1
|
Banerjee G, Papri SR, Huang H, Satapathy SK, Banerjee P. Deep sequencing-derived Metagenome Assembled Genomes from the gut microbiome of liver transplant patients. Sci Data 2025; 12:39. [PMID: 39788961 PMCID: PMC11717916 DOI: 10.1038/s41597-024-04153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Recurrence of metabolic dysfunction-associated steatotic liver disease (MASLD) after liver transplantation (LT) is a continuing concern. The role of gut microbiome dysbiosis in MASLD initiation and progression has been well established. However, there is a lack of comprehensive gut microbiome shotgun sequence data for patients experiencing MASLD recurrence after LT. In this data descriptor, we describe a dataset of deep metagenomic sequences of a well-defined LT recipient population. Community-based analysis revealed a high abundance of Akkermansia muciniphila, consistently observed in most patient samples with a low (0-2) MASLD Activity Score (NAS). We constructed 357 metagenome-assembled genomes (MAGs), including 220 high-quality MAGs (>90% completion). The abundance of different species of Bacteroides MAGs dominated in patient samples with NAS > 5 ("definite MASH"). In contrast, the MAGs of A. muciniphila, Akkermansia sp., and Blutia sp. dominated in samples from patients without MASH (NAS = 0-2). In addition, the phylogenetic analysis of A. muciniphila and Akkermansia sp. MAGs identified two new phylogroups of Akkermansia that are distinct from the previously reported three phylogroups.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suraya Rahman Papri
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hai Huang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sanjaya Kumar Satapathy
- Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases & Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY, USA.
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Pirola CJ, Landa MS, Schuman M, García SI, Salatino A, Sookoian S. Metabolic dysfunction-associated steatotic liver disease exhibits sex-specific microbial heterogeneity within intestinal compartments. Clin Mol Hepatol 2025; 31:179-195. [PMID: 39391907 PMCID: PMC11791572 DOI: 10.3350/cmh.2024.0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND/AIMS Evidence suggests that the gastrointestinal microbiome plays a significant role in the biology of metabolic dysfunction-associated steatotic liver disease (MASLD). However, it remains unclear whether disparities in the gut microbiome across intestinal tissular compartments between the sexes lead to MASLD pathogenesis. METHODS Sex-specific analyses of microbiome composition in two anatomically distinct regions of the gut, the small intestine and colon, were performed using an experimental model of MASLD. The study involved male and female spontaneously hypertensive rats and the Wistar-Kyoto control rat strain, which were fed either a standard chow diet or a high-fat diet for 12 weeks to induce MASLD (12 rats per group). High-throughput 16S sequencing was used for microbiome analysis. RESULTS There were significant differences in the overall microbiome composition of male and female rats with MASLD, including variations in topographical gut regions. The beta diversity of the jejunal and colon microbiomes was higher in female rats than in male rats (PERMANOVA p-value=0.001). Sex-specific analysis and discriminant features using LEfSe showed considerable variation in bacterial abundance, along with distinct functional properties, in the jejunum and colon of animals with MASLD. Significantly elevated levels of lipopolysaccharide and protein expression of Toll-like receptor 4 were observed in the livers of male rats with MASLD compared with their female counterparts. CONCLUSION This study uncovered sexual dimorphism in the gut microbiome of MASLD and identified microbial heterogeneity within intestinal compartments. Insights into sex-specific variations in gut microbiome composition could facilitate customised treatment strategies.
Collapse
Affiliation(s)
- Carlos Jose Pirola
- Systems Biology of Complex Diseases, Translational Research in Health Center (CENITRES). Maimónides University, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Health Science, Maimónides University, Buenos Aires, Argentina
| | - Maria Silvina Landa
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- University of Buenos Aires, School of Medicine, Institute of Medical Research A Lanari, Buenos Aires, Argentina
| | - Mariano Schuman
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- University of Buenos Aires, School of Medicine, Institute of Medical Research A Lanari, Buenos Aires, Argentina
| | - Silvia Inés García
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- University of Buenos Aires, School of Medicine, Institute of Medical Research A Lanari, Buenos Aires, Argentina
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - Adrian Salatino
- Max Planck Institute for Immunobiology and Epigenetics, Bioinformatics Facility, Frieburg, Germany
| | - Silvia Sookoian
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Health Science, Maimónides University, Buenos Aires, Argentina
- Clinical and Molecular Hepatology, Translational Research in Health Center (CENITRES). Maimónides University, Buenos Aires, Argentina
| |
Collapse
|
3
|
Pinanga YD, Pyo KH, Shin EA, Lee H, Lee EH, Kim W, Kim S, Kim JE, Kim S, Lee JW. Association between hepatocyte TM4SF5 expression and gut microbiome dysbiosis during non-alcoholic fatty liver disease development. Life Sci 2024; 358:123164. [PMID: 39454995 DOI: 10.1016/j.lfs.2024.123164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/24/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Gut microbiome dysbiosis is involved in non-alcoholic fatty liver disease (NAFLD) development. Hepatic transmembrane 4 L six family member 5 (TM4SF5) overexpression promotes NAFLD. However, how gut microbiota are associated with TM4SF5-mediated NAFLD remains unexplored. We analyzed the gut microbiome using feces from hepatocyte-specific TM4SF5-overexpressing transgenic (Alb-TGTm4sf5-Flag, TG) or Tm4sf5-/- knock-out (KO) mice fed a normal chow diet (NCD), high-fat diet (HFD) for 2 weeks (HFD2W), or methionine-choline-deficient diet (MCD) for 4 weeks to investigate associations among Tm4sf5 expression, diet, and the gut microbiome. TG-NCD mice showed a higher Firmicutes-to-Bacteroidetes (F/B) ratio, with less enrichment of Akkermansia muciniphila and Lactobacillus reuteri. NASH-related microbiomes in feces were more abundant in TG-HFD2w mice than in KO-HFD2w mice. Further, TG-MCD showed a higher F/B ratio than TG-NCD or KO mice, with decreases or increases in microbiomes beneficial or detrimental to the liver, respectively. Such effects in TG-MCD animals were correlated with functional pathways producing short-chain fatty acids (SCFAs). Furthermore, potential functional pathways of the gut microbiome were metabolically parallel to NAFLD features in TG-MCD mice. These results suggest that hepatocyte Tm4sf5 supports gut microbiome dysbiosis and metabolic activity, leading to SCFA production and hepatic inflammation during NAFLD development.
Collapse
Affiliation(s)
- Yangie Dwi Pinanga
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Krizanac M, Štancl P, Mass-Sanchez PB, Karlić R, Moeckel D, Lammers T, Asimakopoulos A, Weiskirchen R. The influence of perilipin 5 deficiency on gut microbiome profiles in murine metabolic dysfunction-associated fatty liver disease (MAFLD) and MAFLD-hepatocellular carcinoma. Front Cell Infect Microbiol 2024; 14:1443654. [PMID: 39469452 PMCID: PMC11513398 DOI: 10.3389/fcimb.2024.1443654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as the leading cause of hepatocellular carcinoma (HCC) worldwide. Over the years, Perilipin 5 (PLIN5) has been recognized as a key regulator of both MAFLD and HCC development. In our previous studies we demonstrated that deficiency in Plin5 reduces the severity of MAFLD and HCC in mice. Interestingly, it has been established that patients with MAFLD and HCC exhibit various changes in their gut microbiome profiles. The gut microbiome itself has been shown to play a role in modulating carcinogenesis and the immune response against cancer. Methods Therefore, we conducted a study to investigate the alterations in fecal microbiome composition in wild type (WT) and Plin5-deficient (Plin5 -/-) mice models of MAFLD and MAFLD-induced HCC (MAFLD-HCC). We utilized 16S rRNA gene sequencing analysis to profile the composition of gut bacteria in fecal samples. Results Notably, we discovered that the absence of Plin5 alone is already associated with changes in gut microbiota composition. Moreover, feeding the mice a Western diet (WD) resulted in additional microbial alterations. Interestingly, Plin5 -/- animals exhibited an enrichment of the beneficial taxa Lactobacillus in both animal models. Discussion Our findings identify Plin5 as a major regulator of gut microbiota during the development of MAFLD and MAFLD-HCC.
Collapse
Affiliation(s)
- Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Diana Moeckel
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
5
|
Matchett KP, Paris J, Teichmann SA, Henderson NC. Spatial genomics: mapping human steatotic liver disease. Nat Rev Gastroenterol Hepatol 2024; 21:646-660. [PMID: 38654090 DOI: 10.1038/s41575-024-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, formerly known as non-alcoholic fatty liver disease) is a leading cause of chronic liver disease worldwide. MASLD can progress to metabolic dysfunction-associated steatohepatitis (MASH, formerly known as non-alcoholic steatohepatitis) with subsequent liver cirrhosis and hepatocellular carcinoma formation. The advent of current technologies such as single-cell and single-nuclei RNA sequencing have transformed our understanding of the liver in homeostasis and disease. The next frontier is contextualizing this single-cell information in its native spatial orientation. This understanding will markedly accelerate discovery science in hepatology, resulting in a further step-change in our knowledge of liver biology and pathobiology. In this Review, we discuss up-to-date knowledge of MASLD development and progression and how the burgeoning field of spatial genomics is driving exciting new developments in our understanding of human liver disease pathogenesis and therapeutic target identification.
Collapse
Affiliation(s)
- Kylie P Matchett
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Jasmin Paris
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Neil C Henderson
- Centre for Inflammation Research, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Barrera F, Uribe J, Olvares N, Huerta P, Cabrera D, Romero-Gómez M. The Janus of a disease: Diabetes and metabolic dysfunction-associated fatty liver disease. Ann Hepatol 2024; 29:101501. [PMID: 38631419 DOI: 10.1016/j.aohep.2024.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
Metabolic Dysfunction-Associated Fatty Liver Disease and Diabetes Mellitus are two prevalent metabolic disorders that often coexist and synergistically contribute to the progression of each other. Several pathophysiological pathways are involved in the association, including insulin resistance, inflammation, and lipotoxicity, providing a foundation for understanding the complex interrelationships between these conditions. The presence of MASLD has a significant impact on diabetes risk and the development of microvascular and macrovascular complications, and diabetes significantly contributes to an increased risk of liver fibrosis progression in MASLD and the development of hepatocellular carcinoma. Moreover, both pathologies have a synergistic effect on cardiovascular events and mortality. Therapeutic interventions targeting MASLD and diabetes are discussed, considering lifestyle modifications, pharmacological agents, and emerging treatment modalities. The review also addresses the challenges in managing these comorbidities, such as the need for personalized approaches and the potential impact on cardiovascular health. The insights gleaned from this analysis can inform clinicians, researchers, and policymakers in developing integrated strategies for preventing, diagnosing, and managing these metabolic disorders.
Collapse
Affiliation(s)
- Francisco Barrera
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Javier Uribe
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nixa Olvares
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Programa de Immunogenética e Inmunología traslacional, Instituto de Ciencias e Inovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Paula Huerta
- Programa de Medicina Interna, Instituto de Ciencias e Inovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile; Hospital Padre Hurtado, Santiago, Chile
| | - Daniel Cabrera
- Laboratorio Experimental de Hepatología, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Bernardo O Higgins, Santiago, Chile
| | - Manuel Romero-Gómez
- Enfermedades Digestivas y Ciberehd, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (CSIC/HUVR/US), Universidad de Sevilla, Sevilla, España.
| |
Collapse
|
7
|
Savari F, Mard SA. Nonalcoholic steatohepatitis: A comprehensive updated review of risk factors, symptoms, and treatment. Heliyon 2024; 10:e28468. [PMID: 38689985 PMCID: PMC11059522 DOI: 10.1016/j.heliyon.2024.e28468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a subtype of nonalcoholic fatty liver disease and a progressive and chronic liver disorder with a significant risk for the development of liver-related morbidity and mortality. The complex and multifaceted pathophysiology of NASH makes its management challenging. Early identification of symptoms and management of patients through lifestyle modification is essential to prevent the development of advanced liver disease. Despite the increasing prevalence of NASH, there is no FDA-approved treatment for this disease. Currently, medications targeting metabolic disease risk factors and some antifibrotic medications are used for NASH patients but are not sufficiently effective. The beneficial effects of different drugs and phytochemicals represent new avenues for the development of safer and more effective treatments for NASH. In this review, different risk factors, clinical symptoms, diagnostic methods of NASH, and current treatment strategies for the management of patients with NASH are reviewed.
Collapse
Affiliation(s)
- Feryal Savari
- Department of Medical Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Seyed Ali Mard
- Clinical Sciences Research Institute, Alimentary Tract Research Center, Department of Physiology, The School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
8
|
Yuan H, Wu X, Wang X, Zhou JY, Park S. Microbial Dysbiosis Linked to Metabolic Dysfunction-Associated Fatty Liver Disease in Asians: Prevotella copri Promotes Lipopolysaccharide Biosynthesis and Network Instability in the Prevotella Enterotype. Int J Mol Sci 2024; 25:2183. [PMID: 38396863 PMCID: PMC10889285 DOI: 10.3390/ijms25042183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is characterized by hepatic fat accumulation by metabolic dysfunction. The rising prevalence of MAFLD, especially among Asians, may be associated with changes in gut microbiota. We investigated gut microbiota characteristics and potential mechanisms leading to MAFLD development according to enterotypes. Case-control studies examining the gut microbiota composition between MAFLD and non-MAFLD participants were searched in public databases until July 2023. Gut microbiota was categorized into two enterotypes by principal component analysis. According to the enterotypes, LEfSe, ALDEx2, XGBoost, and DCiPatho were utilized to identify differential abundances and pathogenic microbes in the gut between the MAFLD and non-MAFLD groups. We analyzed microbial community networks with the SprCC module and predicted microbial functions. In the Prevotella enterotype (ET-P), 98.6% of Asians and 65.1% of Caucasians were associated with MAFLD (p = 0.049). MAFLD incidence was correlated with enterotype, age, obesity, and ethnicity (p < 0.05). Asian MAFLD patients exhibited decreased Firmicutes and Akkermansia muciniphila and increased Bacteroidetes and P. copri. The pathogenicity scores were 0.006 for A. muciniphila and 0.868 for P. copri. The Asian MAFLD group showed decreased stability and complexity in the gut microbiota network. Metagenome function analysis revealed higher fructose metabolism and lipopolysaccharide (LPS) biosynthesis and lower animal proteins and α-linolenic acid metabolism in Asians with MAFLD compared with the non-MAFLD group. LPS biosynthesis was positively correlated with P. copri (p < 0.05). In conclusion, P. copri emerged as a potential microbial biomarker for MAFLD. These findings enhance our understanding of the pathological mechanisms of MAFLD mediated through the gut microbiota, providing insights for future interventions.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (H.Y.); (X.W.); (J.-Y.Z.)
| | - Xuangao Wu
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (H.Y.); (X.W.); (J.-Y.Z.)
| | - Xichun Wang
- Department of Computer and Data Analysis, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | - Jun-Yu Zhou
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (H.Y.); (X.W.); (J.-Y.Z.)
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea; (H.Y.); (X.W.); (J.-Y.Z.)
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
9
|
Gruzdev SK, Podoprigora IV, Gizinger OA. Immunology of gut microbiome and liver in non-alcoholic fatty liver disease (NAFLD): mechanisms, bacteria, and novel therapeutic targets. Arch Microbiol 2024; 206:62. [PMID: 38216746 DOI: 10.1007/s00203-023-03752-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Most important contributors to its development are diet and obesity. Gut microbiome's importance for immune system and inflammatory pathways more widely accepted as an important component in NAFLD and other liver diseases' pathogenesis. In this article we review potential mechanisms of microbiome alteration of local and systemic immune responses leading to NAFLD's development, and how can modulate them for the treatment. Our review mentions different immune system pathways and microorganisms regulating metabolism, liver inflammation and fibrosis. We specifically point out TLR-4 as a potential key immune pathway activated by bacterial lipopolysaccharides producing pro-inflammatory cytokines in NAFLD. Also, we discuss three endotoxin-producing strains (Enterobacter cloacae B29, Escherichia coli PY102, Klebsiella pneumoniae A7) that can promote NAFLD development via TLR4-dependent immune response activation in animal models and how they potentially contribute to disease progression in humans. Additionally, we discuss their other immune and non-immune mechanisms contributing to NAFLD pathogenesis. In the end we point out gut microbiome researches' future perspective in NAFLD as a potential new target for both diagnostic and treatment.
Collapse
Affiliation(s)
- Stanislav Konstantinovich Gruzdev
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia.
| | - Irina Viktorovna Podoprigora
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| | - Oksana Anatolievna Gizinger
- Department of Microbiology V.S. Kiktenko, Medical Institute, Peoples' Friendship University of Russia, Miklukho-Maklaya Str. 6, Moscow, 117198, Russia
| |
Collapse
|
10
|
Pezzino S, Sofia M, Mazzone C, Litrico G, Agosta M, La Greca G, Latteri S. Exploring public interest in gut microbiome dysbiosis, NAFLD, and probiotics using Google Trends. Sci Rep 2024; 14:799. [PMID: 38191502 PMCID: PMC10774379 DOI: 10.1038/s41598-023-50190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024] Open
Abstract
Scientific interest related to the role of gut microbiome dysbiosis in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) has now been established and is constantly growing. Therefore, balancing dysbiosis, through probiotics, would be a potential therapy. In addition to scientific interest, on the other hand, it is important to evaluate the interest in these topics among the population. This study aimed to analyze, temporally and geographically, the public's interest in gut microbiome dysbiosis, NAFLD, and the use of gut probiotics. The most widely used free tool for analyzing online behavior is Google Trends. Using Google Trends data, we have analyzed worldwide volume searches for the terms "gut microbiome", "dysbiosis", "NAFLD" and "gut probiotic" for the period from 1, January 2007 to 31 December 2022. Google's relative search volume (RSV) was collected for all terms and analyzed temporally and geographically. The RSV for the term "gut microbiome" has a growth rate of more than 1400% followed, by "gut probiotics" (829%), NAFLD (795%), and "dysbiosis" (267%) from 2007 to 2012. In Australia and New Zealand, we found the highest RSV score for the term "dysbiosis" and "gut probiotics". Moreover, we found the highest RSV score for the term "NAFLD" in the three countries: South Korea, Singapore, and the Philippines. Google Trends analysis showed that people all over the world are interested in and aware of gut microbiome dysbiosis, NAFLD, and the use of gut probiotics. These data change over time and have a geographical distribution that could reflect the epidemiological worldwide condition of NAFLD and the state of the probiotic market.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Marcello Agosta
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, Catania, Italy.
| |
Collapse
|
11
|
Banerjee G, Papri SR, Satapathy SK, Banerjee P. Akkermansia muciniphila - A Potential Next-generation Probiotic for Non-alcoholic Fatty Liver Disease. Curr Pharm Biotechnol 2024; 25:426-433. [PMID: 37724669 DOI: 10.2174/1389201025666230915103052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions, and its growing prevalence is a serious concern worldwide, especially in Western countries. Researchers have pointed out several genetic mutations associated with NAFLD; however, the imbalance of the gut microbial community also plays a critical role in the progression of NAFLD. Due to the lack of approved medicine, probiotics gain special attention in controlling metabolic disorders like NAFLD. Among these probiotics, Akkermansia muciniphila (a member of natural gut microflora) is considered one of the most efficient and important bacterium in maintaining gut health, energy homeostasis, and lipid metabolism. In this perspective, we discussed the probable molecular mechanism of A. muciniphila in controlling the progression of NAFLD and restoring liver health. The therapeutic potential of A. muciniphila in NAFLD has been tested primarily on animal models, and thus, more randomized human trials should be conducted to prove its efficacy.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Suraya R Papri
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Sanjaya K Satapathy
- 2Department of Medicine, Northwell Health Center for Liver Disease & Transplantation, North Shore, University Hospital/Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
12
|
Georgescu D, Lighezan DF, Rosca CI, Nistor D, Ancusa OE, Suceava I, Iancu MA, Kundnani NR. NASH/NAFLD-Related Hepatocellular Carcinoma: An Added Burden. Life (Basel) 2023; 14:25. [PMID: 38255641 PMCID: PMC10817629 DOI: 10.3390/life14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequently found primary malignancy of the liver, showing an accelerated upward trend over the past few years and exhibiting an increasing relationship with metabolic syndrome, obesity, dyslipidemia and type 2 diabetes mellitus. The connection between these risk factors and the occurrence of HCC is represented by the occurrence of non-alcoholic fatty liver disease (NAFLD) which later, based on genetic predisposition and various triggers (including the presence of chronic inflammation and changes in the intestinal microbiome), may evolve into HCC. HCC in many cases is diagnosed at an advanced stage and can be an incidental finding. We present such a scenario in the case of a 41-year-old male patient who had mild obesity and mixed dyslipidemia, no family or personal records of digestive pathologies and who recently developed a history of progressive fatigue, dyspepsia and mild upper abdominal discomfort initially thought to be linked to post-COVID syndrome, as the patient had COVID-19 pneumonia a month prior. The abdominal ultrasound revealed a mild hepatomegaly with bright liver aspect of the right lobe (diffuse steatosis), a large zone of focal steatosis (segments IV, III and II) and a left lobe tumoral mass, highly suggestive of malignancy. Point shear wave elastography at the right lobe ruled out an end-stage chronic liver disease. Additional laboratory investigations, imaging studies (magnetic resonance imaging) and histopathological examination of liver fragments confirmed a highly aggressive HCC, with poorly differentiation-G3, (T4, N 1M 0) and stage IVA, associated with nonalcoholic steatohepatitis (NASH). A sorafenib course of treatment was attempted, but the patient discontinued it due to severe side effects. The subsequent evolution was extremely unfavorable, with rapid degradation, a few episodes of upper digestive bleeding, hepatic insufficiency and mortality in a couple of months. Conclusions: Diagnosis of NASH-related HCC is either an accidental finding or is diagnosed at an advanced stage. In order to earn time for a proper treatment, it becomes important to diagnose it at an early stage, for which regular check-ups should be performed in groups having the risk factors related to it. Patients suffering from obesity and mixed dyslipidemia should undergo periodic abdominal ultrasound examinations. This should be emphasized even more in the cases showing NASH. Complaints of any kind post-COVID-19 should be dealt with keenly as little is yet known about its virulence and its long-term side effects.
Collapse
Affiliation(s)
- Doina Georgescu
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Daniel Florin Lighezan
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ciprian Ilie Rosca
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Daciana Nistor
- Department of Functional Sciences, Physiology, Centre of Imuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Centre for Gene and Cellular Therapies in Cancer, 3000723 Timisoara, Romania
| | - Oana Elena Ancusa
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Ioana Suceava
- Department of Internal Medicine I—Medical Semiotics I, Centre for Advanced Research in Cardiovascular Diseases and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Mihaela Adela Iancu
- Department 5, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania
| | - Nilima Rajpal Kundnani
- Department of Cardiology—Discipline of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
13
|
Jadhav PA, Thomas AB, Nanda RK, Chitlange SS. Unveiling the role of gut dysbiosis in non-alcoholic fatty liver disease. Eur J Gastroenterol Hepatol 2023; 35:1324-1333. [PMID: 37823422 DOI: 10.1097/meg.0000000000002654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial complicated condition, reflected by the accumulation of extra fat in the liver. A detailed study of literature throws light on the fascinating connection between gut dysbiosis and NAFLD. The term 'gut dysbiosis' describes an imbalance in the harmony and operation of the gut microflora, which can upshoot a number of metabolic disorders. To recognize the underlying mechanisms and determine treatment options, it is essential to comprehend the connection between gut dysbiosis and NAFLD. This in-depth review discusses the normal gut microflora composition and its role in health, alterations in the gut microflora composition that leads to disease state focusing on NAFLD. The potential mechanisms influencing the advent and aggravation of NAFLD suggested disturbance of microbial metabolites, changes in gut barrier integrity, and imbalances in the composition of the gut microflora. Furthermore, it was discovered that gut dysbiosis affected immune responses, liver inflammation, and metabolic pathways, aggravating NAFLD.
Collapse
Affiliation(s)
- Pranali A Jadhav
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
14
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Zheng Y, Ying H, Shi J, Li L, Zhao Y. Alanyl-Glutamine Dipeptide Attenuates Non-Alcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice by Improving Gut Microbiota Dysbiosis. Nutrients 2023; 15:3988. [PMID: 37764772 PMCID: PMC10534574 DOI: 10.3390/nu15183988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) manifests as a persistent liver ailment marked by the excessive buildup of lipids within the hepatic organ accompanied by inflammatory responses and oxidative stress. Alanyl-glutamine (AG), a dipeptide comprising alanine and glutamine, is commonly employed as a nutritional supplement in clinical settings. This research aims to evaluate the impact of AG on NAFLD triggered by a high-fat diet (HFD), while concurrently delving into the potential mechanisms underlying its effects. The results presented herein demonstrate a notable reduction in the elevated body weight, liver mass, and liver index induced by a HFD upon AG administration. These alterations coincide with the amelioration of liver injury and the attenuation of hepatic histological advancement. Furthermore, AG treatment manifests a discernible diminution in oil-red-O-stained regions and triglyceride (TG) levels within the liver. Noteworthy alterations encompass lowered plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDLC) concentrations, coupled with elevated high-density lipoprotein cholesterol (HDLC) concentrations. The mitigation of hepatic lipid accumulation resultant from AG administration is aligned with the downregulation of ACC1, SCD1, PPAR-γ, and CD36 expression, in conjunction with the upregulation of FXR and SHP expression. Concomitantly, AG administration leads to a reduction in the accumulation of F4/80-positive macrophages within the liver, likely attributable to the downregulated expression of MCP-1. Furthermore, AG treatment yields a decline in hepatic MDA levels and a concurrent increase in the activities of SOD and GPX. A pivotal observation underscores the effect of AG in rectifying the imbalance of gut microbiota in HFD-fed mice. Consequently, this study sheds light on the protective attributes of AG against HFD-induced NAFLD through the modulation of gut microbiota composition.
Collapse
Affiliation(s)
- Yigang Zheng
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (Y.Z.); (H.Y.); (J.S.); (Y.Z.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Chen D, Xiong J, Chen G, Zhang Z, Liu Y, Xu J, Xu H. Comparing the Influences of Metformin and Berberine on the Intestinal Microbiota of Rats With Nonalcoholic Steatohepatitis. In Vivo 2023; 37:2105-2127. [PMID: 37652508 PMCID: PMC10500488 DOI: 10.21873/invivo.13308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM High-fat diets induce shifts in the gut microbial community structure in patients or animals with non-alcoholic steatohepatitis (NASH). The objective of this study was to investigate the influence of metformin (MET) and berberine (BER) on the intestinal microbiota of rats with NASH. MATERIALS AND METHODS Forty specific pathogen-free male Sprague-Dawley rats were randomized into 4 groups. Model rats were fed high-fat diets to create NASH models. MET or BER rats were administrated MET or BER, respectively, at the onset of induction of NASH. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, and triglycerides were examined. Plasma endotoxin levels were measured using the turbidimetric endotoxin assay. The incidence of bacterial translocation describes the passage of bacteria of the gastrointestinal tract through the intestinal mucosa barrier to mesenteric lymph nodes and other organs. Hematoxylin and eosin and oil red O staining were used for histopathological analysis. High throughput 16S rRNA sequencing was carried out for analyzing the composition of intestinal microbiota. RESULTS High-fat diets caused NASH after 16-week induction. Administration of MET and BER ameliorated NASH by attenuating hepatic steatosis and inflammation and decreasing the plasma levels of endotoxin. MET and BER restored the composition of the intestinal microbiota disrupted by NASH. Both MET and BER altered the abundance of Atopobiaceae, Brevibacterium, Christensenellaceae, Coriobacteriales, Papillibacter, Pygmaiobacter, and Rikenellaceae RC9 in rats with NASH. The screened intestinal microbiota may be responsible for the improvement in fat accumulation and glucose metabolism. CONCLUSION MET and BER demonstrated beneficial effects on the intestinal microbiota, which was disturbed in NASH. This finding may explain the functional mechanism of MET and BER in NASH.
Collapse
Affiliation(s)
- Dongya Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jingfang Xiong
- Department of Geriatrics, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Gaofeng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zhaolin Zhang
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Yihui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Jianjun Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, P.R. China;
| |
Collapse
|
17
|
DiStefano JK. The Role of Choline, Soy Isoflavones, and Probiotics as Adjuvant Treatments in the Prevention and Management of NAFLD in Postmenopausal Women. Nutrients 2023; 15:2670. [PMID: 37375574 DOI: 10.3390/nu15122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent condition among postmenopausal women that can lead to severe liver dysfunction and increased mortality. In recent years, research has focused on identifying potential lifestyle dietary interventions that may prevent or treat NAFLD in this population. Due to the complex and multifactorial nature of NAFLD in postmenopausal women, the disease can present as different subtypes, with varying levels of clinical presentation and variable treatment responses. By recognizing the significant heterogeneity of NAFLD in postmenopausal women, it may be possible to identify specific subsets of individuals who may benefit from targeted nutritional interventions. The purpose of this review was to examine the current evidence supporting the role of three specific nutritional factors-choline, soy isoflavones, and probiotics-as potential nutritional adjuvants in the prevention and treatment of NAFLD in postmenopausal women. There is promising evidence supporting the potential benefits of these nutritional factors for NAFLD prevention and treatment, particularly in postmenopausal women, and further research is warranted to confirm their effectiveness in alleviating hepatic steatosis in this population.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| |
Collapse
|
18
|
Pezzino S, Sofia M, Mazzone C, Castorina S, Puleo S, Barchitta M, Agodi A, Gallo L, La Greca G, Latteri S. Gut Microbiome in the Progression of NAFLD, NASH and Cirrhosis, and Its Connection with Biotics: A Bibliometric Study Using Dimensions Scientific Research Database. BIOLOGY 2023; 12:biology12050662. [PMID: 37237476 DOI: 10.3390/biology12050662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
There is growing evidence that gut microbiota dysbiosis is linked to the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), from the initial stage of disease until the progressive stage of nonalcoholic steatohepatitis (NASH) and the final stage of cirrhosis. Conversely, probiotics, prebiotics, and synbiotics have shown promise in restoring dysbiosis and lowering clinical indicators of disease in a number of both preclinical and clinical studies. Additionally, postbiotics and parabiotics have recently garnered some attention. The purpose of this bibliometric analysis is to assess recent publishing trends concerning the role of the gut microbiome in the progression of NAFLD, NASH and cirrhosis and its connection with biotics. The free access version of the Dimensions scientific research database was used to find publications in this field from 2002 to 2022. VOSviewer and Dimensions' integrated tools were used to analyze current research trends. Research into the following topics is expected to emerge in this field: (1) evaluation of risk factors which are correlated with the progression of NAFLD, such as obesity and metabolic syndrome; (2) pathogenic mechanisms, such as liver inflammation through toll-like receptors activation, or alteration of short-chain fatty acids metabolisms, which contribute to NAFLD development and its progression in more severe forms, such as cirrhosis; (3) therapy for cirrhosis through dysbiosis reduction, and research on hepatic encephalopathy a common consequence of cirrhosis; (4) evaluation of diversity, and composition of gut microbiome under NAFLD, and as it varies under NASH and cirrhosis by rRNA gene sequencing, a tool which can also be used for the development of new probiotics and explore into the impact of biotics on the gut microbiome; (5) treatments to reduce dysbiosis with new probiotics, such as Akkermansia, or with fecal microbiome transplantation.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Sergio Castorina
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Stefano Puleo
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Luisa Gallo
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
19
|
Oh KK, Gupta H, Min BH, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Jeong MK, Hyun JY, Eom JA, Park HJ, Yoon SJ, Choi MR, Kim DJ, Suk KT. The identification of metabolites from gut microbiota in NAFLD via network pharmacology. Sci Rep 2023; 13:724. [PMID: 36639568 PMCID: PMC9839744 DOI: 10.1038/s41598-023-27885-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The metabolites of gut microbiota show favorable therapeutic effects on nonalcoholic fatty liver disease (NAFLD), but the active metabolites and mechanisms against NAFLD have not been documented. The aim of the study was to investigate the active metabolites and mechanisms of gut microbiota against NAFLD by network pharmacology. We obtained a total of 208 metabolites from the gutMgene database and retrieved 1256 targets from similarity ensemble approach (SEA) and 947 targets from the SwissTargetPrediction (STP) database. In the SEA and STP databases, we identified 668 overlapping targets and obtained 237 targets for NAFLD. Thirty-eight targets were identified out of those 237 and 223 targets retrieved from the gutMgene database, and were considered the final NAFLD targets of metabolites from the microbiome. The results of molecular docking tests suggest that, of the 38 targets, mitogen-activated protein kinase 8-compound K and glycogen synthase kinase-3 beta-myricetin complexes might inhibit the Wnt signaling pathway. The microbiota-signaling pathways-targets-metabolites network analysis reveals that Firmicutes, Fusobacteria, the Toll-like receptor signaling pathway, mitogen-activated protein kinase 1, and phenylacetylglutamine are notable components of NAFLD and therefore to understanding its processes and possible therapeutic approaches. The key components and potential mechanisms of metabolites from gut microbiota against NAFLD were explored utilizing network pharmacology analyses. This study provides scientific evidence to support the therapeutic efficacy of metabolites for NAFLD and suggests holistic insights on which to base further research.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Haripriya Gupta
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Byeong Hyun Min
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Raja Ganesan
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Satya Priya Sharma
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Sung Min Won
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Jin Ju Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Su Been Lee
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min Gi Cha
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Goo Hyun Kwon
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Min Kyo Jeong
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ji Ye Hyun
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Jung A Eom
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Hee Jin Park
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Sang Jun Yoon
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Mi Ran Choi
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Dong Joon Kim
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Ki Tae Suk
- Center for Microbiome, Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
20
|
Preston SP, Stutz MD, Allison CC, Nachbur U, Gouil Q, Tran BM, Duvivier V, Arandjelovic P, Cooney JP, Mackiewicz L, Meng Y, Schaefer J, Bader SM, Peng H, Valaydon Z, Rajasekaran P, Jennison C, Lopaticki S, Farrell A, Ryan M, Howell J, Croagh C, Karunakaran D, Schuster-Klein C, Murphy JM, Fifis T, Christophi C, Vincan E, Blewitt ME, Thompson A, Boddey JA, Doerflinger M, Pellegrini M. Epigenetic Silencing of RIPK3 in Hepatocytes Prevents MLKL-mediated Necroptosis From Contributing to Liver Pathologies. Gastroenterology 2022; 163:1643-1657.e14. [PMID: 36037995 DOI: 10.1053/j.gastro.2022.08.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Necroptosis is a highly inflammatory mode of cell death that has been implicated in causing hepatic injury including steatohepatitis/ nonalcoholic steatohepatitis (NASH); however, the evidence supporting these claims has been controversial. A comprehensive, fundamental understanding of cell death pathways involved in liver disease critically underpins rational strategies for therapeutic intervention. We sought to define the role and relevance of necroptosis in liver pathology. METHODS Several animal models of human liver pathology, including diet-induced steatohepatitis in male mice and diverse infections in both male and female mice, were used to dissect the relevance of necroptosis in liver pathobiology. We applied necroptotic stimuli to primary mouse and human hepatocytes to measure their susceptibility to necroptosis. Paired liver biospecimens from patients with NASH, before and after intervention, were analyzed. DNA methylation sequencing was also performed to investigate the epigenetic regulation of RIPK3 expression in primary human and mouse hepatocytes. RESULTS Identical infection kinetics and pathologic outcomes were observed in mice deficient in an essential necroptotic effector protein, MLKL, compared with control animals. Mice lacking MLKL were indistinguishable from wild-type mice when fed a high-fat diet to induce NASH. Under all conditions tested, we were unable to induce necroptosis in hepatocytes. We confirmed that a critical activator of necroptosis, RIPK3, was epigenetically silenced in mouse and human primary hepatocytes and rendered them unable to undergo necroptosis. CONCLUSIONS We have provided compelling evidence that necroptosis is disabled in hepatocytes during homeostasis and in the pathologic conditions tested in this study.
Collapse
Affiliation(s)
- Simon P Preston
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael D Stutz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Cody C Allison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ueli Nachbur
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bang Manh Tran
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Valerie Duvivier
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, SERVIER Group, Suresnes, France
| | - Philip Arandjelovic
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - James P Cooney
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jan Schaefer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stefanie M Bader
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Hongke Peng
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Zina Valaydon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Pravin Rajasekaran
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Charlie Jennison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sash Lopaticki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Ann Farrell
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marno Ryan
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jess Howell
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Catherine Croagh
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Denuja Karunakaran
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia; Monash Biomedicine Discovery Institute and Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Carole Schuster-Klein
- Cardiovascular and Metabolic Disease Center for Therapeutic Innovation, SERVIER Group, Suresnes, France
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Theodora Fifis
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Christophi
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Vincan
- Department of Infectious Diseases, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Victorian Infectious Disease Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Marnie E Blewitt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Thompson
- Department of Gastroenterology, St. Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin A Boddey
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Marc Pellegrini
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Delik A, Dinçer S, Ülger Y, Akkız H, Karaoğullarından Ü. Metagenomic identification of gut microbiota distribution on the colonic mucosal biopsy samples in patients with non-alcoholic fatty liver disease. Gene 2022; 833:146587. [PMID: 35598686 DOI: 10.1016/j.gene.2022.146587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is known to be the most common liver disease in the world, and there are currently no approved pharmacological treatments to prevent or treat this condition. In addition to being associated with an increased risk of hepatocellular carcinoma and cirrhosis, NAFLD has now become the leading cause of liver failure-associated transplantation. The 16S rRNA gene which conserved regions can serve as universal primer binding sites for PCR amplification of gene fragments, while hypervariable regions contain significant sequence diversity useful for prokaryotic identification purposes. 16S rRNA gene sequences can be use by researchers to identify prokaryotic taxonomy found in clinical samples. As a result of increasing microbiota studies with developing technological developments, the role of intestinal microbiota in the pathogenesis of NAFLD is revealed in an important way. In this study, it was aimed to determine the clinical prognostic importance of gut microbiota in the pathogenesis of NAFLD and to determine the microbial composition with intestinal mucosal biopsy samples in NAFLD patients. MATERIAL AND METHOD We included 20 patients diagnosed with NAFLD as a result of liver function tests, histological, ultrasonographic, biopsy evidence and 20 normal control groups created under exclusion criteria in this study. The healthy control group of the same age and gender as the patients were determined to be equal, and the age, gender, BMI, insulin resistance, AST, ALT levels of the individuals were recorded for analysis. İntestinal mucosal biopsy samples were taken from the individuals included in the study under sterile conditions. Microbial results were obtained as a result of 16S rRNA amplicon metagenomic processes. The region of approximately 1500 bp covering the V1-V9 region of the 16S rRNA gene was targeted to detect microbial diversity. The amplified regions were sequenced using next-generation sequencing. Operational Taxonomic Unit (OTU) value was obtained with bioinformatics software with the obtained sequence data. The analysis of the recorded parameters was done with the SPSS.19 statistical program. RESULTS In the designed study, 16 phyla, 28 class, 56 order, 128 family, 415 genera, 1041 species microorganisms were analyzed taxonomically in a total of 40 individuals. In our study, Intestinal microbial diversity is lower in NAFLD patients compared to control group individuals. In addition, gram-negative bacteria were found to be more dominant in NAFLD patients. As a phylum, Proteobacteria increased in NAFLD group, Bacteroidetes and Actinobacteria in control group, while Firmicutes had equal distribution in both groups. BMI OR = 6.37, 95 %CI (0.39-0.40) p value was 0.001 in laboratory data, whereas Proteobacteria OR = 1.754, 95% CI (0.901-3.416), p value 0.05 in microbial profile. CONCLUSION The 16S rRNA metagenomic study of intestinal microbiota using colonic mucosal biopsy samples in NAFLD disease was the first study in the Turkish population, and important data were obtained for other studies. In the data obtained, we think Proteobacteria, Ruminococcaceae, Escherichia coli and Bacilli are very important in both diagnostic and treatment options as a microbial profile in NAFLD.
Collapse
Affiliation(s)
- Anıl Delik
- Cukurova University, Faculty of Medicine, Division of Gastroenterology, Adana 01330, Turkey; Cukurova University, Faculty of Sciense and Literature, Division of Biology, Adana 01330, Turkey.
| | - Sadık Dinçer
- Cukurova University, Faculty of Sciense and Literature, Division of Biology, Adana 01330, Turkey
| | - Yakup Ülger
- Cukurova University, Faculty of Medicine, Division of Gastroenterology, Adana 01330, Turkey
| | - Hikmet Akkız
- Cukurova University, Faculty of Medicine, Division of Gastroenterology, Adana 01330, Turkey
| | - Ümit Karaoğullarından
- Cukurova University, Faculty of Medicine, Division of Gastroenterology, Adana 01330, Turkey
| |
Collapse
|
22
|
Kemas AM, Youhanna S, Lauschke VM. Non-alcoholic fatty liver disease - opportunities for personalized treatment and drug development. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2022. [DOI: 10.1080/23808993.2022.2053285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aurino M. Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
23
|
Proglumide Reverses Nonalcoholic Steatohepatitis by Interaction with the Farnesoid X Receptor and Altering the Microbiome. Int J Mol Sci 2022; 23:ijms23031899. [PMID: 35163821 PMCID: PMC8836891 DOI: 10.3390/ijms23031899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/29/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is associated with obesity, metabolic syndrome, and dysbiosis of the gut microbiome. Cholecystokinin (CCK) is released by saturated fats and plays an important role in bile acid secretion. CCK receptors are expressed on cholangiocytes, and CCK-B receptor expression increases in the livers of mice with NASH. The farnesoid X receptor (FXR) is involved in bile acid transport and is a target for novel therapeutics for NASH. The aim of this study was to examine the role of proglumide, a CCK receptor inhibitor, in a murine model of NASH and its interaction at FXR. Mice were fed a choline deficient ethionine (CDE) diet to induce NASH. Some CDE-fed mice received proglumide-treated drinking water. Blood was collected and liver tissues were examined histologically. Proglumide's interaction at FXR was evaluated by computer modeling, a luciferase reporter assay, and tissue FXR expression. Stool microbiome was analyzed by RNA-Sequencing. CDE-fed mice developed NASH and the effect was prevented by proglumide. Computer modeling demonstrated specific binding of proglumide to FXR. Proglumide binding in the reporter assay was consistent with a partial agonist at the FXR with a mean binding affinity of 215 nM. FXR expression was significantly decreased in livers of CDE-fed mice compared to control livers, and proglumide restored FXR expression to normal levels. Proglumide therapy altered the microbiome signature by increasing beneficial and decreasing harmful bacteria. These data highlight the potential novel mechanisms by which proglumide therapy may improve NASH through interaction with the FXR and consequent alteration of the gut microbiome.
Collapse
|
24
|
Albhaisi S, Sanyal AJ. Pharmacology of NASH. COMPREHENSIVE PHARMACOLOGY 2022:214-238. [DOI: 10.1016/b978-0-12-820472-6.00121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Ramai D, Facciorusso A, Vigandt E, Schaf B, Saadedeen W, Chauhan A, di Nunzio S, Shah A, Giacomelli L, Sacco R. Progressive Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Cells 2021; 10:3401. [PMID: 34943908 PMCID: PMC8699709 DOI: 10.3390/cells10123401] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic and progressive form of non-alcoholic fatty liver disease. Its global incidence is increasing and makes NASH an epidemic and a public health threat. Non-alcoholic fatty liver disease is associated with major morbidity and mortality, with a heavy burden on quality of life and liver transplant requirements. Due to repeated insults to the liver, patients are at risk for developing hepatocellular carcinoma. The progression of NASH was initially defined according to a two-hit model involving an initial development of steatosis, followed by a process of lipid peroxidation and inflammation. In contrast, current evidence proposes a "multi-hit" or "multi-parallel hit" model that includes multiple pathways promoting progressive fibrosis and oncogenesis. This model includes multiple cellular, genetic, immunological, metabolic, and endocrine pathways leading to hepatocellular carcinoma development, underscoring the complexity of this disease.
Collapse
Affiliation(s)
- Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah, Salt Lake City, UT 84132, USA;
| | - Antonio Facciorusso
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (A.F.); (R.S.)
| | - Erika Vigandt
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (E.V.); (B.S.); (W.S.); (A.C.)
| | - Bryan Schaf
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (E.V.); (B.S.); (W.S.); (A.C.)
| | - Waleed Saadedeen
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (E.V.); (B.S.); (W.S.); (A.C.)
| | - Aditya Chauhan
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11201, USA; (E.V.); (B.S.); (W.S.); (A.C.)
| | - Sara di Nunzio
- Polistudium s.r.l., 20135 Milano, Italy; (S.d.N.); (A.S.)
| | - Aashni Shah
- Polistudium s.r.l., 20135 Milano, Italy; (S.d.N.); (A.S.)
| | | | - Rodolfo Sacco
- Section of Gastroenterology, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (A.F.); (R.S.)
| |
Collapse
|
26
|
Xue R, Su L, Lai S, Wang Y, Zhao D, Fan J, Chen W, Hylemon PB, Zhou H. Bile Acid Receptors and the Gut-Liver Axis in Nonalcoholic Fatty Liver Disease. Cells 2021; 10:2806. [PMID: 34831031 PMCID: PMC8616422 DOI: 10.3390/cells10112806] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has been significantly increased due to the global epidemic of obesity. The disease progression from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is closely linked to inflammation, insulin resistance, and dysbiosis. Although extensive efforts have been aimed at elucidating the pathological mechanisms of NAFLD disease progression, current understanding remains incomplete, and no effective therapy is available. Bile acids (BAs) are not only important physiological detergents for the absorption of lipid-soluble nutrients in the intestine but also metabolic regulators. During the last two decades, BAs have been identified as important signaling molecules involved in lipid, glucose, and energy metabolism. Dysregulation of BA homeostasis has been associated with NAFLD disease severity. Identification of nuclear receptors and G-protein-coupled receptors activated by different BAs not only significantly expanded the current understanding of NAFLD/NASH disease progression but also provided the opportunity to develop potential therapeutics for NAFLD/NASH. In this review, we will summarize the recent studies with a focus on BA-mediated signaling pathways in NAFLD/NASH. Furthermore, the therapeutic implications of targeting BA-mediated signaling pathways for NAFLD will also be discussed.
Collapse
Affiliation(s)
- Rui Xue
- Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 210092, China; (R.X.); (J.F.)
| | - Lianyong Su
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Shengyi Lai
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Yanyan Wang
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei 230031, China; (Y.W.); (W.C.)
| | - Derrick Zhao
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Jiangao Fan
- Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 210092, China; (R.X.); (J.F.)
| | - Weidong Chen
- School of Pharmaceutical Science, Anhui University of Chinese Medicine, Hefei 230031, China; (Y.W.); (W.C.)
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23284, USA; (L.S.); (S.L.); (D.Z.); (P.B.H.)
| |
Collapse
|
27
|
Albhaisi S, Sanyal AJ. Gene-Environmental Interactions as Metabolic Drivers of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:665987. [PMID: 34040583 PMCID: PMC8142267 DOI: 10.3389/fendo.2021.665987] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide in the past few decades as a consequence of the global obesity epidemic and is associated with significant morbidity and mortality. NAFLD is closely associated with components of the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, suggesting a plausible metabolic mechanistic basis. Metabolic inflexibility is considered a nidus for NAFLD pathogenesis, causing lipotoxicity, mitochondrial dysfunction and cellular stress leading to inflammation, apoptosis and fibrogenesis, thus mediating disease progression into nonalcoholic steatohepatitis (NASH) and ultimately cirrhosis. In this review, we describe they key metabolic drivers that contribute to development of NAFLD and NASH, and we explain how NASH is a metabolic disease. Understanding the metabolic basis of NASH is crucial for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Somaya Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Arun J. Sanyal,
| |
Collapse
|