1
|
Pan Y, Das A, Glorius F, Ren J. Insights into the surface chemistry of N-heterocyclic carbenes. Chem Soc Rev 2025. [PMID: 40304210 DOI: 10.1039/d4cs01299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as a versatile and powerful class of ligands in surface chemistry, offering remarkable stability and tunability when bound to surfaces, including metals, metal oxides, and semiconductors. Understanding their surface and interfacial mechanisms at the atomic-level is essential for precise control of molecule-surface interaction, as well as intermolecular interactions, which directly influence material performance and functionalities. Research in surface chemistry focusing on molecular binding modes, self-assembly, on-surface reactions, and electronic properties is crucial for the rational design of efficient catalysts, customized materials, and high-performance devices. This review highlights these critical aspects of NHCs on surfaces, beginning with their robust and multiple binding modes, which underpin their stability and versatility. The covalent NHC-surface bonds allow NHCs to form stable attachments, often surpassing the strength of traditional thiol-based modifiers, promoting robust anchoring across diverse materials. Another focus is the self-assembly of NHCs into highly ordered monolayers, which facilitates the design of functional nanostructures. Emerging topics also include on-surface reactions, surface electronic properties, and interfacial charge transfer of NHCs, emphasizing their dependence on the substrate and NHC molecular structure. By consolidating recent advancements in the study of NHCs on surfaces, we aim to provide a comprehensive overview of their transformative potential in surface chemistry at the atomic scale, while also identifying key challenges and future directions in the field.
Collapse
Affiliation(s)
- Yanyi Pan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ankita Das
- University of Münster, Organisch-Chemisches Institut, Münster 48149, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Münster 48149, Germany.
| | - Jindong Ren
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
2
|
Amar L, Mondal R, Blumen O, Rekanati L, Berg I, Harpaz S, Sharon D, Gross E. Self-Assembled Monolayer of N-Heterocyclic Carbene as a Primer in a Dual-Layer Coating for Corrosion Protection on Iron. Angew Chem Int Ed Engl 2025:e202422879. [PMID: 40024897 DOI: 10.1002/anie.202422879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/21/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
The development of highly stable coatings on iron is essential for mitigating corrosion formation. Herein, it is demonstrated that a self-assembled monolayer of N-Heterocyclic Carbene (NHC) can be electrodeposited on iron foil and function as a binder for a secondary, crosslinked polymer network coating. The dual layer coating, constructed of a monolayer of NHCs and a polymer film, as a primary and a secondary coating, respectively, effectively preventes corrosion formation with a protective efficiency of 99.6 ± 0.2 %, as determined by polarization measurements in 3.5 wt.% NaCl solution. Spectroscopic analysis identified the formation of a chemical interaction between the NHC monolayer and the polymer film. The strong anchoring of NHC to iron along with its chemical interaction with the polymer film induced high stability and durability of the dual-layer coating to effectively protect the coated iron from corrosion formation.
Collapse
Affiliation(s)
- Linoy Amar
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Rajarshi Mondal
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Omer Blumen
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Lihi Rekanati
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Iris Berg
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Sara Harpaz
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Daniel Sharon
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Elad Gross
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
3
|
Chandran A, Dominique NL, Kaur G, Clark V, Nalaoh P, Ekowo LC, Jensen IM, Aloisio MD, Crudden CM, Arroyo-Currás N, Jenkins DM, Camden JP. Forming N-heterocyclic carbene monolayers: not all deposition methods are the same. NANOSCALE 2025; 17:5413-5428. [PMID: 39895613 PMCID: PMC11788998 DOI: 10.1039/d4nr04428b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
N-Heterocyclic carbenes (NHCs) are unrivaled in their ability to form persistent and tunable monolayers on noble metal surfaces, with disciplines from heterogeneous catalysis to microelectronics fabrication rapidly adopting this technology. It is currently assumed that different NHC monolayer preparation protocols yield equivalent surfaces; however, a direct comparison of the leading synthetic protocols is yet to validate this assumption. Herein, we explore the binding of NHC ligands to gold (Au) surfaces prepared using the five most common NHC deposition methods and discover significant differences in the resulting monolayer composition and structure. In this work, NHC-Au systems are prepared according to literature procedures starting from either the free carbene, the CO2 adduct, the bicarbonate salt, or the triflate salt. The resulting surfaces are characterized with surface-enhanced Raman spectroscopy (SERS), laser desorption/ionization mass spectrometry (LDI-MS), electrochemistry, and X-ray photoelectron spectroscopy (XPS). These data indicate that the free carbene, vacuum annealing, and solvent annealing methods form chemisorbed NHC monolayers, as expected; however, the solution phase methods without annealing yield surfaces with a fundamentally different character. Although XPS is widely used to confirm the binding of NHCs to metal surfaces, it does not capture the differences in these deposition procedures and should be used with caution. Taken together, these results reveal a significant variation of the NHC surface structure as a function of deposition procedure and provide a critical benchmark to govern the design and preparation of future NHC monolayer systems.
Collapse
Affiliation(s)
- Aruna Chandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nathaniel L Dominique
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Vincent Clark
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | - Lilian Chinenye Ekowo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Isabel M Jensen
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Mark D Aloisio
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Nanan DAR, Lomax JT, Bentley J, Misener L, Veinot AJ, Shiu WT, Liu L, Ragogna PJ, Crudden CM. Self-Assembled Monolayers of Triazolylidenes on Gold and Mixed Gold/Dielectric Substrates. J Am Chem Soc 2025; 147:5624-5631. [PMID: 39919216 DOI: 10.1021/jacs.4c11125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as valuable ligands for surface chemistry. They can be used to prepare robust self-assembled monolayers (SAMs) for a variety of applications, including as small-molecule inhibitors (SMIs) for metal surfaces in the fabrication of next-generation integrated circuits with angstrom precision. However, little work has been performed to assess the effect of structural and electronic modifications to the basic NHC structure. Herein, we report the design and deposition of a series of 1,2,3-triazolylidene (Tz)-type carbenes on gold (Au) and Au/SiO2 patterned substrates. Triazolylidenes are an important class of stable carbenes that can be prepared with ease by using click chemistry. In this work, we studied the selective deposition of 1,2,3-triazolium hydrogen carbonate salts. The thermal properties of these precursors were measured and shown to be appropriate for either solution or vapor phase deposition. Tz-SAM stability was studied by time-of-flight secondary-ion mass spectrometry (ToF-SIMS) of Tz SAMs before and after exposure to various conditions, leading to the conclusion that Tz SAMs have thermal stabilities greater than that of NHC SAMs reported to date. Tz SAMs were analyzed by using X-ray and ultraviolet photoelectron spectroscopy (XPS, UPS) and contact angle measurements. High selectivity for deposition on metal regions over dielectric regions on patterned Au/SiO2 substrates enabled the use of Tzs as an entirely new class of SMIs on preventing ZnO deposition, providing considerable potential utility in microelectronics fabrication methods. Structure-property relationships were studied and provided key insight into the effectiveness of the SAM as a blocking agent.
Collapse
Affiliation(s)
- Dana A R Nanan
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
| | - Justin T Lomax
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jordan Bentley
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Lindsay Misener
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Alex J Veinot
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Wai-Tung Shiu
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Lijia Liu
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Paul J Ragogna
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
- Carbon to Metal Coating Institute (C2MCI), Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Berg I, Mondal R, Sims JM, Ben-Tzvi T, Lahav L, Friedman B, Michel C, Nairoukh Z, Gross E. Strong Substrate-Adsorbate Interactions Direct the Impact of Fluorinated N-Heterocyclic Carbene Monolayers on Au Surface Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65469-65479. [PMID: 39556756 PMCID: PMC11615852 DOI: 10.1021/acsami.4c12514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Fluorinated self-assembled monolayers (SAMs) have been utilized in a variety of applications such as transistors and optoelectronic devices. However, in most SAMs the fluorinated groups could not be positioned in high proximity to the surface due to steric effects. This limitation hinders the direct analysis of the impact of the fluorination level on surface properties. Herein, fluorinated aromatic N-heterocyclic carbenes (NHCs), with 1-5 fluorine atoms, were self-assembled on a gold substrate. These NHCs enabled the positioning of fluorinated groups in high proximity to the metal surface to identify the influence of the fluorination level on surface properties. Experimental measurements and theoretical calculations identified that all fluorinated NHCs formed SAMs and adopted a flat-lying adsorption configuration while anchored to the metal surface via Au adatom. A higher fluorination level induced a stronger interaction of the fluorinated side groups with the Au surface. The stronger interaction and surface proximity of the fluorinated side groups deteriorated the overall binding energy of the NHC due to the less-optimized adsorption geometry of the carbene carbon. Ultraviolet photoelectron spectroscopy measurements revealed that fluorinated NHC monolayers lowered the surface work function by up to 1 eV and induced an increase of 15-20° in the water contact angle. The impact on surface properties did not vary according to the fluorination level of NHCs, and similar values were measured for NHC with 1-5 fluorine atoms. It is therefore identified that dominant adsorbate-substrate interactions between the fluorinated side groups and the Au surface quenched the distinct impact of the fluorination level on surface functionality.
Collapse
Affiliation(s)
- Iris Berg
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Rajarshi Mondal
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Joshua M. Sims
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F69364 Lyon, France
| | - Tzipora Ben-Tzvi
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Linoy Lahav
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Barak Friedman
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Carine Michel
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d’Italie, F69364 Lyon, France
| | - Zackaria Nairoukh
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Cegiełka D, Frey M, Kozieł K, Neumann C, Turchanin A, Cyganik P. Electron-Beam-Induced Modification of N-Heterocyclic Carbenes: Carbon Nanomembrane Formation. J Phys Chem Lett 2024; 15:8196-8204. [PMID: 39094029 PMCID: PMC11331524 DOI: 10.1021/acs.jpclett.4c01705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Electron irradiation of self-assembled monolayers (SAMs) is a versatile tool for lithographic methods and the formation of new 2D materials such as carbon nanomembranes (CNMs). While the interaction between the electron beam and standard thiolate SAMs has been well studied, the effect of electron irradiation for chemically and thermally ultrastable N-heterocyclic carbenes (NHCs) remains unknown. Here we analyze electron irradiation of NHC SAMs featuring different numbers of benzene moieties and different sizes of the nitrogen side groups to modify their structure. Our results provide design rules to optimize NHC SAMs for effective electron-beam modification that includes the formation of sulfur-free CNMs, which are more suitable for ultrafiltration applications. Considering that NHC monolayers exhibit up to 100 times higher stability of their bonding with the metal substrate toward electron-irradiation compared to standard SAMs, they offer a new alternative for chemical lithography where structural modification of SAMs should be limited to the functional group.
Collapse
Affiliation(s)
- Daria
M. Cegiełka
- Jagiellonian
University, Faculty of Physics,
Astronomy and Applied Computer Science, Smoluchowski Institute of
Physics, Łojasiewicza
11, 30-348 Krakow, Poland
- Jagiellonian
University, Doctoral School of Exact and
Natural Sciences, Łojasiewicza
11, 30-348 Krakow, Poland
| | - Martha Frey
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Lessingstraße 10, 07743 Jena, Germany
| | - Krzysztof Kozieł
- Faculty
of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Lessingstraße 10, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Lessingstraße 10, 07743 Jena, Germany
- Jena
Center for Soft Matter, 07743 Jena, Germany
| | - Piotr Cyganik
- Jagiellonian
University, Faculty of Physics,
Astronomy and Applied Computer Science, Smoluchowski Institute of
Physics, Łojasiewicza
11, 30-348 Krakow, Poland
| |
Collapse
|
7
|
Song S, Liu X, Ding L, Liu Z, Abubaker MA, Xu Y, Zhang J. A bacterial cellulose/polyvinyl alcohol/nitro graphene oxide double layer network hydrogel efficiency antibacterial and promotes wound healing. Int J Biol Macromol 2024; 269:131957. [PMID: 38692544 DOI: 10.1016/j.ijbiomac.2024.131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
In this study, graphene oxide (GO) was chemically modified utilizing concentrated nitric acid to produce a nitrated graphene oxide derivative (NGO) with enhanced oxidation level, improved dispersibility, and increased antibacterial activity. A double-layer composite hydrogel material (BC/PVA/NGO) with a core-shell structure was fabricated by utilizing bacterial cellulose (BC) and polyvinyl alcohol (PVA) binary composite hydrogel scaffold as the inner network template, and hydrophilic polymer (PVA) loaded with antibacterial material (NGO) as the outer network. The fabrication process involved physical crosslinking based on repeated freezing and thawing. The resulting BC/PVA/NGO hydrogel exhibited a porous structure, favorable mechanical properties, antibacterial efficacy, and biocompatibility. Subsequently, the performance of BC/PVA/NGO hydrogel in promoting wound healing was evaluated using a mouse skin injury model. The findings demonstrated that the BC/PVA/NGO hydrogel treatment group facilitated improved wound healing in the mouse skin injury model compared to the control group and the BC/PVA group. This enhanced wound healing capability was attributed primarily to the excellent antibacterial and tissue repair properties of the BC/PVA/NGO hydrogel.
Collapse
Affiliation(s)
- Shen Song
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoyuan Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, China
| | - Ling Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Zhao Liu
- National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Mohamed Aamer Abubaker
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Department of Biology, Faculty of Education, University of Khartoum, Khartoum 11111, Sudan
| | - Yaqiang Xu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; New Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
8
|
Amit E, Mondal R, Berg I, Nairoukh Z, Gross E. N-Heterocyclic Carbene Monolayers on Metal-Oxide Films: Correlations between Adsorption Mode and Surface Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10374-10383. [PMID: 38701356 PMCID: PMC11100006 DOI: 10.1021/acs.langmuir.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
N-Heterocyclic carbene (NHC) ligands have been self-assembled on various metal and semimetal surfaces, creating a covalent bond with surface metal atoms that led to high thermal and chemical stability of the self-assembled monolayer. This study explores the self-assembly of NHCs on metal-oxide films (CuOx, FeOx, and TiOx) and reveals that the properties of these metal-oxide substrates play a pivotal role in dictating the adsorption behavior of NHCs, influencing the decomposition route of the monolayer and its impact on work function values. While the attachment of NHCs onto CuOx is via coordination with surface oxygen atoms, NHCs interact with TiOx through coordination with surface metal atoms and with FeOx via coordination with both metal and oxygen surface atoms. These distinct binding modes arise due to variances in the electronic properties of the metal atoms within the investigated metal-oxide films. Contact angle and ultraviolet photoelectron spectroscopy measurements have shown a significantly higher impact of F-NHC adsorption on CuOx than on TiOx and FeOx , correlated to a preferred, averaged upright orientation of F-NHC on CuOx.
Collapse
Affiliation(s)
- Einav Amit
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Rajarshi Mondal
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Iris Berg
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Zackaria Nairoukh
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute
of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Li M, Liu M, Qi F, Lin FR, Jen AKY. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem Rev 2024; 124:2138-2204. [PMID: 38421811 DOI: 10.1021/acs.chemrev.3c00396] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ming Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Dery S, Cao W, Yao C, Copéret C. NMR Spectroscopic Signatures of Cationic Surface Sites from Supported Coinage Metals Interacting with N-Heterocyclic Carbenes. J Am Chem Soc 2024; 146:6466-6470. [PMID: 38428040 PMCID: PMC10941179 DOI: 10.1021/jacs.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
N-heterocyclic carbenes (NHCs) have been extensively studied to modulate the reactivity of molecular catalysts, colloids, and their supported analogues, being isolated sites, clusters, or nanoparticles. While the interaction of NHCs on metal surfaces has been discussed in great detail, showing specific coordination chemistry depending on the type of NHC ligands, much less is known when the metal is dispersed on oxide supports, as in heterogeneous catalysts. Herein, we study the interaction of NHC ligands with Au surface sites dispersed on silica, a nonreducible oxide support. We identify the easy formation of bis-NHC ligated Au(I) surface sites parallel to what is found on metallic Au surfaces. These species display a specific 13C NMR spectroscopic signature that clearly distinguishes them from the mono-NHC Au(I) surface sites or supported imidazoliums. We find that bis-ligated surface species are not unique to supported Au(I) species and are found for the corresponding Ag(I) and Cu(I) species, as well as for the isolobal surface silanols. Furthermore, the interaction of NHC ligand with silica-supported Au nanoparticles also yields bis-NHC ligated Au(I) surface sites, indicating that metal atoms can also be easily extracted from nanoparticles, further illustrating the dynamics of these systems and the overall favorable formation of such bis-ligated species across a range of systems, besides what has been found on crystalline metal facets.
Collapse
Affiliation(s)
- Shahar Dery
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Weicheng Cao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Chengbo Yao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
11
|
Lee DS, Singh I, Veinot AJ, Aloisio MD, Lomax JT, Ragogna PJ, Crudden CM. Mesoionic carbene-based self-assembled monolayers on gold. Chem Sci 2024; 15:2480-2485. [PMID: 38362421 PMCID: PMC10866350 DOI: 10.1039/d3sc04720b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/10/2023] [Indexed: 02/17/2024] Open
Abstract
N-Heterocyclic carbenes (NHC) have been widely studied as ligands for surface chemistry, and have shown advantages compared to existing ligands (e.g. thiols). Herein, we introduce mesoionic carbenes (MICs) as a new type of surface ligand. MICs exhibit higher σ-donor ability compared to typical NHCs, yet they have received little attention in the area of surface chemistry. The synthesis of MICs derived from imidazo[1,2-a]pyridine was established and fully characterized by spectroscopic methods. The self-assembly of these MICs on gold was analyzed by X-ray photoelectron spectroscopy (XPS). Additionally, XPS was used to compare bonding ability in MICs compared to the typical NHCs. These results show that MIC overlayers on gold are robust, resistant to replacement by NHCs, and may be superior to NHCs for applications that require even greater levels of robustness.
Collapse
Affiliation(s)
- Dianne S Lee
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| | - Ishwar Singh
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| | - Alex J Veinot
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
- Department of Chemistry, Western University London Ontario N6A 3K7 Canada
- Surface Science Western 999 Collip Cir London Ontario N6G 0J3 Canada
| | - Mark D Aloisio
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| | - Justin T Lomax
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
- Department of Chemistry, Western University London Ontario N6A 3K7 Canada
- Surface Science Western 999 Collip Cir London Ontario N6G 0J3 Canada
| | - Paul J Ragogna
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
- Department of Chemistry, Western University London Ontario N6A 3K7 Canada
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University 90 Bader Lane Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, C2MCI, Queen's University 90 Bader Lane Kingston Ontario K7L 4V1 Canada
| |
Collapse
|
12
|
Zhang T, Khomane SB, Singh I, Crudden CM, McBreen PH. N-heterocyclic carbene adsorption states on Pt(111) and Ru(0001). Phys Chem Chem Phys 2024; 26:4083-4090. [PMID: 38226886 DOI: 10.1039/d3cp03539e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
N-heterocyclic carbene ligands (NHCs) are increasingly used to tune the properties of metal surfaces. The generally greater chemical and thermal robustness of NHCs on gold, as compared to thiolate surface ligands, underscores their potential for a range of applications. While much is now known about the adsorption geometry, overlayer structure, dynamics, and stability of NHCs on coinage elements, especially gold and copper, much less is known about their interaction with the surfaces of Pt-group metals, despite the importance of such metals in catalysis and electrochemistry. In this study, reflection absorption infrared spectroscopy (RAIRS) is used to probe the structure of benzimidazolylidene NHC ligands on Pt(111) and Ru(0001). The experiments exploit the intense absorption peaks of a CF3 substituent on the phenyl ring of the NHC backbone to provide unprecedented insight into adsorption geometry and chemical stability. The results also permit comparison with literature data for NHC ligands on Au(111) and to DFT predictions for NHCs on Pt(111) and Ru(0001), thereby greatly extending the known surface chemistry of NHCs and providing much needed molecular information for the design of metal-organic hybrid materials involving strongly reactive metals.
Collapse
Affiliation(s)
- Tianchi Zhang
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Sonali B Khomane
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| | - Ishwar Singh
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada, K7L 3N6.
| | - Peter H McBreen
- Département de chimie et CCVC, Université Laval, Québec (Que), Canada, G1K OA6.
| |
Collapse
|
13
|
Gutheil C, Roß G, Amirjalayer S, Mo B, Schäfer AH, Doltsinis NL, Braunschweig B, Glorius F. Tailored Monolayers of N-Heterocyclic Carbenes by Kinetic Control. ACS NANO 2024; 18:3043-3052. [PMID: 38252154 DOI: 10.1021/acsnano.3c08045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Despite the substantial success of N-heterocyclic carbenes (NHCs) as stable and versatile surface modification ligands, their use in nanoscale applications beyond chemistry is still hampered by the failure to control the carbene binding mode, which complicates the fabrication of monolayers with the desired physicochemical properties. Here, we applied vibrational sum-frequency generation spectroscopy to conduct a pseudokinetic surface analysis of NHC monolayers on Au thin films under ambient conditions. We observe for two frequently used carbene structures that their binding mode is highly dynamic and changes with the adsorption time. In addition, we demonstrate that this transition can be accelerated or decelerated to adjust the binding mode of NHCs, which allows fabrication of tailored monolayers of NHCs simply by kinetic control.
Collapse
Affiliation(s)
- Christian Gutheil
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Gina Roß
- Institut für Physikalische Chemie, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Boris Mo
- Institut für Pharmazeutische Biologie und Phytochemie, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | | | - Nikos L Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation, University of Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Björn Braunschweig
- Institut für Physikalische Chemie, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
14
|
Amit E, Berg I, Zhang W, Mondal R, Shema H, Gutkin V, Kravchuk T, Toste FD, Nairoukh Z, Gross E. Selective Deposition of N-Heterocyclic Carbene Monolayers on Designated Au Microelectrodes within an Electrode Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302317. [PMID: 37667447 DOI: 10.1002/smll.202302317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Indexed: 09/06/2023]
Abstract
The incorporation of organic self-assembled monolayers (SAMs) in microelectronic devices requires precise spatial control over the self-assembly process. In this work, selective deposition of N-heterocyclic carbenes (NHCs) on specific electrodes within a two-microelectrode array is achieved by using pulsed electrodeposition. Spectroscopic analysis of the NHC-coated electrode arrays reveals that each electrode is selectively coated with a designated NHC. The impact of NHC monolayers on the electrodes' work function is quantified using Kelvin probe force microscopy. These measurements demonstrate that the work function values of each electrode can be independently tuned by the adsorption of a specific NHC. The presented deposition method enables to selectively coat designated microelectrodes in an electrode array with chosen NHC monolayers for tuning their chemical and electronic functionality.
Collapse
Affiliation(s)
- Einav Amit
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Iris Berg
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Wenhao Zhang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Rajarshi Mondal
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Hadar Shema
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Vitaly Gutkin
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| | - Tatyana Kravchuk
- Surface Science Laboratory of Solid-State Institute, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Elad Gross
- Institute of Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 9190401, Israel
| |
Collapse
|
15
|
Berg I, Schio L, Reitz J, Molteni E, Lahav L, Bolaños CG, Goldoni A, Grazioli C, Fratesi G, Hansmann MM, Floreano L, Gross E. Self-Assembled Monolayers of N-Heterocyclic Olefins on Au(111). Angew Chem Int Ed Engl 2023; 62:e202311832. [PMID: 37743324 DOI: 10.1002/anie.202311832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO-Au-adatom. This self-assembly pattern was correlated to strong NHO-Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Luca Schio
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Justus Reitz
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Elena Molteni
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Linoy Lahav
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | | | - Andrea Goldoni
- Elettra-Sincrotrone Trieste S.C.p.A, Basovizza SS-14, Km 163.5, Trieste, 34149, Italy
| | - Cesare Grazioli
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Guido Fratesi
- Dipartimento di Fisica "Aldo Pontremoli'' Università degli Studi di Milano, Via Celoria 16, 20133, Milano, Italy
| | - Max M Hansmann
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Luca Floreano
- CNR-IOM, Laboratorio TASC, Basovizza SS-14, Km 163.5, Trieste, 34012, Italy
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
16
|
Fortunati A, Risplendi F, Re Fiorentin M, Cicero G, Parisi E, Castellino M, Simone E, Iliev B, Schubert TJS, Russo N, Hernández S. Understanding the role of imidazolium-based ionic liquids in the electrochemical CO 2 reduction reaction. Commun Chem 2023; 6:84. [PMID: 37120643 PMCID: PMC10148827 DOI: 10.1038/s42004-023-00875-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
The development of efficient CO2 capture and utilization technologies driven by renewable energy sources is mandatory to reduce the impact of climate change. Herein, seven imidazolium-based ionic liquids (ILs) with different anions and cations were tested as catholytes for the CO2 electrocatalytic reduction to CO over Ag electrode. Relevant activity and stability, but different selectivities for CO2 reduction or the side H2 evolution were observed. Density functional theory results show that depending on the IL anions the CO2 is captured or converted. Acetate anions (being strong Lewis bases) enhance CO2 capture and H2 evolution, while fluorinated anions (being weaker Lewis bases) favour the CO2 electroreduction. Differently from the hydrolytically unstable 1-butyl-3-methylimidazolium tetrafluoroborate, 1-Butyl-3-Methylimidazolium Triflate was the most promising IL, showing the highest Faradaic efficiency to CO (>95%), and up to 8 h of stable operation at high current rates (-20 mA & -60 mA), which opens the way for a prospective process scale-up.
Collapse
Affiliation(s)
- Alessia Fortunati
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Francesca Risplendi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| | - Michele Re Fiorentin
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Giancarlo Cicero
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Emmanuele Parisi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Micaela Castellino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Elena Simone
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Boyan Iliev
- Iolitec Ionic Liquids Technologies GmbH, Im Zukunftspark 9, 74076, Heilbronn, Germany
| | - Thomas J S Schubert
- Iolitec Ionic Liquids Technologies GmbH, Im Zukunftspark 9, 74076, Heilbronn, Germany
| | - Nunzio Russo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Simelys Hernández
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
| |
Collapse
|
17
|
Ikemoto S, Muratsugu S, Koitaya T, Tsuji Y, Das M, Yoshizawa K, Glorius F, Tada M. Coordination-Induced Trigger for Activity: N-Heterocyclic Carbene-Decorated Ceria Catalysts Incorporating Cr and Rh with Activity Induction by Surface Adsorption Site Control. J Am Chem Soc 2023; 145:1497-1504. [PMID: 36511728 DOI: 10.1021/jacs.2c07290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A coordination-induced trigger for catalytic activity is proposed on an N-heterocyclic carbene (NHC)-decorated ceria catalyst incorporating Cr and Rh (ICy-r-Cr0.19Rh0.06CeOz). ICy-r-Cr0.19Rh0.06CeOz was prepared by grafting 1,3-dicyclohexylimidazol-2-ylidene (ICy) onto H2-reduced Cr0.19Rh0.06CeOz (r-Cr0.19Rh0.06CeOz) surfaces, which went on to exhibit substantial catalytic activity for the 1,4-arylation of cyclohexenone with phenylboronic acid, whereas r-Cr0.19Rh0.06CeOz without ICy was inactive. FT-IR, Rh K-edge XAFS, XPS, and photoluminescence spectroscopy showed that the ICy carbene-coordinated Rh nanoclusters were the key active species. The coordination-induced trigger for catalytic activity on the ICy-bearing Rh nanoclusters could not be attributed to electronic donation from ICy to the Rh nanoclusters. DFT calculations suggested that ICy controlled the adsorption sites of the phenyl group on the Rh nanocluster to promote the C-C bond formation of the phenyl group and cyclohexenone.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takanori Koitaya
- Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Yuta Tsuji
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Mowpriya Das
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.,Research Center for Materials Science (RCMS), Integrated Research Consortium on Chemical Sciences (IRCCS), and Institute for Advanced Study, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
18
|
Choi Y, Park CS, Tran HV, Li CH, Crudden CM, Lee TR. Functionalized N-Heterocyclic Carbene Monolayers on Gold for Surface-Initiated Polymerizations. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44969-44980. [PMID: 36150129 DOI: 10.1021/acsami.2c10985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although N-heterocyclic carbenes (NHCs) are superior to thiol adsorbates in that they form remarkably stable bonds with gold, the generation of NHC-based self-assembled monolayers (SAMs) typically requires a strong base and an inert atmosphere, which limits the utility of such films in many applications. Herein, we report the development and use of bench-stable NHC adsorbates, benzimidazolium methanesulfonates, for the direct formation of NHC films on gold surfaces under an ambient atmosphere at room temperature without the need for extraordinary precautions. The generated NHC SAMs were fully characterized using ellipsometry, X-ray photoelectron spectroscopy (XPS), polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS), and contact angle measurements, and they were compared to analogous SAMs generated from an NHC bicarbonate adsorbate. Based on these findings, a unique radical initiator α,ω-bidentate azo-terminated NHC adsorbate, NHC15AZO[OMs], was designed and synthesized for the preparation of SAMs on gold surfaces with both NHC headgroups bound to the surface. The adsorbate molecules in NHC15AZO SAMs can exist in a hairpin or a linear conformation depending on the concentration of the adsorbate solution used to prepare the SAM. These conformations were studied by a combination of ellipsometry, XPS, PM-IRRAS, and scanning electron microscopy using gold nanoparticles (AuNPs) as a tag material. Moreover, the potential utility of these unique radical-initiating NHC films as surface-initiated polymerization platforms was demonstrated by controlling the thickness of polystyrene brush films grown from azo-terminated NHC monolayer surfaces simply by adjusting the reaction time of the photoinitiated radical polymer growth process.
Collapse
Affiliation(s)
- Yunsoo Choi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Chul Soon Park
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Chien-Hung Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|
19
|
Berg I, Eisenberg H, Dery S, Shahar T, Cossaro A, Verdini A, Floreano L, Stein T, Gross E. The influence of adsorption geometry on the reduction affinity of nitroaromatics on Au(111). Phys Chem Chem Phys 2022; 24:22960-22970. [PMID: 36125248 DOI: 10.1039/d2cp02832h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective reduction of nitro groups in multifunctional nitroaromatics is a challenging catalytic process with high interest due to the importance of the resulting anilines for the chemical industry. Molecular-level understanding of the ways by which adsorption geometry of nitroaromatics influence their affinity toward nitro reduction will enable the development of highly selective reactions. Herein, taking advantage of the well-ordered self-assembly of para- and ortho-nitrothiophenol (p-NTP and o-NTP, respectively) monolayers on Au(111), we examined the correlation between adsorption geometry and nitro reduction affinity. The anchoring geometry of NTPs and their nitro reduction affinity were determined by conducting polarized X-ray absorption spectroscopy while the influence of NTPs' adsorption geometry on the interaction with the Au surface was analyzed by density functional theory (DFT) calculations. Exposure of surface anchored p-NTPs to reducing conditions led to their reorientation from a tilt angle of 52° to 25°, which enabled strong interactions between the π system of the molecules and the Au surface. Direct correlation was identified between the surface proximity of the nitro group, its parallel position to the surface and the resulting reduction yield. The asymmetric structure of o-NTP led to a tilted adsorption geometry in which the nitro group was rotated away from the plane of the aromatic ring and therefore was positioned parallel and in high proximity to the Au surface. This positioning led to surface-bonding that involved the oxygen atoms of o-NTP. The higher surface proximity and stronger surface interactions of the nitro group in o-NTP enabled nitro reduction already at 180 °C, while in p-NTP nitro reduction was achieved only at 230 °C, due to the longer distance between the NO2 group and the Au surface that led to weaker adsorbate-surface interactions. Thus, parallel positioning of the nitro group and high surface proximity were found as essential descriptors for nitro reduction affinity in both p-NTP and o-NTP on the Au surface. These findings provide explicit guidelines for tuning the reactant and surface properties in order to control the reactant's adsorption geometry for selective nitro reduction in multifunctional nitroaromatics.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel. .,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Helen Eisenberg
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel. .,The Fritz Haber Center for Molecular Dynamics Research, The Hebrew University, Jerusalem 91904, Israel
| | - Shahar Dery
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel. .,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Tehila Shahar
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel. .,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Albano Cossaro
- CNR-IOM, Laboratorio Nazionale TASC, Basovizza SS-14, Trieste 34012, Italy
| | - Alberto Verdini
- CNR-IOM, Laboratorio Nazionale TASC, Basovizza SS-14, Trieste 34012, Italy
| | - Luca Floreano
- CNR-IOM, Laboratorio Nazionale TASC, Basovizza SS-14, Trieste 34012, Italy
| | - Tamar Stein
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel. .,The Fritz Haber Center for Molecular Dynamics Research, The Hebrew University, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel. .,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
20
|
Berg I, Amit E, Hale L, Toste FD, Gross E. N-Heterocyclic Carbene Based Nanolayer for Copper Film Oxidation Mitigation. Angew Chem Int Ed Engl 2022; 61:e202201093. [PMID: 35315187 PMCID: PMC9321544 DOI: 10.1002/anie.202201093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/19/2022]
Abstract
The wide use of copper is limited by its rapid oxidation. Main oxidation mitigation approaches involve alloying or surface passivation technologies. However, surface alloying often modifies the physical properties of copper, while surface passivation is characterized by limited thermal and chemical stability. Herein, we demonstrate an electrochemical approach for surface-anchoring of an N-heterocyclic carbene (NHC) nanolayer on a copper electrode by electro-deposition of alkyne-functionalized imidazolium cations. Water reduction reaction generated a high concentration of hydroxide ions that induced deprotonation of imidazolium cations and self-assembly of NHCs on the copper electrode. In addition, alkyne group deprotonation enabled on-surface polymerization by coupling surface-anchored and solvated NHCs, which resulted in a 2 nm thick NHC-nanolayer. Copper film coated with a NHC-nanolayer demonstrated high oxidation resistance at elevated temperatures and under alkaline conditions.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Einav Amit
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Lillian Hale
- Department of ChemistryUniversity of CaliforniaBerkeleyCA 94720USA
| | - F. Dean Toste
- Department of ChemistryUniversity of CaliforniaBerkeleyCA 94720USA
| | - Elad Gross
- Institute of Chemistry and the Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| |
Collapse
|
21
|
Berg I, Amit E, Hale L, Toste FD, Gross E. N
‐Heterocyclic Carbene Nanolayer for Copper Film Oxidation Mitigation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Iris Berg
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University Jerusalem 91904 Israel
| | - Einav Amit
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University Jerusalem 91904 Israel
| | - Lillian Hale
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - F. Dean Toste
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Elad Gross
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University Jerusalem 91904 Israel
| |
Collapse
|
22
|
Kaur G, Thimes RL, Camden JP, Jenkins DM. Fundamentals and applications of N-heterocyclic carbene functionalized gold surfaces and nanoparticles. Chem Commun (Camb) 2022; 58:13188-13197. [DOI: 10.1039/d2cc05183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Improved stability and higher degree of synthetic tunability has allowed N-heterocyclic carbenes to supplant thiols as ligands for gold surface functionalization. This review article summarizes the basic science and applications of NHCs on gold.
Collapse
Affiliation(s)
- Gurkiran Kaur
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Rebekah L. Thimes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Jon P. Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
23
|
Rikanati L, Dery S, Gross E. AFM-IR and s-SNOM-IR measurements of chemically addressable monolayers on Au nanoparticles. J Chem Phys 2021; 155:204704. [PMID: 34852499 DOI: 10.1063/5.0072079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The performance of catalysts depends on their nanoscale properties, and local variations in structure and composition can have a dramatic impact on the catalytic reactivity. Therefore, probing the localized reactivity of catalytic surfaces using high spatial resolution vibrational spectroscopy, such as infrared (IR) nanospectroscopy and tip-enhanced Raman spectroscopy, is essential for mapping their reactivity pattern. Two fundamentally different scanning probe IR nanospectroscopy techniques, namely, scattering-type scanning near-field optical microscopy (s-SNOM) and atomic force microscopy-infrared spectroscopy (AFM-IR), provide the capabilities for mapping the reactivity pattern of catalytic surfaces with a spatial resolution of ∼20 nm. Herein, we compare these two techniques with regard to their applicability for probing the vibrational signature of reactive molecules on catalytic nanoparticles. For this purpose, we use chemically addressable self-assembled molecules on Au nanoparticles as model systems. We identified significant spectral differences depending on the measurement technique, which originate from the fundamentally different working principles of the applied methods. While AFM-IR spectra provided information from all the molecules that were positioned underneath the tip, the s-SNOM spectra were more orientation-sensitive. Due to its field-enhancement factor, the s-SNOM spectra showed higher vibrational signals for dipoles that were perpendicularly oriented to the surface. The s-SNOM sensitivity to the molecular orientation influenced the amplitude, position, and signal-to-noise ratio of the collected spectra. Ensemble-based IR measurements verified that differences in the localized IR spectra stem from the enhanced sensitivity of s-SNOM measurements to the adsorption geometry of the probed molecules.
Collapse
Affiliation(s)
- Lihi Rikanati
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shahar Dery
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elad Gross
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
24
|
Dery S, Bellotti P, Ben-Tzvi T, Freitag M, Shahar T, Cossaro A, Verdini A, Floreano L, Glorius F, Gross E. Influence of N-Substituents on the Adsorption Geometry of OH-Functionalized Chiral N-Heterocyclic Carbenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10029-10035. [PMID: 34370475 PMCID: PMC9234974 DOI: 10.1021/acs.langmuir.1c01199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Adsorption of chiral molecules on heterogeneous catalysts is a simple approach for inducing an asymmetric environment to enable enantioselective reactivity. Although the concept of chiral induction is straightforward, its practical utilization is far from simple, and only a few examples toward the successful chiral induction by surface anchoring of asymmetric modifiers have been demonstrated so far. Elucidating the factors that lead to successful chiral induction is therefore a crucial step for understanding the mechanism by which chirality is transferred. Herein, we identify the adsorption geometry of OH-functionalized N-heterocyclic carbenes (NHCs), which are chemical analogues to chiral modifiers that successfully promoted α-arylation reactions once anchored on Pd nanoparticles. Polarized near-edge X-ray absorption fine structure (NEXAFS) measurements on Pd(111) revealed that NHCs that were associated with low enantioselectivity were characterized with a well-ordered structure, in which the imidazole ring was vertically positioned and the OH-functionalized side arms were flat-lying. OH-functionalized NHCs that were associated with high enantioselectivity revealed a disordered/flexible adsorption geometry, which potentially enabled better interaction between the OH group and the prochiral reactant.
Collapse
Affiliation(s)
- Shahar Dery
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Peter Bellotti
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität
Münster, Münster 48149, Germany
| | - Tzipora Ben-Tzvi
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Matthias Freitag
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität
Münster, Münster 48149, Germany
| | - Tehila Shahar
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Albano Cossaro
- CNR-IOM,
Laboratorio Nazionale TASC, Basovizza SS-14, Trieste 34012, Italy
| | - Alberto Verdini
- CNR-IOM,
Laboratorio Nazionale TASC, Basovizza SS-14, Trieste 34012, Italy
| | - Luca Floreano
- CNR-IOM,
Laboratorio Nazionale TASC, Basovizza SS-14, Trieste 34012, Italy
| | - Frank Glorius
- Organisch-Chemisches
Institut, Westfälische Wilhelms-Universität
Münster, Münster 48149, Germany
| | - Elad Gross
- Institute
of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
25
|
Dery S, Mehlman H, Hale L, Carmiel-Kostan M, Yemini R, Ben-Tzvi T, Noked M, Toste FD, Gross E. Site-Independent Hydrogenation Reactions on Oxide-Supported Au Nanoparticles Facilitated by Intraparticle Hydrogen Atom Diffusion. ACS Catal 2021; 11:9875-9884. [PMID: 35756326 PMCID: PMC9223368 DOI: 10.1021/acscatal.1c01987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/07/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Shahar Dery
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Hillel Mehlman
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Lillian Hale
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Mazal Carmiel-Kostan
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Reut Yemini
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - Tzipora Ben-Tzvi
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| | - Malachi Noked
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Elad Gross
- Institute of Chemistry, The Hebrew University, Jerusalem 91904, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Inayeh A, Groome RRK, Singh I, Veinot AJ, de Lima FC, Miwa RH, Crudden CM, McLean AB. Self-assembly of N-heterocyclic carbenes on Au(111). Nat Commun 2021; 12:4034. [PMID: 34188031 PMCID: PMC8241988 DOI: 10.1038/s41467-021-23940-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Although the self-assembly of organic ligands on gold has been dominated by sulfur-based ligands for decades, a new ligand class, N-heterocyclic carbenes (NHCs), has appeared as an interesting alternative. However, fundamental questions surrounding self-assembly of this new ligand remain unanswered. Herein, we describe the effect of NHC structure, surface coverage, and substrate temperature on mobility, thermal stability, NHC surface geometry, and self-assembly. Analysis of NHC adsorption and self-assembly by scanning tunneling microscopy and density functional theory have revealed the importance of NHC-surface interactions and attractive NHC-NHC interactions on NHC monolayer structures. A remarkable way these interactions manifest is the need for a threshold NHC surface coverage to produce upright, adatom-mediated adsorption motifs with low surface diffusion. NHC wingtip structure is also critical, with primary substituents leading to the formation of flat-lying NHC2Au complexes, which have high mobility when isolated, but self-assemble into stable ordered lattices at higher surface concentrations. These and other studies of NHC surface chemistry will be crucial for the success of these next-generation monolayers.
Collapse
Affiliation(s)
- Alex Inayeh
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada
| | - Ryan R K Groome
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada
| | - Ishwar Singh
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Alex J Veinot
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Felipe Crasto de Lima
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
- Brazilian Nanotechnology National, Laboratory, Campinas, SP, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Cathleen M Crudden
- Department of Chemistry, Queen's University, Kingston, ON, Canada.
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan.
| | - Alastair B McLean
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
27
|
Dery S, Alshanski I, Mervinetsky E, Feferman D, Yitzchaik S, Hurevich M, Gross E. The influence of surface proximity on photoswitching activity of stilbene-functionalized N-heterocyclic carbene monolayers. Chem Commun (Camb) 2021; 57:6233-6236. [PMID: 34095904 DOI: 10.1039/d1cc02491d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Self-assembly of photo-responsive molecules is a robust technology for reversibly tuning the properties of functional materials. Herein, we probed the crucial role of surface-adsorbate interactions on the adsorption geometry of stilbene-functionalized N-heterocyclic carbenes (stilbene-NHCs) monolayers and its impact on surface potential. Stilbene-NHCs on Au film accumulated in a vertical orientation that enabled high photoisomerization efficiency and reversible changes in surface potential. Strong metal-adsorbate interactions led to flat-lying adsorption geometry of stilbene-NHCs on Pt film, which quenched the photo-isomerization influence on surface potential. It is identified that photo-induced response can be optimized by positioning the photo-active group in proximity to weakly-interacting surfaces.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Israel Alshanski
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Evgeniy Mervinetsky
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Daniel Feferman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Shlomo Yitzchaik
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Mattan Hurevich
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem 91904, Israel.
| |
Collapse
|
28
|
|
29
|
Kang S, Byeon SE, Yoon HJ. N
‐Heterocyclic
Carbene Anchors in Electronics Applications. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seohyun Kang
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Seo Eun Byeon
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Hyo Jae Yoon
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
30
|
Chu M, Pan Q, Bian W, Liu Y, Cao M, Zhang C, Lin H, Zhang Q, Xu Y. Strong metal–support interaction between palladium and gallium oxide within monodisperse nanoparticles: self-supported catalysts for propyne semi-hydrogenation. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Berg I, Hale L, Carmiel-Kostan M, Toste FD, Gross E. Using silyl protecting group to enable post-deposition C–C coupling reactions of alkyne-functionalized N-heterocyclic carbene monolayers on Au surfaces. Chem Commun (Camb) 2021; 57:5342-5345. [DOI: 10.1039/d1cc01271a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyne-functionalized NHC ligands were protected by TIPS group that enabled surface-anchoring of NHCs with chemically-sensitive functionality and providing access, following TIPS removal, to on-surface Sonogashira cross–coupling reactions.
Collapse
Affiliation(s)
- Iris Berg
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Lillian Hale
- Department of Chemistry
- University of California
- Berkeley
- California 94720
- USA
| | - Mazal Carmiel-Kostan
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| | - F. Dean Toste
- Department of Chemistry
- University of California
- Berkeley
- California 94720
- USA
| | - Elad Gross
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| |
Collapse
|
32
|
Amit E, Dery L, Dery S, Kim S, Roy A, Hu Q, Gutkin V, Eisenberg H, Stein T, Mandler D, Dean Toste F, Gross E. Electrochemical deposition of N-heterocyclic carbene monolayers on metal surfaces. Nat Commun 2020; 11:5714. [PMID: 33177496 PMCID: PMC7658200 DOI: 10.1038/s41467-020-19500-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
N-heterocyclic carbenes (NHCs) have been widely utilized for the formation of self-assembled monolayers (SAMs) on various surfaces. The main methodologies for preparation of NHCs-based SAMs either requires inert atmosphere and strong base for deprotonation of imidazolium precursors or the use of specifically-synthesized precursors such as NHC(H)[HCO3] salts or NHC–CO2 adducts. Herein, we demonstrate an electrochemical approach for surface-anchoring of NHCs which overcomes the need for dry environment, addition of exogenous strong base or restricting synthetic steps. In the electrochemical deposition, water reduction reaction is used to generate high concentration of hydroxide ions in proximity to a metal electrode. Imidazolium cations were deprotonated by hydroxide ions, leading to carbenes formation that self-assembled on the electrode’s surface. SAMs of NO2-functionalized NHCs and dimethyl-benzimidazole were electrochemically deposited on Au films. SAMs of NHCs were also electrochemically deposited on Pt, Pd and Ag films, demonstrating the wide metal scope of this deposition technique. N-heterocyclic carbenes (NHCs) have been widely used for the formation of monolayers but self-assembly methods come with drawbacks such as need for dry environment or using specifically-synthesized precursors. Here, the authors demonstrate an approach for surface-anchoring of NHCs which overcomes these limitations by using electrochemically-assisted deprotonation.
Collapse
Affiliation(s)
- Einav Amit
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Linoy Dery
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Shahar Dery
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Suhong Kim
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Anirban Roy
- Bruker Nano Surfaces Division, 112 Robin Hill Road, Santa Barbara, CA, 93117, USA
| | - Qichi Hu
- Bruker Nano Surfaces Division, 112 Robin Hill Road, Santa Barbara, CA, 93117, USA
| | - Vitaly Gutkin
- The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Helen Eisenberg
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904, Israel.,The Fritz Haber Center for Molecular Dynamics Research, The Hebrew University, Jerusalem, 91904, Israel
| | - Tamar Stein
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904, Israel.,The Fritz Haber Center for Molecular Dynamics Research, The Hebrew University, Jerusalem, 91904, Israel
| | - Daniel Mandler
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904, Israel.,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Elad Gross
- Institute of Chemistry, The Hebrew University, Jerusalem, 91904, Israel. .,The Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel.
| |
Collapse
|
33
|
Kaeffer N, Mance D, Copéret C. N‐Heterocyclic Carbene Coordination to Surface Copper Sites in Selective Semihydrogenation Catalysts from Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicolas Kaeffer
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim a. d. Ruhr Germany
| | - Deni Mance
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Christophe Copéret
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
34
|
Amit E, Berg I, Gross E. Self-Assembled Monolayers of Nitron: Self-Activated and Chemically Addressable N-Heterocyclic Carbene Monolayers with Triazolone Structural Motif. Chemistry 2020; 26:13046-13052. [PMID: 32343452 DOI: 10.1002/chem.202001595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 01/13/2023]
Abstract
N-heterocyclic carbenes (NHCs) have emerged as a unique molecular platform for the formation of self-assembled monolayers (SAMs) on various surfaces. However, active carbene formation requires deprotonation of imidazolium salt precursors, which is mostly facilitated by exposure of the salt to exogenous base. Base residues were found to be adsorbed on the metal surface and hindered the formation of well-ordered carbene-based monolayers. Herein, we show that nitron, a triazolone-based compound that freely tautomerizes to a carbene, can spontaneously self-assemble into monolayers on Pt and Au surfaces, which obviates the necessity for base-induced deprotonation for active carbene formation. SAMs of nitron were found to be thermally stable and could not be displaced by thiols, and thus their high chemical stability was demonstrated. The amino group in surface-anchored nitron was shown to be chemically available for SN 2 reactions, and makes surface-anchored nitron a chemically addressable cross-linking reagent for surface modifications.
Collapse
Affiliation(s)
- Einav Amit
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Iris Berg
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| | - Elad Gross
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University, Jerusalem, 91904, Israel
| |
Collapse
|
35
|
Crasto de Lima F, Fazzio A, McLean AB, Miwa RH. Simulations of X-ray absorption spectroscopy and energetic conformation of N-heterocyclic carbenes on Au(111). Phys Chem Chem Phys 2020; 22:21504-21511. [PMID: 32955064 DOI: 10.1039/d0cp04240d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has recently been demonstrated that N-heterocyclic carbenes (NHCs) form self-assembled monolayers (SAMs) on metal surfaces. Consequently, it is important to both characterize and understand their binding modes to fully exploit NHCs in functional surface systems. To assist with this effort, we have performed first-principles total energy calculations for NHCs on Au(111) and simulations of X-ray absorption near edge structure (XANES). The NHCs we have considered are N,N-dimethyl-, N,N-diethyl-, N,N-diisopropylbenzimidazolylidene (BNHCX, with X = Me, Et, and iPr, respectively) and the bis-BNHCX-Au complexes derived from these molecules. We present a comprehensive analysis of the energetic stability of both the BNHCX and the complexes on Au(111) and, for the former, examine the role of the wing group in determining the attachment geometry. Further structural characterization is performed by calculating the nitrogen K-edge X-ray absorption spectra. Our simulated XANES results give insight into (i) the relationship between the BNHCX/Au geometry and the N(1s) → π*/σ*, pre-edge/near-edge, absorption intensities, and (ii) the contributions of the molecular deformation and molecule-surface electronic interaction to the XANES spectrum. These simulated spectra work not only as a map to the BNHCX conformation, but also, combined with electronic structure calculations, provide a clear understanding of recent experimental XANES findings on BNHCX/Au.
Collapse
Affiliation(s)
- F Crasto de Lima
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil.
| | - A Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970, Brazil.
| | - A B McLean
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L3N6, Canada
| | - R H Miwa
- Instituto de Física, Universidade Federal de Uberlândia, C. P. 593, Uberlândia, MG 38400-902, Brazil
| |
Collapse
|
36
|
Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Tuning Atomically Dispersed Fe Sites in Metal-Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing. NANO-MICRO LETTERS 2020; 12:184. [PMID: 34138213 PMCID: PMC7770903 DOI: 10.1007/s40820-020-00520-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/12/2020] [Indexed: 05/16/2023]
Abstract
Although nanozymes have been widely developed, accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges. Herein, two functional groups with opposite electron modulation abilities (nitro and amino) were introduced into the metal-organic frameworks (MIL-101(Fe)) to tune the atomically dispersed metal sites and thus regulate the enzyme-like activity. Notably, the functionalization of nitro can enhance the peroxidase (POD)-like activity of MIL-101(Fe), while the amino is poles apart. Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites. Benefiting from both geometric and electronic effects, the nitro-functionalized MIL-101(Fe) with a low reaction energy barrier for the HO* formation exhibits a superior POD-like activity. As a concept of the application, a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2-50 mU mL-1 with a limit of detection of 0.14 mU mL-1. Moreover, the detection of organophosphorus pesticides was also achieved. This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors.
Collapse
Affiliation(s)
- Weiqing Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yikun Kang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hongye Yan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, People's Republic of China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
37
|
Kaeffer N, Mance D, Copéret C. N‐Heterocyclic Carbene Coordination to Surface Copper Sites in Selective Semihydrogenation Catalysts from Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2020; 59:19999-20007. [DOI: 10.1002/anie.202006209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Nicolas Kaeffer
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
- Current address: Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim a. d. Ruhr Germany
| | - Deni Mance
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| | - Christophe Copéret
- ETH Zürich Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1–5 8093 Zürich Switzerland
| |
Collapse
|
38
|
Nguyen DT, Freitag M, Gutheil C, Sotthewes K, Tyler BJ, Böckmann M, Das M, Schlüter F, Doltsinis NL, Arlinghaus HF, Ravoo BJ, Glorius F. Ein auf Arylazopyrazol basierendes N‐heterocyclisches Carben als Photoschalter auf Goldoberflächen: Lichtschaltbare Benetzbarkeit, Austrittsarbeit und Leitwert. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- D. Thao Nguyen
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Matthias Freitag
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Gutheil
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials MESA+ Institute for Nanotechnology University of Twente P.O. Box 217 7500 AE Enschede Niederlande
| | - Bonnie J. Tyler
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Mowpriya Das
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Friederike Schlüter
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Nikos L. Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Heinrich F. Arlinghaus
- Physikalisches Institut Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Straße 10 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
- Center for Soft Nanoscience (SoN) Westfälische Wilhelms-Universität Münster Busso-Peus-Straße 10 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
39
|
Nguyen DT, Freitag M, Gutheil C, Sotthewes K, Tyler BJ, Böckmann M, Das M, Schlüter F, Doltsinis NL, Arlinghaus HF, Ravoo BJ, Glorius F. An Arylazopyrazole-Based N-Heterocyclic Carbene as a Photoswitch on Gold Surfaces: Light-Switchable Wettability, Work Function, and Conductance. Angew Chem Int Ed Engl 2020; 59:13651-13656. [PMID: 32271973 DOI: 10.1002/anie.202003523] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/08/2020] [Indexed: 12/13/2022]
Abstract
A novel photoresponsive and fully conjugated N-heterocyclic carbene (NHC) has been synthesized that combines the excellent photophysical properties of arylazopyrazoles (AAPs) with an NHC that acts as a robust surface anchor (AAP-BIMe). The formation of self-assembled monolayers (SAMs) on gold was proven by ToF-SIMS and XPS, and the organic film displayed a very high stability at elevated temperatures. This stability was also reflected in a high desorption energy, which was determined by temperature-programmed SIMS measurements. E-/Z-AAP-BIMe@Au photoisomerization resulted in reversible alterations of the surface energy (i.e. wettability), the surface potential (i.e. work function), and the conductance (i.e. resistance). The effects could be explained by the difference in the dipole moment of the isomers. Furthermore, sequential application of a dummy ligand by microcontact printing and subsequent backfilling with AAP-BIMe allowed its patterning on gold. To the best of our knowledge, this is the first example of a photoswitchable NHC on a gold surface. These properties of AAP-BIMe@Au illustrate its suitability as a molecular switch for electronic devices.
Collapse
Affiliation(s)
- D Thao Nguyen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Matthias Freitag
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Christian Gutheil
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Kai Sotthewes
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | - Bonnie J Tyler
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Mowpriya Das
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Friederike Schlüter
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.,Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
40
|
Dery S, Berg I, Kim S, Cossaro A, Verdini A, Floreano L, Toste FD, Gross E. Strong Metal-Adsorbate Interactions Increase the Reactivity and Decrease the Orientational Order of OH-Functionalized N-Heterocyclic Carbene Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:697-703. [PMID: 31762273 DOI: 10.1021/acs.langmuir.9b02401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fundamental understanding of the correlation between the structure and reactivity of chemically addressable N-heterocyclic carbene (NHC) molecules on various surfaces is essential for the design of functional NHC-based self-assembled monolayers. In this work, we identified the ways by which the deposition of chemically addressable OH-NHCs on Au(111) or Pt(111) surfaces modified the anchoring geometry and chemical reactivity of surface-anchored NHCs. The properties of surface-anchored NHCs were probed by conducting X-ray photoelectron spectroscopy and polarized near-edge X-ray absorption fine structure measurements. While no preferred orientation was identified for OH-NHCs on Pt(111), the anchored molecules adopted a preferred flat-lying position on Au(111). Dehydrogenation and aromatization of the imidazoline ring along with partial hydroxyl oxidation were detected in OH-NHCs that were anchored on Au(111). The dehydrogenation and aromatization reactions were facilitated, along with partial decomposition, for OH-NHCs that were anchored on Pt(111). The spectroscopic results reveal that stronger metal-adsorbate interactions increase the reactivity of surface-anchored OH-NHCs while decreasing their molecular orientational order.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| | - Iris Berg
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| | - Suhong Kim
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Albano Cossaro
- CNR-IOM, Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - Alberto Verdini
- CNR-IOM, Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - Luca Floreano
- CNR-IOM, Laboratorio Nazionale TASC , Basovizza SS-14 , Trieste 34012 , Italy
| | - F Dean Toste
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Elad Gross
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University , Jerusalem 91904 , Israel
| |
Collapse
|
41
|
Dery S, Kim S, Feferman D, Mehlman H, Toste FD, Gross E. Site-dependent selectivity in oxidation reactions on single Pt nanoparticles. Phys Chem Chem Phys 2020; 22:18765-18769. [DOI: 10.1039/d0cp00642d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site-dependent selectivity in oxidation reactions on Pt nanoparticles was identified by conducting IR nanospectroscopy measurements while using allyl-functionalized N-heterocyclic carbenes (allyl-NHCs) as probe molecules.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Suhong Kim
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Daniel Feferman
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| | - Hillel Mehlman
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| | - F. Dean Toste
- Department of Chemistry
- University of California
- Berkeley
- USA
| | - Elad Gross
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology
- The Hebrew University
- Jerusalem 91904
- Israel
| |
Collapse
|
42
|
Dery S, Kim S, Tomaschun G, Berg I, Feferman D, Cossaro A, Verdini A, Floreano L, Klüner T, Toste FD, Gross E. Elucidating the Influence of Anchoring Geometry on the Reactivity of NO 2-Functionalized N-Heterocyclic Carbene Monolayers. J Phys Chem Lett 2019; 10:5099-5104. [PMID: 31386382 DOI: 10.1021/acs.jpclett.9b01808] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The development of chemically addressable N-heterocyclic carbene (NHC) based self-assembled monolayers (SAMs) requires in-depth understanding of the influence of NHC's anchoring geometry on its chemical functionality. Herein, it is demonstrated that the chemical reactivity of surface-anchored NO2-functionalized NHCs (NO2-NHCs) can be tuned by modifying the distance between the functional group and the reactive surface, which is governed by the deposition technique. Liquid deposition of NO2-NHCs on Pt(111) induced a SAM in which the NO2-aryl groups were flat-lying on the surface. The high proximity between the NO2 groups and the Pt surface led to high reactivity, and 85% of the NO2 groups were reduced at room temperature. Lower reactivity was obtained with vapor-deposited NO2-NHCs that assumed a preferred upright geometry. The separation between the NO2 groups in the vapor-deposited NO2-NHCs and the reactive surface circumvented their surface-induced reduction, which was facilitated only after exposure to harsher reducing conditions.
Collapse
Affiliation(s)
- Shahar Dery
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Suhong Kim
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gabriele Tomaschun
- Department of Chemistry, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Iris Berg
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Daniel Feferman
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Albano Cossaro
- Laboratorio Nazionale TASC, CNR-IOM, Basovizza SS-14, Trieste 34012, Italy
| | - Alberto Verdini
- Laboratorio Nazionale TASC, CNR-IOM, Basovizza SS-14, Trieste 34012, Italy
| | - Luca Floreano
- Laboratorio Nazionale TASC, CNR-IOM, Basovizza SS-14, Trieste 34012, Italy
| | - Thorsten Klüner
- Department of Chemistry, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Elad Gross
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|