1
|
Li M, Cao F, Wang W, Ma Y, Yu Z, Wang K, Chen Y, Liu H. Coumarin-Furoxan Hybrid Suppressed the Proliferation and Metastasis of Triple-Negative Breast Cancer by Activating Mitochondrial Stress and Cell Apoptosis. ACS Pharmacol Transl Sci 2024; 7:1278-1290. [PMID: 38751639 PMCID: PMC11091983 DOI: 10.1021/acsptsci.3c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Triple-negative breast cancer (TNBC) typically manifests as higher invasive carcinoma correlated with a worse prognosis that primarily relies on chemotherapy. There is growing evidence that nitric oxide (NO) donor drugs have the potential for anticancer therapy. On this basis, we constructed and evaluated a novel coumarin-furoxan hybrid 4A93 as an effective antitumor candidate drug. 4A93 exhibits low IC50 values in three TNBC cell lines and inhibits colony formation and DNA synthesis, probably due to the release of high concentrations of NO in mitochondria, which induces oxidative stress, mitochondrial dysfunction, and apoptosis. Further research suggests that 4A93 might destroy mitochondria by opening the mitochondrial permeability transition pore (mPTP), depolarizing the mitochondrial membrane potential (MMP), and promoting the release of cytochrome c into the cytoplasm. Intrinsic apoptosis is induced finally, along with Akt/Erk signaling suppression. Additionally, 4A93 underregulates the Epithelial-mesenchymal transition process to inhibit cell migration and invasion. In 4T1 subcutaneous and hematogenous models of mice, 4A93 therapy suppresses the tumor growth and prevented lung metastasis with favorable biosafety. Our results provide insights into 4A93 in TNBC treatment and validate the contribution of NO donors in tumor therapy.
Collapse
Affiliation(s)
- Mengru Li
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| | - Fan Cao
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| | - Weijie Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yulei Ma
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| | - Zhihui Yu
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ke Wang
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ying Chen
- Department
of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongrui Liu
- Department
of Pharmacology, School of Pharmacy, Fudan
University, Shanghai 201203, China
| |
Collapse
|
2
|
Kazimir A, Schwarze B, Lönnecke P, Jelača S, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Metallodrugs against Breast Cancer: Combining the Tamoxifen Vector with Platinum(II) and Palladium(II) Complexes. Pharmaceutics 2023; 15:pharmaceutics15020682. [PMID: 36840003 PMCID: PMC9959148 DOI: 10.3390/pharmaceutics15020682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The luminal A-subtype of breast cancer, where the oestrogen receptor α (ERα) is overexpressed, is the most frequent one. The prodrug tamoxifen (1) is the clinically used agent, inhibiting the ERα activity via the formation of several active metabolites, such as 4-hydroxytamoxifen (2) or 4,4'-dihydroxytamoxifen (3). In this study, we present the tamoxifen derivative 4-[1,1-bis(4-methoxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (4), which was combined with platinum or palladium dichloride, the former a well-known scaffold in anticancer treatment, to give [PtCl2(4-κ2N,N')] (5) or [PdCl2(4-κ2N,N'] (6). To prevent fast exchange of weakly coordinating chlorido ligands in aqueous solution, a bulky, highly stable and hydrophobic nido-carborate(-2) ([C2B9H11]2-) was incorporated. The resulting complexes [3-(4-κ2N,N')-3,1,2-PtC2B9H11] (7) and [3-(4-κ2N,N')-3,1,2-PdC2B9H11] (8) exhibit a dramatic change in electronic and biological properties compared to 5 and 6. Thus, 8 is highly selective for triple-negative MDA-MB-231 cells (IC50 = 3.7 μM, MTT test), while 7 is completely inactive against this cell line. The observed cytotoxicity of compounds 4-6 and 8 against this triple-negative cell line suggests off-target mechanisms rather than only ERα inhibition, for which these compounds were originally designed. Spectroscopic properties and electronic structures of the metal complexes were investigated for possible explanations of the biological activities.
Collapse
Affiliation(s)
- Aleksandr Kazimir
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Benedikt Schwarze
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04107 Leipzig, Germany
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
3
|
Huang Z, Spivey JA, MacMillan SN, Wilson JJ. A ferrocene-containing analogue of the MCU inhibitor Ru265 with increased cell permeability. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02183h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An analogue of the mitochondrial calcium uniporter (MCU) inhibitor Ru265 containing axial ferrocenecarboxylate ligands is reported. This new complex exhibits enhanced cellular uptake compared to the parent compound Ru265.
Collapse
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Jesse A. Spivey
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
4
|
Duró C, Jernei T, Szekeres KJ, Láng GG, Oláh-Szabó R, Bősze S, Szabó I, Hudecz F, Csámpai A. Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character. Molecules 2022; 27:6758. [PMID: 36235291 PMCID: PMC9573586 DOI: 10.3390/molecules27196758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Utilizing McMurry reactions of 4,4'-dihydroxybenzophenone with appropriate carbonyl compounds, a series of 4-Hydroxytamoxifen analogues were synthesized. Their cytotoxic activity was evaluated in vitro on four human malignant cell lines (MCF-7, MDA-MB 231, A2058, HT-29). It was found that some of these novel Tamoxifen analogues show marked cytotoxicity in a dose-dependent manner. The relative ROS-generating capability of the synthetized analogues was evaluated by cyclic voltammetry (CV) and DFT modeling studies. The results of cell-viability assays, CV measurements and DFT calculations suggest that the cytotoxicity of the majority of the novel compounds is mainly elicited by their interactions with cellular targets including estrogen receptors rather than triggered by redox processes. However, three novel compounds could be involved in ROS-production and subsequent formation of quinone-methide preventing proliferation and disrupting the redox balance of the treated cells. Among the cell lines studied, HT-29 proved to be the most susceptible to the treatment with compounds having ROS-generating potency.
Collapse
Affiliation(s)
- Cintia Duró
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Tamás Jernei
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Krisztina J. Szekeres
- Laboratory of Electrochemistry and Electroanalytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Győző G. Láng
- Laboratory of Electrochemistry and Electroanalytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Rita Oláh-Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Ferenc Hudecz
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Fayolle C, Pigeon P, Fischer-Durand N, Salmain M, Buriez O, Vessières A, Labbé E. Synthesis, Electrochemical and Fluorescence Properties of the First Fluorescent Member of the Ferrocifen Family and of Its Oxidized Derivatives. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196690. [PMID: 36235225 PMCID: PMC9571219 DOI: 10.3390/molecules27196690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
The first fluorescent ferrociphenol derivative (P797) has been synthesized via McMurry cross-coupling followed by copper-catalyzed [3 + 2] azide-alkyne cycloaddition of the fluorescent group coumarin. Cyclic voltammograms of P797 exhibit either a monoelectronic oxidation wave ascribed to the ferrocene Fe(II) → Fe(III) conversion or a three-electron oxidation process in the presence of a base, leading to a Fe(III) quinone methide adduct. This general sequence is consistent with those previously described for non-fluorescent ferrociphenols. Furthermore, the fluorescence properties of P797 and its oxidized intermediates appear to strongly depend on the redox state of the ferrocene group. Indeed, electrochemical generation of Fe(III) (ferrocenium) states markedly increases the fluorescence emission intensity. In contrast, the emission of the Fe(II) (ferrocene) states is partially quenched by photoinduced electron transfer (PET) from the Fe(II) donor to the coumarin acceptor and by concentration-dependent self-quenching. Owing to its switchable fluorescence properties, complex P797 could represent an innovative and useful tool to study the biodistribution and the redox state of ferrocifens in cancer cells.
Collapse
Affiliation(s)
- Charles Fayolle
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
- ENSCP Chimie ParisTech, PSL University, 75005 Paris, France
| | - Nathalie Fischer-Durand
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Michèle Salmain
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Olivier Buriez
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| | - Anne Vessières
- Institut Parisien de Chimie Moléculaire (IPCM), CNRS, Sorbonne Université, 75005 Paris, France
| | - Eric Labbé
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Rana M, Perotti A, Bisset LM, Smith JD, Lamden E, Khan Z, Ismail MK, Ellis K, Armstrong KA, Hodder SL, Bertoli C, Meneguello L, de Bruin RAM, Morris JR, Romero-Canelon I, Tucker JHR, Hodges NJ. A ferrocene-containing nucleoside analogue targets DNA replication in pancreatic cancer cells. Metallomics 2022; 14:mfac041. [PMID: 35689667 PMCID: PMC9320222 DOI: 10.1093/mtomcs/mfac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.
Collapse
Affiliation(s)
- Marium Rana
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alessio Perotti
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lucy M Bisset
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James D Smith
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Lamden
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zahra Khan
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Media K Ismail
- Department of pharmacy, college of pharmacy, Knowledge University, 44001 Erbil, Kurdistan Region, Iraq
| | - Katherine Ellis
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katie A Armstrong
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samantha L Hodder
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cosetta Bertoli
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Leticia Meneguello
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Joanna R Morris
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isolda Romero-Canelon
- School of Pharmacy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
7
|
Schröder M, Petrova M, Vlahova Z, Dobrikov GM, Slavchev I, Pasheva E, Ugrinova I. In Vitro Anticancer Activity of Two Ferrocene-Containing Camphor Sulfonamides as Promising Agents against Lung Cancer Cells. Biomedicines 2022; 10:biomedicines10061353. [PMID: 35740374 PMCID: PMC9219647 DOI: 10.3390/biomedicines10061353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The successful design of antitumour drugs often combines in one molecule different biologically active subunits that can affect various regulatory pathways in the cell and thus achieve higher efficacy. Two ferrocene derivatives, DK-164 and CC-78, with different residues were tested for cytotoxic potential on non-small lung cancer cell lines, A549 and H1299, and non-cancerous MRC5. DK-164 demonstrated remarkable selectivity toward cancer cells and more pronounced cytotoxicity against A549. The cytotoxicity of CC-78 toward H1299 was even higher than that of the well-established anticancer drugs cisplatin and tamoxifen, but it did not reveal any noticeable selective effect. DK-164 showed predominantly pro-apoptotic activity in non-small cell lung carcinoma (NSCLC) cells, while CC-78 caused accidental cell death with features characteristic of necrosis. The level of induced autophagy was similar for both substances in cancer cells. DK-164 treatment of A549, H1299, and MRC5 cells for 48 h significantly increased the fluorescence signal of the NFkB (nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells) protein in the nucleus in all three cell lines, while CC-78 did not provoke NFkB translocation in any of the tested cell lines. Both compounds caused a significant transfer of the p53 protein in the nucleus of A549 cells but not in non-cancerous MRC5 cells. In A549, DK-164 generated oxidative stress close to the positive control after 48 h, while CC-78 had a moderate effect on the cellular redox status. In the non-cancerous cells, MRC5, both compounds produced ROS similar to the positive control for the same incubation period. The different results related to the cytotoxic potential of DK-164 and CC-78 associated with the examined cellular mechanisms induced in lung cancer cells might be used to conclude the specific functions of the various functional groups in the ferrocene compounds, which can offer new perspectives for the design of antitumour drugs.
Collapse
Affiliation(s)
- Maria Schröder
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Maria Petrova
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Zlatina Vlahova
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 9, 1113 Sofia, Bulgaria; (G.M.D.); (I.S.)
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Center of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 9, 1113 Sofia, Bulgaria; (G.M.D.); (I.S.)
| | - Evdokia Pasheva
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
| | - Iva Ugrinova
- Institute of Molecular Biology “Akad. Roumen Tsanev”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl 21, 1113 Sofia, Bulgaria; (M.S.); (M.P.); (Z.V.); (E.P.)
- Correspondence: ; Tel.: +359-887-985-463
| |
Collapse
|
8
|
Investigation of the Antitumor Effects of Tamoxifen and Its Ferrocene-Linked Derivatives on Pancreatic and Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15030314. [PMID: 35337112 PMCID: PMC8950591 DOI: 10.3390/ph15030314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Tamoxifen is a long-known anti-tumor drug, which is the gold standard therapy in estrogen receptor (ER) positive breast cancer patients. According to previous studies, the conjugation of the original tamoxifen molecule with different functional groups can significantly improve its antitumor effect. The purpose of this research was to uncover the molecular mechanisms behind the cytotoxicity of different ferrocene-linked tamoxifen derivates. Tamoxifen and its ferrocene-linked derivatives, T5 and T15 were tested in PANC1, MCF7, and MDA-MB-231 cells, where the incorporation of the ferrocene group improved the cytotoxicity on all cell lines. PANC1, MCF7, and MDA-MB-231 express ERα and GPER1 (G-protein coupled ER 1). However, ERβ is only expressed by MCF7 and MDA-MB-231 cells. Tamoxifen is a known agonist of GPER1, a receptor that can promote tumor progression. Analysis of the protein expression profile showed that while being cytotoxic, tamoxifen elevated the levels of different tumor growth-promoting factors (e.g., Bcl-XL, Survivin, EGFR, Cathepsins, chemokines). On the other hand, the ferrocene-linked derivates were able to lower these proteins. Further analysis showed that the ferrocene-linked derivatives significantly elevated the cellular oxidative stress compared to tamoxifen treatment. In conclusion, we were able to find two molecules possessing better cytotoxicity compared to their unmodified parent molecule while also being able to counter the negative effects of the presence of the GPER1 through the ER-independent mechanism of oxidative stress induction.
Collapse
|
9
|
Abdalla A, Jones W, Flint MS, Patel BA. Bicomponent composite electrochemical sensors for sustained monitoring of hydrogen peroxide in breast cancer cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Biegański P, Godel M, Riganti C, Kawano DF, Kopecka J, Kowalski K. Click ferrocenyl-erlotinib conjugates active against erlotinib-resistant non-small cell lung cancer cells in vitro. Bioorg Chem 2021; 119:105514. [PMID: 34864281 DOI: 10.1016/j.bioorg.2021.105514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/21/2021] [Indexed: 01/22/2023]
Abstract
Thanks to development of erlotinib and other target therapy drugs the lung cancer treatment have improved a lot in recent years. However, erlotinib-resistant lung cancer remains an unsolved clinical problem which demands for new therapeutics to be developed. Herein we report the synthesis of a library of 1,4- and 1,5-triazole ferrocenyl derivatives of erlotinib together with their anticancer activity studies against erlotinib-sensitive A549 and H1395 as well as erlotinib-resistant H1650 and H1975 cells. Studies showed that extend of anticancer activity is mainly related to the length of the spacer between the triazole and the ferrocenyl entity. Among the series of investigated compounds two isomers commonly bearing C(O)CH2CH2 spacer have shown superior to erlotinib activity against erlotinib-resistant H1650 and H1975 cells whereas compound with short methylene spacer devoid of any activity. In-depth biological studies for the most active compound showed differences in its mechanism of action in compare to erlotinib. The latter is known EGFR inhibitor whereas their ferrocenyl congener exerts anticancer activity mainly as ROS-inducer which activates mitochondrial pathway of apoptosis in cancer cells. However, docking studies suggested that the most active compound can also binds to the active site of EGFR TK in a similar way as erlotinib.
Collapse
Affiliation(s)
- Przemysław Biegański
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| | - Martina Godel
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Daniel Fábio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP, 200 Cândido Portinari Street, Campinas, SP 13083-871, Brazil.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Turin, Italy.
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland.
| |
Collapse
|
11
|
Vessières A, Quissac E, Lemaire N, Alentorn A, Domeracka P, Pigeon P, Sanson M, Idbaih A, Verreault M. Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes. Int J Mol Sci 2021; 22:ijms221910404. [PMID: 34638742 PMCID: PMC8508975 DOI: 10.3390/ijms221910404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadliest primary brain cancer in adults, justifying the search for new treatments. Some members of the iron-based ferrocifen family have demonstrated a high cytotoxic effect on various cancer cell lines via innovative mechanisms of action. Here, we evaluated the antiproliferative activity by wst-1 assay of six ferrocifens in 15 molecularly diverse GBM patient-derived cell lines (PDCLs). In five out of six compounds, the half maximal inhibitory concentration (IC50) values varied significantly (10 nM < IC50 < 29.8 µM) while the remaining one (the tamoxifen-like complex) was highly cytotoxic against all PDCLs (mean IC50 = 1.28 µM). The pattern of response was comparable for the four ferrocifens bearing at least one phenol group and differed widely from those of the tamoxifen-like complex and the complex with no phenol group. An RNA sequencing differential analysis showed that response to the diphenol ferrocifen relied on the activation of the Death Receptor signaling pathway and the modulation of FAS expression. Response to this complex was greater in PDCLs from the Mesenchymal or Proneural transcriptomic subtypes compared to the ones from the Classical subtype. These results provide new information on the mechanisms of action of ferrocifens and highlight a broader diversity of behavior than previously suspected among members of this family. They also support the case for a molecular-based personalized approach to future use of ferrocifens in the treatment of GBM.
Collapse
Affiliation(s)
- Anne Vessières
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Correspondence: (A.V.); (M.V.)
| | - Emie Quissac
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Nolwenn Lemaire
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Agusti Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Patrycja Domeracka
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Chimie ParisTech-PSL, 11 Rue P. et M. Curie, F-75005 Paris, France
| | - Marc Sanson
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Maïté Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
- Correspondence: (A.V.); (M.V.)
| |
Collapse
|
12
|
Chrabąszcz K, Błauż A, Gruchała M, Wachulec M, Rychlik B, Plażuk D. Synthesis and Biological Activity of Ferrocenyl and Ruthenocenyl Analogues of Etoposide: Discovery of a Novel Dual Inhibitor of Topoisomerase II Activity and Tubulin Polymerization. Chemistry 2021; 27:6254-6262. [PMID: 33465263 DOI: 10.1002/chem.202005133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Two series of the ferrocenyl and ruthenocenyl analogues of etoposide bearing 1,2,3-triazolyl or aminoalkyl linker were synthesized and evaluated for their cytotoxic properties, influence on the cell cycle, ability to induce tubulin polymerization, and inhibition of topoisomerase II activity. We found that the replacement of the etoposide carbohydrate moiety with a metallocenyl group led to organometallic conjugates exhibiting differentiated antiproliferative activity. Biological studies demonstrated that two ferrocenylalkylamino conjugates were notably more active than etoposide, with submicromolar or low-micromolar IC50 values towards SW620, etoposide-resistant SW620E, and methotrexate-resistant SW620M cancer cell lines. Moreover, the simplest ferrocenylmethylamino conjugate exerted dual inhibitory action against tubulin polymerization and topoisomerase II activity while other studied compounds affected only topoisomerase II activity.
Collapse
Affiliation(s)
- Karolina Chrabąszcz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Martyna Gruchała
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Marcin Wachulec
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| |
Collapse
|
13
|
Chmayssem A, Verplanck N, Tanase CE, Costa G, Monsalve-Grijalba K, Amigues S, Alias M, Gougis M, Mourier V, Vignoud S, Ghaemmaghami AM, Mailley P. Development of a multiparametric (bio)sensing platform for continuous monitoring of stress metabolites. Talanta 2021; 229:122275. [PMID: 33838777 DOI: 10.1016/j.talanta.2021.122275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
There is a growing need for real-time monitoring of metabolic products that could reflect cell damages over extended periods. In this paper, we report the design and development of an original multiparametric (bio)sensing platform that is tailored for the real-time monitoring of cell metabolites derived from cell cultures. Most attractive features of our developed electrochemical (bio)sensing platform are its easy manufacturing process, that enables seamless scale-up, modular and versatile approach, and low cost. In addition, the developed platform allows a multiparametric analysis instead of single-analyte analysis. Here we provide an overview of the sensors-based analysis of four main factors that can indicate a possible cell deterioration problem during cell-culture: pH, hydrogen peroxide, nitric oxide/nitrite and lactate. Herein, we are proposing a sensors platform based on thick-film coupled to microfluidic technology that can be integrated into any microfluidic system using Luer-lock connectors. This platform allows obtaining an accurate analysis of the secreting stress metabolites during cell/tissues culture.
Collapse
Affiliation(s)
- Ayman Chmayssem
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| | - Nicolas Verplanck
- Univ. Grenoble Alpes, CEA, LETI, DTBS, LSMB, 38000, Grenoble, France
| | - Constantin Edi Tanase
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Guillaume Costa
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | | | - Simon Amigues
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Mélanie Alias
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Maxime Gougis
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Véronique Mourier
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Séverine Vignoud
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France
| | - Amir M Ghaemmaghami
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, United Kingdom
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, L2CB, 38000, Grenoble, France.
| |
Collapse
|
14
|
Vessières A, Wang Y, McGlinchey MJ, Jaouen G. Multifaceted chemical behaviour of metallocene (M = Fe, Os) quinone methides. Their contribution to biology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213658] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Topin-Ruiz S, Mellinger A, Lepeltier E, Bourreau C, Fouillet J, Riou J, Jaouen G, Martin L, Passirani C, Clere N. p722 ferrocifen loaded lipid nanocapsules improve survival of murine xenografted-melanoma via a potentiation of apoptosis and an activation of CD8 + T lymphocytes. Int J Pharm 2020; 593:120111. [PMID: 33246045 DOI: 10.1016/j.ijpharm.2020.120111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/13/2023]
Abstract
Metastatic melanoma is a malignant tumor with a poor prognosis. Recent new therapeutics improved the survival of patients at a metastatic stage. However, the low response rate to immunotherapy, explained in part by resistance to apoptosis, needs to develop new strategies. The ferrocifen family represents promising bioorganometallic molecules for melanoma treatment since they show potent anticancer properties. The aim of this study is (i) to evaluate the benefits of a strategy involving encapsulated p722 in lipid nanocapsules (LNC) in B16F10 melanoma mice models and (ii) to compare the beneficial effects with an existing therapy such as anti-CTLA4 mAb. Interestingly, LNC-p722 induces a significant decrease of melanoma cell viability. In vivo data shows a significant improvement in the survival rate and a slower tumor growth with p722-loaded LNC in comparison with anti-CTLA4 mAb. Western blots confirm that LNC-p722 potentiates intrinsic apoptotic pathway. Treatment with LNC-p722 significantly activates CD8+ T lymphocytes compared to treatment with anti-CTLA4 mAb. This study uncovers a new therapeutic strategy with encapsulated p722 to prevent B16F10 melanoma growth and to improve survival of treated mice.
Collapse
Affiliation(s)
- Solène Topin-Ruiz
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France; Centre Hospitalier Universitaire, service de dermatologie, 4 rue Larrey, F-49933 Angers, France
| | - Adélie Mellinger
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Elise Lepeltier
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Clara Bourreau
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Juliette Fouillet
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Jérémie Riou
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Gérard Jaouen
- PSL, Chimie ParisTech, Paris Cedex 05, France; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM, UMR 8232), Paris Cedex 05, France
| | - Ludovic Martin
- Centre Hospitalier Universitaire, service de dermatologie, 4 rue Larrey, F-49933 Angers, France
| | - Catherine Passirani
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France
| | - Nicolas Clere
- MINT, Univ Angers, INSERM, CNRS, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
16
|
Mbaba M, Dingle LMK, Swart T, Cash D, Laming D, de la Mare JA, Taylor D, Hoppe HC, Biot C, Edkins AL, Khanye SD. The in Vitro Antiplasmodial and Antiproliferative Activity of New Ferrocene-Based α-Aminocresols Targeting Hemozoin Inhibition and DNA Interaction. Chembiochem 2020; 21:2643-2658. [PMID: 32307798 DOI: 10.1002/cbic.202000132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 01/30/2023]
Abstract
The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.
Collapse
Affiliation(s)
- Mziyanda Mbaba
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| | - Laura M K Dingle
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Tarryn Swart
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Devon Cash
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa
| | - Dustin Laming
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Jo-Anne de la Mare
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Dale Taylor
- Faculty of Medicine, Division of Clinical Pharmacology, University of Cape Town Observatory, Cape Town, 7925, South Africa
| | - Heinrich C Hoppe
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Christophe Biot
- Université de Lille, CNRS, UMR 8576 UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Adrienne L Edkins
- Faculty of Science, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.,Biomedical Biotechnology Research Unit, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa
| | - Setshaba D Khanye
- Faculty of Science, Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa.,Centre for Chemico- and Biomedicinal Research, Rhodes University, Grahamstown, 6140, South Africa.,Faculty of Pharmacy, Division of Pharmaceutical Chemistry, Rhodes University, Grahamstown, 6140, South Africa
| |
Collapse
|
17
|
Mostafaei S, Kazemnejad A, Norooznezhad AH, Mahaki B, Moghoofei M. Simultaneous Effects of Viral Factors of Human Papilloma Virus and Epstein-Barr Virus on Progression of Breast and Thyroid Cancers: Application of Structural Equation Modeling. Asian Pac J Cancer Prev 2020; 21:1431-1439. [PMID: 32458652 PMCID: PMC7541891 DOI: 10.31557/apjcp.2020.21.5.1431] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Indexed: 01/19/2023] Open
Abstract
This study aimed to assess effects of the sets of EBV and HPV expressed proteins simultaneously on the sets of cellular/inflammatory factors in breast and thyroid cancers using structural equation modeling. In this multi-center case-control study, according to the inclusion and exclusion criteria, 83 breast and 57 thyroid specimens were collected from the eligible patients. In addition, 31 and 18 histopathological evaluated normal breast and thyroid samples were also examined as age-matched healthy controls. In addition, ELISA and Real-time PCR were used to measure the expression level of viral and cellular/inflammatory genes and proteins. Structural equation modeling was used to test the causal associations between the sets of EBV and HPV expressed proteins with inflammatory factors in breast and thyroid cancers development. Breast cancer patients had a higher incidence of HPV-positively and EBV-positively than healthy controls (OR=1.66, 95%CI=0.79-3.47, P-value=0.177), (OR=3.18, 95%CI=1.52-6.63, P-value=0.002), respectively. In addition, thyroid cancer patients had a significantly higher incidence of EBV-positivity than healthy controls (OR=3.72, 95% CI=1.65-8.36, P-value=0.001). After fitting the SEM model, HPV proteins factor has significant direct and total effects on the cellular/inflammatory factors in breast cancer (direct effect: β=0.426, P-value=0.01; total effect: β=0.549, P-value<0.001). However, EBV proteins factor has most significant total effect on the cellular/inflammatory factors in breast cancer (total effect: β=0.804, P-value<0.001) than the cellular/inflammatory factors in thyroid cancer (total effect: β=0.789, P-value<0.001). For the first time, a significant association between EBV and HPV -genes, anoikis resistance and the development of breast and thyroid cancers demonstrated by using SEM, Simultaneously.
Collapse
Affiliation(s)
- Shayan Mostafaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Norooznezhad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Mahaki
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
18
|
Estrada-Montaño AS, Gries A, Oviedo-Fortino JA, Torres-Gutierrez C, Grain-Hayton A, Marcial-Hernández R, Shen L, Ryabov AD, Gaiddon C, Le Lagadec R. Dibromine Promoted Transmetalation of an Organomercurial by Fe(CO)5: Synthesis, Properties, and Cytotoxicity of Bis(2-C6H4-2′-py-κC,N)dicarbonyliron(II). Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aldo S. Estrada-Montaño
- Instituto de Quı́mica UNAM, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Alexandre Gries
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - José A. Oviedo-Fortino
- Instituto de Quı́mica UNAM, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Carolina Torres-Gutierrez
- Instituto de Quı́mica UNAM, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Amira Grain-Hayton
- Instituto de Quı́mica UNAM, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | | | - Longzhu Shen
- University of Cambridge, CB2 3EJ Cambridge, United Kingdom
| | - Alexander D. Ryabov
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, 3 Avenue Molière, 67200 Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Quı́mica UNAM, Circuito Exterior s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
19
|
Schwarze B, Jelača S, Welcke L, Maksimović‐Ivanić D, Mijatović S, Hey‐Hawkins E. 2,2'-Bipyridine-Modified Tamoxifen: A Versatile Vector for Molybdacarboranes. ChemMedChem 2019; 14:2075-2083. [PMID: 31677361 PMCID: PMC6972990 DOI: 10.1002/cmdc.201900554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/07/2019] [Indexed: 12/19/2022]
Abstract
Investigations on the antitumor activity of metallacarboranes are sparse in the literature and limited to a handful of ruthena- and molybdacarboranes. In this study, the molybdacarborane fragment [3-(CO)2 -closo-3,1,2-MoC2 B9 H11 ] was combined with a vector molecule, inspired by the well-known drug tamoxifen or 4,4'-dihydroxytamoxifen (TAM-diOH). The molybdacarborane derivative [3,3-{4-[1,1-bis(4-hydroxyphenyl)but-1-en-2-yl]-2,2'-bipyridine-κ2 N,N'}-3-(CO)2 -closo-3,1,2-MoC2 B9 H11 ] (10), as well as the ligand itself 4-[1,1-bis(4-hydroxyphenyl)but-1-en-2-yl]-2,2'-bipyridine (6) showed cytotoxic activities in the low micromolar range against breast adenocarcinoma (MDA-MB-231, MDA-MB-361 and MCF-7), human glioblastoma (LN-229) and human glioma (U-251) cell lines. In addition, compounds 6 and 10 were found to induce senescence and cytodestructive autophagy, lower ROS/RNS levels, but only the molybdacarborane 10 induced a strong increase of nitric oxide (NO) concentration in the MCF-7 cells.
Collapse
Affiliation(s)
- Benedikt Schwarze
- Leipzig UniversityFaculty of Chemistry and Mineralogy, Institute of Inorganic ChemistryJohannisallee 2904103LeipzigGermany
| | - Sanja Jelača
- University of BelgradeDepartment of Immunology, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of SerbiaBul. Despota Stefana 14211060BelgradeSerbia
| | - Linda Welcke
- Leipzig UniversityFaculty of Chemistry and Mineralogy, Institute of Inorganic ChemistryJohannisallee 2904103LeipzigGermany
| | - Danijela Maksimović‐Ivanić
- University of BelgradeDepartment of Immunology, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of SerbiaBul. Despota Stefana 14211060BelgradeSerbia
| | - Sanja Mijatović
- University of BelgradeDepartment of Immunology, Institute for Biological Research “Siniša Stanković” – National Institute of Republic of SerbiaBul. Despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Leipzig UniversityFaculty of Chemistry and Mineralogy, Institute of Inorganic ChemistryJohannisallee 2904103LeipzigGermany
| |
Collapse
|
20
|
Tonolo F, Salmain M, Scalcon V, Top S, Pigeon P, Folda A, Caron B, McGlinchey MJ, Toillon R, Bindoli A, Jaouen G, Vessières A, Rigobello MP. Small Structural Differences between Two Ferrocenyl Diphenols Determine Large Discrepancies of Reactivity and Biological Effects. ChemMedChem 2019; 14:1717-1726. [DOI: 10.1002/cmdc.201900430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Federica Tonolo
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| | - Michèle Salmain
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
| | - Valeria Scalcon
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| | - Siden Top
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
| | - Pascal Pigeon
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
- Chimie ParisTechPSL University 11 rue Pierre et Marie Curie 75005 Paris France
| | - Alessandra Folda
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| | - Benoit Caron
- Sorbonne UniversitéISTeP, ALIPP6 4 Place Jussieu 75005 Paris France
| | | | | | - Alberto Bindoli
- Istituto di Neuroscienze (CNR) Sezione di Padovac/o Dipartimento di Scienze Biomediche Via Ugo Bassi 58/b 35131 Padova Italy
| | - Gérard Jaouen
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
- Chimie ParisTechPSL University 11 rue Pierre et Marie Curie 75005 Paris France
| | - Anne Vessières
- Sorbonne UniversitéCNRS, IPCM 4 Place Jussieu 75005 Paris France
| | - Maria Pia Rigobello
- Dipartimento di Scienze BiomedicheUniversità di Padova Via Ugo Bassi 58/b 35131 Padova Italy
| |
Collapse
|
21
|
Abstract
Many ferrocene complexes have been prepared for their oncological potential. Some derive from molecules with known biological effects (taxanes, podophyllotoxine, artemisine, SAHA, etc.) while others are synthetic molecules selected for their cytotoxic effects (N-alkylaminoferrocenes and ferrocenyl alkylpyridinium). Although these complexes have received a great deal of attention, the field of iron metallodrugs is not limited to them. A number of inorganic complexes of iron(ii) and iron(iii) with possible anticancer effects have also been published, although research into their biological effects is often only at an early stage. This chapter also includes iron chelators, molecules that are administered in non-metallic form but whose cytotoxic species are their coordination complexes of iron generated in vivo. The most emblematic molecule of this family is bleomycin, used as an anticancer agent in many chemotherapies. To these can be added the iron chelates originally synthesized to treat iron overload, some of which have been shown to possess interesting anticancer properties. They have been, and continue to be, the subject of many clinical trials, whether alone or in combination. Thus, the area of iron metallodrugs includes molecules with very different structures and reactivity, studied from a number of different perspectives, but focused on increasing the number of molecules at our disposal for combatting cancer.
Collapse
Affiliation(s)
- Anne Vessieres
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232 4, Place Jussieu F-75005 Paris France
| |
Collapse
|
22
|
Electrochemical monitoring of reactive oxygen/nitrogen species and redox balance in living cells. Anal Bioanal Chem 2019; 411:4365-4374. [PMID: 31011787 DOI: 10.1007/s00216-019-01734-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in cells and cell redox balance are of great interest in live cells as they are correlated to several pathological and physiological conditions of living cells. ROS and RNS detection is limited due to their spatially restricted abundance: they are usually located in sub-cellular areas (e.g., in specific organelles) at low concentration. In this work, we will review and highlight the electrochemical approach to this bio-analytical issue. Combining electrochemical methods and miniaturization strategies, specific, highly sensitive, time, and spatially resolved measurements of cellular oxidative stress and redox balance analysis are possible. Graphical abstract In this work, we highlight and review the use of electrochemistry for the highly spatial and temporal resolved detection of ROS/RNS levels and of redox balance in living cells. These levels are central in several pathological and physiological conditions and the electrochemical approach is a vibrant bio-analytical trend in this field.
Collapse
|
23
|
Cingolani A, Zanotti V, Zacchini S, Massi M, Simpson PV, Maheshkumar Desai N, Casari I, Falasca M, Rigamonti L, Mazzoni R. Synthesis, reactivity and preliminary biological activity of iron(0) complexes with cyclopentadienone and amino-appendedN-heterocyclic carbene ligands. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Cingolani
- Dipartimento di Chimica Industriale “Toso Montanari”; Università degli Studi di Bologna; viale Risorgimento 4 40136 Bologna Italy
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”; Università degli Studi di Bologna; viale Risorgimento 4 40136 Bologna Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”; Università degli Studi di Bologna; viale Risorgimento 4 40136 Bologna Italy
| | - Massimiliano Massi
- School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces; Curtin University; GPO Box U1987 Perth 6845 Western Australia Australia
| | - Peter V. Simpson
- School of Molecular and Life Science - Curtin Institute for Functional Molecules and Interfaces; Curtin University; GPO Box U1987 Perth 6845 Western Australia Australia
| | - Nima Maheshkumar Desai
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute; Curtin University; Perth 6102 Western Australia Australia
| | - Ilaria Casari
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute; Curtin University; Perth 6102 Western Australia Australia
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute; Curtin University; Perth 6102 Western Australia Australia
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche; Università degli Studi di Modena e Reggio Emilia; via G. Campi 103 41125 Modena Italy
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”; Università degli Studi di Bologna; viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
24
|
Khodabandehlou N, Mostafaei S, Etemadi A, Ghasemi A, Payandeh M, Hadifar S, Norooznezhad AH, Kazemnejad A, Moghoofei M. Human papilloma virus and breast cancer: the role of inflammation and viral expressed proteins. BMC Cancer 2019; 19:61. [PMID: 30642295 PMCID: PMC6332859 DOI: 10.1186/s12885-019-5286-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast cancer is currently the most common neoplasm diagnosed in women globally. There is a growing body of evidence to suggest that human papillomavirus (HPV) infection may play a key role in invasiveness of breast cancer. The aim of this study was to determine the presence of HPV in patients with breast cancer and its possible association with cancer progression. METHODS Breast specimens were collected from 72 patients with breast cancer and 31 healthy controls. The presence of HPV was investigated by polymerase chain reaction (PCR) and genotyping was performed for positive cases. We also evaluated the viral factors such as E6, E2, and E7 in HPV positive cases. Enzyme-linked immunosorbent assay (ELISA (and Real-time PCR techniques were used to measure the expression level of anti-carcinogenic genes, such as p53, retinoblastoma (RB), breast and ovarian cancer susceptibility gene (BRCA1, BRCA2) and inflammatory cytokines, including tumor necrosis factor α (TNF-α), transforming growth factor β (TGF-β), nuclear factor-kB (NF-kB), and different interleukins [ILs] (IL-1,IL6, and IL-17). RESULTS The HPV DNA was detected in 48.6% of breast cancer samples, whereas only 16.1% of controls were positive for HPV. We observed statistically significant differences between breast cancer patients and HPV presence (P = 0.003). HPV type 18 was the most prevalent virus genotype in patients. The expression of P53, RB, BRCA1, and BRCA2 were decreased in patients with HPV-positive breast cancer as compared to HPV-negative breast cancer and healthy controls. (All P-values were less than 0.05). The presence of the HPV was associated with increased inflammatory cytokines (IL-1, IL-6, IL-17, TGF-β, TNF-α, and NF-kB) and tumor progression. CONCLUSION The present study demonstrated that HPV infection may implicate in the development of some types of breast cancer.
Collapse
Affiliation(s)
- Niloofar Khodabandehlou
- Department of Internal Medicine, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Etemadi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Payandeh
- Cancer Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Hadifar
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Sorkheh-Ligeh Blvd, P. O. Box: 6716777816, Kermanshah, Iran
| |
Collapse
|
25
|
Roleira FM, Varela CL, Costa SC, Tavares-da-Silva EJ. Phenolic Derivatives From Medicinal Herbs and Plant Extracts: Anticancer Effects and Synthetic Approaches to Modulate Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64057-4.00004-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Zhang Y, Wang C, Huang W, Haruehanroengra P, Peng C, Sheng J, Han B, He G. Application of organocatalysis in bioorganometallic chemistry: asymmetric synthesis of multifunctionalized spirocyclic pyrazolone–ferrocene hybrids as novel RalA inhibitors. Org Chem Front 2018. [DOI: 10.1039/c8qo00422f] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Asymmetric construction of chiral spirocyclic pyrazolone–ferrocene hybrids has been developed. The lead compound displayed potent RalA inhibition.
Collapse
Affiliation(s)
- Yuehua Zhang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Chunting Wang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| | - Wei Huang
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Phensinee Haruehanroengra
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Cheng Peng
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Jia Sheng
- Department of Chemistry and The RNA Institute
- University at Albany
- State University of New York
- Albany
- USA
| | - Bo Han
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
- Department of Chemistry and The RNA Institute
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
27
|
Jabłoński A, Matczak K, Koceva-Chyła A, Durka K, Steverding D, Jakubiec-Krześniak K, Solecka J, Trzybiński D, Woźniak K, Andreu V, Mendoza G, Arruebo M, Kochel K, Krawczyk B, Szczukocki D, Kowalski K. Cymantrenyl-Nucleobases: Synthesis, Anticancer, Antitrypanosomal and Antimicrobial Activity Studies. Molecules 2017; 22:E2220. [PMID: 29240697 PMCID: PMC6149849 DOI: 10.3390/molecules22122220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
The synthesis of four cymantrene-5-fluorouracil derivatives (1-4) and two cymantrene-adenine derivatives (5 and 6) is reported. All of the compounds were characterized by spectroscopic methods and the crystal structure of two derivatives (1 and 6), together with the previously described cymantrene-adenine compound C was determined by X-ray crystallography. While the compounds 1 and 6 crystallized in the triclinic P-1 space group, compound C crystallized in the monoclinic P2₁/m space group. The newly synthesized compounds 1-6 were tested together with the two previously described cymantrene derivatives B and C for their in vitro antiproliferative activity against seven cancer cell lines (MCF-7, MCF-7/DX, MDA-MB-231, SKOV-3, A549, HepG2m and U-87-MG), five bacterial strains Staphylococcus aureus (methicillin-sensitive, methicillin-resistant and vancomycin-intermediate strains), Staphylococcus epidermidis, and Escherichia coli, including clinical isolates of S. aureus and S. epidermidis, as well as against the protozoan parasite Trypanosoma brucei. The most cytotoxic compounds were derivatives 2 and C for A549 and SKOV-3 cancer cell lines, respectively, with 50% growth inhibition (IC50) values of about 7 µM. The anticancer activity of the cymantrene compounds was determined to be due to their ability to induce oxidative stress and to trigger apoptosis and autophagy in cancer cells. Three derivatives (1, 4 and 5) displayed promising antitrypanosomal activity, with GI50 values in the low micromolar range (3-4 µM). The introduction of the 5-fluorouracil moiety in 1 enhanced the trypanocidal activity when compared to the activity previously reported for the corresponding uracil derivative. The antibacterial activity of cymantrene compounds 1 and C was within the range of 8-64 µg/mL and seemed to be the result of induced cell shrinking.
Collapse
Affiliation(s)
- Artur Jabłoński
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland;
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Aneta Koceva-Chyła
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Kamil Durka
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Dietmar Steverding
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - Katarzyna Jakubiec-Krześniak
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warszawa, Poland; (K.J.-K.); (J.S.)
| | - Jolanta Solecka
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warszawa, Poland; (K.J.-K.); (J.S.)
| | - Damian Trzybiński
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki and Wigury 101, 02-089 Warszawa, Poland; (D.T.); (K.W.)
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki and Wigury 101, 02-089 Warszawa, Poland; (D.T.); (K.W.)
| | - Vanesa Andreu
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (V.A.); (G.M.); (M.A.)
| | - Gracia Mendoza
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (V.A.); (G.M.); (M.A.)
| | - Manuel Arruebo
- Department of Chemical Engineering. Aragon Institute of Nanoscience (INA), University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; (V.A.); (G.M.); (M.A.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Krzysztof Kochel
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland; (K.M.); (A.K.-C.); (K.D.); (Kr.K.)
| | - Barbara Krawczyk
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland; (B.K.); (D.Sz.)
| | - Dominik Szczukocki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland; (B.K.); (D.Sz.)
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland;
| |
Collapse
|
28
|
Plażuk D, Wieczorek A, Ciszewski WM, Kowalczyk K, Błauż A, Pawlędzio S, Makal A, Eurtivong C, Arabshahi HJ, Reynisson J, Hartinger CG, Rychlik B. Synthesis and in vitro Biological Evaluation of Ferrocenyl Side-Chain-Functionalized Paclitaxel Derivatives. ChemMedChem 2017; 12:1882-1892. [PMID: 28941201 DOI: 10.1002/cmdc.201700576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Taxanes, including paclitaxel, are widely used in cancer therapy. In an attempt to overcome some of the disadvantages entailed with taxane chemotherapy, we devised the synthesis of ferrocenyl-functionalized paclitaxel derivatives and studied their biological properties. The cytotoxic activity was measured with a panel of human cancer cell lines of various tissue origin, including multidrug-resistant lines. A structure-activity study of paclitaxel ferrocenylation revealed the N-benzoyl-ferrocenyl-substituted derivative to be the most cytotoxic. In contrast, substitution of the 3'-phenyl group of paclitaxel with a ferrocenyl moiety led to less potent antiproliferative compounds. However, these agents were able to overcome multidrug resistance, as they were virtually unrecognized by ABCB1, a major cellular exporter of taxanes. Interestingly, the redox properties of these ferrocenyl derivatives appear to play a less important role in their mode of action, as there was no correlation between intracellular redox activity and cytotoxicity/cell-cycle distribution. The antiproliferative activity of ferrocenyl taxanes strongly depends on the substitution position, and good tubulin polymerization inducers, as confirmed by molecular docking, were usually more cytotoxic, whereas compounds with stronger pro-oxidative properties exhibited lower antiproliferative activity.
Collapse
Affiliation(s)
- Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
| | - Anna Wieczorek
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
| | - Wojciech M Ciszewski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
| | - Karolina Kowalczyk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Sylwia Pawlędzio
- University of Warsaw, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-096, Warsaw, Poland
| | - Anna Makal
- University of Warsaw, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-096, Warsaw, Poland
| | - Chatchakorn Eurtivong
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland, 1142, New Zealand
| | - Homayon J Arabshahi
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jóhannes Reynisson
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland, 1142, New Zealand
| | - Błażej Rychlik
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| |
Collapse
|
29
|
Pigeon P, Wang Y, Top S, Najlaoui F, Garcia Alvarez MC, Bignon J, McGlinchey MJ, Jaouen G. A New Series of Succinimido-ferrociphenols and Related Heterocyclic Species Induce Strong Antiproliferative Effects, Especially against Ovarian Cancer Cells Resistant to Cisplatin. J Med Chem 2017; 60:8358-8368. [DOI: 10.1021/acs.jmedchem.7b00743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pascal Pigeon
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, F-75005 Paris, France
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Yong Wang
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, F-75005 Paris, France
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Siden Top
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Feten Najlaoui
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| | - Maria Concepcion Garcia Alvarez
- Centre
de Recherche de Gif, Institut de Chimie des Substances Naturelles,
UPR 2301 du CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Jérôme Bignon
- Centre
de Recherche de Gif, Institut de Chimie des Substances Naturelles,
UPR 2301 du CNRS, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Michael J. McGlinchey
- UCD
School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gérard Jaouen
- PSL, Chimie ParisTech, 11 Rue Pierre et Marie Curie, F-75005 Paris, France
- UPMC
Univ Paris 6, UMR 8232 CNRS, IPCM, Sorbonne Universités, Place Jussieu, F-75005 Paris, France
| |
Collapse
|
30
|
Li Y, Hu K, Yu Y, Rotenberg SA, Amatore C, Mirkin MV. Direct Electrochemical Measurements of Reactive Oxygen and Nitrogen Species in Nontransformed and Metastatic Human Breast Cells. J Am Chem Soc 2017; 139:13055-13062. [DOI: 10.1021/jacs.7b06476] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yun Li
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Keke Hu
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Yun Yu
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Susan A. Rotenberg
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Christian Amatore
- PASTEUR,
Département de Chimie, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 24 rue Lhomond, Paris 75005, France
- State
Key Laboratory of Structural Chemistry, Fujian Institute
of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
31
|
Davis AN, Travis AR, Miller DR, Cliffel DE. Multianalyte Physiological Microanalytical Devices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:93-111. [PMID: 28605606 PMCID: PMC9235322 DOI: 10.1146/annurev-anchem-061516-045334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Advances in scientific instrumentation have allowed experimentalists to evaluate well-known systems in new ways and to gain insight into previously unexplored or poorly understood phenomena. Within the growing field of multianalyte physiometry (MAP), microphysiometers are being developed that are capable of electrochemically measuring changes in the concentration of various metabolites in real time. By simultaneously quantifying multiple analytes, these devices have begun to unravel the complex pathways that govern biological responses to ischemia and oxidative stress while contributing to basic scientific discoveries in bioenergetics and neurology. Patients and clinicians have also benefited from the highly translational nature of MAP, and the continued expansion of the repertoire of analytes that can be measured with multianalyte microphysiometers will undoubtedly play a role in the automation and personalization of medicine. This is perhaps most evident with the recent advent of fully integrated noninvasive sensor arrays that can continuously monitor changes in analytes linked to specific disease states and deliver a therapeutic agent as required without the need for patient action.
Collapse
Affiliation(s)
- Anna Nix Davis
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - Adam R Travis
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - Dusty R Miller
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
| | - David E Cliffel
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235;
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
32
|
Flaherty RL, Owen M, Fagan-Murphy A, Intabli H, Healy D, Patel A, Allen MC, Patel BA, Flint MS. Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast Cancer Res 2017; 19:35. [PMID: 28340615 PMCID: PMC5366114 DOI: 10.1186/s13058-017-0823-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 03/03/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Psychological stress increases the circulating levels of the stress hormones cortisol and norepinephrine (NE). Chronic exposure to elevated stress hormones has been linked to a reduced response to chemotherapy through induction of DNA damage. We hypothesize that stress hormone signalling may induce DNA damage through the production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and interference in DNA repair processes, promoting tumourigenesis. METHODS Breast cancer cell lines were incubated with physiological levels of cortisol and NE in the presence and absence of receptor antagonists and inducible nitric oxide synthase (iNOS) inhibitors and DNA damage measured using phosphorylated γ-H2AX. The rate of DNA repair was measured using comet assays and electrochemical sensors were used to detect ROS/RNS in the cell lysates from cells exposed to stress hormones. A syngeneic mouse model was used to assess the presence of iNOS in mammary tumours in stressed versus control animals and expression of iNOS was examined using western blotting and qRT-PCR. RESULTS Acute exposure to cortisol and NE significantly increased levels of ROS/RNS and DNA damage and this effect was diminished in the presence of receptor antagonists. Cortisol induced DNA damage and the production of RNS was further attenuated in the presence of an iNOS inhibitor. An increase in the expression of iNOS in response to psychological stress was observed in vivo and in cortisol-treated cells. Inhibition of glucocorticoid receptor-associated Src kinase also produced a decrease in cortisol-induced RNS. CONCLUSION These results demonstrate that glucocorticoids may interact with iNOS in a non-genomic manner to produce damaging levels of RNS, thus allowing an insight into the potential mechanisms by which psychological stress may impact breast cancer.
Collapse
Affiliation(s)
- Renée L Flaherty
- School of Pharmacy and Biomolecular Sciences, Stress, Aging and Disease Group, University of Brighton, Brighton, BN2 4GJ, UK
| | - Matthew Owen
- Brighton and Sussex Medical School, Brighton, BN1 9PX, UK
| | - Aidan Fagan-Murphy
- School of Pharmacy and Biomolecular Sciences, Stress, Aging and Disease Group, University of Brighton, Brighton, BN2 4GJ, UK
| | - Haya Intabli
- School of Pharmacy and Biomolecular Sciences, Stress, Aging and Disease Group, University of Brighton, Brighton, BN2 4GJ, UK
| | - David Healy
- Brighton and Sussex Medical School, Brighton, BN1 9PX, UK
| | - Anika Patel
- School of Pharmacy and Biomolecular Sciences, Stress, Aging and Disease Group, University of Brighton, Brighton, BN2 4GJ, UK
| | - Marcus C Allen
- School of Pharmacy and Biomolecular Sciences, Stress, Aging and Disease Group, University of Brighton, Brighton, BN2 4GJ, UK
| | - Bhavik A Patel
- School of Pharmacy and Biomolecular Sciences, Stress, Aging and Disease Group, University of Brighton, Brighton, BN2 4GJ, UK
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Sciences, Stress, Aging and Disease Group, University of Brighton, Brighton, BN2 4GJ, UK.
| |
Collapse
|
33
|
Abstract
Recent progress in the electrochemical field enabled development of miniaturized sensing devices that can be used in biological settings to obtain fundamental and practical biochemically relevant information on physiology, metabolism, and disease states in living systems. Electrochemical sensors and biosensors have demonstrated potential for rapid, real-time measurements of biologically relevant molecules. This chapter provides an overview of the most recent advances in the development of miniaturized sensors for biological investigations in living systems, with focus on the detection of neurotransmitters and oxidative stress markers. The design of electrochemical (bio)sensors, including their detection mechanism and functionality in biological systems, is described as well as their advantages and limitations. Application of these sensors to studies in live cells, embryonic development, and rodent models is discussed.
Collapse
|
34
|
Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro. Acta Pharmacol Sin 2017; 38:277-289. [PMID: 27867187 DOI: 10.1038/aps.2016.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulating cell survival and death. Silibinin is a natural polyphenolic flavonoid isolated from milk thistle with anti-tumor activities, but it was found to induce cytoprotective ROS/RNS in human breast cancer MCF-7 cells. Furthermore, treatment with silibinin down-regulates ERα expression in MCF-7 cells, and inducing both autophagy and apoptosis. In this study we explored the relationship between ER-associated pathways and RNS/ROS in MCF-7 cells. We also investigated the molecular mechanisms underlying the reciprocal regulation between ROS/RNS levels and autophagy in the death signaling pathways in silibinin-treated MCF-7 cells. Silibinin (100-300 μmol/L) dose-dependently increased ROS/RNS generation in MCF-7 cells (with high expression of ERα and low expression of ERβ) and MDA-MB-231 cells (with low expression of ERα and high expression of ERβ). Scavenging ROS/RNS significantly enhanced silibinin-induced death of MCF-7 cells, but not MDA-MB231 cells. Pharmacological activation or blockade of ERα in MCF-7 cells significantly enhanced or decreased, respectively, silibinin-induced ROS/RNS generation, whereas activation or block of ERβ had no effect. In silibinin-treated MCF-7 cells, exposure to the ROS/RNS donators decreased the autophagic levels, whereas inhibition of autophagy with 3-MA significantly increased ROS/RNS levels. We further showed that increases in ROS/RNS generation, ERα activation or autophagy down-regulation had protective roles in silibinin-treated MCF-7 cells. Under a condition of ERα activation, scavenging ROS/RNS or stimulating autophagy enhanced the cytotoxicity of silibinin. These results demonstrate the existence of two conflicting pathways in silibinin-induced death of MCF-7 cells: one involves the down-regulation of ERα and thereby augmenting the pro-apoptotic autophagy downstream, leading to cell death; the other involves the up-regulation of pro-survival ROS/RNS; and that the generation of ROS/RNS and autophagy form a negative feedback loop whose balance is regulated by ERα.
Collapse
|
35
|
Resnier P, Galopin N, Sibiril Y, Clavreul A, Cayon J, Briganti A, Legras P, Vessières A, Montier T, Jaouen G, Benoit JP, Passirani C. Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse. Pharmacol Res 2017; 126:54-65. [PMID: 28159700 DOI: 10.1016/j.phrs.2017.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 12/22/2022]
Abstract
Metastatic melanoma has been described as a highly aggressive cancer with low sensibility to chemotherapeutic agents. New types of drug, such as metal-based drugs (ferrocifens) have emerged and could represent an alternative for melanoma treatment since they show interesting anticancer potential. Furthermore, molecular analysis has evidenced the role of apoptosis in the low sensibility of melanomas and especially of the key regulator, Bcl-2. The objective of this study was to combine two strategies in the same lipid nanocapsules (LNCs): i) gene therapy to modulate anti-apoptotic proteins by the use of Bcl-2 siRNA, and ii) ferrocifens as a new type of anticancer agent. The efficient gene silencing with LNCs was verified by the specific extinction of Bcl-2 in melanoma cells. The cellular toxicity of ferrocifens (ferrociphenol (FcDiOH) or Ansa-FcDiOH) was demonstrated, showing higher efficacy than dacarbazine. Interestingly, the association of siBcl-2 LNCs with Ansa-FcDiOH demonstrated a significant effect on melanoma cell viability. Moreover, the co-encapsulation of siRNA and ferrocifens was successfully performed into LNCs for animal experiments. A reduction of tumor volume and mass was proved after siBcl-2 LNC treatment and Ansa-FcDiOH LNC treatment, individually (around 25%). Finally, the association of both components into the same LNCs increased the reduction of tumor volume to about 50% compared to the control group. In conclusion, LNCs appeared to provide a promising tool for the co-encapsulation of a metal-based drug and siRNA.
Collapse
Affiliation(s)
- Pauline Resnier
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Natacha Galopin
- SCAHU - Faculté de Médecine, Pavillon Ollivier, rue Haute de Reculée, F-49933 Angers, France.
| | - Yann Sibiril
- INSERM U1078 - Equipe 'Transfert de gènes et thérapie génique', Faculté de Médecine, 22 avenue Camille Desmoulins, CS 93837, F-29238 Brest, Cedex 3, France; CHRU de Brest, Service de Génétique Moléculaire et d'histocompatibilité, 5 avenue Maréchal Foch, 29609 Brest, France.
| | - Anne Clavreul
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Jérôme Cayon
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France; PACeM (Plateforme d'Analyse Cellulaire et Moléculaire), SFR ICAT 4208, Université d'Angers, 4 rue Larrey, F-49933 Angers, France.
| | - Alessandro Briganti
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Pierre Legras
- SCAHU - Faculté de Médecine, Pavillon Ollivier, rue Haute de Reculée, F-49933 Angers, France.
| | - Anne Vessières
- CNRS, UMR 8232, ENSCP, 11 rue P. et M. Curie, F-75231 Paris Cedex05, France.
| | - Tristan Montier
- INSERM U1078 - Equipe 'Transfert de gènes et thérapie génique', Faculté de Médecine, 22 avenue Camille Desmoulins, CS 93837, F-29238 Brest, Cedex 3, France; CHRU de Brest, Service de Génétique Moléculaire et d'histocompatibilité, 5 avenue Maréchal Foch, 29609 Brest, France.
| | - Gérard Jaouen
- CNRS, UMR 8232, ENSCP, 11 rue P. et M. Curie, F-75231 Paris Cedex05, France.
| | - Jean-Pierre Benoit
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM, CNRS, Université Bretagne Loire, IBS-CHU, 4 rue Larrey, F-49933 Angers, France.
| |
Collapse
|
36
|
Kowalczyk K, Błauż A, Ciszewski WM, Wieczorek A, Rychlik B, Plażuk D. Colchicine metallocenyl bioconjugates showing high antiproliferative activities against cancer cell lines. Dalton Trans 2017; 46:17041-17052. [DOI: 10.1039/c7dt03229c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ferrocenyl and ruthenocenyl conjugates with colchicine have been synthesised and their cytotoxic activity, influence on the cell cycle, and interactions with tubulin were evaluated.
Collapse
Affiliation(s)
- Karolina Kowalczyk
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - Andrzej Błauż
- Cytometry Lab
- Department of Molecular Biophysics
- Faculty of Biology and Environmental Protection
- University of Łódź
- 90-236 Łódź
| | - Wojciech M. Ciszewski
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - Anna Wieczorek
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - Błażej Rychlik
- Cytometry Lab
- Department of Molecular Biophysics
- Faculty of Biology and Environmental Protection
- University of Łódź
- 90-236 Łódź
| | - Damian Plażuk
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| |
Collapse
|
37
|
Dick JE. Electrochemical detection of single cancer and healthy cell collisions on a microelectrode. Chem Commun (Camb) 2016; 52:10906-9. [PMID: 27533129 DOI: 10.1039/c6cc04515d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The electrochemical detection of single cancer cells and healthy cells is reported. Detection was achieved by monitoring the consumption of a single cell's contents upon its collisions with a microelectrode in the presence of surfactant. The electrochemical response between acute lymphoblastic lymphoma T-cells and healthy thymocytes differed by two orders of magnitude.
Collapse
Affiliation(s)
- Jeffrey E Dick
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
38
|
Scalcon V, Top S, Lee HZS, Citta A, Folda A, Bindoli A, Leong WK, Salmain M, Vessières A, Jaouen G, Rigobello MP. Osmocenyl-tamoxifen derivatives target the thioredoxin system leading to a redox imbalance in Jurkat cells. J Inorg Biochem 2016; 160:296-304. [DOI: 10.1016/j.jinorgbio.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 04/03/2016] [Indexed: 01/27/2023]
|
39
|
Li Y, Meunier A, Fulcrand R, Sella C, Amatore C, Thouin L, Lemaître F, Guille-Collignon M. Multi-chambers Microsystem for Simultaneous and Direct Electrochemical Detection of Reactive Oxygen and Nitrogen Species Released by Cell Populations. ELECTROANAL 2016. [DOI: 10.1002/elan.201501157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yun Li
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Anne Meunier
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Rémy Fulcrand
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Catherine Sella
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Laurent Thouin
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Frédéric Lemaître
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| | - Manon Guille-Collignon
- Ecole Normale Supérieure-PSL Research University, Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR; 24, rue Lhomond 75005 Paris France
| |
Collapse
|
40
|
Wani WA, Baig U, Shreaz S, Shiekh RA, Iqbal PF, Jameel E, Ahmad A, Mohd-Setapar SH, Mushtaque M, Ting Hun L. Recent advances in iron complexes as potential anticancer agents. NEW J CHEM 2016. [DOI: 10.1039/c5nj01449b] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The iron complexes discussed in this review highlight their promising future as anticancer agents.
Collapse
Affiliation(s)
- Waseem A. Wani
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Umair Baig
- Center of Excellence for Scientific Research Collaboration with MIT
- King Fahd University of Petroleum and Minerals
- Dhahran 31261
- Saudi Arabia
| | - Sheikh Shreaz
- Oral Microbiology Laboratory
- Department of Bioclinical Sciences
- Faculty of Dentistry
- Health Sciences Center
- Kuwait University
| | - Rayees Ahmad Shiekh
- Department of Chemistry
- Faculty of Science
- Taibah University
- Al Madinah Al Munawarrah
- Saudi Arabia
| | | | - Ehtesham Jameel
- Department of Chemistry
- B. R. Ambedkar Bihar University
- Muzaffarpur
- India
| | - Akil Ahmad
- Center of Lipids Engineering and Applied Research
- Ibnu Sina Institute for Industrial and Scientific Research
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Siti Hamidah Mohd-Setapar
- Center of Lipids Engineering and Applied Research
- Ibnu Sina Institute for Industrial and Scientific Research
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| | - Md. Mushtaque
- Department of Physical and Molecular Sciences (Chemistry)
- Al-Falah University
- Faridabad
- India
| | - Lee Ting Hun
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 UTM Skudai
- Malaysia
| |
Collapse
|
41
|
Beauperin M, Top S, Richard MA, Plażuk D, Pigeon P, Toma S, Poláčková V, Jaouen G. The length of the bridging chain in ansa-metallocenes influences their antiproliferative activity against triple negative breast cancer cells (TNBC). Dalton Trans 2016; 45:13126-34. [DOI: 10.1039/c6dt01640e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[n]Ferrocenophane and [n]ruthenocenophane derivatives have been synthesized and their antiproliferative activity evaluated against MDA-MB-231 cells.
Collapse
Affiliation(s)
| | - Siden Top
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| | | | - Damian Plażuk
- University of Lodz
- Faculty of Chemistry
- Department of Organic Chemistry
- Lodz 91-403
- Poland
| | - Pascal Pigeon
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| | - Stefan Toma
- Faculty of Natural Sciences
- Comenius University
- SK-84215 Bratislava
- Slovakia
| | - Viera Poláčková
- Faculty of Natural Sciences
- Comenius University
- SK-84215 Bratislava
- Slovakia
| | - Gérard Jaouen
- Sorbonne Universités
- UPMC Univ Paris 6
- UMR 8232
- IPCM
- F-75005 Paris
| |
Collapse
|
42
|
Abstract
The mechanisms of action of ferrocifens depend on several features: chemical structures, used concentrations, nature of cancer cells.
Collapse
Affiliation(s)
- Gérard Jaouen
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| | - Anne Vessières
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| | - Siden Top
- Sorbonne Universités
- UPMC Univ Paris 06
- IPCM
- F-75005 Paris
- France
| |
Collapse
|
43
|
Citta A, Folda A, Bindoli A, Pigeon P, Top S, Vessières A, Salmain M, Jaouen G, Rigobello MP. Evidence for Targeting Thioredoxin Reductases with Ferrocenyl Quinone Methides. A Possible Molecular Basis for the Antiproliferative Effect of Hydroxyferrocifens on Cancer Cells. J Med Chem 2014; 57:8849-59. [DOI: 10.1021/jm5013165] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Anna Citta
- Dipartimento
di Scienze Biomediche, Università di Padova, via Ugo Bassi
58/b, 35131 Padova, Italy
| | - Alessandra Folda
- Dipartimento
di Scienze Biomediche, Università di Padova, via Ugo Bassi
58/b, 35131 Padova, Italy
| | - Alberto Bindoli
- Istituto
di Neuroscienze, CNR, Viale G. Colombo 3, 35121 Padova, Italy
| | - Pascal Pigeon
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, F-75005 Paris, France
- CNRS, UMR 8232, IPCM, F-75005 Paris, France
- PSL, Chimie ParisTech, 11
rue Pierre et Marie Curie, F-75005 Paris, France
| | - Siden Top
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, F-75005 Paris, France
- CNRS, UMR 8232, IPCM, F-75005 Paris, France
| | - Anne Vessières
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, F-75005 Paris, France
- CNRS, UMR 8232, IPCM, F-75005 Paris, France
| | - Michèle Salmain
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, F-75005 Paris, France
- CNRS, UMR 8232, IPCM, F-75005 Paris, France
| | - Gérard Jaouen
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8232, IPCM, F-75005 Paris, France
- CNRS, UMR 8232, IPCM, F-75005 Paris, France
- PSL, Chimie ParisTech, 11
rue Pierre et Marie Curie, F-75005 Paris, France
| | - Maria Pia Rigobello
- Dipartimento
di Scienze Biomediche, Università di Padova, via Ugo Bassi
58/b, 35131 Padova, Italy
| |
Collapse
|