1
|
Cho H, Lee E, Kim J, Shin S, Kim YJ, Lee H, Yu JH, Jeon YH, Lee SW, Lee SY, Park KW, Kang JS, Kwon SH, Kim Y, Jeon R. Discovery of organosulfur-based selective HDAC8 inhibitors with anti-neuroblastoma activity. Eur J Pharm Sci 2024; 203:106921. [PMID: 39357770 DOI: 10.1016/j.ejps.2024.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators of gene expression and various cellular processes, and are potential targets for anticancer therapy. In particular, HDAC8 is a promising therapeutic target for childhood neuroblastoma. To date, five HDAC inhibitors have been approved as anticancer drugs; however, all are non-selective HDAC inhibitors with various side effects. Furthermore, many promising HDAC inhibitors incorporate hydroxamic acid as a zinc binding group (ZBG), which may be associated with toxicity. Therefore, identification of isoform-selective HDAC inhibitors with novel ZBG is crucial. Here, a series of sulfur-based selective HDAC8 inhibitors featuring a novel ZBG were identified by modifying the early hit, ajoene, a component of garlic. Structure-activity relationship studies uncovered potent and selective HDAC8 inhibitors, and docking studies provided a structural rationale for HDAC8 inhibitory activity. One of the potent compounds, (Z)-1-phenyl-7-(4-methoxyphenyl)-2,3,7-trithiahepta-4-ene-7-oxide (15c), exhibited antiproliferative activity, with a GI50 of 2 µM, against neuroblastoma cell lines. 15c also showed significant in vivo efficacy in a neuroblastoma BE(2)-C xenograft model.
Collapse
Affiliation(s)
- Hyewon Cho
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Eun Lee
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Jisoo Kim
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Soojeong Shin
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Yoon-Jung Kim
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Heejin Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Ji Hoon Yu
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Yong Hyun Jeon
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Young Lee
- EONE-DIAGNOMICS New drug R&D Center, 708 MCC B Building, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, Republic of Korea
| | - Ki Whan Park
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Ochang, Cheongwon, Cheongju, 28116, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Ochang, Cheongwon, Cheongju, 28116, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Yonjung Kim
- EONE-DIAGNOMICS New drug R&D Center, 708 MCC B Building, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, Republic of Korea; EONE-DIAGNOMICS, 143 Gaetbeol-ro, Yeonsu-gu, Incheon, Republic of Korea.
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea.
| |
Collapse
|
2
|
Alvariño R, Alfonso A, Tabudravu JN, González-Jartín J, Al Maqbali KS, Elhariry M, Vieytes MR, Botana LM. Psammaplin A and Its Analogs Attenuate Oxidative Stress in Neuronal Cells through Peroxisome Proliferator-Activated Receptor γ Activation. JOURNAL OF NATURAL PRODUCTS 2024; 87:1187-1196. [PMID: 38632902 PMCID: PMC11061836 DOI: 10.1021/acs.jnatprod.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento
de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Amparo Alfonso
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Jioji N. Tabudravu
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Jesús González-Jartín
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Khalid S. Al Maqbali
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Marwa Elhariry
- School
of Pharmacy and Biomedical Sciences, University
of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, Lugo 27002, España
| |
Collapse
|
3
|
Frühauf A, Meyer-Almes FJ. Non-Hydroxamate Zinc-Binding Groups as Warheads for Histone Deacetylases. Molecules 2021; 26:5151. [PMID: 34500583 PMCID: PMC8434074 DOI: 10.3390/molecules26175151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) remove acetyl groups from acetylated lysine residues and have a large variety of substrates and interaction partners. Therefore, it is not surprising that HDACs are involved in many diseases. Most inhibitors of zinc-dependent HDACs (HDACis) including approved drugs contain a hydroxamate as a zinc-binding group (ZBG), which is by far the biggest contributor to affinity, while chemical variation of the residual molecule is exploited to create more or less selectivity against HDAC isozymes or other metalloproteins. Hydroxamates have a propensity for nonspecificity and have recently come under considerable suspicion because of potential mutagenicity. Therefore, there are significant concerns when applying hydroxamate-containing compounds as therapeutics in chronic diseases beyond oncology due to unwanted toxic side effects. In the last years, several alternative ZBGs have been developed, which can replace the critical hydroxamate group in HDACis, while preserving high potency. Moreover, these compounds can be developed into highly selective inhibitors. This review aims at providing an overview of the progress in the field of non-hydroxamic HDACis in the time period from 2015 to present. Formally, ZBGs are clustered according to their binding mode and structural similarity to provide qualitative assessments and predictions based on available structural information.
Collapse
Affiliation(s)
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany;
| |
Collapse
|
4
|
Akone SH, Ntie-Kang F, Stuhldreier F, Ewonkem MB, Noah AM, Mouelle SEM, Müller R. Natural Products Impacting DNA Methyltransferases and Histone Deacetylases. Front Pharmacol 2020; 11:992. [PMID: 32903500 PMCID: PMC7438611 DOI: 10.3389/fphar.2020.00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetics refers to heritable changes in gene expression and chromatin structure without change in a DNA sequence. Several epigenetic modifications and respective regulators have been reported. These include DNA methylation, chromatin remodeling, histone post-translational modifications, and non-coding RNAs. Emerging evidence has revealed that epigenetic dysregulations are involved in a wide range of diseases including cancers. Therefore, the reversible nature of epigenetic modifications concerning activation or inhibition of enzymes involved could be promising targets and useful tools for the elucidation of cellular and biological phenomena. In this review, emphasis is laid on natural products that inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) making them promising candidates for the development of lead structures for anticancer-drugs targeting epigenetic modifications. However, most of the natural products targeting HDAC and/or DNMT lack isoform selectivity, which is important for determining their potential use as therapeutic agents. Nevertheless, the structures presented in this review offer the well-founded basis that screening and chemical modifications of natural products will in future provide not only leads to the identification of more specific inhibitors with fewer side effects, but also important features for the elucidation of HDAC and DNMT function with respect to cancer treatment.
Collapse
Affiliation(s)
- Sergi Herve Akone
- Department of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Dresden, Germany
| | - Fabian Stuhldreier
- Medical Faculty, Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexandre Mboene Noah
- Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | | | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarbrücken, Germany
| |
Collapse
|
5
|
Li X, Peterson YK, Inks ES, Himes RA, Li J, Zhang Y, Kong X, Chou CJ. Class I HDAC Inhibitors Display Different Antitumor Mechanism in Leukemia and Prostatic Cancer Cells Depending on Their p53 Status. J Med Chem 2018; 61:2589-2603. [PMID: 29499113 PMCID: PMC5908721 DOI: 10.1021/acs.jmedchem.8b00136] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously, we designed and synthesized a series of o-aminobenzamide-based histone deacetylase (HDAC) inhibitors, among which the representative compound 11a exhibited potent inhibitory activity against class I HDACs. In this study, we report the development of more potent hydrazide-based class I selective HDAC inhibitors using 11a as a lead. Representative compound 13b showed a mixed, slow, and tight binding inhibition mechanism for HDAC1, 2, and 3. The most potent compound 13e exhibited low nanomolar IC50s toward HDAC1, 2, and 3 and could down-regulate HDAC6 in acute myeloid leukemia MV4-11 cells. The EC50 of 13e against MV4-11 cells was 34.7 nM, which is 26 times lower than its parent compound 11a. In vitro responses to 13e vary significantly and interestingly based on cell type: in p53 wild-type MV4-11 cells, 13e induced cell death via apoptosis and G1/S cell cycle arrest, which is likely mediated by a p53-dependent pathway, while in p53-null PC-3 cells, 13e caused G2/M arrest and inhibited cell proliferation without inducing caspase-3-dependent apoptosis.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yuri K. Peterson
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Elizabeth S. Inks
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard A. Himes
- Lydex Pharmaceuticals, 330 Concord Street, Unit 6A, Charleston, South Carolina 29401, United States
| | - Jiaying Li
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Xiujie Kong
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - C. James Chou
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
- Lydex Pharmaceuticals, 330 Concord Street, Unit 6A, Charleston, South Carolina 29401, United States
| |
Collapse
|
6
|
Traoré MM, Zwick V, Simões-Pires CA, Nurisso A, Issa M, Cuendet M, Maynadier M, Wein S, Vial H, Jamet H, Wong YS. Hydroxyl Ketone-Based Histone Deacetylase Inhibitors To Gain Insight into Class I HDAC Selectivity versus That of HDAC6. ACS OMEGA 2017; 2:1550-1562. [PMID: 30023639 PMCID: PMC6044785 DOI: 10.1021/acsomega.6b00481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Little is known about the biological and structural features that govern the isoform selectivity for class I histone deacetylases (HDACs) over HDAC6. In addition to that for known inhibitors, like benzamides, psammaplin A, and cyclodepsipeptide-derived thiols, selectivity was also observed for naturally occurring cyclopeptide HDAC inhibitors with an aliphatic flexible linker and ketonelike zinc-binding group (ZBG). The present study reports that this isoform selectivity is mainly due to the linker and ZBG, as replacement of the cyclopeptide cap region by a simple aniline retained class I HDAC isoform selectivity toward HDAC6 in enzymatic assays. The best cyclopeptide-free analogues preserved efficacy against Plasmodium falciparum and cancer cell lines. Molecular modeling provided hypotheses to explain this selectivity and suggests different behaviors of the flexible linker on HDAC1 and HDAC6 pockets, which may influence, on the basis of the strength of the ZBG, its coordination with the zinc ion.
Collapse
Affiliation(s)
- Mohamed
D. M. Traoré
- Département
de Pharmacochimie Moléculaire, CNRS
UMR 5063, ICMG FR 2607, Univ. Grenoble Alpes, 470 rue de la chimie, 38041 Grenoble cedex 9, France
- Département
de Chimie Moléculaire, CNRS UMR 5250,
ICMG FR 2607, Univ. Grenoble Alpes, 301 rue de la chimie, 38041 Grenoble cedex 9, France
| | - Vincent Zwick
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Claudia A. Simões-Pires
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Alessandra Nurisso
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
- Laboratoire
Dynamique des Interactions Membranaires Normales et Pathologiques, UMR 5235, CNRS, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Mark Issa
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Muriel Cuendet
- School
of Pharmaceutical Sciences, University of
Geneva, University of Lausanne, rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Marjorie Maynadier
- Département
de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Sharon Wein
- Département
de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Henri Vial
- Département
de Biochimie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Helene Jamet
- Département
de Chimie Moléculaire, CNRS UMR 5250,
ICMG FR 2607, Univ. Grenoble Alpes, 301 rue de la chimie, 38041 Grenoble cedex 9, France
| | - Yung-Sing Wong
- Département
de Pharmacochimie Moléculaire, CNRS
UMR 5063, ICMG FR 2607, Univ. Grenoble Alpes, 470 rue de la chimie, 38041 Grenoble cedex 9, France
| |
Collapse
|
7
|
Weston CE, Krämer A, Colin F, Yildiz Ö, Baud MGJ, Meyer-Almes FJ, Fuchter MJ. Toward Photopharmacological Antimicrobial Chemotherapy Using Photoswitchable Amidohydrolase Inhibitors. ACS Infect Dis 2017; 3:152-161. [PMID: 27756124 DOI: 10.1021/acsinfecdis.6b00148] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photopharmacological agents exhibit light-dependent biological activity and may have potential in the development of new antimicrobial agents/modalities. Amidohydrolase enzymes homologous to the well-known human histone deacetylases (HDACs) are present in bacteria, including resistant organisms responsible for a significant number of hospital-acquired infections and deaths. We report photopharmacological inhibitors of these enzymes, using two classes of photoswitches embedded in the inhibitor pharmacophore: azobenzenes and arylazopyrazoles. Although both classes of inhibitor show excellent inhibitory activity (nM IC50 values) of the target enzymes and promising differential activity of the switchable E- and Z-isomeric forms, the arylazopyrazoles exhibit better intrinsic photoswitch performance (more complete switching, longer thermal lifetime of the Z-isomer). We also report protein-ligand crystal structures of the E-isomers of both an azobenzene and an arylazopyrazole inhibitor, bound to bacterial histone deacetylase-like amidohydrolases (HDAHs). These structures not only uncover interactions important for inhibitor binding but also reveal conformational differences between the two photoswitch inhibitor classes. As such, our data may pave the way for the design of improved photopharmacological agents targeting the HDAC superfamily.
Collapse
Affiliation(s)
- Claire E. Weston
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andreas Krämer
- Department of Chemical Engineering and
Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Felix Colin
- Department of Chemical Engineering and
Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Özkan Yildiz
- Department
of Structural Biology, Max-Planck-Institute of Biophysics, Max von
Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Matthias G. J. Baud
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and
Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Matthew J. Fuchter
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Wen J, Niu Q, Liu J, Bao Y, Yang J, Luan S, Fan Y, Liu D, Zhao L. Novel thiol-based histone deacetylase inhibitors bearing 3-phenyl-1 H -pyrazole-5-carboxamide scaffold as surface recognition motif: Design, synthesis and SAR study. Bioorg Med Chem Lett 2016; 26:375-379. [DOI: 10.1016/j.bmcl.2015.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/06/2015] [Accepted: 12/04/2015] [Indexed: 01/08/2023]
|
9
|
Wen J, Bao Y, Niu Q, Liu J, Yang J, Wang W, Jiang T, Fan Y, Li K, Wang J, Zhao L, Liu D. Synthesis, biological evaluation and molecular modeling studies of psammaplin A and its analogs as potent histone deacetylases inhibitors and cytotoxic agents. Bioorg Med Chem Lett 2015; 26:4372-6. [PMID: 27460171 DOI: 10.1016/j.bmcl.2015.12.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/05/2015] [Accepted: 12/28/2015] [Indexed: 02/02/2023]
Abstract
In this study, a concise synthetic method of psammaplin A was achieved from 3-bromo-4-hydroxybenzaldahyde and hydantoin through a four-step synthesis via Knoevenagel condensation, hydrolysis, oximation and amidation in 37% overall yield. A collection of novel psammaplin A analogs focused on the variations of substituents at the benzene ring and modifications at the oxime moiety were synthesized. Among all the synthesized compounds, 5d and 5e showed better HDAC inhibition than psammaplin A and comparable cytotoxicity against four cancer cell lines (PC-3, MCF-7, A549 and HL-60). Molecular docking and dynamics simulation revealed that (i) hydrogen atom of the oxime group interacts with Asp99 of HDAC1 through a water bridged hydrogen bond and (ii) a hydroxyl group is optimal attached on the para-position of benzene, interacting with Glu203 at the entrance to the active site tunnel.
Collapse
Affiliation(s)
- Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Bao
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qun Niu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiang Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinyu Yang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wanqiao Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Jiang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinbo Fan
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kun Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
10
|
Kim B, Hong J. An overview of naturally occurring histone deacetylase inhibitors. Curr Top Med Chem 2015; 14:2759-82. [PMID: 25487010 DOI: 10.2174/1568026615666141208105614] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 11/26/2014] [Accepted: 11/29/2014] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDACs) have recently emerged as key elements in epigenetic control of gene expression. Due to the implication of HDACs in a variety of diseases ranging from cancer to neurodegenerative disorder, HDAC inhibitors have received increased attention in recent years. Over the last few decades, a myriad of HDAC inhibitors containing a wide variety of structural features have been identified from natural sources. Here, we review the discovery, synthesis, biological properties, and modes of action of these naturally occurring HDAC inhibitors and consider their implications for future research.
Collapse
Affiliation(s)
| | - Jiyong Hong
- Duke University, Department of Chemistry, 124 Science Drive, Box 90346, Durham, NC 27708, USA.
| |
Collapse
|
11
|
Cao H, Liu D, Liu C, Hu X, Lei A. Copper-catalyzed oxidative alkenylation of thioethers via Csp(3)-H functionalization. Org Biomol Chem 2015; 13:2264-6. [PMID: 25585048 DOI: 10.1039/c4ob02564d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel copper-catalyzed oxidative alkenylation of thioethers via Csp(3)-H functionalization to construct allylic thioethers is first demonstrated. Different 1,1-disubstituted olefins could cross-couple with thioethers to generate the corresponding alkenylation products in moderate to excellent yields. This reaction is supposed to proceed via a radical process.
Collapse
Affiliation(s)
- Hao Cao
- College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | |
Collapse
|
12
|
Hong S, Shin Y, Jung M, Ha MW, Park Y, Lee YJ, Shin J, Oh KB, Lee SK, Park HG. Efficient synthesis and biological activity of Psammaplin A and its analogues as antitumor agents. Eur J Med Chem 2015; 96:218-30. [PMID: 25884112 DOI: 10.1016/j.ejmech.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/01/2015] [Accepted: 04/01/2015] [Indexed: 11/15/2022]
Abstract
We describe a new concise method for the synthesis of psammaplin A and its analogues, and antitumor activity of psammaplin A analogues. Psammaplin A was obtained with 41% yield in 5 steps from 3-bromo-4-hydroxybenzaldahyde and ethyl acetoacetate via Knoevenagel condensation and α-nitrosation as key steps. Twenty eight analogues of psammaplin A were prepared employing the new synthetic approach. Structure-activity relationship study against cytotoxicity reveal that the free oxime group and disulfide functional group were responsible for high cytotoxicity. Also the bromotyrosine component was relatively tolerable and hydrophobic aromatic groups preserved the cytotoxicity. The cytotoxicity of aromatic group is dependent on the size and spatial geometry. Among them, five compounds showed comparable cytotoxicity to psammaplin A. Compound 30 exhibited potential HDAC inhibitory activity and in vivo antitumor activity.
Collapse
Affiliation(s)
- Suckchang Hong
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Yoonho Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Myunggi Jung
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Min Woo Ha
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Yohan Park
- College of Pharmacy, Inje University, 607 Obang-dong, Gimhae, Gyeongnam 621-749, South Korea
| | - Yeon-Ju Lee
- Korea Institute of Ocean Science and Technology, Global Bioresources Research Center, Ansan 426-744, South Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Ki Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Hyeung-geun Park
- Research Institute of Pharmaceutical Science and College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
13
|
Schnekenburger M, Dicato M, Diederich M. Epigenetic modulators from “The Big Blue”: A treasure to fight against cancer. Cancer Lett 2014; 351:182-97. [DOI: 10.1016/j.canlet.2014.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/01/2014] [Accepted: 06/04/2014] [Indexed: 01/14/2023]
|
14
|
Di Costanzo A, Del Gaudio N, Migliaccio A, Altucci L. Epigenetic drugs against cancer: an evolving landscape. Arch Toxicol 2014; 88:1651-68. [DOI: 10.1007/s00204-014-1315-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
|
15
|
Exploring unsymmetrical dyads as efficient inhibitors against the insect β-N-acetyl-d-hexosaminidase OfHex2. Biochimie 2014; 97:152-62. [DOI: 10.1016/j.biochi.2013.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/09/2013] [Indexed: 01/13/2023]
|
16
|
Baud MGJ, Leiser T, Petrucci V, Gunaratnam M, Neidle S, Meyer-Almes FJ, Fuchter MJ. Thioester derivatives of the natural product psammaplin A as potent histone deacetylase inhibitors. Beilstein J Org Chem 2013; 9:81-8. [PMID: 23400330 PMCID: PMC3566764 DOI: 10.3762/bjoc.9.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022] Open
Abstract
There has been significant interest in the bioactivity of the natural product psammaplin A, most recently as a potent and isoform selective HDAC inhibitor. Here we report our preliminary studies on thioester HDAC inhibitors derived from the active monomeric (thiol) form of psammaplin A, as a means to improve compound delivery into cells. We have discovered that such compounds exhibit both potent cytotoxicity and enzymatic inhibitory activity against recombinant HDAC1. The latter effect is surprising since previous SAR suggested that modification of the thiol functionality should detrimentally affect HDAC potency. We therefore also report our preliminary studies on the mechanism of action of this observed effect.
Collapse
Affiliation(s)
- Matthias G J Baud
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Thomas Leiser
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Schnittspahnstraβe 12, 64287 Darmstadt, Germany
| | - Vanessa Petrucci
- Cancer Research UK Biomolecular Structure Group, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Mekala Gunaratnam
- Cancer Research UK Biomolecular Structure Group, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Stephen Neidle
- Cancer Research UK Biomolecular Structure Group, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Schnittspahnstraβe 12, 64287 Darmstadt, Germany
| | - Matthew J Fuchter
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Cherblanc FL, Davidson RWM, Di Fruscia P, Srimongkolpithak N, Fuchter MJ. Perspectives on natural product epigenetic modulators in chemical biology and medicine. Nat Prod Rep 2013; 30:605-24. [DOI: 10.1039/c3np20097c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|