1
|
Pichiri G, Piludu M, Congiu T, Grandi N, Coni P, Piras M, Jaremko M, Lachowicz JI. Kojic Acid Derivative as an Antimitotic Agent That Selectively Kills Tumour Cells. Pharmaceuticals (Basel) 2024; 18:11. [PMID: 39861074 PMCID: PMC11768441 DOI: 10.3390/ph18010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The primary method used to pharmacologically arrest cancer development and its metastasis is to disrupt the cell division process. There are a few approaches that may be used to meet this objective, mainly through inhibiting DNA replication or mitosis. Despite intensive studies on new chemotherapeutics, the biggest problem remains the side effects associated with the inhibition of cell division in non-tumoural host cells. Methods: The efficacy and selectivity of the kojic acid derivative (L1) was studied in vitro with the use of tumoural (Caco2, SW480, HT29, T98G) and non- tumoural (HEK293T, RAW) cell lines. Light and electron microscopy observations were supported by the next generation sequencing (NGS), cytoflow, and spectroscopy analysis of mRNA and biomolecules, respectively. Results: The light and electron microscopy observations showed that L1 treatment leads to significant morphological changes in Caco2 cells, which are characteristic of mitosis arrest. Moreover, the fluorescent tubulin staining revealed the formation of tubulin ring structure associated with the apoptotic stage. Mitotic exit into apoptosis was further conformed by the cytoflow of early/late apoptosis stages and caspase-3 analysis. NGS investigation showed differentiated expressions of genes involved in mitosis and apoptosis processes. The observed IC50 in tumoural cell lines were as follows: Caco2 (IC50 = 68.2 mM), SW480 (IC50 = 15.5 mM), and HT29 (IC50 = 4.7 mM). Conclusions: The findings presented here suggest that L1 could be a valid candidate for oral prevention and/or chemotherapy in colorectal cancer. Considering high selectivity of L1 versus tumoural cell lines, more in-depth mechanistic studies could reveal unknown stages in carcinogenesis.
Collapse
Affiliation(s)
- Giuseppina Pichiri
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.P.); (T.C.); (P.C.); (M.P.)
| | - Marco Piludu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.P.); (T.C.); (P.C.); (M.P.)
| | - Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy;
| | - Pierpaolo Coni
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.P.); (T.C.); (P.C.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.P.); (T.C.); (P.C.); (M.P.)
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.P.); (T.C.); (P.C.); (M.P.)
- Department of Population Health, Division of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
In Silico Exploration of Microtubule Agent Griseofulvin and Its Derivatives Interactions with Different Human β-Tubulin Isotypes. Molecules 2023; 28:molecules28052384. [PMID: 36903629 PMCID: PMC10005519 DOI: 10.3390/molecules28052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Tubulin isotypes are known to regulate microtubule stability and dynamics, as well as to play a role in the development of resistance to microtubule-targeted cancer drugs. Griseofulvin is known to disrupt cell microtubule dynamics and cause cell death in cancer cells through binding to tubulin protein at the taxol site. However, the detailed binding mode involved molecular interactions, and binding affinities with different human β-tubulin isotypes are not well understood. Here, the binding affinities of human β-tubulin isotypes with griseofulvin and its derivatives were investigated using molecular docking, molecular dynamics simulation, and binding energy calculations. Multiple sequence analysis shows that the amino acid sequences are different in the griseofulvin binding pocket of βI isotypes. However, no differences were observed at the griseofulvin binding pocket of other β-tubulin isotypes. Our molecular docking results show the favorable interaction and significant affinity of griseofulvin and its derivatives toward human β-tubulin isotypes. Further, molecular dynamics simulation results show the structural stability of most β-tubulin isotypes upon binding to the G1 derivative. Taxol is an effective drug in breast cancer, but resistance to it is known. Modern anticancer treatments use a combination of multiple drugs to alleviate the problem of cancer cells resistance to chemotherapy. Our study provides a significant understanding of the involved molecular interactions of griseofulvin and its derivatives with β-tubulin isotypes, which may help to design potent griseofulvin analogues for specific tubulin isotypes in multidrug-resistance cancer cells in future.
Collapse
|
3
|
Ludueña RF, Walss-Bass C, Portyanko A, Guo J, Yeh IT. Nuclear βII-Tubulin and its Possible Utility in Cancer Diagnosis, Prognosis and Treatment. Front Cell Dev Biol 2022; 10:870088. [PMID: 35706904 PMCID: PMC9190298 DOI: 10.3389/fcell.2022.870088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules are organelles that usually occur only in the cytosol. Walss et al. (1999) discovered the βII isotype of tubulin, complexed with α, in the nuclei of certain cultured cells, in non-microtubule form. When fluorescently labeled tubulins were microinjected into the cells, only αβII appeared in the nucleus, and only after one cycle of nuclear disassembly and reassembly. It appeared as if αβII does not cross the nuclear envelope but is trapped in the nucleus by the re-forming nuclear envelope in whose reassembly βII may be involved. βII is present in the cytoplasm and nuclei of many tumor cells. With some exceptions, normal tissues that expressed βII rarely had βII in their nuclei. It is possible that βII is involved in nuclear reassembly and then disappears from the nucleus. Ruksha et al. (2019) observed that patients whose colon cancer cells in the invasive front showed no βII had a median survival of about 5.5 years, which was more than halved if they had cytosolic βII and further lessened if they had nuclear βII, suggesting that the presence and location of βII in biopsies could be a useful prognostic indicator and also that βII may be involved in cancer progression. Yeh and Ludueña. (2004) observed that many tumors were surrounded by non-cancerous cells exhibiting cytosolic and nuclear βII, suggesting a signaling pathway that causes βII to be synthesized in nearby cells and localized to their nuclei. βII could be useful in cancer diagnosis, since the presence of βII in non-cancerous cells could indicate a nearby tumor. Investigation of this pathway might reveal novel targets for chemotherapy. Another possibility would be to combine αβII with CRISPR-Cas9. This complex would likely enter the nucleus of a cancer cell and, if guided to the appropriate gene, might destroy the cancer cell or make it less aggressive; possible targets will be discussed here. The possibilities raised here about the utility of βII in cancer diagnosis, prognosis, biology and therapy may repay further investigation.
Collapse
Affiliation(s)
- Richard F Ludueña
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | | | - I-Tien Yeh
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Ludueña RF. Possible Roles of Specific Amino Acids in β-Tubulin Isotypes in the Growth and Maintenance of Neurons: Novel Insights From Cephalopod Mollusks. Front Mol Neurosci 2022; 15:838393. [PMID: 35493322 PMCID: PMC9048481 DOI: 10.3389/fnmol.2022.838393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Microtubules, are formed of the protein tubulin, which is a heterodimer of α- and β-tubulin subunits. Both α- and β-tubulin exist as numerous isotypes, differing in amino acid sequence and tissue distribution. Among the vertebrate β isotypes, βIII has a very narrow distribution, being found primarily in neurons and in advanced cancers. The places in the amino acid sequence where βIII differs from the other β isotypes are highly conserved in evolution. βIII appears to be highly resistant to reactive oxygen species and it forms highly dynamic microtubules. The first property would be very useful in neurons, which have high concentrations of free radicals, and the high dynamicity would aid neurite outgrowth. The same properties make βIII useful in cancers. Examination of the amino acid sequences indicates a cysteine cluster at positions 124-129 in βIII (CXXCXC). This occurs in all βIII isotypes but not in βI, βII, or βIV. βIII also lacks the easily oxidized C239. Both features could play roles in free radical resistance. Many aggressive tumors over-express βIII. However, a recent study of breast cancer patients showed that many of them mutated their βI, βII, and βIV at particular places to change the residues to those found at the corresponding sites in βIII; these are all sites that are highly conserved in vertebrate βIII. It is possible that these residues are important, not only in the resistance to free radicals, but also in the high dynamicity of βIII. The cephalopod mollusks are well known to be highly intelligent and can remodel their own brains. Interestingly, several cephalopods contain the cysteine cluster as well as up to 7 of the 17 residues that are highly conserved in vertebrate βIII, but are not found in βI, βII, or βIV. In short, it is possible that we are looking at a case of convergent evolution, that a βIII-like isotype may be required for neuronal growth and function and that a structure-function study of the particular residues conserved between vertebrate βIII and cephalopod tubulin isotypes could greatly increase our understanding of the role of the various tubulin isotypes in neuronal growth and function and could aid in the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
- Richard F. Ludueña
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
The regulatory effect of Tau protein on polymerization of MCF7 microtubules in vitro. Biochem Biophys Rep 2019; 17:151-156. [PMID: 30671547 PMCID: PMC6327910 DOI: 10.1016/j.bbrep.2018.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 11/23/2022] Open
Abstract
Growing evidence continues to point toward the critical role of beta tubulin isotypes in regulating some intracellular functions. Changes that were observed in the microtubules’ intrinsic dynamics, the way they interact with some chemotherapeutic agents, or differences on translocation specifications of some molecular motors along microtubules, were associated to their structural uniqueness in terms of beta tubulin isotype distributions. These findings suggest that the effects of microtubule associated proteins (MAPs) may also vary on structurally different microtubules. Among different microtubule associated proteins, Tau proteins, which are known as neuronal MAPs, bind to beta tubulin, stabilize microtubules, and consequently promote their polymerizations. In this study, in a set of well controlled experiments, the direct effect of Tau proteins on the polymerization of two structurally different microtubules, porcine brain and breast cancer (MCF7), were tested and compared. Remarkably, we found that in contrast with the promoted effect of Tau proteins on brain microtubules’ polymerization, MCF7 expressed a demoted polymerization while interacting with Tau proteins. This finding can potentially be a novel insight into the mechanism of drug resistance in some breast cancer cells. It has been reported that microtubules show destabilizing behavior in some MCF7 cells with overexpression of Tau protein when treated with a microtubules’ stabilizing agent, Taxol. This behavior has been classified by others as drug resistance, but it may instead be potentially caused by a competition between the destabilizing effect of the Tau protein and the stabilizing effect of the drug on MCF7 microtubules. Also, we quantified the polarization coefficient of MCF7 microtubules in the presence and absence of Tau proteins by the electro-orientation method and compared the values. The two significantly different values obtained can possibly be one factor considered to explain the effect of Tau proteins on the polymerization of MCF7 microtubules. MCF7 microtubules express slow and stable polymerization behavior. Tau-MCF7 microtubules express demoted polymerization behavior. Tau-MCF7 polymerization can possibly be explained by electrostatic specifications.
Collapse
|
6
|
Ruksha K, Mezheyeuski A, Nerovnya A, Bich T, Tur G, Gorgun J, Luduena R, Portyanko A. Over-Expression of βII-Tubulin and Especially Its Localization in Cell Nuclei Correlates with Poorer Outcomes in Colorectal Cancer. Cells 2019; 8:cells8010025. [PMID: 30621030 PMCID: PMC6357106 DOI: 10.3390/cells8010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022] Open
Abstract
Tubulin is a heterodimer of α and β subunits, both existing as isotypes differing in amino acid sequence encoded by different genes. Specific isotypes of tubulin have associations with cancer that are not well understood. Previous studies found that βII-tubulin is expressed in a number of transformed cells and that this isotype is found in cell nuclei in non-microtubule form. The association of βII expression and its nuclear localization with cancer progression has not previously been addressed. We here used a monoclonal antibody to βII to examine patients with colorectal cancer and found that patients whose tumors over-express βII have a greatly decreased life expectancy which is even shorter in those patients with nuclear βII. Our results suggest that βII-tubulin may facilitate cancer growth and metastasis and, to accomplish this, may not need to be in microtubule form. Furthermore, βII expression and localization could be a useful prognostic marker. We also found that βII appears in the nuclei of otherwise normal cells adjacent to the tumor. It is possible therefore that cancer cells expressing βII influence nearby cells to do the same and to localize βII in their nuclei by an as yet uncharacterized regulatory pathway.
Collapse
Affiliation(s)
- Kseniya Ruksha
- N.N. Alexandrov National Cancer Centre of Belarus, 223040 Minsk, Belarus.
| | - Artur Mezheyeuski
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Alexander Nerovnya
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Tatyana Bich
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| | - Gennady Tur
- Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus.
| | - Julia Gorgun
- Department of Gastroenterology and Nutrition, Belarusian Medical Academy of Post-Graduate Education, 220013 Minsk, Belarus.
| | - Richard Luduena
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| | - Anna Portyanko
- Department of Pathology, Belarusian State Medical University, 220116 Minsk, Belarus.
| |
Collapse
|
7
|
Majcher U, Klejborowska G, Moshari M, Maj E, Wietrzyk J, Bartl F, Tuszynski JA, Huczyński A. Antiproliferative Activity and Molecular Docking of Novel Double-Modified Colchicine Derivatives. Cells 2018; 7:cells7110192. [PMID: 30388878 PMCID: PMC6262536 DOI: 10.3390/cells7110192] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022] Open
Abstract
Microtubules are tubulin polymer structures, which are indispensable for cell growth and division. Its constituent protein β-tubulin has been a common drug target for various diseases including cancer. Colchicine has been used to treat gout, but it has also been an investigational anticancer agent with a known antimitotic effect on cells. However, the use of colchicine as well as many of its derivatives in long-term treatment is hampered by their high toxicity. To create more potent anticancer agents, three novel double-modified colchicine derivatives have been obtained by structural modifications in C-4 and C-10 positions. The binding affinities of these derivatives of colchicine with respect to eight different isotypes of human β-tubulin have been calculated using docking methods. In vitro cytotoxicity has been evaluated against four human tumor cell lines (A549, MCF-7, LoVo and LoVo/DX). Computer simulations predicted the binding modes of these compounds and hence the key residues involved in the interactions between tubulin and the colchicine derivatives. Two of the obtained derivatives, 4-bromothiocolchicine and 4-iodothiocolchicine, were shown to be active against three of the investigated cancer cell lines (A549, MCF-7, LoVo) with potency at nanomolar concentrations and a higher relative affinity to tumor cells over normal cells.
Collapse
Affiliation(s)
- Urszula Majcher
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Greta Klejborowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| | - Mahshad Moshari
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Ewa Maj
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland.
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wrocław, Poland.
| | - Franz Bartl
- Institut für Biologie, AG Biophysikalische Chemie,Humboldt Universität zu Berlin, Invalidenstr, 42, 10099 Berlin, Germany.
| | - Jack A Tuszynski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada.
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| |
Collapse
|
8
|
Romagnoli R, Prencipe F, Oliva P, Baraldi S, Baraldi PG, Brancale A, Ferla S, Hamel E, Bortolozzi R, Viola G. 3-Aryl/Heteroaryl-5-amino-1-(3′,4′,5′-trimethoxybenzoyl)-1,2,4-triazoles as antimicrotubule agents. Design, synthesis, antiproliferative activity and inhibition of tubulin polymerization. Bioorg Chem 2018; 80:361-374. [DOI: 10.1016/j.bioorg.2018.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022]
|
9
|
Electrostatic differences: A possible source for the functional differences between MCF7 and brain microtubules. Biochem Biophys Res Commun 2017; 493:388-392. [PMID: 28887032 DOI: 10.1016/j.bbrc.2017.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/04/2017] [Indexed: 11/21/2022]
Abstract
Recent studies suggested a link between diversity of beta tubulin isotypes in microtubule structures and the regulatory roles that they play not only on microtubules' intrinsic dynamic, but also on the translocation characteristics of some of the molecular motors along microtubules. Remarkably, unlike porcine brain microtubules, MCF7 microtubules are structured from a different beta tubulin distribution. These types of cancer microtubules show a relatively stable and slow dynamic. In addition, the translocation parameters of some molecular motors are distinctly different along MCF7 as compared to those parameters on brain microtubules. It is known that the diversity of beta tubulin isotypes differ predominantly in the specifications and the electric charge of their carboxy-terminal tails. A key question is to identify whether the negative electrostatic charge of tubulin isotypes and, consequently, microtubules, can potentially be considered as one of the sources of functional differences in MCF7 vs. brain microtubules. We tested this possibility experimentally by monitoring the electro-orientation of these two types of microtubules inside a uniform electric field. Through this evaluation, we quantified and compared the average normalized polarization coefficient of MCF7 vs. Porcine brain microtubules. The higher value obtained for the polarization of MCF7 microtubules, which is associated to the higher negative charge of these types of microtubules, is significant as it can further explain the slow intrinsic dynamic that has been recently reported for single MCF7 microtubules in vitro. Furthermore, it can be potentially considered as a factor that can directly impact the translocation parameters of some molecular motors along MCF7 microtubules, by altering the mutual electrostatic interactions between microtubules and molecular motors.
Collapse
|
10
|
Vemu A, Atherton J, Spector JO, Moores CA, Roll-Mecak A. Tubulin isoform composition tunes microtubule dynamics. Mol Biol Cell 2017; 28:3564-3572. [PMID: 29021343 PMCID: PMC5706985 DOI: 10.1091/mbc.e17-02-0124] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
We report the cryo-EM structure and dynamic parameters for unmodified α1B/βI+βIVb microtubules. These microtubules display markedly different dynamics compared to heterogeneous brain microtubules, and their dynamic parameters can be proportionally tuned by the addition of a recombinant neuronal tubulin isoform with different dynamic properties. Microtubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility, and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, we have yet to understand how tubulin genetic diversity regulates microtubule functions. The majority of in vitro dynamics studies are performed with tubulin purified from brain tissue. This preparation is not representative of tubulin found in many cell types. Here we report the 4.2-Å cryo-electron microscopy (cryo-EM) structure and in vitro dynamics parameters of α1B/βI+βIVb microtubules assembled from tubulin purified from a human embryonic kidney cell line with isoform composition characteristic of fibroblasts and many immortalized cell lines. We find that these microtubules grow faster and transition to depolymerization less frequently compared with brain microtubules. Cryo-EM reveals that the dynamic ends of α1B/βI+βIVb microtubules are less tapered and that these tubulin heterodimers display lower curvatures. Interestingly, analysis of EB1 distributions at dynamic ends suggests no differences in GTP cap sizes. Last, we show that the addition of recombinant α1A/βIII tubulin, a neuronal isotype overexpressed in many tumors, proportionally tunes the dynamics of α1B/βI+βIVb microtubules. Our study is an important step toward understanding how tubulin isoform composition tunes microtubule dynamics.
Collapse
Affiliation(s)
- Annapurna Vemu
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892
| | - Joseph Atherton
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Jeffrey O Spector
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892 .,Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
11
|
Biglycan Inhibits Capsaicin-Induced Substance P Release by Cultured Dorsal Root Ganglion Neurons. Am J Phys Med Rehabil 2017; 95:656-62. [PMID: 26945213 DOI: 10.1097/phm.0000000000000460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to examine the inhibitory effects of biglycan on substance P release from cultured sensory neurons in response to capsaicin. STUDY DESIGN In vitro study of cultured primary sensory neurons from the rabbit dorsal root ganglion (DRG). We interrogated the culture system function with capsaicin. Biglycan is an important structural component of the intervertebral disc that may regulate growth factors and inflammatory mediators. We tested the hypothesis that biglycan inhibits substance P release in response to capsaicin. RESULTS The DRG cultures were shown to contain both neurons and astrocytes by immunostaining using antibodies recognizing neuron and glial cell markers. Cultured DRG cells respond to capsaicin in a dose- and time-dependent manner (capsaicin dose ranges from 5 to 500 μmol/L; stimulation time ranges from 0 to 60 minutes). The neurons preincubated with biglycan released 27% less substance P compared with neurons without biglycan (n = 4, P = 0.036). CONCLUSION We have established a DRG cell culture system, which contains both sensory neurons and the supporting astrocytes. Biglycan, an inhibitor of substance P release by DRG cultures, may serve as an ingredient in intradiscal injectables to reduce back pain.
Collapse
|
12
|
Smiyun G, Azarenko O, Miller H, Rifkind A, LaPointe NE, Wilson L, Jordan MA. βIII-tubulin enhances efficacy of cabazitaxel as compared with docetaxel. Cancer Chemother Pharmacol 2017; 80:151-164. [DOI: 10.1007/s00280-017-3345-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/24/2017] [Indexed: 11/28/2022]
|
13
|
Feizabadi MS, Rosario B. MCF7 microtubules: Cancer microtubules with relatively slow and stable dynamic in vitro. Biochem Biophys Res Commun 2017; 484:354-357. [PMID: 28131842 DOI: 10.1016/j.bbrc.2017.01.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
There is known to be significant diversity of β-tubulin isoforms in cells. However, whether the functions of microtubules that are polymerized from different distributions of beta isotypes become distinct from one another are still being explored. Of particular interest, recent studies have identified the role that different beta tubulin isotypes carry in regulating the functions of some of the molecular motors along MCF7, or breast cancer, microtubules. That being said, how the specific distribution of beta tubulin isotypes impacts the MCF7 microtubules' dynamic is not well understood. The current study was initiated to directly quantify the in vitro dynamic and polymerization parameters of single MCF7 microtubules and then compare them with those obtained from neuronal microtubules polymerized from porcine brain tubulin. Surprisingly, unlike porcine brain microtubules, this type of cancer microtubule showed a relatively stable and slow dynamic. The comparison between the subsequently fast and unstable dynamic of porcine brain microtubules with the significantly slow and relatively stable dynamic of MCF7 microtubules suggests that beta tubulin isotypes may not only influence the microtubule based functionalities of some molecular motors, but also may change the microtubule's intrinsic dynamic.
Collapse
Affiliation(s)
| | - Brandon Rosario
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
14
|
Wu S, Guo Z, Hopkins CD, Wei N, Chu E, Wipf P, Schmitz JC. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget 2016; 6:40866-79. [PMID: 26506423 PMCID: PMC4747374 DOI: 10.18632/oncotarget.5885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/28/2015] [Indexed: 11/25/2022] Open
Abstract
The novel, chemically stabilized disorazole analog, (−)-CP2-disorazole C1 (1) displayed potent anti-proliferative activity against a broad-spectrum of human colorectal cancer cells. HCT15 and H630R1 cell lines expressing high basal levels of the ABCB1 protein, known to cause multi-drug resistance, were also sensitive to growth inhibition by 1 but were resistant to both vincristine and docetaxel, two commonly used microtubule inhibitors. Compound 1 exhibited strong inhibition of tubulin polymerization at a level comparable to vincristine. In addition, treatment with 1 resulted in decreased protein levels of β-tubulin but not α-tubulin. An analysis of cellular proteins known to interact with microtubules showed that 1 caused decreased expression of c-Myc, APC, Rb, and additional key cellular signaling pathways in CRC cells. Treatment with compound 1 also resulted in G2/M cell cycle arrest and induction of apoptosis, but not senescence. Furthermore, endothelial spheroid sprouting assays demonstrated that 1 suppressed angiogenesis and can, therefore, potentially prevent cancer cells from spreading and metastasizing. Taken together, these findings suggest that the microtubule disruptor 1 may be a potential drug candidate for the treatment of mCRC.
Collapse
Affiliation(s)
- Shaoyu Wu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.,Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Chemistry, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Zhijian Guo
- Department of Nephrology, NanFang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chad D Hopkins
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ning Wei
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.,Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Edward Chu
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.,Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter Wipf
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John C Schmitz
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.,Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Feizabadi MS. The Contribution of the C-Terminal Tails of Microtubules in Altering the Force Production Specifications of Multiple Kinesin-1. Cell Biochem Biophys 2016; 74:373-80. [DOI: 10.1007/s12013-016-0756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/25/2016] [Indexed: 12/24/2022]
|
16
|
Wilson L, Lopus M, Miller HP, Azarenko O, Riffle S, Smith JA, Jordan MA. Effects of Eribulin on Microtubule Binding and Dynamic Instability Are Strengthened in the Absence of the βIII Tubulin Isotype. Biochemistry 2015; 54:6482-9. [DOI: 10.1021/acs.biochem.5b00745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Leslie Wilson
- Neuroscience
Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Manu Lopus
- Experimental
Cancer Therapeutics and Chemical Biology, UM-DAE Centre for Excellence in Basic Sciences, Mumbai, India
| | - Herbert P. Miller
- Neuroscience
Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Olga Azarenko
- Neuroscience
Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Stephen Riffle
- Neuroscience
Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jennifer A. Smith
- Neuroscience
Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Mary Ann Jordan
- Neuroscience
Research Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Mechanism of action of ixabepilone and its interactions with the βIII-tubulin isotype. Cancer Chemother Pharmacol 2015; 76:1013-24. [PMID: 26416565 DOI: 10.1007/s00280-015-2863-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Ixabepilone (Ixempra, BMS-247550), a semisynthetic analog of epothilone B, is a microtubule-targeted drug in clinical use for treatment of metastatic or locally advanced breast cancer. Ixabepilone's binding and mechanism of action on microtubules and their dynamics, as well as its interactions with isotypically altered microtubules, both in vitro and in tumor cells, have not been described. Microtubules are dynamic polymers of the protein tubulin that function in mitosis, intracellular transport, cell proliferation, and migration. They continually undergo dynamic instability, periods of slow growth and rapid shortening that are crucial to these cell functions. We determined ixabepilone's microtubule binding and polymerization effects in vitro and also determined its effects on inhibition of dynamic instability in vitro and in cells, both with and without removal of the βIII isotype of tubulin. The βIII isotype of tubulin is associated with drug resistance and tumor aggressivity. We found that removal (in vitro) and knockdown (in cells) of βIII-tubulin led to increased inhibition of microtubule dynamic instability by ixabepilone. Depletion of βIII-tubulin from MCF7 human breast cancer cells also induced increased mitotic arrest by ixabepilone. Thus, βIII-tubulin expression suppresses the antitumor effects of ixabepilone, indicating that increased βIII-tubulin may be an important contributor to the development of resistance to ixabepilone.
Collapse
|
18
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
19
|
McCarroll JA, Sharbeen G, Liu J, Youkhana J, Goldstein D, McCarthy N, Limbri LF, Dischl D, Ceyhan GO, Erkan M, Johns AL, Biankin AV, Kavallaris M, Phillips PA. βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer. Oncotarget 2015; 6:2235-49. [PMID: 25544769 PMCID: PMC4385848 DOI: 10.18632/oncotarget.2946] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, β-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of β-tubulins in pancreatic cancer are unknown. We measured the expression of different β-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Next, we used RNAi to silence βIII-tubulin expression in pancreatic cancer cells, and measured cell growth in the absence and presence of chemotherapeutic drugs. Finally, we assessed the role of βIII-tubulin in regulating tumor growth and metastases using an orthotopic pancreatic cancer mouse model. We found that βIII-tubulin is highly expressed in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Further, we demonstrated that silencing βIII-tubulin expression reduced pancreatic cancer cell growth and tumorigenic potential in the absence and presence of chemotherapeutic drugs. Finally, we demonstrated that suppression of βIII-tubulin reduced tumor growth and metastases in vivo. Our novel data demonstrate that βIII-tubulin is a key player in promoting pancreatic cancer growth and survival, and silencing its expression may be a potential therapeutic strategy to increase the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Joshua A. McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Jie Liu
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Janet Youkhana
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
- Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, NSW, Australia
| | - Nigel McCarthy
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
| | - Lydia F. Limbri
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| | - Dominic Dischl
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Güralp O. Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery Koc University School of Medicine, Istanbul, Turkey
| | - Amber L. Johns
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Andrew V. Biankin
- The Kinghorn Cancer Centre, Cancer Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow, Scotland G61 1BD, United Kingdom
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, Sydney, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, UNSW, Australia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, Prince of Wales Clinical School, University of New South Wales (UNSW Australia), Sydney, Australia
| |
Collapse
|
20
|
Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M, Anmann T, Tepp K, Timohhina N, Shevchuk I, Chekulayev V, Boucher F, Dos Santos P, Schlattner U, Wallimann T, Kuznetsov AV, Dzeja P, Aliev M, Saks V. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxf) 2015; 213:84-106. [PMID: 24666671 DOI: 10.1111/apha.12287] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/23/2013] [Accepted: 03/16/2014] [Indexed: 12/19/2022]
Abstract
To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure-function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis.
Collapse
Affiliation(s)
- R. Guzun
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Department of Rehabilitation and Physiology; University Hospital; Grenoble France
| | - T. Kaambre
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - R. Bagur
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - A. Grichine
- Life Science Imaging - In Vitro Platform; IAB CRI INSERM U823; Joseph Fourier University; Grenoble France
| | - Y. Usson
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - M. Varikmaa
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - T. Anmann
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - K. Tepp
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - N. Timohhina
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - I. Shevchuk
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - V. Chekulayev
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - F. Boucher
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - P. Dos Santos
- University of Bordeaux Segalen; INSERM U1045; Bordeaux France
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| | - T. Wallimann
- Emeritus; Biology Department; ETH; Zurich Switzerland
| | - A. V. Kuznetsov
- Cardiac Surgery Research Laboratory; Department of Heart Surgery; Innsbruck Medical University; Innsbruck Austria
| | - P. Dzeja
- Division of Cardiovascular Diseases; Department of Medicine; Mayo Clinic; Rochester MN USA
| | - M. Aliev
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
| | - V. Saks
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| |
Collapse
|
21
|
Lobert S, Graichen ME, Hamilton RD, Pitman KT, Garrett MR, Hicks C, Koganti T. Prognostic biomarkers for HNSCC using quantitative real-time PCR and microarray analysis: β-tubulin isotypes and the p53 interactome. Cytoskeleton (Hoboken) 2014; 71:628-37. [PMID: 25355403 DOI: 10.1002/cm.21195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/18/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
In 2014, more than 40,000 people in the United States will be diagnosed with head and neck squamous cell cancer (HNSCC) and nearly 8400 people will die of the disease (www.cancer.org/acs/groups). Little is known regarding molecular targets that might lead to better therapies and improved outcomes for these patients. The incorporation of taxanes into the standard cisplatin/5-fluouracil initial chemotherapy for HNSCC has been associated with improved response rate and survival. Taxanes target the β-subunit of the tubulin heterodimers, the major protein in microtubules, and halt cell division at G2/M phase. Both laboratory and clinical research suggest a link between β-tubulin expression and cancer patient survival, indicating that patterns of expression for β-tubulin isotypes along with activity of tumor suppressors such as p53 or micro-RNAs could be useful prognostic biomarkers and could suggest therapeutic targets. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharon Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | | | | |
Collapse
|
22
|
Feizabadi MS, Jun Y. Kinesin-1 translocation: Surprising differences between bovine brain and MCF7-derived microtubules. Biochem Biophys Res Commun 2014; 454:543-6. [DOI: 10.1016/j.bbrc.2014.10.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/21/2023]
|
23
|
Romagnoli R, Baraldi PG, Lopez-Cara C, Salvador MK, Preti D, Tabrizi MA, Balzarini J, Nussbaumer P, Bassetto M, Brancale A, Fu XH, Yang-Gao, Li J, Zhang SZ, Hamel E, Bortolozzi R, Basso G, Viola G. Design, synthesis and biological evaluation of 3,5-disubstituted 2-amino thiophene derivatives as a novel class of antitumor agents. Bioorg Med Chem 2014; 22:5097-109. [PMID: 24398384 PMCID: PMC4170804 DOI: 10.1016/j.bmc.2013.12.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 11/16/2022]
Abstract
In search of new compounds with strong antiproliferative activity and simple molecular structure, we designed a novel series of agents based on the 2-amino-3-alkoxycarbonyl/cyano-5-arylethylthiophene scaffold. The presence of the ethyl spacer between the 2',5'-dimethoxyphenyl and the 5-position of the thiophene ring, as well as the number and location of methoxy substitutents on the phenyl ring, played a profound role in affecting the antiproliferative activity. Among the synthesized compounds, we identified the 2-amino-3-cyano-[2-(2,5-dimethoxyphenyl)ethyl] thiophene 2c as the most promising derivative against a wide panel of cancer cell lines (IC50=17-130 nM). The antiproliferative activity of this compound appears to correlate well with its ability to inhibit tubulin assembly and the binding of colchicine to tubulin. Moreover 2c, as determined by flow cytometry, strongly induced arrest in the G2/M phase of the cell cycle, and annexin-V and propidium iodide staining indicate that cell death proceeds through an apoptotic mechanism that follows the intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121 Ferrara, Italy.
| | - Pier Giovanni Baraldi
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121 Ferrara, Italy.
| | - Carlota Lopez-Cara
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121 Ferrara, Italy
| | - Maria Kimatrai Salvador
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44121 Ferrara, Italy
| | - Jan Balzarini
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | - Marcella Bassetto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| | - Xian-Hua Fu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Yang-Gao
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Jun Li
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Su-Zhan Zhang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Roberta Bortolozzi
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy
| | - Giampietro Viola
- Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia, Università di Padova, 35131 Padova, Italy.
| |
Collapse
|
24
|
Miyazaki T, Ikeda Y, Kubo I, Suganuma S, Fujita N, Itakura M, Hayashi T, Takabayashi S, Katoh H, Ohira Y, Sato M, Noguchi M, Tokumoto T. Identification of genomic locus responsible for experimentally induced testicular teratoma 1 (ett1) on mouse Chr 18. Mamm Genome 2014; 25:317-26. [PMID: 24997020 DOI: 10.1007/s00335-014-9529-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene "experimental testicular teratoma 1 (ett1)". To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Romagnoli R, Baraldi PG, Lopez-Cara C, Preti D, Aghazadeh Tabrizi M, Balzarini J, Bassetto M, Brancale A, Fu XH, Gao Y, Li J, Zhang SZ, Hamel E, Bortolozzi R, Basso G, Viola G. Concise synthesis and biological evaluation of 2-Aroyl-5-amino benzo[b]thiophene derivatives as a novel class of potent antimitotic agents. J Med Chem 2013; 56:9296-309. [PMID: 24164557 DOI: 10.1021/jm4013938] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological importance of microtubules make them an interesting target for the synthesis of antitumor agents. The 2-(3',4',5'-trimethoxybenzoyl)-5-aminobenzo[b]thiophene moiety was identified as a novel scaffold for the preparation of potent inhibitors of microtubule polymerization acting through the colchicine site of tubulin. The position of the methoxy group on the benzo[b]thiophene was important for maximal antiproliferative activity. Structure-activity relationship analysis established that the best activities were obtained with amino and methoxy groups placed at the C-5 and C-7 positions, respectively. Compounds 3c-e showed more potent inhibition of tubulin polymerization than combretastatin A-4 and strong binding to the colchicine site. These compounds also demonstrated substantial antiproliferative activity, with IC50 values ranging from 2.6 to 18 nM in a variety of cancer cell lines. Importantly, compound 3c (50 mg/kg), significantly inhibited the growth of the human osteosarcoma MNNG/HOS xenograft in nude mice.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara , 44121 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lobert S, Graichen ME, Morris K. Coordinated Regulation of β-Tubulin Isotypes and Epithelial-to-Mesenchymal Transition Protein ZEB1 in Breast Cancer Cells. Biochemistry 2013; 52:5482-90. [DOI: 10.1021/bi400340g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sharon Lobert
- School of
Nursing, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi
39216, United States
| | - Mary E. Graichen
- School of
Nursing, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi
39216, United States
| | - Kevin Morris
- School of
Nursing, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi
39216, United States
| |
Collapse
|
27
|
Ravanbakhsh S, Gajewski M, Greiner R, Tuszynski JA. Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy. Theor Biol Med Model 2013; 10:29. [PMID: 23634782 PMCID: PMC3651705 DOI: 10.1186/1742-4682-10-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As microtubules are essential for cell growth and division, its constituent protein β-tubulin has been a popular target for various treatments, including cancer chemotherapy. There are several isotypes of human β-tubulin and each type of cell expresses its characteristic distribution of these isotypes. Moreover, each tubulin-binding drug has its own distribution of binding affinities over the various isotypes, which further complicates identifying the optimal drug selection. An ideal drug would preferentially bind only the tubulin isotypes expressed abundantly by the cancer cells, but not those in the healthy cells. Unfortunately, as the distributions of the tubulin isotypes in cancer cells overlap with those of healthy cells, this ideal scenario is clearly not possible. We can, however, seek a drug that interferes significantly with the isotype distribution of the cancer cell, but has only minor interactions with those of the healthy cells. METHODS We describe a quantitative methodology for identifying this optimal tubulin isotype profile for an ideal cancer drug, given the isotype distribution of a specific cancer type, as well as the isotype distributions in various healthy tissues, and the physiological importance of each such tissue. RESULTS We report the optimal isotype profiles for different types of cancer with various routes of delivery. CONCLUSIONS Our algorithm, which defines the best profile for each type of cancer (given the drug delivery route and some specified patient characteristics), will help to personalize the design of pharmaceuticals for individual patients. This paper is an attempt to explicitly consider the effects of the tubulin isotype distributions in both cancer and normal cell types, for rational chemotherapy design aimed at optimizing the drug's efficacy with minimal side effects.
Collapse
Affiliation(s)
- Siamak Ravanbakhsh
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | | | | | | |
Collapse
|
28
|
Cell type- and isotype-specific expression and regulation of β-tubulins in primary olfactory ensheathing cells and Schwann cells in vitro. Neurochem Res 2013; 38:981-8. [PMID: 23430470 DOI: 10.1007/s11064-013-1006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
Olfactory ensheathing cells (OECs) and Schwann cells (SCs) are closely-related cell types with regeneration-promoting properties. Comparative gene expression analysis is particularly relevant since it may explain cell type-specific effects and guide the use of each cell type into special clinical applications. In the present study, we focused on β-tubulin isotype expression in primary adult canine glia as a translational large animal model. β-tubulins so far have been studied mainly in non-neuronal tumors and implied in tumorigenic growth. We show here that primary OECs and SCs expressed βII-V isotype mRNA. Interestingly, βIII-tubulin mRNA and protein expression was high in OECs and low in SCs, while fibroblast growth factor-2 (FGF-2) induced its down-regulation in both cell types to the same extent. This was in contrast to βV-tubulin mRNA which was similarly expressed in both cell types and unaltered by FGF-2. Immunocytochemical analysis revealed that OEC cultures contained a higher percentage of βIII-tubulin-positive cells compared to SC cultures. Addition of FGF-2 reduced the number of βIII-tubulin-positive cells in both cultures and significantly increased the percentage of cells with a multipolar morphology. Taken together, we demonstrate cell type-specific expression (βIII) and isotype-specific regulation (βIII, βV) of β-tubulin isotypes in OECs and SCs. While differential expression of βIII-tubulin in primary glial cell types with identical proliferative behaviour argues for novel functions unrelated to tumorigenic growth, strong βIII-tubulin expression in OECs may help to explain the specific properties of this glial cell type.
Collapse
|
29
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Sarkar T, Nguyen TL, Su ZW, Hao J, Bai R, Gussio R, Qiu SX, Hamel E. Interaction of pseudolaric acid B with the colchicine site of tubulin. Biochem Pharmacol 2012; 84:444-50. [PMID: 22634405 PMCID: PMC3402633 DOI: 10.1016/j.bcp.2012.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022]
Abstract
We purified pseudolaric acid B (PAB) from the root and stem bark of Pseudolarix kaempferi (Lindl.) Gorden. Confirming previous findings, we found that the compound had high nanomolar IC₅₀ antiproliferative effects in several cultured cell lines, causing mitotic arrest and the disappearance of intracellular microtubules. PAB strongly inhibited tubulin assembly (IC₅₀, 1.1 μM) but weakly inhibited the binding of colchicine to tubulin, as demonstrated by fluorescence and with [³H]colchicine. Kinetic analysis demonstrated that the mechanism of inhibition was competitive, with an apparent K(i) of 12-15 μM. Indirect studies demonstrated that PAB bound rapidly to tubulin and dissociated more rapidly from tubulin than the colchicine analog 2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone, whose complex with tubulin is known to have a half-life of 17s at 37 °C. We modeled PAB into the colchicine site of tubulin, using the crystal structure 1SA0 that contains two αβ-tubulin heterodimers, both bound to a colchicinoid and to a stathmin fragment. The binding model of PAB revealed common pharmacophoric features between PAB and colchicinoids, not readily apparent from their chemical structures.
Collapse
Affiliation(s)
- Taradas Sarkar
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K, Bogovskaja J, Kütner R, Valvere V, Saks V. Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 2012; 44:539-58. [PMID: 22836527 DOI: 10.1007/s10863-012-9457-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022]
Abstract
The aim of this study was to analyze quantitatively cellular respiration in intraoperational tissue samples taken from human breast cancer (BC) patients. We used oxygraphy and the permeabilized cell techniques in combination with Metabolic Control Analysis (MCA) to measure a corresponding flux control coefficient (FCC). The activity of all components of ATP synthasome, and respiratory chain complexes was found to be significantly increased in human BC cells in situ as compared to the adjacent control tissue. FCC(s) were determined upon direct activation of respiration with exogenously-added ADP and by titrating the complexes with their specific inhibitors to stepwise decrease their activity. MCA showed very high sensitivity of all complexes and carriers studied in human BC cells to inhibition as compared to mitochondria in normal oxidative tissues. The sum of FCC(s) for all ATP synthasome and respiratory chain components was found to be around 4, and the value exceeded significantly that for normal tissue (close to 1). In BC cells, the key sites of the regulation of respiration are Complex IV (FCC = 0.74), ATP synthase (FCC = 0.61), and phosphate carrier (FCC = 0.60); these FCC(s) exceed considerably (~10-fold) those for normal oxidative tissues. In human BC cells, the outer mitochondrial membrane is characterized by an increased permeability towards adenine nucleotides, the mean value of the apparent K(m) for ADP being equal to 114.8 ± 13.6 μM. Our data support the two-compartment hypothesis of tumor metabolism, the high sum of FCC(s) showing structural and functional organization of mitochondrial respiratory chain and ATP synthasome as supercomplexes in human BC.
Collapse
Affiliation(s)
- Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Estonia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Christoph DC, Kasper S, Gauler TC, Loesch C, Engelhard M, Theegarten D, Poettgen C, Hepp R, Peglow A, Loewendick H, Welter S, Stamatis G, Hirsch FR, Schuler M, Eberhardt WEE, Wohlschlaeger J. βV-tubulin expression is associated with outcome following taxane-based chemotherapy in non-small cell lung cancer. Br J Cancer 2012; 107:823-30. [PMID: 22836512 PMCID: PMC3425975 DOI: 10.1038/bjc.2012.324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Tubulin-binding agents (TBAs) are effective in non-small cell lung cancer (NSCLC) treatment. Both βIII- and βV-tubulins are expressed by cancer cells and may lead to resistance against TBAs. Methods: Pre-treatment samples from 65 locally advanced or oligometastatic NSCLC patients, who underwent uniform induction chemotherapy with paclitaxel and platinum followed by radiochemotherapy with vinorelbine and platinum were retrospectively analysed by immunohistochemistry. Protein expression of βIII- and βV-tubulin was morphometrically quantified. Results: Median pre-treatment H-score for βIII-tubulin was 110 (range: 0–290), and 160 for βV-tubulin (range: 0–290). Low βIII-tubulin expression was associated with improved overall survival (OS) (P=0.0127, hazard ratio (HR): 0.328). An association between high βV-tubulin expression and prolonged progression-free survival (PFS, median 19.2 vs 9.4 months in high vs low expressors; P=0.0315, HR: 1.899) was found. Further, high βV-tubulin expression was associated with objective response (median H-score 172.5 for CR+PR vs 120 for SD+PD patients, P=0.0104) or disease control following induction chemotherapy (170 for CR+PR+SD vs 100 for PD patients, P=0.0081), but not radiochemotherapy. Conclusion: Expression of βV-tubulin was associated with treatment response and PFS following paclitaxel-based chemotherapy of locally advanced and oligometastatic NSCLC patients. Prolonged OS was associated with low levels of βIII-tubulin. Prospective evaluation of βIII/βV-tubulin expression in NSCLC is warranted.
Collapse
Affiliation(s)
- D C Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rostovtseva TK, Bezrukov SM. VDAC inhibition by tubulin and its physiological implications. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1526-35. [PMID: 22100746 PMCID: PMC3302949 DOI: 10.1016/j.bbamem.2011.11.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/24/2011] [Accepted: 11/02/2011] [Indexed: 11/23/2022]
Abstract
Regulation of mitochondrial outer membrane (MOM) permeability has dual importance: in normal metabolite and energy exchange between mitochondria and cytoplasm, and thus in control of respiration, and in apoptosis by release of apoptogenic factors into the cytosol. However, the mechanism of this regulation involving the voltage-dependent anion channel (VDAC), the major channel of MOM, remains controversial. For example, one of the long-standing puzzles was that in permeabilized cells, adenine nucleotide translocase is less accessible to cytosolic ADP than in isolated mitochondria. Still another puzzle was that, according to channel-reconstitution experiments, voltage regulation of VDAC is limited to potentials exceeding 30mV, which are believed to be much too high for MOM. We have solved these puzzles and uncovered multiple new functional links by identifying a missing player in the regulation of VDAC and, hence, MOM permeability - the cytoskeletal protein tubulin. We have shown that, depending on VDAC phosphorylation state and applied voltage, nanomolar to micromolar concentrations of dimeric tubulin induce functionally important reversible blockage of VDAC reconstituted into planar phospholipid membranes. The voltage sensitivity of the blockage equilibrium is truly remarkable. It is described by an effective "gating charge" of more than ten elementary charges, thus making the blockage reaction as responsive to the applied voltage as the most voltage-sensitive channels of electrophysiology are. Analysis of the tubulin-blocked state demonstrated that although this state is still able to conduct small ions, it is impermeable to ATP and other multi-charged anions because of the reduced aperture and inversed selectivity. The findings, obtained in a channel reconstitution assay, were supported by experiments with isolated mitochondria and human hepatoma cells. Taken together, these results suggest a previously unknown mechanism of regulation of mitochondrial energetics, governed by VDAC interaction with tubulin at the mitochondria-cytosol interface. Immediate physiological implications include new insights into serine/threonine kinase signaling pathways, Ca(2+) homeostasis, and cytoskeleton/microtubule activity in health and disease, especially in the case of the highly dynamic microtubule network which is characteristic of cancerogenesis and cell proliferation. In the present review, we speculate how these findings may help to identify new mechanisms of mitochondria-associated action of chemotherapeutic microtubule-targeting drugs, and also to understand why and how cancer cells preferentially use inefficient glycolysis rather than oxidative phosphorylation (Warburg effect). This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Tatiana K Rostovtseva
- Laboratory of Physical and Structural Biology, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Romagnoli R, Baraldi PG, Salvador MK, Preti D, Aghazadeh Tabrizi M, Brancale A, Fu XH, Li J, Zhang SZ, Hamel E, Bortolozzi R, Porcù E, Basso G, Viola G. Discovery and optimization of a series of 2-aryl-4-amino-5-(3',4',5'-trimethoxybenzoyl)thiazoles as novel anticancer agents. J Med Chem 2012; 55:5433-45. [PMID: 22578111 DOI: 10.1021/jm300388h] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new series of tubulin polymerization inhibitors based on the 2-aryl/heteroaryl-4-amino-5-(3',4',5'-trimethoxybenzoyl)thiazole scaffold was synthesized and evaluated for growth inhibition activity on a panel of cancer cell lines, cell cycle effects, and in vivo potency. Structure-activity relationships were elucidated with various substitutions at the 2-position of the thiazole skeleton. Hydrophobic moieties, such as phenyl and 3-thienyl, were well tolerated at this position, and variation of the phenyl substituents had remarkable effects on potency. The most active compound (3b) induced apoptosis through the mitochondrial pathway with activation of caspase-3. We also showed that it has potential antivascular activity since it reduced in vitro endothelial cell migration and disrupted capillary-like tube formation at noncytotoxic concentrations. Furthermore, compound 3b significantly reduced the growth of the HT-29 xenograft in a nude mouse model, suggesting that 3b is a promising new antimitotic agent with clinical potential.
Collapse
Affiliation(s)
- Romeo Romagnoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, 44121 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Epothilones in Development for Non–Small-Cell Lung Cancer: Novel Anti-Tubulin Agents With the Potential to Overcome Taxane Resistance. Clin Lung Cancer 2012; 13:171-80. [DOI: 10.1016/j.cllc.2011.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
|
36
|
Identification of β-tubulin as a common immunogen in gastrointestinal malignancy by mass spectrometry of colorectal cancer proteome: implications for early disease detection. Anal Bioanal Chem 2012; 403:1801-9. [DOI: 10.1007/s00216-011-5628-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 01/11/2023]
|
37
|
The distribution of β-tubulin isotypes in cultured neurons from embryonic, newborn, and adult mouse brains. Brain Res 2011; 1420:8-18. [DOI: 10.1016/j.brainres.2011.08.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022]
|
38
|
Lobert S, Jefferson B, Morris K. Regulation of β-tubulin isotypes by micro-RNA 100 in MCF7 breast cancer cells. Cytoskeleton (Hoboken) 2011; 68:355-62. [PMID: 21634028 DOI: 10.1002/cm.20517] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/03/2011] [Accepted: 05/17/2011] [Indexed: 12/21/2022]
Abstract
Antimitotic drugs are key components of combination chemotherapy protocols for hematological and solid tumors. The taxanes (e.g., paclitaxel) bind to the β subunit of the tubulin heterodimer and reduce microtubule dynamics, leading to cell cycle arrest in G2/M. The effectiveness of combination chemotherapy is limited by tumor resistance to drugs initially or as a cumulative effect after several cycles of treatment. Because changes in the drug receptor may be linked to drug resistance, we investigated changes in β-tubulin isotypes in response to paclitaxel treatment in MCF7 breast cancer cells. We found that paclitaxel induced a 2-3 fold increase in mRNA for β-tubulin IIA and III genes, TUBB2A, and TUBB3. β-Tubulin class III protein increased; however, β-tubulin class II protein was not detected in these cells. Paclitaxel treatment following pretreatment with actinomycin D showed that the change in β-tubulin class III was due to increased transcription and linked to G2/M arrest. The increase in β-tubulin IIA mRNA was due to both enhanced stability and increased transcription, unassociated with G2/M arrest. We used micro-RNA superarrays to look for changes in families of micro-RNAs that might be linked to drug-induced changes in β-tubulin isotype mRNA and/or protein. We found a significant decrease in the tumor suppressor, miR-100, in MCF7 cells in response to paclitaxel treatment. Transfection of MCF7 cells with miR-100 significantly reduced β-tubulin I, IIA, IIB and V mRNA and prevented paclitaxel-induced increases in β-tubulin isotypes. This is the first report of a micro-RNA that regulates these specific β-tubulin isotype mRNAs.
Collapse
Affiliation(s)
- Sharon Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | | | |
Collapse
|
39
|
Feizabadi MS, Mutafopulos KS, Behr A. Measuring the persistence length of MCF7 cell microtubules in vitro. Biotechnol J 2011; 6:882-7. [DOI: 10.1002/biot.201000465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/09/2011] [Accepted: 04/04/2011] [Indexed: 11/11/2022]
|
40
|
Tooley JG, Miller SA, Stukenberg PT. The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol Biol Cell 2011; 22:1217-26. [PMID: 21325630 PMCID: PMC3078066 DOI: 10.1091/mbc.e10-07-0626] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/01/2011] [Accepted: 08/08/2011] [Indexed: 12/20/2022] Open
Abstract
In kinetochores, the Ndc80 complex couples the energy in a depolymerizing microtubule to perform the work of moving chromosomes. The complex directly binds microtubules using an unstructured, positively charged N-terminal tail located on Hec1/Ndc80. Hec1/Ndc80 also contains a calponin homology domain (CHD) that increases its affinity for microtubules in vitro, yet whether it is required in cells and how the tail and CHD work together are critical unanswered questions. Human kinetochores containing Hec1/Ndc80 with point mutations in the CHD fail to align chromosomes or form productive microtubule attachments. Kinetochore architecture and spindle checkpoint protein recruitment are unaffected in these mutants, and the loss of CHD function cannot be rescued by removing Aurora B sites from the tail. The interaction between the Hec1/Ndc80 CHD and a microtubule is facilitated by positively charged amino acids on two separate regions of the CHD, and both are required for kinetochores to make stable attachments to microtubules. Chromosome congression in cells also requires positive charge on the Hec1 tail to facilitate microtubule contact. In vitro binding data suggest that charge on the tail regulates attachment by directly increasing microtubule affinity as well as driving cooperative binding of the CHD. These data argue that in vertebrates there is a tripartite attachment point facilitating the interaction between Hec1/Ndc80 and microtubules. We discuss how such a complex microtubule-binding interface may facilitate the coupling of depolymerization to chromosome movement.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
41
|
Guzun R, Karu-Varikmaa M, Gonzalez-Granillo M, Kuznetsov AV, Michel L, Cottet-Rousselle C, Saaremäe M, Kaambre T, Metsis M, Grimm M, Auffray C, Saks V. Mitochondria-cytoskeleton interaction: distribution of β-tubulins in cardiomyocytes and HL-1 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:458-69. [PMID: 21296049 DOI: 10.1016/j.bbabio.2011.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/13/2011] [Accepted: 01/31/2011] [Indexed: 01/23/2023]
Abstract
Mitochondria-cytoskeleton interactions were analyzed in adult rat cardiomyocytes and in cancerous non-beating HL-1 cells of cardiac phenotype. We show that in adult cardiomyocytes βII-tubulin is associated with mitochondrial outer membrane (MOM). βI-tubulin demonstrates diffused intracellular distribution, βIII-tubulin is colocalized with Z-lines and βIV-tubulin forms microtubular network. HL-1 cells are characterized by the absence of βII-tubulin, by the presence of bundles of filamentous βIV-tubulin and diffusely distributed βI- and βIII-tubulins. Mitochondrial isoform of creatine kinase (MtCK), highly expressed in cardiomyocytes, is absent in HL-1 cells. Our results show that high apparent K(m) for exogenous ADP in regulation of respiration and high expression of MtCK both correlate with the expression of βII-tubulin. The absence of βII-tubulin isotype in isolated mitochondria and in HL-1 cells results in increased apparent affinity of oxidative phosphorylation for exogenous ADP. This observation is consistent with the assumption that the binding of βII-tubulin to mitochondria limits ADP/ATP diffusion through voltage-dependent anion channel of MOM and thus shifts energy transfer via the phosphocreatine pathway. On the other hand, absence of both βII-tubulin and MtCK in HL-1 cells can be associated with their more glycolysis-dependent energy metabolism which is typical for cancer cells (Warburg effect).
Collapse
Affiliation(s)
- Rita Guzun
- INSERM U884, Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Leandro-García LJ, Leskelä S, Landa I, Montero-Conde C, López-Jiménez E, Letón R, Cascón A, Robledo M, Rodríguez-Antona C. Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 2010; 67:214-23. [PMID: 20191564 DOI: 10.1002/cm.20436] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The beta-tubulins are microtubule components encoded by a multigene family, which produces slightly different proteins with complex expression patterns. Several widely used anticancer drugs base their activity on beta-tubulin binding, microtubule dynamics alteration, and cell division blockage. The expression of these drug targets in tumoral and normal cells could be of crucial importance for therapy outcome, unfortunately, the complex beta-tubulin expression patterns have been poorly characterized in human. In this study, we developed a quantitative RT-PCR technique that accurately determines the mRNA expression of the eight human beta-tubulin isotypes, encoding class I, IIa, IIb, III, IVa, IVb, V, and VI and applied it to 21 nontumoral tissues and 79 tumor samples belonging to seven cancer types. In the nontumoral tissues, we found that, overall, TUBB (I), TUBB2C (IVb), and TUBB6 (V) were ubiquitous, TUBB1(VI) was hematopoietic cell-specific, and TUBB2A (IIa), TUBB2B (IIb), TUBB3 (III), and TUBB4 (IVa) had high expression in brain; however, the contribution of the different isotypes to the total beta-tubulin content varied for each tissue and had a complex pattern. In tumoral tissues, most isotypes exhibited an altered expression in specific tumor types or related to tumoral characteristics. In general, TUBB3 showed a great increase in expression while TUBB6 expression was largely decreased in most tumors. Thus, normal tissues showed a complex beta-tubulin isotype distribution, which could contribute to the toxicity profile of the microtubule-binding drugs. In addition, the specific isotypes significantly altered in tumors might represent markers for drug response.
Collapse
Affiliation(s)
- Luis J Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernández Almagro n 3, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lobert S, Hiser L, Correia JJ. Expression profiling of tubulin isotypes and microtubule-interacting proteins using real-time polymerase chain reaction. Methods Cell Biol 2010; 95:47-58. [PMID: 20466129 DOI: 10.1016/s0091-679x(10)95004-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Real-time polymerase chain reaction (PCR) has been used for quantification of intracellular mRNA levels in cell culture and tissue samples. It is an important tool for studying antimitotic drug effects on tubulin isotype and microtubule-interacting protein levels and for measuring differences in normal and tumor tissue samples that could have predictive or prognostic applications. Both quantitative and comparative methods are valuable approaches; however, the selection of either approach requires an understanding of their benefits and challenges. In this chapter, we provide detailed protocols for real-time PCR experiments, discuss issues to consider in selecting real-time PCR methodologies, and give examples utilizing either quantitative or comparative approaches.
Collapse
Affiliation(s)
- Sharon Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
44
|
Abstract
We developed tubulin purification strategies that allowed sufficient material to be produced for compound-screening projects. Tubulins were polymerized in the presence of compounds using either turbidometric or fluorescence polymerization assays. IC50 and EC50 values were calculated and used to determine ratios between host and target tubulin (TT) (e.g., IC50-neuronal tubulin/IC50-TT). This ratio can be compared between compounds to identify the ones which are most selective for a particular TT. We found ratios for different compounds ranged from 0.16 to 4.0 between neuronal and cancer cell tubulin indicating that the sequence and posttranslational heterogeneity between these tubulins are sufficient to identify selective ligands for the TT. Likewise, compounds compared between neuronal and fungal tubulin had ratios ranging from 0.03 to 0.60, and compounds compared between neuronal to plant tubulin had ratios ranging from 0.03 to 52. Considering these data, we believe cancer cell tubulin-targeted drugs could be obtained with ratios in excess of 20, herbicides with ratios in excess of 200, and fungicides in excess of 200.
Collapse
|
45
|
Abstract
Tubulin antibodies are among the most extensively used immunological reagents in basic and applied cell and molecular biology. In this chapter, we provide a brief overview of the practices and reagents developed in our laboratory during the past 25 years for characterizing anti-beta-tubulin antibodies.
Collapse
Affiliation(s)
- Anthony J Spano
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
46
|
Yang H, Cabral F, Bhattacharya R. Tubulin isotype specificity and identification of the epitope for antibody Tub 2.1. Protein Eng Des Sel 2009; 22:625-9. [DOI: 10.1093/protein/gzp046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Mozzetti S, Iantomasi R, De Maria I, Prislei S, Mariani M, Camperchioli A, Bartollino S, Gallo D, Scambia G, Ferlini C. Molecular mechanisms of patupilone resistance. Cancer Res 2009; 68:10197-204. [PMID: 19074887 DOI: 10.1158/0008-5472.can-08-2091] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Patupilone is an epothilone in advanced clinical development that has shown promising efficacy in heavily pretreated patients. This study aimed at characterizing the mechanisms of patupilone activity in resistant patients. To this end, we generated patupilone-resistant cells using two cellular models, the first characterized by high chemosensitivity and low class III beta-tubulin (TUBB3) expression (A2780), and the second by low chemosensitivity and high TUBB3 expression (OVCAR-3). The obtained cell lines were named EPO3 and OVCAR-EPO, respectively. The same selection procedure was done in A2780 cells to generate a paclitaxel-resistant cell line (TAX50). Factors of resistance are expected to increase in the drug-resistant cell lines, whereas factors of drug sensitivity will be down-regulated. Using this approach, we found up-regulation of TUBB3 in TAX50, but not EPO3, cells, showing that TUBB3 mediates the resistance to paclitaxel but not to patupilone. Moreover, TUBB3 was a factor of patupilone sensitivity because OVCAR-EPO cells exhibited a dramatic reduction of TUBB3 and a concomitant sensitization to hypoxia and cisplatin-based chemotherapy. To identify the mechanisms underlying patupilone resistance, tubulin genes were sequenced, thereby revealing that a prominent mechanism of drug resistance is represented by point mutations in class I beta-tubulin. Overall, these results suggest that paclitaxel and patupilone have nonoverlapping mechanisms of resistance, thus allowing the use of patupilone for those patients relapsing after paclitaxel-based chemotherapy. Furthermore, patupilone represents a promising first-line option for the treatment of high-risk ovarian cancer patients, who exhibit high TUBB3 levels and poor response to standard paclitaxel-platin chemotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/metabolism
- Antineoplastic Agents/pharmacology
- Cell Hypoxia/physiology
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Epothilones/pharmacology
- Female
- Humans
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/metabolism
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Paclitaxel/pharmacology
- Point Mutation
- Protein Isoforms
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Tubulin/biosynthesis
- Tubulin/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Simona Mozzetti
- Department of Obstetrics and Gynecology, Laboratory of Antineoplastic Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hiser L, Herrington B, Lobert S. Effect of noscapine and vincristine combination on demyelination and cell proliferation in vitro. Leuk Lymphoma 2008; 49:1603-9. [PMID: 18766974 DOI: 10.1080/10428190802213480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral neuropathy is a common, dose-limiting side effect of vincristine, a frontline therapy for acute lymphoblastic leukemia. Combination chemotherapy that reduces the neurotoxicity without compromising the efficacy of vincristine would improve patient outcomes. We performed in vitro studies using a combination of microtubule-binding antimitotics, noscapine and vincristine. In cell cultures containing neurons, astrocytes, and oligodendrocytes, vincristine caused demyelination as shown by transmission electron microscopy. A combination of vincristine and noscapine protected against demyelination. Human acute lymphoblastic and acute myelogenous leukemia cell lines CCRF-CEM and HL-60, respectively, were used to determine the antiproliferative effect of this novel drug combination. Vincristine and noscapine decreased cell proliferation with IC(50) concentrations of 1 nM and 20 microM, respectively. Analysis of dose-effect relationships using isobolograms and combination indices demonstrated that noscapine acts synergistically with vincristine. Thus, noscapine is a promising candidate for use with vincristine to decrease neurotoxicity and enhance antineoplastic effectiveness.
Collapse
Affiliation(s)
- Laree Hiser
- School of Nursing, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
49
|
Pinzani P, Lind K, Malentacchi F, Nesi G, Salvianti F, Villari D, Kubista M, Pazzagli M, Orlando C. Prostate-specific antigen mRNA and protein levels in laser microdissected cells of human prostate measured by real-time reverse transcriptase–quantitative polymerase chain reaction and immuno–quantitative polymerase chain reaction. Hum Pathol 2008; 39:1474-82. [DOI: 10.1016/j.humpath.2008.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 01/15/2023]
|
50
|
Cicchillitti L, Penci R, Di Michele M, Filippetti F, Rotilio D, Donati MB, Scambia G, Ferlini C. Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol Cancer Ther 2008; 7:2070-9. [PMID: 18645017 DOI: 10.1158/1535-7163.mct-07-2370] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Class III beta-tubulin (TUBB3) has been discovered as a marker of drug resistance in human cancer. To get insights into the mechanisms by which this protein is involved in drug resistance, we analyzed TUBB3 in a panel of drug-sensitive and drug-resistant cell lines. We identified two main different isoforms of TUBB3 having a specific electrophoretic profile. We showed that the apparently higher molecular weight isoform is glycosylated and phosphorylated and it is localized in the cytoskeleton. The apparently lower molecular weight isoform is instead found exclusively in mitochondria. We observed that levels of phosphorylation and glycosylation of TUBB3 are associated with the resistant phenotype and compartmentalization into cytoskeleton. By two-dimensional nonreduced/reduced SDS-PAGE analysis, we also found that TUBB3 protein in vivo forms protein complexes through intermolecular disulfide bridges. Through TUBB3 immunoprecipitation, we isolated protein species able to interact with TUBB3. Following trypsin digestion, these proteins were characterized by mass spectrometry analysis. Functional analysis revealed that these proteins are involved in adaptation to oxidative stress and glucose deprivation, thereby suggesting that TUBB3 is a survival factor able to directly contribute to drug resistance. Moreover, glycosylation of TUBB3 could represent an attractive pathway whose inhibition could hamper cytoskeletal compartmentalization and TUBB3 function.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Oncology, Catholic University of the Sacred Heart, Largo A. Gemelli, 1-86100, Campobasso, Italy
| | | | | | | | | | | | | | | |
Collapse
|