1
|
Levine DS, Jacobson LD, Bochevarov AD. Large Computational Survey of Intrinsic Reactivity of Aromatic Carbon Atoms with Respect to a Model Aldehyde Oxidase. J Chem Theory Comput 2023; 19:9302-9317. [PMID: 38085599 DOI: 10.1021/acs.jctc.3c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Aldehyde oxidase (AOX) and other related molybdenum-containing enzymes are known to oxidize the C-H bonds of aromatic rings. This process contributes to the metabolism of pharmaceutical compounds and, therefore, is of vital importance to drug pharmacokinetics. The present work describes an automated computational workflow and its use for the prediction of intrinsic reactivity of small aromatic molecules toward a minimal model of the active site of AOX. The workflow is based on quantum chemical transition state searches for the underlying single-step oxidation reaction, where the automated protocol includes identification of unique aromatic C-H bonds, creation of three-dimensional reactant and product complex geometries via a templating approach, search for a transition state, and validation of reaction end points. Conformational search on the reactants, products, and the transition states is performed. The automated procedure has been validated on previously reported transition state barriers and was used to evaluate the intrinsic reactivity of nearly three hundred heterocycles commonly found in approved drug molecules. The intrinsic reactivity of more than 1000 individual aromatic carbon sites is reported. Stereochemical and conformational aspects of the oxidation reaction, which have not been discussed in previous studies, are shown to play important roles in accurate modeling of the oxidation reaction. Observations on structural trends that determine the reactivity are provided and rationalized.
Collapse
Affiliation(s)
- Daniel S Levine
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| | - Leif D Jacobson
- Schrödinger, Inc., 101 SW Main Street, Suite 1300, Portland, Oregon 97204, United States
| | - Art D Bochevarov
- Schrödinger, Inc., 1540 Broadway, Floor 24, New York, New York 10036, United States
| |
Collapse
|
2
|
Hao W, Zhang Y, Xu P, Xie Y, Li W, Wang H. Enantioselective accumulation, elimination and metabolism of fenbuconazole in lizards (Eremias argus). CHEMOSPHERE 2021; 271:129482. [PMID: 33460889 DOI: 10.1016/j.chemosphere.2020.129482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
The enantioselective accumulation, elimination and metabolism of fenbuconazole in lizards were determined following a single-dose (25 mg/kgbw) exposure to racemic or enantiomeric fenbuconazole. Accumulation of fenbuconazole was found in lizard fat with rac-form > enantiopure enantiomers. The enantiomer fractions (EFs) were higher than 0.5 in the blood, while EFs were less than 0.5 in the liver, brain, skin and stomach. There was conversion from (+)-fenbuconazole to (-)-fenbuconazole in lizard liver and conversion from (-)-fenbuconazole to (+)-fenbuconazole in lizard liver and blood. The results showed that enantioselective accumulation appeared in lizards, but the direction varied among blood and different tissues. The elimination half-lives (t1/2) of (+)-fenbuconazole were higher than those of (-)-fenbuconazole in the blood and liver, suggesting that (-)-fenbuconazole eliminated faster than (+)-fenbuconazole in these tissues. In addition, both (+)-fenbuconazole and (-)-fenbuconazole eliminated faster in the liver and stomach exposed to racemate than those exposed to enantiopure enantiomers. On the contrary, the form of racemate decreased the elimination rate of fenbuconazole in lizard fat. Synergistic elimination may occur when two enantiomers coexisted in lizard liver and stomach, while the racemate produced antagonistic elimination in lizard fat. Simultaneously, three metabolites, RH-6467, RH-9029&RH-9030 and keto-mchlorophenol, were discovered in lizard liver. Only two metabolites, RH-6467 and RH-9029&RH-9030, were found in lizard blood. RH-9029&RH-9030 were the major metabolites. The discovered enantiomers of (+)-fenbuconazole metabolites were different from those of (-)-fenbuconazole. The findings of this study may provide a better understanding of the enantioselective behaviors of chiral triazole fungicides in reptiles.
Collapse
Affiliation(s)
- Weiyu Hao
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| | - Yanfeng Zhang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| | - Peng Xu
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| | - Yun Xie
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of the Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China.
| | - Wei Li
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| | - Huili Wang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
3
|
Chen F, Bai Q, Wang Q, Chen S, Ma X, Cai C, Wang D, Waqas A, Gong P. Stereoselective Pharmacokinetics and Chiral Inversions of Some Chiral Hydroxy Group Drugs. Curr Pharm Biotechnol 2020; 21:1632-1644. [PMID: 32718284 DOI: 10.2174/1389201021666200727144053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chiral safety, especially chiral drug inversion in vivo, is the top priority of current scientific research. Medicine researchers and pharmacists often ignore that one enantiomer will be converted or partially converted to another enantiomer when it is ingested in vivo. So that, in the context that more than 50% of the listed drugs are chiral drugs, it is necessary and important to pay attention to the inversion of chiral drugs. METHODS The metabolic and stereoselective pharmacokinetic characteristics of seven chiral drugs with one chiral center in the hydroxy group were reviewed in vivo and in vitro including the possible chiral inversion of each drug enantiomer. These seven drugs include (S)-Mandelic acid, RS-8359, Tramadol, Venlafaxine, Carvedilol, Fluoxetine and Metoprolol. RESULTS The differences in stereoselective pharmacokinetics could be found for all the seven chiral drugs, since R and S isomers often exhibit different PK and PD properties. However, not every drug has shown the properties of one direction or two direction chiral inversion. For chiral hydroxyl group drugs, the redox enzyme system may be one of the key factors for chiral inversion in vivo. CONCLUSION In vitro and in vivo chiral inversion is a very complex problem and may occur during every process of ADME. Nowadays, research on chiral metabolism in the liver has the most attention, while neglecting the chiral transformation of other processes. Our review may provide the basis for the drug R&D and the safety of drugs in clinical therapy.
Collapse
Affiliation(s)
- Fuxin Chen
- Department of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China
| | - Qiaoxiu Bai
- Department of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China
| | - Qingfeng Wang
- Department of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China
| | - Suying Chen
- Department of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China
| | - Xiaoxian Ma
- Department of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China
| | - Changlong Cai
- Research Center of Ion Beam Biotechnology and Biodiversity, Xi'an Technological University, Xi'an 710021, China
| | - Danni Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ahsan Waqas
- Department of Chemistry and Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
5
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
6
|
Hao W, Zhang Y, Xie Y, Guo B, Chang J, Li J, Xu P, Wang H. Myclobutanil accumulation, transcriptional alteration, and tissue injury in lizards (Eremias argus) treated with myclobutanil enantiomers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:247-255. [PMID: 30612012 DOI: 10.1016/j.ecoenv.2018.12.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Enantioselective toxicokinetics, accumulation, and toxicity of myclobutanil were investigated by oral exposure of myclobutanil enantiomers to lizards. After a single oral administration, the absorption half-lives ( [Formula: see text] ) and elimination half-lives (t1/2k) were in the range of 0.133-14.828 and 3.641-17.682 h, respectively. The absorption and elimination half-lives of (+)-myclobutanil showed no significant differences from those of (-)-myclobutanil in lizard blood, whereas preferential enrichment of (-)-enantiomer was observed in the liver, fat, skin, intestine, lung and kidney. In the bioaccumulation experiments, the residue of (-)-myclobutanil was detected in most tissues at 7, 14, and 28 days, while (+)-myclobutanil was found only in lizard skin, at a concentration lower than that of (-)-myclobutanil. Thus, (-)-myclobutanil was preferentially accumulated in lizards. The transcriptional responses of metabolic enzyme genes indicated that cytochrome P450 1a1 (cyp1a1), cyp2d3, cyp2d6, cyp3a4 and cyp3a7 played a crucial role in the metabolism of (+)-myclobutanil, whereas cyp1a1, cyp2d3, cyp2d6, cyp2c8, and cyp3a4 contributed to the metabolism of (-)-myclobutanil. The difference in metabolism pathways may be a reason for the enantioselectivity of myclobutanil in lizard. Myclobutanil also affected the expression of antioxidant enzyme genes, and the (+)-myclobutanil treatment might produce higher oxidative stress in lizard liver when compared with its antipode. Hepatic histopathological changes such as hepatocellular hypertrophy, nuclear pyknosis, vacuolation, and non-zonal macrovesicular lipid accumulation were observed in the liver of lizards for both (+)-myclobutanil and (-)-myclobutanil treatments. Thus, myclobutanil could affect lizard liver upon multiple exposure. The findings of this study provide specific insights into the enantioselective metabolism and toxicity of chiral triazole fungicides in lizards.
Collapse
Affiliation(s)
- Weiyu Hao
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of the Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Yanfeng Zhang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Yun Xie
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of the Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jing Chang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
7
|
Hao W, Hu X, Zhu F, Chang J, Li J, Li W, Wang H, Guo B, Li J, Xu P, Zhang Y. Enantioselective Distribution, Degradation, and Metabolite Formation of Myclobutanil and Transcriptional Responses of Metabolic-Related Genes in Rats. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8830-8837. [PMID: 29957933 DOI: 10.1021/acs.est.8b01721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myclobutanil (MT), a chiral fungicide, can be metabolized enantioselectively in organisms. In this work, the associated absorption, distribution, metabolism and transcriptional responses of MT in rats were determined following a single-dose (10 mg·kg-1 body weight) exposure to rac-, (+)- or (-)-MT. The enantiomer fractions (EFs) were less than 0.5 with time in the liver, kidney, heart, lung, and testis, suggesting preferential enrichment of (-)-MT in these tissues. Furthermore, there was conversion of (+)-form to (-)-form in the liver and kidney after 6 h exposure to enantiopure (+)-MT. Enrichment and degradation of the two enantiomers differed between rac-MT and MT-enantiomers groups, suggesting that MT bioaccumulation is enantiomer-specific. Interestingly, the degradation half-life of MT in the liver with rac-MT treatment was shorter than that with both MT-enantiomer treatments. One reason may be that the gene expression levels of cytochrome P450 1a2 ( cyp1a2) and cyp3a2 genes in livers treated with rac-MT were the highest among the three exposure groups. In addition, a positive correlation between the expression of cyp2e1 and cyp3a2 genes and rac-MT concentration was found in livers exposed to rac-MT. Simultaneously, five chiral metabolites were detected, and the enantiomers of three metabolites, RH-9090, RH-9089, and M2, were separated. The detected enantiomers of (+)-MT metabolites were in complete contrast with those of (-)-MT metabolites. According to the results, a metabolic pathway of MT in male rats was proposed, which included the following five metabolites: RH-9089, RH-9090, RH-9090 Sulfate, M1, and M2. The possible metabolic enzymes were marked in the pathway. The findings of this study provide more specific insights into the enantioselective metabolic mechanism of chiral triazole fungicides.
Collapse
Affiliation(s)
- Weiyu Hao
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Xiao Hu
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Feilong Zhu
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Jing Chang
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
- University of the Chinese Academy of Sciences , Yuquan RD 19 a , Beijing 100049 , China
| | - Jitong Li
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Wei Li
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Huili Wang
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Jianzhong Li
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Peng Xu
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| | - Yanfeng Zhang
- Research Center for Eco-Environmental Science , Chinese Academy of Sciences , Shuangqing RD 18 , Beijing 100085 , China
| |
Collapse
|
8
|
Chang J, Li J, Wang H, Wang Y, Guo B, Yin J, Hao W, Li W, Li J, Xu P. Tissue distribution, metabolism and hepatic tissue injury in Chinese lizards (Eremias argus) after a single oral administration of lambda-cyhalothrin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:965-972. [PMID: 27567167 DOI: 10.1016/j.envpol.2016.08.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Lambda-cyhalothrin (LCT) is a widely used pyrethroid with neurotoxicity. However, little is known about the toxicokinetics of LCT in reptiles. In this study, the absorption, distribution, metabolism and excretion of LCT in Chinese lizards (Eremias Argus) were determined following a single dose (10 mg kg-1) treatment. In the liver, brain, gonads and skin, LCT levels peaked within several hours and then decreased rapidly. However, the concentration of LCT gradually increased in the fat tissue. More than 90% of the LCT dose was excreted in the faeces. One LCT metabolite, 3-phenoxybenzoic acid (PBA), was detected in lizard plasma and tissues. PBA preferentially accumulates in the brain and plasma. The half-life of PBA in the brain was 3.2 days, which was 35.4-fold greater than that of LCT. In the plasma, the concentration of PBA was significantly higher than that of LCT. The bioaccumulation of LCT in tissues was enantioselective, and the enantiomeric fractions (EF) ranged from 0.72 to 0.26. The preferential accumulation of enantiomers changed according to exposure time, but the reasons behind this phenomenon were not clear. For pathological analysis, vacuolation of the cytoplasm and large areas of necrosis were observed in the liver sections after 168 h of dosing. The liver tissues exhibited both decreases in the hepatosomatic index and histopathological lesions during the exposure period. In this study, the effect concentration of LCT in lizards was 200-fold lower than its LD50 value used in risk assessments for birds. These results may provide additional information for the risk assessment of LCT for reptiles and indicate that birds may not be an ideal surrogate for reptile toxicity evaluation.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Jitong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Yinghuan Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Baoyuan Guo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jing Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Jianzhong Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
9
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
10
|
Zhang P, Zhu W, Qiu J, Wang D, Wang X, Wang Y, Zhou Z. Evaluating the enantioselective degradation and novel metabolites following a single oral dose of metalaxyl in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 116:32-39. [PMID: 25454518 DOI: 10.1016/j.pestbp.2014.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 06/04/2023]
Abstract
Metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D,L-alaninemethylester] is a systemic fungicide widely used in agriculture. In this study, the enantioselective distribution, degradation and excretion of metalaxyl were investigated after oral gavage administration of rac-metalaxyl to mice. Concentration of metalaxyl and its enantiomers was determined by HPLC-MS/MS. The results showed that R-metalaxyl was much higher than S-metalaxyl in heart, liver, lung, urine and feces. As for the strong first pass effect, concentrations of metalaxyl in liver were much higher than those in other tissues. The total body clearance (CL) of metalaxyl in mice was 1.77 L h(-1 )kg(-1) and degradation half-lives of (t1/2) of S-metalaxyl and R-metalaxyl in liver were 2.2 h and 3.0 h, respectively. Such results indicated the enantioselectivity of metalaxyl lies in distribution, degradation and excretion processes in mice. Main metabolites were also determined and biotransformation reactions were hydroxylation, demethylation and didemethylation. Furthermore, metabolite concentrations in urine and feces were much higher than those in tissues. These results may have potential implications to predict toxicity and provide additional information associated with adverse health effects for risk assessment of metalaxyl.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dezhen Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xinru Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Yao Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Choughule KV, Barr JT, Jones JP. Evaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase. Drug Metab Dispos 2013; 41:1852-8. [PMID: 23918666 PMCID: PMC3781378 DOI: 10.1124/dmd.113.052985] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/05/2013] [Indexed: 01/18/2023] Open
Abstract
Aldehyde oxidase (AOX) is a cytosolic enzyme expressed across a wide range of species, including guinea pig and rhesus monkey. These species are believed to be the best preclinical models for studying human AOX-mediated metabolism. We compared AOX activity in rhesus monkeys, guinea pigs, and humans using phthalazine and N-[2-(dimethylamino)ethyl]acridone-4-carboxamide (DACA) as substrates and raloxifene as an inhibitor. Michaelis-Menten kinetics was observed for phthalazine oxidation in rhesus monkey, guinea pig, and human liver cytosol, whereas substrate inhibition was seen with DACA oxidase activity in all three livers. Raloxifene inhibited phthalazine and DACA oxidase activity uncompetitively in guinea pig, whereas mixed-mode inhibition was seen in rhesus monkey. Our analysis of the primary sequence alignment of rhesus monkey, guinea pig, and human aldehyde oxidase isoform 1 (AOX1) along with homology modeling has led to the identification of several amino acid residue differences within the active site and substrate entrance channel of AOX1. We speculate that some of these residues might be responsible for the differences observed in activity. Overall, our data indicate that rhesus monkeys and guinea pigs would overestimate intrinsic clearance in humans and would be unsuitable to use as animal models. Our study also showed that AOX metabolism in species is substrate-dependent and no single animal model can be reliably used to predict every drug response in humans.
Collapse
Affiliation(s)
- Kanika V Choughule
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | | |
Collapse
|
12
|
Dalvie D, Xiang C, Kang P, Zhou S. Interspecies variation in the metabolism of zoniporide by aldehyde oxidase. Xenobiotica 2012; 43:399-408. [DOI: 10.3109/00498254.2012.727499] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010; 53:7902-17. [PMID: 20804202 PMCID: PMC2988972 DOI: 10.1021/jm100762r] [Citation(s) in RCA: 1208] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fraser F Fleming
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530, USA.
| | | | | | | | | |
Collapse
|
14
|
Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran TD. Aldehyde Oxidase: An Enzyme of Emerging Importance in Drug Discovery. J Med Chem 2010; 53:8441-60. [DOI: 10.1021/jm100888d] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David C. Pryde
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, England
| | - Deepak Dalvie
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, 10628 Science Center Drive, La Jolla, California 92121
| | - Qiyue Hu
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, 10628 Science Center Drive, La Jolla, California 92121
| | - Peter Jones
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, England
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340
| | - Thien-Duc Tran
- WorldWide Medicinal Chemistry, Pfizer Global Research and Development, Sandwich, Kent, CT13 9NJ, England
| |
Collapse
|
15
|
Fukiya K, Itoh K, Yamaguchi S, Kishiba A, Adachi M, Watanabe N, Tanaka Y. A single amino acid substitution confers high cinchonidine oxidation activity comparable with that of rabbit to monkey aldehyde oxidase 1. Drug Metab Dispos 2010; 38:302-7. [PMID: 19910515 DOI: 10.1124/dmd.109.030064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Aldehyde oxidase 1 (AOX1) is a major member of the xanthine oxidase family belonging to the class of complex molybdo-flavoenzymes and plays an important role in the nucleophilic oxidation of N-heterocyclic aromatic compounds and various aldehydes. The enzyme has been well known to show remarkable species differences. Comparing the rabbit and monkey enzymes, the former showed extremely high activity toward cinchonidine and methotrexate, but the latter exhibited only marginal activities. In contrast, monkey had several times greater activity than did rabbit toward zonisamide and (+)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine [(S)-RS-8359]. In this report, we tried to confer high cinchonidine oxidation activity comparable with that of rabbit AOX1 to monkey AOX1. The chimera proteins prepared by restriction enzyme digestion and recombination methods between monkey and rabbit AOX1s indicated that the sequences from Asn993 to Ala1088 of rabbit AOX1 are essential for the activity. The kinetic parameters were then measured using monkey AOX1 mutants prepared by site-directed mutagenesis. The monkey V1085A mutant acquired the high cinchonidine oxidation activity. Inversely, the reciprocal rabbit A1081V mutant lost the activity entirely: amino acid 1081 of rabbit AOX1 corresponding to amino acid 1085 of monkey AOX1. Thus, cinchonidine oxidation activity was drastically changed by mutation of a single residue in AOX1. However, this might be true for bulky substrates such as cinchonidine but not for small substrates. The mechanism of substrate-dependent species differences in AOX1 activity toward bulky substrates is discussed.
Collapse
Affiliation(s)
- Kensuke Fukiya
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu P, Liang S, Wang BJ, Guo RC. Construction of expression system of rabbit aldehyde oxidase cDNA for the clarification of species differences. Eur J Drug Metab Pharmacokinet 2009; 34:205-11. [DOI: 10.1007/bf03191175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Itoh K, Asakawa T, Hoshino K, Adachi M, Fukiya K, Watanabe N, Tanaka Y. Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat. Biol Pharm Bull 2009; 32:31-5. [PMID: 19122276 DOI: 10.1248/bpb.32.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.
Collapse
Affiliation(s)
- Kunio Itoh
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Itoh K, Yamamura M, Muramatsu S, Hoshino K, Masubuchi A, Sasaki T, Tanaka Y. Stereospecific oxidation of the (S)-enantiomer of RS-8359, a selective and reversible monoamine oxidase A (MAO-A) inhibitor, by aldehyde oxidase. Xenobiotica 2008; 35:561-73. [PMID: 16192108 DOI: 10.1080/00498250500202106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In a previous paper by the authors on RS-8359, a new selective and reversible monoamine oxidase A (MAO-A) inhibitor, it was reported that the (S)-enantiomer of RS-8359 is rapidly eliminated from rats, monkeys and humans as a result of the formation of a 2-oxidative metabolite. The present study investigates the properties of the enzyme responsible for the 2-oxidation of RS-8359. Subcellular localization, cofactor requirement and the inhibitory effects of typical compounds were studied using rat liver preparations. In addition, the enzyme was purified from rat liver cytosol for further characterization. The enzyme activity was localized in the cytosolic fraction without the need for any cofactor and was extensively inhibited by menadione, chlorpromazine and quinacrine. The purified enzyme was also a homodimer with a monomeric molecular weight of 140 kDa and it had an A280/A450 ratio of 5.1 in the absorption spectrum. The results suggest that the enzyme responsible for the biotransformation of RS-8359 to give the 2-keto derivative is aldehyde oxidase (EC 1.2.3.1). The reaction of aldehyde oxidase is highly stereoselective for the (S)-configuration of RS-8359 and the (9R)-configuration of cinchona alkaloids.
Collapse
Affiliation(s)
- K Itoh
- Department of Biopharmaceutics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Itoh K, Maruyama H, Adachi M, Hoshino K, Watanabe N, Tanaka Y. Lack of dimer formation ability in rat strains with low aldehyde oxidase activity. Xenobiotica 2008; 37:709-16. [PMID: 17620217 DOI: 10.1080/00498250701397713] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aldehyde oxidase (AO) is a homodimer with a molecular weight of 300 kDa. To clarify the reasons for the well-known differences in rat strains, we set out to study the relationship between AO activity and the expression levels of its dimer. AO-catalyzed 2-oxidation activity of (S)-RS-8359 was measured in liver cytosols from ten rat strains. The expression levels of AO dimeric protein were evaluated by the native-PAGE/Western blot. Rat strains with low AO activity showed only a monomer, whereas strains with high activity overwhelmingly exhibited a dimer. Exceptionally, one strain in the high AO activity group displayed complex mixed expression patterns of low and high AO activity groups. However, there was a good relationship between AO activity and the expression levels of a dimer, but not of a monomer. The results suggest that rat strains with low AO activity lack the ability to produce a dimer necessary for catalytic activity, and AO differences in rat strains should be discussed in terms of the expression levels of the dimer itself.
Collapse
Affiliation(s)
- K Itoh
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Adachi M, Itoh K, Masubuchi A, Watanabe N, Tanaka Y. Construction and expression of mutant cDNAs responsible for genetic polymorphism in aldehyde oxidase in Donryu strain rats. BMB Rep 2008; 40:1021-7. [PMID: 18047800 DOI: 10.5483/bmbrep.2007.40.6.1021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrated the genetic polymorphism of aldehyde oxidase (AO) in Donryu strain rats: the ultrarapid metabolizer (UM) with nucleotide mutation of (377G, 2604C) coding for amino acid substitution of (110Gly, 852Val), extensive metabolizer (EM) with (377G/A, 2604C/T) coding for (110Gly/Ser, 852Val/Ala), and poor metabolizer (PM) with (377A, 2604T) coding for (110Ser, 852Ala), respectively. The results suggested that 377G > A and/or 2604C > T should be responsible for the genetic polymorphism. In this study, we constructed an E. coli expression system of four types of AO cDNA including Mut-1 with (377G, 2604T) and Mut-2 with (377A, 2604C) as well as naturally existing nucleotide sequences of UM and PM in order to clarify which one is responsible for the polymorphism. Mut-1 and Mut-2 showed almost the same high and low activity as that of the UM and PM groups, respectively. Thus, the expression study of mutant AO cDNA directly revealed that the nucleotide substitution of 377G > A, but not that of 2604C > T, will play a critical role in the genetic polymorphism of AO in Donryu strain rats. The reason amino acid substitution will cause genetic polymorphism in AO activity was discussed.
Collapse
Affiliation(s)
- Mayuko Adachi
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | |
Collapse
|
21
|
Asakawa T, Itoh K, Adachi M, Hoshino K, Watanabe N, Tanaka Y. Properties of 130 kDa Subunit of Monkey Aldehyde Oxidase. Biol Pharm Bull 2008; 31:380-5. [DOI: 10.1248/bpb.31.380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tasuku Asakawa
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Kunio Itoh
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Mayuko Adachi
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Kouichi Hoshino
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Nobuaki Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi-Sankyo Co., Ltd
| | - Yorihisa Tanaka
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| |
Collapse
|
22
|
Adachi M, Itoh K, Abe H, Tanaka Y. Heredity mode of genetic polymorphism in aldehyde oxidase activity in Donryu strain rats. Xenobiotica 2008; 38:98-105. [PMID: 18098066 DOI: 10.1080/00498250701708513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Donryu strain rats show genetic polymorphisms in the aldehyde oxidase gene, resulting in the phenotypic expression of ultrarapid metabolizers with homozygous nucleotide sequences (337G, 2604C), extensive metabolizers with heterozygous nucleotide sequences (377G/A, 2604C/T), and poor metabolizers with homozygous nucleotide sequences (377A, 2604T). In the mating experiments the ratio of the number of ultrarapid metabolizers, extensive metabolizers, and poor metabolizers rats in the F1 generation from the heterozygous F0 extensive metabolizers male and female rats was roughly 0.6 : 1.5 : 1, and the ratio converged to approximately 1 : 2 : 1 in the F2 generation from the heterozygous F1 extensive metabolizers male and female rats. On the contrary, all the F2 generation from homozygous F1 ultrarapid metabolizers male and female rats or from homozygous F1 poor metabolizers male and female rats had the ultrarapid metabolizers or the poor metabolizers genotypes and phenotypes. The genotypes completely agreed with the phenotypes in all individuals of F0, F1, and F2 generations. The results indicate that the genetic polymorphism of aldehyde oxidase in Donryu strain rats obeys Mendelian heredity. The reason for a low ratio of the ultrarapid metabolizers rats in the commercially available Donryu strain rats - not more than several per cent - compared with the ratio expected from the Mendelian rule is unknown.
Collapse
Affiliation(s)
- M Adachi
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
23
|
Itoh K, Maruyama H, Adachi M, Hoshino K, Watanabe N, Tanaka Y. Lack of formation of aldehyde oxidase dimer possibly due to 377G>A nucleotide substitution. Drug Metab Dispos 2007; 35:1860-4. [PMID: 17639027 DOI: 10.1124/dmd.107.015503] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In addition to the many articles reporting on the marked differences in species and large differences in rat strains in response to aldehyde oxidase (AO), individual differences in some rat strains have also been reported. However, little has been clarified about any related molecular biological mechanisms. We previously revealed that nucleotide substitutions of 377G>A and 2604C>T in the AO gene might be responsible for individual differences in AO activity in Donryu strain rats. By using native polyacrylamide gel electrophoresis/Western blotting in this study, the lack of formation of the AO dimer protein, which is essential for catalytic activity, was shown in poor metabolizer Donryu rats, and this could be a major reason for the individual differences. Rat strain differences were also verified from the same perspectives of nucleotide substitutions and expression levels of a dimer protein. Rat strains with high AO activity showed nucleotide sequences of (377G, 2604C) and a dimer protein. In the case of those with low AO activity, the nucleotide at position 2604 was fixed at T, but varied at position 377, such as G, G/A, and A. An AO dimer was detected in the liver cytosols of rat strains with (377G, 2604T), whereas a monomer was observed in those with (377A, 2604T). These results suggest that the lack of formation of a dimer protein leading to loss of catalytic activity might be due to 377G>A nucleotide substitution. Individual and strain differences in AO activity in rats could be explained by this 377G>A substitution, at least in the rat strains used in this study.
Collapse
Affiliation(s)
- Kunio Itoh
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Itoh K, Hoshino K, Endo A, Asakawa T, Yamakami K, Noji C, Kosaka T, Tanaka Y. Chiral inversion of RS-8359: a selective and reversible MAO-A inhibitor via oxido-reduction of keto-alcohol. Chirality 2007; 18:698-706. [PMID: 16823812 DOI: 10.1002/chir.20309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RS-8359, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine is a selective and reversible MAO-A inhibitor. The (S)-enantiomer of RS-8359 has been demonstrated to be inverted to the (R)-enantiomer after oral administration to rats. In the current study, we investigated the chiral inversion mechanism and the properties of involved enzymes using rat liver subcellular fractions. The 7-hydroxy function of RS-8359 was oxidized at least by the two different enzymes. The cytosolic enzyme oxidized enantiospecifically the (S)-enantiomer with NADP as a cofactor. On the other hand, the microsomal enzyme catalyzed more preferentially the oxidation of the (S)-enantiomer than the (R)-enantiomer with NAD as a cofactor. With to product enantioselectivity of reduction of the 7-keto derivative, it was found that only the alcohol bearing (R)-configuration was formed by the cytosolic enzyme with NADPH and the microsomal enzyme with NADH at almost equal rate. The reduction rate was much larger than the oxidation rate of 7-hydroxy group. The results suggest that the chiral inversion might occur via an enantioselectivity of consecutive two opposing reactions, oxidation and reduction of keto-alcohol group. In this case, the direction of chiral inversion from the (S)-enantiomer to the (R)-enantiomer is governed by the enantiospecific reduction of intermediate 7-keto group to the alcohol with (R)-configuration. The enzyme responsible for the enantiospecific reduction of the 7-keto group was purified from rat liver cytosolic fractions and identified as 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) via database search of peptide mass data obtained by nano-LC/MS/MS.
Collapse
Affiliation(s)
- Kunio Itoh
- Department of Biopharmaceutics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Itoh K, Masubuchi A, Sasaki T, Adachi M, Watanabe N, Nagata K, Yamazoe Y, Hiratsuka M, Mizugaki M, Tanaka Y. Genetic polymorphism of aldehyde oxidase in Donryu rats. Drug Metab Dispos 2007; 35:734-9. [PMID: 17293383 DOI: 10.1124/dmd.106.011502] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of major metabolic pathways of [(+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine] (RS-8359), a selective and reversible monoamine oxidase type A inhibitor, is the aldehyde oxidase-catalyzed 2-hydroxylation at the pyrimidine ring. Donryu rats showed a dimorphic pattern for the 2-oxidation activity with about 20- to 40-fold variations in the Vmax/Km values between a low and a high activity group. The rats were classified as extensive metabolizers (EM) and poor metabolizers (PM) of RS-8359, of which ratios were approximately 1:1. One rat among the EM rats of each sex showed extremely high activity, and they were referred to as ultrarapid metabolizers. There was no significant difference in the expression levels of mRNA of aldehyde oxidase between the EM and PM rats. Analysis of nucleotide sequences showed four substitutions, of which the substitutions at 377G>A and 2604C>T caused 110Gly-Ser and 852Ala-Val amino acid changes, respectively. Amino acid residue 110 is located very near the second Fe-S center of aldehyde oxidase. Its change from nonchiral Gly to chiral Ser may result in a conformational change of aldehyde oxidase protein with the shift of isoelectric point value from 5.0 in the EM rats to 6.2 in the PM rats. The 110Gly-Ser amino acid substitution (377G>A) may be primarily responsible for the variations of aldehyde oxidase activity observed in Donryu rats, in addition to the difference of expression levels of aldehyde oxidase protein. If a new drug candidate is primarily metabolized by aldehyde oxidase, attention should be given to using a rat strain with high aldehyde oxidase activity and small individual variation.
Collapse
Affiliation(s)
- Kunio Itoh
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hoshino K, Itoh K, Masubuchi A, Adachi M, Asakawa T, Watanabe N, Kosaka T, Tanaka Y. Cloning, Expression, and Characterization of Male Cynomolgus Monkey Liver Aldehyde Oxidase. Biol Pharm Bull 2007; 30:1191-8. [PMID: 17603152 DOI: 10.1248/bpb.30.1191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the properties of monkey liver aldehyde oxidase directed toward the clarification of species differences. The aldehyde oxidase preparation purified from male cynomolgus monkey liver cytosol showed a major 150 kDa Coomassie brilliant blue (CBB)-stained band together with a minor 130 kDa band using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both bands were identified as being aldehyde oxidase by a database search of the MS data obtained with nano-liquid chromatography, quardrupole time of flight, mass spectrometry (nano-LC Q/TOF MS). Based on the sequence coverage, the 130 kDa protein was presumed to be deficient in 20-30 kDa mass from the N-terminus. Full male cynomolgus monkey aldehyde oxidase cDNA was cloned and sequenced with the four degenerate primers designed by considering the peptide sequences containing the amino acids specific for monkey aldehyde oxidase. The deduced amino acid sequences had 96% amino acid identity with those of human enzyme. The aldehyde oxidase expressed in Escherichia coli also exhibited two immunoreactive bands on SDS-PAGE/Western blot analysis. Further, the biphasic pattern was observed for Eadie-Hofstee plots of the (S)-enantiospecific 2-oxidation activity of RS-8359 with the expressed and cytosolic monkey liver aldehyde oxidase. The results suggested that two forms of aldehyde oxidase in monkey were the expression products by a single gene. In contrast, the similarly expressed rat aldehyde oxidase showed only one immunoreactive protein and monophasic pattern. The biphasic phenomenon could be caused by the existence of two aldehyde oxidase isoforms or two active sites in a single enzyme or some other reasons. Further studies on the problems of the biphasic pattern and species differences in aldehyde oxidase are needed.
Collapse
Affiliation(s)
- Kouichi Hoshino
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University, Komatsushima, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chimenti F, Maccioni E, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Cirilli R, La Torre F, Cardia MC, Distinto S. Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)- pyrazole derivatives. J Med Chem 2006; 48:7113-22. [PMID: 16279769 DOI: 10.1021/jm040903t] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel series of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1H)-pyrazole derivatives have been synthesized and investigated for the ability to inhibit selectively the activity of the A and B isoforms of monoamine oxidase (MAO). All the synthesized compounds show high activity against both the MAO-A and the MAO-B isoforms with Ki values between 27 and 4 nM and between 50 and 1.5 nM, respectively, except for a few derivatives whose inhibitory activity against MAO-B was in the micromolar range. Knowing that stereochemistry may be an important modulator of biological activity, we performed the semipreparative chromatographic enantioseparation of the most potent, selective, and chiral compounds. The separated enantiomers were then submitted to in vitro biological evaluation. The selectivity of the (-)-(S)-1 enantiomer against MAO-B increases twice and a half, while the selectivity of the (-)-(S)-4 enantiomer against MAO-A triples. Both the MAO-A and MAO-B isoforms respectively of the 1O5W and 1GOS models deposited in the Protein Data Bank were considered in the computational study. The docking study was carried out using several computational approaches with the aim of proposing possible binding modes of the MAO enantioselective compounds 1 and 4.
Collapse
Affiliation(s)
- Franco Chimenti
- Dipartimento di Studi di Chimica e Tecnologia delle Sostanze Biologicamente Attive, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sasaki T, Masubuchi A, Yamamura M, Watanabe N, Hiratsuka M, Mizugaki M, Itoh K, Tanaka Y. Rat strain differences in stereospecific 2-oxidation of RS-8359, a reversible and selective MAO-A inhibitor, by aldehyde oxidase. Biopharm Drug Dispos 2006; 27:247-55. [PMID: 16586463 DOI: 10.1002/bdd.504] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aldehyde oxidase catalysed 2-oxidation activity of the (S)-enantiomer of RS-8359, a selective and reversible monoamine oxidase A (MAO-A) inhibitor, was investigated in liver cytosolic fractions from ten rat strains. Remarkably large strain differences were observed with approximately a 230 variation between the highest activity in the Wistar-Imamichi strain and the lowest activity in the Slc:Wistar strain. The activities of Crj:SD and Slc:SD strain rats were considerably low, and that of the F344/DuCrj strain was very low. Among six Wistar strains, Crj:Wistar, Slc:Wistar, WKY/Izm, WKAH/Hkm, Jcl:Wistar and Wistar-Imamichi, the Slc:Wistar strain rats showed exceptionally low 2-oxidation activity that was comparable to that of the F344/DuCrj strain. The rat strain differences in the catalytic activity of aldehyde oxidase could correlate in part with the expressed levels of protein based on the mRNA of aldehyde oxidase. However, no small discrepancy existed in the almost negligible catalytic activity and the fairly high expression levels of protein and mRNA in the F344/DuCrj and Slc:Wistar strain rats. Some genetic factors might possibly be one of reasons for the discrepancy.
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Biopharmaceutics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Itoh K, Nishiya Y, Takasaki W, Adachi M, Tanaka Y. Enantioselective 2-hydroxylation of RS-8359, a selective and reversible MAO-A inhibitor, by cytochrome P450 in mouse and rat liver microsomes. Chirality 2006; 18:592-8. [PMID: 16642492 DOI: 10.1002/chir.20291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RS-8359, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine is a racemic compound with a selective and reversible monoamine oxidase A (MAO-A) inhibition activity. The substrate and product enantioselectivity with respect to 2-hydroxylation of RS-8359 enantiomers was studied using mouse and rat liver microsomes. In mice, the (S)-enantiomer was transformed to the cis-diol metabolite, whereas the (R)-enantiomer to the trans-diol metabolite. The Vmax/Km value for the formation of the cis-diol metabolite from the (S)-enantiomer was sevenfold greater than that for the formation of the trans-diol metabolite from the (R)-enantiomer. The greater Vmax/Km value for the (S)-enantiomer was due to the tenfold smaller Km value compared to that for the (R)-enantiomer. The results were in fair agreement with the previously reported low plasma concentrations of the (S)-enantiomer and the high recovery of the cis-diol metabolite derived from the (S)-enantiomer in urine after oral administration of RS-8359 to mice. Similarly to mice, in rats the (R)-enantiomer was transformed to the trans-diol metabolite, whereas the (S)-enantiomer yielded the cis-diol and trans-diol metabolites. The Vmax/Km value for the (R)-enantiomer was larger than that for the (S)-enantiomer in rats, indicating that the low plasma concentration of the (S)-enantiomer in rats might be caused by a metabolic reaction other than P450-dependent hydroxylation. CYP3A was shown to be responsible for the trans-diol formation from the (R)-enantiomer.
Collapse
Affiliation(s)
- Kunio Itoh
- Department of Biopharmaceutics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | |
Collapse
|
30
|
Itoh K, Yamamura M, Takasaki W, Sasaki T, Masubuchi A, Tanaka Y. Species differences in enantioselective 2-oxidations of RS-8359, a selective and reversible MAO-A inhibitor, and cinchona alkaloids by aldehyde oxidase. Biopharm Drug Dispos 2006; 27:133-9. [PMID: 16400710 DOI: 10.1002/bdd.494] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The 2-oxidation activity on the pyrimidine ring of RS-8359, a MAO-A inhibitor, is the major metabolic pathway catalysed by aldehyde oxidase. This study investigated the species differences in the 2-oxidation activity by using liver cytosolic fractions from rats, mice, guinea-pigs, rabbits, dogs, monkeys and humans. The Vmax/Km value for the (S)-enantiomer of RS-8359 was extremely high in monkeys and humans, moderate in guinea-pigs, and low in rats and mice. Dogs were deficient in 2-oxidation activity. The (R)-enantiomer was only oxidized at a very low rate in guinea-pigs, monkeys and humans, and not oxidized in rats, mice and rabbits. Thus, marked species differences and enantioselectivity were obvious for the 2-oxidation of the (S)-enantiomer of RS-8359. The in vitro results were in good accordance with previously reported in vivo excretion data of the 2-keto metabolite and the non-detectable plasma concentrations of the (S)-enantiomer in monkeys and humans after administration of racemic RS-8359. Enantioselectivity was also observed for the oxidation of cinchona alkaloids catalysed by aldehyde oxidase. Among the four cinchona alkaloids studied, the oxidation activity of cinchonidine, which has no substituents at the 6-hydroxy group but bears (8S,9R)-configurations, was highest. As opposed to the (S)-enantiomer, an extremely high catalytic activity of cinchonidine was confirmed in rabbits, but not in monkeys or humans. Rabbit liver aldehyde oxidase was suggested to have characteristic properties around the active site.
Collapse
Affiliation(s)
- Kunio Itoh
- Department of Biopharmaceutics, Tohoku Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|