 2024; 9:69. [PMID: 39365487 PMCID: PMC11452365 DOI: 10.1186/s41181-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND 211At-radiopharmaceuticals are currently the subject of growing studies for targeted alpha therapy of cancers, which leads to the widening of the scope of the targeting vectors, from small molecules to peptides and proteins. This has prompted, during the past decade, to a renewed interest in developing novel 211At-labelling approaches and novel prosthetic groups to address the diverse scenarios and to reach improved efficiency and robustness of procedures as well as an appropriate in vivo stability of the label. MAIN BODY Translated from the well-known (radio)iodine chemistry, the long preferred electrophilic astatodemetallation using trialkylaryltin precursors is now complemented by new approaches using electrophilic or nucleophilic At. Alternatives to the astatoaryl moiety have been proposed to improve labelling stability, and the range of prosthetic groups available to label proteins has expanded. CONCLUSION In this report, we cover the evolution of radiolabelling chemistry, from the initial strategies developed in the late 1970's to the most recent findings.
Collapse
Affiliation(s)
- Maarten Vanermen
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Mathilde Ligeour
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Maria-Cristina Oliveira
- Departamento de Engenharia e Ciências Nucleares and Centro de Ciências e Tecnologias Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | | | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | | | - François Guérard
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
24
|
Yoshisada R, Weller S, Çobanoğlu TS, de Kock HN, Jongkees SAK. Chemical Stability of mRNA/cDNA Complexes: Defining the Limits of mRNA Display. Chem Asian J 2024; 19:e202400336. [PMID: 38953335 DOI: 10.1002/asia.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Messenger RNA (mRNA) display is being increasingly adopted for peptide drug candidate discovery. While many conditions have been reported for the affinity enrichment step and in some cases for peptide modification, there is still limited understanding about the versatility of peptide-puromycin-mRNA/cDNA (complementary DNA) complexes. This work explores the chemical stability of mRNA/cDNA hybrid complexes under a range of different fundamental chemical conditions as well as with peptide modification conditions reported in an mRNA display setting. We further compare the stability of full complexes originating from two different mRNA display systems (RaPID and cDNA-TRAP). Overall, these complexes were found to be stable under a broad range of conditions, with some edge conditions benefitting from encoding directly in cDNA rather than mRNA. This should allow for more and broader exploitation of late-stage peptide modification chemistry in mRNA display, with confidence regarding the stability of encoding, and potentially better hit-finding campaigns as a result.
Collapse
Affiliation(s)
- Ryoji Yoshisada
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Saskia Weller
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Tuğçe S Çobanoğlu
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - H N de Kock
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Seino A K Jongkees
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Wang C, Zhao Z, Ghadir R, Yang D, Zhang Z, Ding Z, Cao Y, Li Y, Fassler R, Reichmann D, Zhang Y, Zhao Y, Liu C, Bi X, Metanis N, Zhao J. Peptide and Protein Cysteine Modification Enabled by Hydrosulfuration of Ynamide. ACS CENTRAL SCIENCE 2024; 10:1742-1754. [PMID: 39345815 PMCID: PMC11428291 DOI: 10.1021/acscentsci.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Efficient functionalization of peptides and proteins has widespread applications in chemical biology and drug discovery. However, the chemoselective and site-selective modification of proteins remains a daunting task. Herein, a highly efficient chemo-, regio-, and stereoselective hydrosulfuration of ynamide was identified as an efficient method for the precise modification of peptides and proteins by uniquely targeting the thiol group of cysteine (Cys) residues. This novel method could be facilely operated in aqueous buffer and was fully compatible with a wide range of proteins, including small model proteins and large full-length antibodies, without compromising their integrity and functions. Importantly, this reaction provides the Z-isomer of the corresponding conjugates exclusively with superior stability, offering a precise approach to peptide and protein therapeutics. The potential application of this method in peptide and protein chemical biology was further exemplified by Cys-bioconjugation with a variety of ynamide-bearing functional molecules such as small molecule drugs, fluorescent/affinity tags, and PEG polymers. It also proved efficient in redox proteomic analysis through Cys-alkenylation. Overall, this study provides a novel bioorthogonal tool for Cys-specific functionalization, which will find broad applications in the synthesis of peptide/protein conjugates.
Collapse
Affiliation(s)
- Changliu Wang
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Zhenguang Zhao
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Reem Ghadir
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dechun Yang
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
& College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang P. R. China
| | - Zhenjia Zhang
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| | - Zhe Ding
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Yuan Cao
- Department
of Process Development, BeiGene Guangzhou
Biologics Manufacturing Co., Ltd., Guangzhou 510700, Guangdong P. R. China
| | - Yuqing Li
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Rosi Fassler
- The Alexander
Silberman Institute of Life Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dana Reichmann
- The Alexander
Silberman Institute of Life Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yujie Zhang
- Department
of Process Development, BeiGene Guangzhou
Biologics Manufacturing Co., Ltd., Guangzhou 510700, Guangdong P. R. China
| | - Yongli Zhao
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Can Liu
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| | - Xiaobao Bi
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
& College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang P. R. China
| | - Norman Metanis
- Institute
of Chemistry, The Alexander Silberman Institute of Life Science, The
Center for Nanoscience and Nanotechnology, Casali Center for Applied
Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Junfeng Zhao
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| |
Collapse
|
26
|
Swift-Ramirez W, Whalen LA, Thompson LK, Shoemaker KE, Rubio AV, Weiss GA. Catalyst-Free, Three-Component Synthesis of Amidinomaleimides. J Org Chem 2024; 89:13756-13761. [PMID: 39178144 PMCID: PMC11421025 DOI: 10.1021/acs.joc.4c01485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/25/2024]
Abstract
Maleimide and amidine functionalities often appear in medicinal and natural product targets. We describe a catalyst-free, three-component coupling reaction for the synthesis of amidinomaleimides. This one-pot reaction fuses a broad range of secondary amines and aldehydes with azidomaleimides. The conditions are mild, simple, modular, high yielding, and amenable to aqueous solvents. Most reaction products can be sufficiently purified without column chromatography. The synthesis creates complex, multifunctional molecules with four different molecules, including a tripeptide, arrayed around an amidinomaleimide core.
Collapse
Affiliation(s)
- Wyatt
R. Swift-Ramirez
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Lindsay A. Whalen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Lia K. Thompson
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Kaylee E. Shoemaker
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Aris V. Rubio
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Gregory A. Weiss
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, 3205 McGaugh Hall, Irvine, California 92697-3900, United States
- Department
of Pharmaceutical Sciences, University of
California, Irvine, 856
Health Sciences Road, Suite 5400, Irvine, California 92697-3958, United States
| |
Collapse
|
27
|
Huang CY, Chen CY, Wei CH, Yang JW, Lin YC, Kao CF, Chung JHY, Chen GY. Patterned graphene oxide via one-step thermal annealing for controlling collective cell migration. J Mater Chem B 2024; 12:8733-8745. [PMID: 39138950 DOI: 10.1039/d4tb01091d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Graphene oxide (GO) is a two-dimensional metastable nanomaterial. Interestingly, GO formed oxygen clusterings in addition to oxidized and graphitic phases during the low-temperature thermal annealing process, which could be further used for biomolecule bonding. By harnessing this property of GO, we created a bio-interface with patterned structures with a common laboratory hot plate that could tune cellular behavior by physical contact. Due to the regional distribution of oxygen clustering at the interface, we refer to it as patterned annealed graphene oxide (paGO). In addition, since the paGO was a heterogeneous interface and bonded biomolecules to varying degrees, arginine-glycine-aspartic acid (RGD) was modified on it and successfully regulated cellular-directed growth and migration. Finally, we investigated the FRET phenomenon of this heterogeneous interface and found that it has potential as a biosensor. The paGO interface has the advantages of easy regulation and fabrication, and the one-step thermal reduction method is suitable for biological applications. We believe that this low-temperature thermal annealing method would make GO interfaces more accessible, especially for the development of nano-interfacial modifications for biological applications, revealing its potential for biomedical applications.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chong-You Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Hung Wei
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Jia-Wei Yang
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Yu-Chien Lin
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Johnson H Y Chung
- Intelligent Polymer Research Institute, Institute for Innovative Materials, University of Wollongong, 2500, NSW, Australia
| | - Guan-Yu Chen
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
28
|
Dowaidar M. Cell-penetrating peptides with nanoparticles hybrid delivery vectors and their uptake pathways. Mitochondrion 2024; 78:101906. [PMID: 38797356 DOI: 10.1016/j.mito.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Cell-penetrating peptides (CPPs) are molecules that improve the cellular uptake of various molecular payloads that do not easily traverse the cellular membrane. CPPs can be found in pharmaceutical and medical products. The vast majority of cell-penetrating chemicals that are discussed in published research are peptide based. The paper also delves into the various applications of hybrid vectors. Because CPPs are able to carry cargo across the cellular membrane, they are a viable candidate for use as a suitable carrier for a wide variety of cargoes, such as siRNA, nanoparticles, and others. In which we discuss the CPPs, their classification, uptake mechanisms, hybrid vector systems, nanoparticles and their uptake mechanisms, etc. Further in this paper, we discuss CPPs conjugated to Nanoparticles, Combining CPPs with lipids and polymeric Nanoparticles in A Conjugated System, CPPs conjugated to nanoparticles for therapeutic purposes, and potential therapeutic uses of CPPs as delivery molecules. Also discussed the preclinical and clinical use of CPPS, intracellular trafficking of nanoparticles, and activatable and bioconjugated CPPs.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
29
|
Dal Pra O, Daniel J, Recher G, Blanchard-Desce M, Grazon C. Two-photon Dye-Based Fluorogenic Organic Nanoparticles as Intracellular Thiols Sensors. SMALL METHODS 2024; 8:e2400716. [PMID: 38973203 DOI: 10.1002/smtd.202400716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Optical bioimaging is an ever-growing field that benefits both from the fast progress of optical instrumentation and modalities, and from the development of light-emitting probes. The efficacy of molecular fluorescent dyes is crucial, yet hindered by limited brightness and hydrophilicity. Addressing these challenges, self-stabilized fluorogenic organic nanoparticles only made of pure dyes (dFONs) are introduced in this work. Comprising thiol-sensitive fluorogenic chromophores, these dFONs exhibit enhanced brightness exclusively in the presence of biological thiols, notably glutathione, overcoming the need for water-solubilizing moieties. Importantly, these nanoparticles demonstrate large fluorescence and one- and two-photon brightness, enabling sensitive bioimaging of intracellular thiols at micromolar concentrations. Notably, only the pristine fluorogenic nanoparticles can penetrate the cells and does not require to wash the cells before imaging, emphasizing their unique role as dye carriers, fluorogenic probes and ease of use. This work highlights the transformative potential of dFONs in advancing optical bioimaging, paving the way for the use of dFONs not just as tracers, but also now as biosensors and ultimately in the future as biomarkers.
Collapse
Affiliation(s)
- Ophélie Dal Pra
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, F-33400, France
| | - Jonathan Daniel
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, F-33400, France
| | - Gaëlle Recher
- CNRS, Univ. Bordeaux, IOGS, LP2N, UMR 5298, Talence, F-33400, France
| | | | - Chloé Grazon
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, F-33400, France
| |
Collapse
|
30
|
Zhong L, Banigo AT, Zoetebier B, Karperien M. Bioactive Hydrogels Based on Tyramine and Maleimide Functionalized Dextran for Tissue Engineering Applications. Gels 2024; 10:566. [PMID: 39330167 PMCID: PMC11431488 DOI: 10.3390/gels10090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Hydrogels are widely used in tissue engineering due to their ability to form three-dimensional (3D) structures that support cellular functions and mimic the extracellular matrix (ECM). Despite their advantages, dextran-based hydrogels lack intrinsic biological activity, limiting their use in this field. Here, we present a strategy for developing bioactive hydrogels through sequential thiol-maleimide bio-functionalization and enzyme-catalyzed crosslinking. The hydrogel network is formed through the reaction of tyramine moieties in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2), allowing for tunable gelation time and stiffness by adjusting H2O2 concentrations. Maleimide groups on the hydrogel backbone enable the coupling of thiol-containing bioactive molecules, such as arginylglycylaspartic acid (RGD) peptides, to enhance biological activity. We examined the effects of hydrogel stiffness and RGD concentration on human mesenchymal stem cells (hMSCs) during differentiation and found that hMSCs encapsulated within these hydrogels exhibited over 88% cell viability on day 1 across all conditions, with a slight reduction to 60-81% by day 14. Furthermore, the hydrogels facilitated adipogenic differentiation, as evidenced by positive Oil Red O staining. These findings demonstrate that DexTA-Mal hydrogels create a biocompatible environment that is conducive to cell viability and differentiation, offering a versatile platform for future tissue engineering applications.
Collapse
Affiliation(s)
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, TechMed Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands; (L.Z.); (A.T.B.); (B.Z.)
| |
Collapse
|
31
|
Moraru R, Valle-Argos B, Minton A, Buermann L, Pan S, Wales TE, Joseph RE, Andreotti AH, Strefford JC, Packham G, Baud MGJ. Exploring 2-Sulfonylpyrimidine Warheads as Acrylamide Surrogates for Targeted Covalent Inhibition: A BTK Story. J Med Chem 2024; 67:13572-13593. [PMID: 39119945 PMCID: PMC11345841 DOI: 10.1021/acs.jmedchem.3c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
Targeted covalent inhibitors (TCIs) directing cysteine have historically relied on a narrow set of electrophilic "warheads". While Michael acceptors remain at the forefront of TCI design strategies, they show variable stability and selectivity under physiological conditions. Here, we show that the 2-sulfonylpyrimidine motif is an effective replacement for the acrylamide warhead of Ibrutinib, for the inhibition of Bruton's tyrosine kinase. In a few iterations, we discovered new derivatives, which inhibit BTK both in vitro and in cellulo at low nanomolar concentrations, on par with Ibrutinib. Several derivatives also displayed good plasma stability and reduced off-target binding in vitro across 135 tyrosine kinases. This proof-of-concept study on a well-studied kinase/TCI system highlights the 2-sulfonylpyrimidine group as a useful acrylamide replacement. In the future, it will be interesting to investigate its wider potential for developing TCIs with improved pharmacologies and selectivity profiles across structurally related protein families.
Collapse
Affiliation(s)
- Ruxandra Moraru
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Beatriz Valle-Argos
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Annabel Minton
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Lara Buermann
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Suyin Pan
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Thomas E. Wales
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Raji E. Joseph
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Amy H. Andreotti
- Roy
J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jonathan C. Strefford
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Graham Packham
- Cancer
Sciences, Faculty of Medicine, University
of Southampton, Southampton SO16 6YD, U.K.
| | - Matthias G. J. Baud
- School
of Chemistry and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
32
|
Lee JW, Yoon HY, Ko YJ, Kim EH, Song S, Hue S, Gupta N, Malin D, Kim J, Kong B, Kim S, Kim IS, Kwon IC, Yang Y, Kim SH. Dual-Action Protein-siRNA Conjugates for Targeted Disruption of CD47-Signal Regulatory Protein α Axis in Cancer Therapy. ACS NANO 2024; 18:22298-22315. [PMID: 39117621 DOI: 10.1021/acsnano.4c06471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A series of successes in RNA interference (RNAi) therapies for liver diseases using lipid nanoparticles and N-acetylgalactosamine have heralded a current era of RNA therapeutics. However, alternative delivery strategies are required to take RNAi out of the comfort zone of hepatocytes. Here we report SIRPα IgV/anti-CD47 siRNA (vS-siCD47) conjugates that selectively and persistently disrupt the antiphagocytic CD47/SIRPα axis in solid tumors. Conjugation of the SIRPα IgV domain protein to siRNAs enables tumor dash through CD47-mediated erythrocyte piggyback, primarily blocking the physical interaction between CD47 on cancer cells and SIRPα on phagocytes. After internalization of the vS-siCD47 conjugates within cancer cells, the detached free-standing anti-CD47 siRNAs subsequently attack CD47 through the RNAi mechanism. The dual-action approach of the vS-siCD47 conjugate effectively overcomes the "don't eat me" barrier and stimulates phagocyte-mediated tumor destruction, demonstrating a highly selective and potent CD47-blocking immunotherapy. This delivery strategy, employing IgV domain protein-siRNA conjugates with a dual mode of target suppression, holds promise for expanding RNAi applications beyond hepatocytes and advancing RNAi-based cancer immunotherapies for solid tumors.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Young Ji Ko
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sukyung Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seungmi Hue
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Nilaksh Gupta
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Dmitry Malin
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Jay Kim
- K2B Therapeutics, Cambridge, Massachusetts 02139, United States
| | - Byoungjae Kong
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|
33
|
Thombare VJ, Wu Y, Pamulapati K, Han M, Tailhades J, Cryle MJ, Roberts KD, Velkov T, Li J, Patil NA. Advancing Nitrile-Aminothiol Strategy for Dual and Sequential Bioconjugation. Chemistry 2024; 30:e202401674. [PMID: 38839567 DOI: 10.1002/chem.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Nitrile-aminothiol conjugation (NATC) stands out as a promising biocompatible ligation technique due to its high chemo-selectivity. Herein we investigated the reactivity and substrate scope of NAT conjugation chemistry, thus developing a novel pH dependent orthogonal NATC as a valuable tool for chemical biology. The study of reaction kinetics elucidated that the combination of heteroaromatic nitrile and aminothiol groups led to the formation of an optimal bioorthogonal pairing, which is pH dependent. This pairing system was effectively utilized for sequential and dual conjugation. Subsequently, these rapid (≈1 h) and high yield (>90 %) conjugation strategies were successfully applied to a broad range of complex biomolecules, including oligonucleotides, chelates, small molecules and peptides. The effectiveness of this conjugation chemistry was demonstrated by synthesizing a fluorescently labelled antimicrobial peptide-oligonucleotide complex as a dual conjugate to imaging in live cells. This first-of-its-kind sequential NATC approach unveils unprecedented opportunities in modern chemical biology, showcasing exceptional adaptability in rapidly creating structurally complex bioconjugates. Furthermore, the results highlight its potential for versatile applications across fundamental and translational biomedical research.
Collapse
Affiliation(s)
- Varsha J Thombare
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Yimin Wu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Kavya Pamulapati
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Meiling Han
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Julien Tailhades
- Department of Biochemistry Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Max J Cryle
- Department of Biochemistry Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| | - Kade D Roberts
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Nitin A Patil
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Australia
| |
Collapse
|
34
|
Lee C, Chung HW, Kluger R. Conjugating Hemoglobin and Albumin by Strain-Promoted Azide- Alkyne Cycloaddition. Chembiochem 2024; 25:e202400206. [PMID: 38837740 DOI: 10.1002/cbic.202400206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
A one-to-one conjugate of cross-linked human hemoglobin and human serum albumin results from a strain-promoted alkyne-azide cycloaddition (SPAAC) of the modified proteins. Additions of a strained alkyne-substituted maleimide to the Cys-34 thiol of human serum albumin and an azide-containing cross-link between the amino groups of each β-unit at Lys-82 of human hemoglobin provide sites for coupling by the SPAAC process. The coupled hemoglobin-albumin conjugate can be readily purified from unreacted hemoglobin. The oxygen binding properties of the two-protein bioconjugate demonstrate oxygen affinity and cooperativity that are suitable for use in an acellular oxygen carrier.
Collapse
Affiliation(s)
- Chi Lee
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Harriet Wenxin Chung
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Ronald Kluger
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
35
|
Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads. Int J Mol Sci 2024; 25:8651. [PMID: 39201338 PMCID: PMC11355040 DOI: 10.3390/ijms25168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.
Collapse
Affiliation(s)
- Giovanni Tonon
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
36
|
Hanson GSM, Coxon CR. Fluorinated Tags to Study Protein Conformation and Interactions Using 19F NMR. Chembiochem 2024; 25:e202400195. [PMID: 38744671 DOI: 10.1002/cbic.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The incorporation of fluorine atoms into a biomacromolecule provides a background-free and environmentally sensitive reporter of structure, conformation and interactions using 19F NMR. There are several methods to introduce the 19F reporter - either by synthetic incorporation via solid phase peptide synthesis; by suppressing the incorporation or biosynthesis of a natural amino acid and supplementing the growth media with a fluorinated counterpart during protein expression; and by genetic code expansion to add new amino acids to the amino acid alphabet. This review aims to discuss progress in the field of introducing fluorinated handles into biomolecules for NMR studies by post-translational bioconjugation or 'fluorine-tagging'. We will discuss the range of chemical tagging 'warheads' that have been used, explore the applications of fluorine tags, discuss ways to enhance reporter sensitivity and how the signal to noise ratios can be boosted. Finally, we consider some key challenges of the field and offer some ideas for future directions.
Collapse
Affiliation(s)
- George S M Hanson
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
37
|
Vasco A, Taylor RJ, Méndez Y, Bernardes GJL. On-Demand Thio-Succinimide Hydrolysis for the Assembly of Stable Protein-Protein Conjugates. J Am Chem Soc 2024; 146:20709-20719. [PMID: 39012647 PMCID: PMC11295205 DOI: 10.1021/jacs.4c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Chemical post-translational protein-protein conjugation is an important technique with growing applications in biotechnology and pharmaceutical research. Maleimides represent one of the most widely employed bioconjugation reagents. However, challenges associated with the instability of first- and second-generation maleimide technologies are yet to be fully addressed. We report the development of a novel class of maleimide reagents that can undergo on-demand ring-opening hydrolysis of the resulting thio-succinimide. This strategy enables rapid post-translational assembly of protein-protein conjugates. Thio-succinimide hydrolysis, triggered upon application of chemical, photochemical, or enzymatic stimuli, allowed homobifunctional bis-maleimide reagents to be applied in the production of stable protein-protein conjugates, with complete temporal control. Bivalent and bispecific protein-protein dimers constructed from small binders targeting antigens of oncological importance, PD-L1 and HER2, were generated with high purity, stability, and improved functionality compared to monomeric building blocks. The modularity of the approach was demonstrated through elaboration of the linker moiety through a bioorthogonal propargyl handle to produce protein-protein-fluorophore conjugates. Furthermore, extending the functionality of the homobifunctional reagents by temporarily masking reactive thiols included in the linker allowed the assembly of higher order trimeric and tetrameric single-domain antibody conjugates. The potential for the approach to be extended to proteins of greater biochemical complexity was demonstrated in the production of immunoglobulin single-domain antibody conjugates. On-demand control of thio-succinimide hydrolysis combined with the facile assembly of chemically defined homo- and heterodimers constitutes an important expansion of the chemical methods available for generating stable protein-protein conjugates.
Collapse
Affiliation(s)
| | | | - Yanira Méndez
- Yusuf Hamied Department of
Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K.
| | | |
Collapse
|
38
|
Aljuaid M, Chang Y, Haddleton DM, Wilson P, Houck HA. Thermoreversible [2 + 2] Photodimers of Monothiomaleimides and Intrinsically Recyclable Covalent Networks Thereof. J Am Chem Soc 2024; 146:19177-19182. [PMID: 38953610 PMCID: PMC11258687 DOI: 10.1021/jacs.4c04193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The development of intrinsically recyclable cross-linked materials remains challenged by the inherently unfavorable chemical equilibrium that dictates the efficiency of the reversible covalent bonding/debonding chemistry. Rather than having to (externally) manipulate the bonding equilibrium, we here introduce a new reversible chemistry platform based on monosubstituted thiomaleimides that can undergo complete and independent light-activated covalent bonding and on-demand thermal debonding above 120 °C. Specifically, repeated bonding/debonding of a small-molecule thiomaleimide [2 + 2] photodimer is demonstrated over five heat/light cycles with full conversion in both directions, thereby regenerating its initial monothiomaleimide constituents. This motivated the synthesis of multifunctional thiomaleimide reagents as precursors for the design of covalently cross-linked networks that display intrinsic switching between a monomeric and polymeric state. The resulting materials are shown to covalently dissociate and depolymerize upon heating both in solution and in bulk, thus transforming the densely photo-cross-linked material back into a viscous liquid. Temperature-regulated photorheology evidenced the intrinsic recyclability of the thiomaleimide-based thermosets during multiple cycles of UV cross-linking and thermal de-cross-linking. The thermally reversible photodimerization of thiomaleimides presents a new addition to the designer playground of dynamic polymer networks, providing interesting opportunities for the reprocessing and closed-loop recycling of covalently cross-linked materials.
Collapse
Affiliation(s)
- Mohammed Aljuaid
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
- Department
of Chemistry, Turabah University College,
Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yujing Chang
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - David M. Haddleton
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Paul Wilson
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| | - Hannes A. Houck
- Photochemistry
for Materials Group, Department of Chemistry, University of Warwick, Library Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
39
|
Okon A, Yang J, Giancola JB, Molina OJ, Sayers J, Cheah KM, Li Y, Strieter ER, Raines RT. Facile Access to Branched Multispecific Proteins. Bioconjug Chem 2024; 35:954-962. [PMID: 38879814 PMCID: PMC11254548 DOI: 10.1021/acs.bioconjchem.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Approaches that leverage orthogonal chemical reactions to generate protein-protein conjugates have expanded access to bespoke chimeras. Although the literature is replete with examples of the semisynthesis of bispecific proteins, few methods exist for the semisynthesis of protein conjugates of higher complexity (i.e., greater than two-protein fusions). The recent emergence of trispecific cell engagers for immune cell redirection therapies necessitates the development of chemical methods for the construction of trispecific proteins that would otherwise be inaccessible via natural protein synthesis. Here, we demonstrate that 3-bromo-5-methylene pyrrolone (3Br-5MP) can be used to effect the facile chemical synthesis of trispecific peptides and proteins with exquisite control over the addition of each monomer. The multimeric complexes maintain epitope functionality both in human cells and upon immobilization. We anticipate that facile access to trispecific proteins using this 3Br-5MP will have broad utility in basic science research and will quicken the pace of research to establish novel, multimeric immune cell redirection therapies.
Collapse
Affiliation(s)
- Aniekan Okon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinyi Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - JoLynn B. Giancola
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oscar J. Molina
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jessica Sayers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith M. Cheah
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yanfeng Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R. Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Gordon SE, Evans EGB, Otto SC, Tessmer MH, Shaffer KD, Gordon MT, Petersson EJ, Stoll S, Zagotta WN. Long-distance tmFRET using bipyridyl- and phenanthroline-based ligands. Biophys J 2024; 123:2063-2075. [PMID: 38350449 PMCID: PMC11309967 DOI: 10.1016/j.bpj.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
With the great progress on determining protein structures over the last decade comes a renewed appreciation that structures must be combined with dynamics and energetics to understand function. Fluorescence spectroscopy, specifically Förster resonance energy transfer (FRET), provides a great window into dynamics and energetics due to its application at physiological temperatures and ability to measure dynamics on the ångström scale. We have recently advanced transition metal FRET (tmFRET) to study allosteric regulation of maltose binding protein and have reported measurements of maltose-dependent distance changes with an accuracy of ∼1.5 Å. When paired with the noncanonical amino acid Acd as a donor, our previous tmFRET acceptors were useful over a working distance of 10 to 20 Å. Here, we use cysteine-reactive bipyridyl and phenanthroline compounds as chelators for Fe2+ and Ru2+ to produce novel tmFRET acceptors to expand the working distance to as long as 50 Å, while preserving our ability to resolve even small maltose-dependent changes in distance. We compare our measured FRET efficiencies to predictions based on models using rotameric ensembles of the donors and acceptors to demonstrate that steady-state measurements of tmFRET with our new probes have unprecedented ability to measure conformational rearrangements under physiological conditions.
Collapse
Affiliation(s)
- Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington.
| | - Eric G B Evans
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington; Department of Chemistry, University of Washington, Seattle, Washington
| | - Shauna C Otto
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Maxx H Tessmer
- Department of Chemistry, University of Washington, Seattle, Washington
| | - Kyle D Shaffer
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Moshe T Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington.
| |
Collapse
|
41
|
Pires IS, Covarrubias G, Gomerdinger VF, Backlund C, Shanker A, Gordon E, Wu S, Pickering AJ, Melo MB, Suh H, Irvine DJ, Hammond PT. "Target-and-release" nanoparticles for effective immunotherapy of metastatic ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602135. [PMID: 39005274 PMCID: PMC11245112 DOI: 10.1101/2024.07.05.602135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Immunotherapies such as checkpoint inhibitors (CPI) are effective in treating several advanced cancers, but these treatments have had limited success in metastatic ovarian cancer (OC). Here, we engineered liposomal nanoparticles (NPs) carrying a layer-by-layer (LbL) polymer coating that promotes their binding to the surface of OC cells. Covalent anchoring of the potent immunostimulatory cytokine interleukin-12 (IL-12) to phospholipid headgroups of the liposome core enabled the LbL particles to concentrate IL-12 in disseminated OC tumors following intraperitoneal administration. Shedding of the LbL coating and serum protein-mediated extraction of IL-12-conjugated lipids from the liposomal core over time enabled IL-12 to disseminate in the tumor bed following rapid NP localization in tumor nodules. Optimized IL-12 LbL-NPs promoted robust T cell accumulation in ascites and tumors in mouse models, extending survival compared to free IL-12 and remarkedly sensitizing tumors to CPI, leading to curative treatments and immune memory.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Gil Covarrubias
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Victoria F Gomerdinger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Coralie Backlund
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Apoorv Shanker
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Ezra Gordon
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Shengwei Wu
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Andrew J Pickering
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02139 USA
| |
Collapse
|
42
|
Babanyinah GK, Bhadran A, Polara H, Wang H, Shah T, Biewer MC, Stefan MC. Maleimide functionalized polycaprolactone micelles for glutathione quenching and doxorubicin delivery. Chem Sci 2024; 15:9987-10001. [PMID: 38966382 PMCID: PMC11220601 DOI: 10.1039/d4sc01625d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
High glutathione production is known to be one of the defense mechanisms by which many cancer cells survive elevated oxidative stress. By explicitly targeting glutathione in these cancer cells and diminishing its levels, oxidative stress can be intensified, ultimately triggering apoptosis or programmed cell death. Herein, we developed a novel approach by creating maleimide-functionalized polycaprolactone polymers, specifically using 2,3-diiodomaleimide functionality to reduce the level of glutathione in cancer cells. Polycaprolactone was chosen to conjugate the 2,3-diiodomaleimide functionality due to its biodegradable and biocompatible properties. The amphiphilic block copolymer was synthesized using PEG as a macroinitiator to make corresponding polymeric micelles. The resulting 2,3-diiodomaleimide-conjugated polycaprolactone micelles effectively quenched glutathione, even at low concentrations (0.01 mg mL-1). Furthermore, we loaded these micelles with the anticancer drug doxorubicin (DOX), which exhibited pH-dependent drug release. We obtained a loading capacity (LC) of 3.5% for the micelles, one of the highest LC reported among functional PCL-based micelles. Moreover, the enhanced LC doesn't affect their release profile. Cytotoxicity experiments demonstrated that empty and DOX-loaded micelles inhibited cancer cell growth, with the DOX-loaded micelles displaying the highest cytotoxicity. The ability of the polymer to quench intracellular GSH was also confirmed. This approach of attaching maleimide to polycaprolactone polymers shows promise in depleting elevated glutathione levels in cancer cells, potentially improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| |
Collapse
|
43
|
Gazzi T, Lesina M, Wang Q, Berninger A, Radetzki S, Demir IE, Kohlmann L, Meiser W, Wilke S, von Kries JP, Algül H, Hu HY, Nazare M. DOTA-Based Plectin-1 Targeted Contrast Agent Enables Detection of Pancreatic Cancer in Human Tissue. Angew Chem Int Ed Engl 2024; 63:e202318485. [PMID: 38608197 DOI: 10.1002/anie.202318485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with extremely poor patient survival rates. A key reason for the poor prognosis is the lack of effective diagnostic tools to detect the disease at curable, premetastatic stages. Tumor surgical resection is PDAC's first-line treatment, however distinguishing between cancerous and healthy tissue with current imaging tools remains a challenge. In this work, we report a DOTA-based fluorescent probe targeting plectin-1 for imaging PDAC with high specificity. To enable heterogeneous functionalization of the DOTA-core with multiple targeting peptide units and the fluorophore, a novel, fully clickable synthetic route that proceeds in one pot was developed. Extensive validation of the probe set the stage for PDAC detection in mice and human tissue. Altogether, these findings may pave the way for improved clinical understanding and early detection of PDAC progression as well as more accurate resection criteria.
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 100050, Beijing, China
| | - Alexandra Berninger
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Ihsan Ekin Demir
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Department of Surgery, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Larissa Kohlmann
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Waldemar Meiser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | - Sebastian Wilke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| | | | - Hana Algül
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Comprehensive Cancer Center München, Chair for Tumor Metabolism, School of Medicine and Health, Technical University of Munich, 81675, München, Germany
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 100050, Beijing, China
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany
| |
Collapse
|
44
|
Moquist PN, Zhang X, Leiske CI, Eng-Duncan NML, Zeng W, Bindman NA, Wo SW, Wong A, Henderson CM, Crowder K, Lyon R, Doronina SO, Senter PD, Neff-LaFord HD, Sussman D, Gardai SJ, Levengood MR. Reversible Chemical Modification of Antibody Effector Function Mitigates Unwanted Systemic Immune Activation. Bioconjug Chem 2024; 35:855-866. [PMID: 38789102 PMCID: PMC11191404 DOI: 10.1021/acs.bioconjchem.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Antibody effector functions including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP) are mediated through the interaction of the antibody Fc region with Fcγ receptors present on immune cells. Several approaches have been used to modulate antibody Fc-Fcγ interactions with the goal of driving an effective antitumor immune response, including Fc point mutations and glycan modifications. However, robust antibody-Fcγ engagement and immune cell binding of Fc-enhanced antibodies in the periphery can lead to the unwanted induction of systemic cytokine release and other dose-limiting infusion-related reactions. Creating a balance between effective engagement of Fcγ receptors that can induce antitumor activity without incurring systemic immune activation is an ongoing challenge in the field of antibody and immuno-oncology therapeutics. Herein, we describe a method for the reversible chemical modulation of antibody-Fcγ interactions using simple poly(ethylene glycol) (PEG) linkers conjugated to antibody interchain disulfides with maleimide attachments. This method enables dosing of a therapeutic with muted Fcγ engagement that is restored in vivo in a time-dependent manner. The technology was applied to an effector function enhanced agonist CD40 antibody, SEA-CD40, and experiments demonstrate significant reductions in Fc-induced immune activation in vitro and in mice and nonhuman primates despite showing retained efficacy and improved pharmacokinetics compared to the parent antibody. We foresee that this simple, modular system can be rapidly applied to antibodies that suffer from systemic immune activation due to peripheral FcγR binding immediately upon infusion.
Collapse
Affiliation(s)
- Philip N. Moquist
- ADC
Chemistry, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United states
| | - Xinqun Zhang
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Chris I. Leiske
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | | | - Weiping Zeng
- ADC
In Vivo Pharmacology, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Noah A. Bindman
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Serena W. Wo
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Abbie Wong
- ADC
Translational Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Clark M. Henderson
- ADC
Translational Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Karalyne Crowder
- Non-Clinical
Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Robert Lyon
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Svetlana O. Doronina
- ADC
Chemistry, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United states
| | - Peter D. Senter
- ADC
Chemistry, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United states
| | - Haley D. Neff-LaFord
- Non-Clinical
Sciences, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Django Sussman
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| | - Shyra J. Gardai
- Immunology, Pfizer,
Inc., 21823 30th Dr.
SE, Bothell, Washington 98021, United States
| | - Matthew R. Levengood
- ADC
Antibody Engineering, Pfizer, Inc., 21823 30th Dr. SE, Bothell, Washington 98021, United States
| |
Collapse
|
45
|
Zafar A, Iqbal MA, Iram G, Shoukat US, Jamil F, Saleem M, Yousif M, Abidin ZU, Asad M. Advances in organocatalyzed synthesis of organic compounds. RSC Adv 2024; 14:20365-20389. [PMID: 38919284 PMCID: PMC11197984 DOI: 10.1039/d4ra03046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The recent advancements in utilizing organocatalysts for the synthesis of organic compounds have been described in this review by focusing on their simplicity, effectiveness, reproducibility, and high selectivity which lead to excellent product yields. The organocatalytic methods for various derivatives, such as indoles, pyrazolones, anthrone-functionalized benzylic amines, maleimide, polyester, phthalimides, dihydropyrimidin, heteroaryls, N-aryl benzimidazoles, stilbenoids, quinazolines, quinolines, and oxazolidinones have been specifically focused. The review provides more understanding by delving into potential reaction mechanisms. We anticipate that this collection of data and findings on successful synthesis of diverse compound derivatives will serve as valuable resources and stimulating current and future research efforts in organocatalysis and industrial chemistry.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ghazala Iram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Umar Sohail Shoukat
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Faisal Jamil
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Saleem
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab Lahore Pakistan
| | - Muhammad Yousif
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zain Ul Abidin
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
46
|
Santora LC, Hobson AD, Wang L, Wu KX. Impact of drug-linker on method selection for analytical characterization and purification of antibody-drug conjugates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3492-3503. [PMID: 38770747 DOI: 10.1039/d4ay00725e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In addition to traditional characterisation methods of hydrophobic interaction (HIC) and reverse phase (RP) chromatography, an anion exchange chromatography (AIEX) was developed to analyse and purify antibody drug conjugates (ADCs). Since different drug antibody ratio (DAR) species may impact biological activity, therapeutic index, PK parameters or even potential immunogenicity, homogenous ADC DAR demands have been significantly increasing. To accelerate linker designs, drug screening and ADC DAR purification for in vitro and in vivo studies, we built the analytical toolbox including HIC, RP, AIEX, icIEF, SEC, and MS for downstream ADC DAR purification using HIC and AIEX. The established analytical methods can quickly assess the quality of ADC DAR profiles and provide important information to select the proper ADC DAR purification method. Since drug-linker structures can significantly affect ADC physicochemical properties, and highly impact on selections of analytical methods, we applied both HIC and AIEX characterisation and purification platforms to achieve ADC DAR homogenous. Our experiments also implied that unlike HIC, AIEX could be used to separate DAR4 positional isomers.
Collapse
Affiliation(s)
- Ling C Santora
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| | - Adrian D Hobson
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| | - Lu Wang
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| | - Kan X Wu
- AbbVie Bioresearch Center, 381 Plantation Street, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
47
|
Denijs E, Unal K, Bevernaege K, Kasmi S, De Geest BG, Winne JM. Thermally Triggered Triazolinedione-Tyrosine Bioconjugation with Improved Chemo- and Site-Selectivity. J Am Chem Soc 2024; 146:12672-12680. [PMID: 38683141 DOI: 10.1021/jacs.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A bioconjugation strategy is reported that allows the derivatization of tyrosine side chains through triazolinedione-based "Y-clicking". Blocked triazolinedione reagents were developed that, in contrast to classical triazolinedione reagents, can be purified before use, can be stored for a long time, and allow functionalization with a wider range of cargoes and labels. These reagents are bench-stable at room temperature but steadily release highly reactive triazolinediones upon heating to 40 °C in buffered media at physiological pH, showing a sharp temperature response over the 0 to 40 °C range. This conceptually interesting strategy, which is complementary to existing photo- or electrochemical bioorthogonal bond-forming methods, not only avoids the classical synthesis and handling difficulties of these highly reactive click-like reagents but also markedly improves the selectivity profile of the tyrosine conjugation reaction itself. It avoids oxidative damage and "off-target" tryptophan labeling, and it even improves site-selectivity in discriminating between different tyrosine side chains on the same protein or different polypeptide chains. In this research article, we describe the stepwise development of these reagents, from their short and modular synthesis to small-molecule model bioconjugation studies and proof-of-principle bioorthogonal chemistry on peptides and proteins.
Collapse
Affiliation(s)
- Elias Denijs
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kamil Unal
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kevin Bevernaege
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Sabah Kasmi
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
48
|
Doud EA, Tilden JAR, Treacy JW, Chao EY, Montgomery HR, Kunkel GE, Olivares EJ, Adhami N, Kerr TA, Chen Y, Rheingold AL, Loo JA, Frost CG, Houk KN, Maynard HD, Spokoyny AM. Ultrafast Au(III)-Mediated Arylation of Cysteine. J Am Chem Soc 2024; 146:12365-12374. [PMID: 38656163 PMCID: PMC11152249 DOI: 10.1021/jacs.3c12170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.
Collapse
Affiliation(s)
- Evan A. Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - James A. R. Tilden
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Elaine Y. Chao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hayden R. Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Grace E. Kunkel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Eileen J. Olivares
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nima Adhami
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tyler A. Kerr
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yu Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christopher G. Frost
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
50
|
Yang Y, Nakayama K, Okada S, Sato K, Wada T, Sakaguchi Y, Murayama A, Suzuki T, Sakurai M. ICLAMP: a novel technique to explore adenosine deamination via inosine chemical labeling and affinity molecular purification. FEBS Lett 2024; 598:1080-1093. [PMID: 38523059 DOI: 10.1002/1873-3468.14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
Recent developments in sequencing and bioinformatics have advanced our understanding of adenosine-to-inosine (A-to-I) RNA editing. Surprisingly, recent analyses have revealed the capability of adenosine deaminase acting on RNA (ADAR) to edit DNA:RNA hybrid strands. However, edited inosines in DNA remain largely unexplored. A precise biochemical method could help uncover these potentially rare DNA editing sites. We explore maleimide as a scaffold for inosine labeling. With fluorophore-conjugated maleimide, we were able to label inosine in RNA or DNA. Moreover, with biotin-conjugated maleimide, we purified RNA and DNA containing inosine. Our novel technique of inosine chemical labeling and affinity molecular purification offers substantial advantages and provides a versatile platform for further discovery of A-to-I editing sites in RNA and DNA.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Koki Nakayama
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Shunpei Okada
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo-shi, Japan
| | - Kazuki Sato
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
| | - Takeshi Wada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Japan
| | - Ayaka Murayama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Japan
| | - Masayuki Sakurai
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| |
Collapse
|