1
|
Lang J, Schorr K, Goepferich A. Towards a switchable nanoparticle behavior using inverse electron-demand Diels-Alder chemistry and ectoenzyme-based ligand activation. Eur J Pharm Sci 2025; 204:106944. [PMID: 39461601 DOI: 10.1016/j.ejps.2024.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Nanoparticles (NPs) as drug delivery platforms encounter numerous obstacles on their journey from administration to the target site. Often, diametrically opposing particle properties are desirable to overcome biological and physical barriers. Therefore, stimuli-responsive NPs have been developed to allow for specific particle adaptation. In this work, it was demonstrated that NPs can be rendered switchable with respect to their interaction with a receptor through an external chemical stimulus. A combination of the inverse electron-demand Diels-Alder (iEDDA) reaction for subsequent NP functionalization and ectoenzyme-based ligand activation allowed for specific particle tailoring. Building on this, a two-step process for target cell recognition was developed. First, NPs were functionalized with Angiotensin-I (Ang-I) as inactive ligand using iEDDA chemistry. At the target site, the ligand was enzymatically processed to Angiotensin-ll (Ang-II) by cellular ectoenzymes. Ang-ll binds as active ligand to the angiotensin ll type 1 (AT1) receptor on the target cell surface. This enzymatic activation aims to minimize the biological effect of the ligand prior to particle binding, while the NP target cell specificity is increased by a two-step recognition with enzymatic processing and receptor binding.
Collapse
Affiliation(s)
- Johannes Lang
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany
| | - Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, 93053, Germany.
| |
Collapse
|
2
|
Keshavarz Shahbaz S, Koushki K, Keshavarz Hedayati S, McCloskey AP, Kesharwani P, Naderi Y, Sahebkar A. Polymer nanotherapeutics: A promising approach toward microglial inhibition in neurodegenerative diseases. Med Res Rev 2024; 44:2793-2824. [PMID: 39031446 DOI: 10.1002/med.22064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
Nanoparticles (NPs) that target multiple transport mechanisms facilitate targeted delivery of active therapeutic agents to the central nervous system (CNS) and improve therapeutic transport and efficacy across the blood-brain barrier (BBB). CNS nanotherapeutics mostly target neurons and endothelial cells, however, microglial immune cells are the first line of defense against neuronal damage and brain infections. Through triggering release of inflammatory cytokines, chemokines and proteases, microglia can however precipitate neurological damage-a significant factor in neurodegenerative diseases. Thus, microglial inhibitory agents are attracting much attention among those researching and developing novel treatments for neurodegenerative disorders. The most established inhibitors of microglia investigated to date are resveratrol, curcumin, quercetin, and minocycline. Thus, there is great interest in developing novel agents that can bypass or easily cross the BBB. One such approach is the use of modified-nanocarriers as, or for, delivery of, therapeutic agents to the brain and wider CNS. For microglial inhibition, polymeric NPs are the preferred vehicles for choice. Here, we summarize the immunologic and neuroinflammatory role of microglia, established microglia inhibitor agents, challenges of CNS drug delivery, and the nanotherapeutics explored for microglia inhibition to date. We also discuss applications of the currently considered "most useful" polymeric NPs for microglial-inhibitor drug delivery in CNS-related diseases.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadije Koushki
- Department of Neurosurgery, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | | | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Yazdan Naderi
- Department of Pharmacology, Faculty of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
4
|
Sun X, Zhou X, Shi X, Abed OA, An X, Lei YL, Moon JJ. Strategies for the development of metalloimmunotherapies. Nat Biomed Eng 2024; 8:1073-1091. [PMID: 38914800 PMCID: PMC11410547 DOI: 10.1038/s41551-024-01221-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/30/2024] [Indexed: 06/26/2024]
Abstract
Metal ions play crucial roles in the regulation of immune pathways. In fact, metallodrugs have a long record of accomplishment as effective treatments for a wide range of diseases. Here we argue that the modulation of interactions of metal ions with molecules and cells involved in the immune system forms the basis of a new class of immunotherapies. By examining how metal ions modulate the innate and adaptive immune systems, as well as host-microbiota interactions, we discuss strategies for the development of such metalloimmunotherapies for the treatment of cancer and other immune-related diseases.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Editas Medicine, Cambridge, MA, USA.
| | - Xingwu Zhou
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyue Shi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xinran An
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Yu Leo Lei
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Sardar MS, Kashinath KP, Gupta U, Roy S, Kaity S. Polymeric nanotheranostics for solid tumor management: Recent developments and global regulatory landscape. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 01/06/2025]
Abstract
AbstractPolymeric nanotheranostics have emerged as promising vehicles for diagnosis‐cum‐targeted therapy in solid tumors, offering precise delivery of therapeutic agents at the site of solid tumors and minimizing systemic side effects. This article summarizes the latest developments in using polymeric nanoparticles for specific treatment strategies in solid tumors. It explores the various methods these nanoparticles utilize for targeted medication delivery. This includes passive targeting through the amplified permeability and retention effect, active targeting via interactions between ligands and receptors, and stimuli‐responsive release mechanisms such as pH, temperature, and enzymatic triggers. Furthermore, we highlight recent developments in stimuli‐responsive polymeric nanoparticles, which enable controlled drug release in response to specific cues in the tumor microenvironment, thus enhancing therapeutic efficacy. Also, we focus on the theranostic polymeric nanoparticles, which are used for diagnosing and treating solid tumors. We discuss critical regulatory considerations and the regulatory bodies of different countries that regulate nanomedicines' safety, efficacy, quality, and manufacturing processes. Overall, this review provides insights into the latest innovations in polymeric nanoparticles for targeted therapy in solid tumors, elucidating their mechanisms of action, stimuli‐responsive properties, and regulatory pathways, which collectively contribute to developing effective and safe nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Md Samim Sardar
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Kardile Punam Kashinath
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Ujjwal Gupta
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research Kolkata West Bengal India
| | - Santanu Kaity
- Department of Pharmaceutics National Institute of Pharmaceutical Education and Research (NIPER) Kolkata West Bengal India
| |
Collapse
|
6
|
Jerlhagen Å, Wilson O, Malmström E. Self-Catalyzed Hydrolysis of Nitrile-Containing RAFT Chain-Transfer Agent and Its Impact upon Polymerization Control of Methacrylic Monomers. ACS Macro Lett 2024; 13:565-570. [PMID: 38636106 PMCID: PMC11112727 DOI: 10.1021/acsmacrolett.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Self-catalyzed hydrolysis upon storage of the common RAFT chain-transfer agent (CTA) 4-cyano-4-[(thiothiopropyl)sulfanyl] pentanoic acid (CTPPA) is confirmed, where the nitrile group is transformed into an amide by catalysis from the adjacent carboxylic acid moiety. The amide-CTA (APP) is found to poorly control molecular weight evolution during polymerization of two methacrylates, methyl methacrylate (MMA) and N,N-(dimethylamino)ethyl methacrylate (DMAEMA), likely due to poor reinitiation speed in the pre-equilibrium. However, when attached to a macromolecule, the impact of this amide moiety becomes insignificant and chain extension proceeds as expected with CTPPA. In light of CTPPA and similarly hydrolyzable CTAs being extensively employed for aqueous polymerizations of methacrylates, these findings highlight the importance of CTA purity when performing RAFT polymerizations.
Collapse
Affiliation(s)
- Åsa Jerlhagen
- KTH
Royal Institute of Technology, Department
of Fiber and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden
- FibRe
− Centre for Lignocellulose-based Thermoplastics, KTH Royal
Institute of Technology, Department of Fiber
and Polymer Technology, School of Engineering Sciences in Chemistry,
Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Olivia Wilson
- KTH
Royal Institute of Technology, Department
of Fiber and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden
- FibRe
− Centre for Lignocellulose-based Thermoplastics, KTH Royal
Institute of Technology, Department of Fiber
and Polymer Technology, School of Engineering Sciences in Chemistry,
Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44 Stockholm, Sweden
| | - Eva Malmström
- KTH
Royal Institute of Technology, Department
of Fiber and Polymer Technology, School of Engineering Sciences in
Chemistry, Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden
- FibRe
− Centre for Lignocellulose-based Thermoplastics, KTH Royal
Institute of Technology, Department of Fiber
and Polymer Technology, School of Engineering Sciences in Chemistry,
Biotechnology and Health, Teknikringen 56, SE-100 44 Stockholm, Sweden
- Wallenberg
Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56−58, SE-100 44 Stockholm, Sweden
| |
Collapse
|
7
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
8
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
9
|
Setia A, Kumari P, Vikas, Kumar Mehata A, Kumar Malik A, Kumar Mahto S, Muthu MS. Cetuximab decorated redox sensitive D-alpha-tocopheryl- polyethyleneglycol-1000-succinate based nanoparticles for cabazitaxel delivery: Formulation, lung targeting and enhanced anti-cancer effects. Int J Pharm 2024; 653:123881. [PMID: 38320675 DOI: 10.1016/j.ijpharm.2024.123881] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
This research work aims to fabricate cetuximab (CTX) decorated cabazitaxel (CBZ) loaded redox-sensitive D-alpha-tocopheryl-polyethyleneglycol-1000-succinate (TPGS-SS) nanoparticles (NPs) for epidermal growth factor receptor (EGFR)-targeted lung tumor therapy.The NPs were prepared using a dialysis bag diffusion method to produce, non-redox sensitive non targeted (TPGS-CBZ-NPs), redox-sensitive nontargeted (TPGS-SS-CBZ-NPs), and targeted redox-sensitive NPs (CTX-TPGS-SS-CBZ-NPs). Developed NPs were characterized for particle sizes, polydispersity, surface charge, surface morphologies, and entrapment efficiency. Moreover, additional in vitro studies have been conducted, including in vitro drug release, cytotoxicity, and cellular uptake studies.The particle size and charge over the surface were found to be in the range of 145.6 to 308.06 nm and -15 to -23 mV respectively. The IC50 values of CBZ clinical injection (Jevtana®), TPGS-CBZ-NPs, TPGS-SS-CBZ-NPs, and CTX-TPGS-SS-NPs were found to be 17.54 ± 3.58, 12.8 ± 2.45, 9.28 ± 1.13 and 4.013 ± 1.05 µg/ml, suggesting the 1.37, 1.89 and 4.37-folds respectively, enhancement of cytotoxicity as compared to CBZ clinical injection, demonstrating a significant augmentation in cytotoxicity. In addition, the in-vitro cellular uptake investigation showed that CTX-TPGS-SS-CMN6-NPs accumulated significantly compared to pure CMN6, TPGS-CMN6-NPs, and TPGS-SS-CMN6-NPs in the A549 cells. Furthermore, the targeting efficiency of developed NPs were analysed by ultrasound/photoacoustic and IVIS imaging.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, UP, India
| | - Pooja Kumari
- School of Biomedical Engineering, IIT BHU, Varanasi 221005, UP, India
| | - Vikas
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, UP, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, UP, India
| | | | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT BHU, Varanasi 221005, UP, India.
| |
Collapse
|
10
|
Naghib SM, Mohammad-Jafari K. Microfluidics-mediated Liposomal Nanoparticles for Cancer Therapy: Recent Developments on Advanced Devices and Technologies. Curr Top Med Chem 2024; 24:1185-1211. [PMID: 38424436 DOI: 10.2174/0115680266286460240220073334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Liposomes, spherical particles with phospholipid double layers, have been extensively studied over the years as a means of drug administration. Conventional manufacturing techniques like thin-film hydration and extrusion have limitations in controlling liposome size and distribution. Microfluidics enables superior tuning of parameters during the self-assembly of liposomes, producing uniform populations. This review summarizes microfluidic methods for engineering liposomes, including hydrodynamic flow focusing, jetting, micro mixing, and double emulsions. The precise control over size and lamellarity afforded by microfluidics has advantages for cancer therapy. Liposomes created through microfluidics and designed to encapsulate chemotherapy drugs have exhibited several advantageous properties in cancer treatment. They showcase enhanced permeability and retention effects, allowing them to accumulate specifically in tumor tissues passively. This passive targeting of tumors results in improved drug delivery and efficacy while reducing systemic toxicity. Promising results have been observed in pancreatic, lung, breast, and ovarian cancer models, making them a potential breakthrough in cancer therapy. Surface-modified liposomes, like antibodies or carbohydrates, also achieve active targeting. Overall, microfluidic fabrication improves reproducibility and scalability compared to traditional methods while maintaining drug loading and biological efficacy. Microfluidics-engineered liposomal formulations hold significant potential to overcome challenges in nanomedicine-based cancer treatment.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Kave Mohammad-Jafari
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
11
|
Behnke M, Holick CT, Vollrath A, Schubert S, Schubert US. Knowledge-Based Design of Multifunctional Polymeric Nanoparticles. Handb Exp Pharmacol 2024; 284:3-26. [PMID: 37017790 DOI: 10.1007/164_2023_649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Conventional drug delivery systems (DDS) today still face several drawbacks and obstacles. High total doses of active pharmaceutical ingredients (API) are often difficult or impossible to deliver due to poor solubility of the API or undesired clearance from the body caused by strong interactions with plasma proteins. In addition, high doses lead to a high overall body burden, in particular if they cannot be delivered specifically to the target site. Therefore, modern DDS must not only be able to deliver a dose into the body, but should also overcome the hurdles mentioned above as examples. One of these promising devices are polymeric nanoparticles, which can encapsulate a wide range of APIs despite having different physicochemical properties. Most importantly, polymeric nanoparticles are tunable to obtain tailored systems for each application. This can already be achieved via the starting material, the polymer, by incorporating, e.g., functional groups. This enables the particle properties to be influenced not only specifically in terms of their interactions with APIs, but also in terms of their general properties such as size, degradability, and surface properties. In particular, the combination of size, shape, and surface modification allows polymeric nanoparticles to be used not only as a simple drug delivery device, but also to achieve targeting. This chapter discusses to what extent polymers can be designed to form defined nanoparticles and how their properties affect their performance.
Collapse
Affiliation(s)
- Mira Behnke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Caroline T Holick
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
12
|
Kubeil M, Suzuki Y, Casulli MA, Kamal R, Hashimoto T, Bachmann M, Hayashita T, Stephan H. Exploring the Potential of Nanogels: From Drug Carriers to Radiopharmaceutical Agents. Adv Healthc Mater 2024; 13:e2301404. [PMID: 37717209 PMCID: PMC11468994 DOI: 10.1002/adhm.202301404] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Indexed: 09/18/2023]
Abstract
Nanogels open up access to a wide range of applications and offer among others hopeful approaches for use in the field of biomedicine. This review provides a brief overview of current developments of nanogels in general, particularly in the fields of drug delivery, therapeutic applications, tissue engineering, and sensor systems. Specifically, cyclodextrin (CD)-based nanogels are important because they have exceptional complexation properties and are highly biocompatible. Nanogels as a whole and CD-based nanogels in particular can be customized in a wide range of sizes and equipped with a desired surface charge as well as containing additional molecules inside and outside, such as dyes, solubility-mediating groups or even biological vector molecules for pharmaceutical targeting. Currently, biological investigations are mainly carried out in vitro, but more and more in vivo applications are gaining importance. Modern molecular imaging methods are increasingly being used for the latter. Due to an extremely high sensitivity and the possibility of obtaining quantitative data on pharmacokinetic and pharmacodynamic properties, nuclear methods such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) using radiolabeled compounds are particularly suitable here. The use of radiolabeled nanogels for imaging, but also for therapy, is being discussed.
Collapse
Affiliation(s)
- Manja Kubeil
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Yota Suzuki
- Graduate School of Science and EngineeringSaitama University255 Shimo‐OkuboSakura‐KuSaitama338‐8570Japan
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | | | - Rozy Kamal
- Department of Nuclear MedicineManipal College of Health ProfessionsManipal Academy of Higher EducationManipalKarnataka576104India
| | - Takeshi Hashimoto
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Michael Bachmann
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| | - Takashi Hayashita
- Faculty of Science & TechnologySophia University7‐1 Kioi‐cho, Chiyoda‐kuTokyo102‐8554Japan
| | - Holger Stephan
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer Research Bautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
13
|
Bala VM, Lampropoulou DI, Grammatikaki S, Kouloulias V, Lagopati N, Aravantinos G, Gazouli M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int J Mol Sci 2023; 25:296. [PMID: 38203467 PMCID: PMC10779099 DOI: 10.3390/ijms25010296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperthermia has the potential to damage cancerous tissue by increasing the body temperature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging, especially when implemented in clinical practice. In this direction, there are data showing that the combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.
Collapse
Affiliation(s)
| | | | - Stamatiki Grammatikaki
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nefeli Lagopati
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| | | | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (N.L.)
| |
Collapse
|
14
|
Gupta U, Maity D, Sharma VK. Recent advances of polymeric nanoplatforms for cancer treatment: smart delivery systems (SDS), nanotheranostics and multidrug resistance (MDR) inhibition. Biomed Mater 2023; 19:012003. [PMID: 37944188 DOI: 10.1088/1748-605x/ad0b23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Nanotheranostics is a promising field that combines the benefits of diagnostic and treatment into a single nano-platform that not only administers treatment but also allows for real-time monitoring of therapeutic response, decreasing the possibility of under/over-drug dosing. Furthermore, developing smart delivery systems (SDSs) for cancer theranostics that can take advantage of various tumour microenvironment (TME) conditions (such as deformed tumour vasculature, various over-expressed receptor proteins, reduced pH, oxidative stress, and resulting elevated glutathione levels) can aid in achieving improved pharmacokinetics, higher tumour accumulation, enhanced antitumour efficacy, and/or decreased side effects and multidrug resistance (MDR) inhibition. Polymeric nanoparticles (PNPs) are being widely investigated in this regard due to their unique features such as small size, passive/active targeting possibility, better pharmaceutical kinetics and biological distribution, decreased adverse reactions of the established drugs, inherent inhibitory properties to MDR efflux pump proteins, as well as the feasibility of delivering numerous therapeutic substances in just one design. Hence in this review, we have primarily discussed PNPs based targeted and/or controlled SDSs in which we have elaborated upon different TME mediated nanotheranostic platforms (NTPs) including active/passive/magnetic targeting platforms along with pH/ROS/redox-responsive platforms. Besides, we have elucidated different imaging guided cancer therapeutic platforms based on four major cancer imaging techniques i.e., fluorescence/photo-acoustic/radionuclide/magnetic resonance imaging, Furthermore, we have deliberated some of the most recently developed PNPs based multimodal NTPs (by combining two or more imaging or therapy techniques on a single nanoplatform) in cancer theranostics. Moreover, we have provided a brief update on PNPs based NTP which are recently developed to overcome MDR for effective cancer treatment. Additionally, we have briefly discussed about the tissue biodistribution/tumour targeting efficiency of these nanoplatforms along with recent preclinical/clinical studies. Finally, we have elaborated on various limitations associated with PNPs based nanoplatforms.
Collapse
Affiliation(s)
- Urvashi Gupta
- Department of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom
| | - Dipak Maity
- School of Health Sciences & Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, United States of America
| |
Collapse
|
15
|
Qi Q, Wei Y, Zhang X, Guan J, Mao S. Challenges and strategies for ocular posterior diseases therapy via non-invasive advanced drug delivery. J Control Release 2023; 361:191-211. [PMID: 37532148 DOI: 10.1016/j.jconrel.2023.07.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Posterior segment diseases, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vital factor that seriously threatens human vision health and quality of life, the treatment of which poses a great challenge to ophthalmologists and ophthalmic scientists. In particular, ocular posterior drug delivery in a non-invasive manner is highly desired but still faces many difficulties such as rapid drug clearance, limited permeability and low drug accumulation at the target site. At present, many novel non-invasive topical ocular drug delivery systems are under development aiming to improve drug delivery efficiency and biocompatibility for better therapy of posterior segment oculopathy. The purpose of this review is to present the challenges in the noninvasive treatment of posterior segment diseases, and to propose strategies to tackle these bottlenecks. First of all, barriers to ocular administration were introduced based on ocular physiological structure and behavior, including analysis and discussion on the influence of ocular structures on noninvasive posterior segment delivery. Thereafter, various routes of posterior drug delivery, both invasive and noninvasive, were illustrated, along with the respective anatomical obstacles that need to be overcome. The widespread and risky application of invasive drug delivery, and the need to develop non-invasive local drug delivery with alternative to injectable therapy were described. Absorption routes through topical administration and strategies to enhance ocular posterior drug delivery were then discussed. As a follow-up, an up-to-date research advances in non-invasive delivery systems for the therapy of ocular fundus lesions were presented, including different nanocarriers, contact lenses, and several other carriers. In conclusion, it seems feasible and promising to treat posterior oculopathy via non-invasive local preparations or in combination with appropriate devices.
Collapse
Affiliation(s)
- Qi Qi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yidan Wei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
16
|
Wang Y, Song W, Bao L, Wei J, Qian Y, Bi Y. Enzyme and pH dual responsive linear-dendritic block copolymer micelles based on a phenylalanyl-lysine motif and peripherally ketal-functionalized dendron as potential drug carriers. RSC Adv 2023; 13:22079-22087. [PMID: 37483668 PMCID: PMC10360044 DOI: 10.1039/d3ra03790h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Stimuli-responsive linear-dendritic block copolymers (LDBCs) have attracted significant research attention as novel drug carriers. We report here three generations of new enzyme and pH dual responsive linear-dendritic block copolymers (LDBCs) with a phenylalanyl-lysine (Phe-Lys) dipeptide linking hydrophilic linear poly(N-vinylpyrrolidone) (PNVP) and a hydrophobic peripherally ketal-functionalized dendron derived from 2,2'-bis(hydroxymethyl)propionic acid (bis-MPA). The LDBCs are synthesized via a combination of interchange of xanthates/reversible addition-fragmentation chain transfer (MADIX/RAFT) polymerization of N-vinylpyrrolidone (NVP) and "chain-first" strategy. Their structures are confirmed by 1H NMR spectra. The gel permeation chromatograph (GPC) analysis revealed that the LDBCs have a narrow molecular weight distribution (PDI ≤ 1.25). The amphiphilic LDBCs can self-assemble into spherical nanomicelles in aqueous solution. The presence of enzyme or/and the change of pH cause disassembly of micelles to release encapsulated cargos. The release rates of the guest molecules are faster in buffer solution at pH 5.0 than those upon the addition of the activating enzyme and can be fine-tuned by changing the generation of bis-MPA dendrons. The combination of enzyme and pH dual stimuli results in significantly accelerated and more complete release of the loaded hydrophobic guests. The cell viability assay confirmed the favorable biocompatibility until the LDBC micelle concentration reached 800 μg mL-1. These results indicate that the LDBCs can be considered as a good candidate for targeting drug delivery.
Collapse
Affiliation(s)
- Yujia Wang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Wenjie Song
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Lijun Bao
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Junwu Wei
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Yangyang Qian
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| | - Yunmei Bi
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming 650500 China
| |
Collapse
|
17
|
Hettiarachchi SD, Kwon YM, Omidi Y, Speth RC. Nanoparticle approaches for the renin-angiotensin system. Heliyon 2023; 9:e16951. [PMID: 37484281 PMCID: PMC10361043 DOI: 10.1016/j.heliyon.2023.e16951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
The renin-angiotensin system (RAS) is a hormonal cascade that contributes to several disorders: systemic hypertension, heart failure, kidney disease, and neurodegenerative disease. Activation of the RAS can promote inflammation and fibrosis. Drugs that target the RAS can be classified into 3 categories, AT1 angiotensin receptor blockers (ARBs), angiotensin-converting enzyme (ACE) inhibitors, and renin inhibitors. The therapeutic efficacy of current RAS-inhibiting drugs is limited by poor penetration across the blood-brain barrier, low bioavailability, and to some extent, short half-lives. Nanoparticle-mediated drug delivery systems (DDSs) are possible emerging alternatives to overcome such limitations. Nanoparticles are ideally 1-100 nm in size and are considered efficient DDSs mainly due to their unique characteristics, including water dispersity, prolonged half-life in blood circulation, smaller size, and biocompatibility. Nano-scale DDSs can reduce the drug dosage frequency and acute toxicity of drugs while enhancing therapeutic success. Different types of nanoparticles, such as chitosan, polymeric, and nanofibers, have been examined in RAS-related studies, especially in hypertension, cardiovascular disease, and COVID-19. In this review article, we summarize the physical and chemical characteristics of each nanoparticle to elaborate on their potential use in RAS-related nano-drug delivery research and clinical application.
Collapse
Affiliation(s)
- Sajini D. Hettiarachchi
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Young M. Kwon
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, Barry and Judy College of Pharmacy, Nova Southeastern University, 3200 S University Dr, Davie, FL, 33328 USA
- Department of Pharmacology and Physiology, School of Medicine Georgetown University, 3900 Reservoir Rd. NW, Washington, DC, 20057, USA
| |
Collapse
|
18
|
Qu S, Zhu K. Endocytosis-mediated redistribution of antibiotics targets intracellular bacteria. NANOSCALE 2023; 15:4781-4794. [PMID: 36779877 DOI: 10.1039/d2nr05421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing emergence and dissemination of antibiotic resistance pose a severe threat to overwhelming healthcare practices worldwide. The lack of new antibacterial drugs urgently calls for alternative therapeutic strategies to combat multidrug-resistant (MDR) bacterial pathogens, especially those that survive and replicate in host cells, causing relapse and recurrence of infections. Intracellular drug delivery is a direct efficient strategy to combat invasive pathogens by increasing the accumulation of antibiotics. However, the increased accumulation of antibiotics in the infected host cells does not mean high efficacy. The difficulty of treatment lies in the efficient intracellular delivery of antibiotics to the pathogen-containing compartments. Here, we first briefly review the survival mechanisms of intracellular bacteria to facilitate the exploration of potential antibacterial targets for precise delivery. Furthermore, we provide an overview of endocytosis-mediated drug delivery systems, including the biomedical and physicochemical properties modulating the endocytosis and intracellular redistribution of antibiotics. Lastly, we summarize the targets and payloads of recently described intracellular delivery systems and their modes of action against diverse pathogenic bacteria-associated infections. This overview of endocytosis-mediated redistribution of antibiotics sheds light on the development of novel delivery platforms and alternative strategies to combat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
- Engineering Research Center of Animal Innovative drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
19
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
20
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
21
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
22
|
Hong T, Shen X, Syeda MZ, Zhang Y, Sheng H, Zhou Y, Xu J, Zhu C, Li H, Gu Z, Tang L. Recent advances of bioresponsive polymeric nanomedicine for cancer therapy. NANO RESEARCH 2022; 16:2660-2671. [PMID: 36405982 PMCID: PMC9664041 DOI: 10.1007/s12274-022-5002-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
A bioresponsive polymeric nanocarrier for drug delivery is able to alter its physical and physicochemical properties in response to a variety of biological signals and pathological changes, and can exert its therapeutic efficacy within a confined space. These nanosystems can optimize the biodistribution and subcellular location of therapeutics by exploiting the differences in biochemical properties between tumors and normal tissues. Moreover, bioresponsive polymer-based nanosystems could be rationally designed as precision therapeutic platforms by optimizing the combination of responsive elements and therapeutic components according to the patient-specific disease type and stage. In this review, recent advances in smart bioresponsive polymeric nanosystems for cancer chemotherapy and immunotherapy will be summarized. We mainly discuss three categories, including acidity-sensitive, redox-responsive, and enzyme-triggered polymeric nanosystems. The important issues regarding clinical translation such as reproducibility, manufacture, and probable toxicity, are also commented.
Collapse
Affiliation(s)
- Tu Hong
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Madiha Zahra Syeda
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| | - Yang Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Haonan Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yipeng Zhou
- Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China
| | - JinMing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 China
| | - Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121 China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016 China
- Jinhua Institute of Zhejiang University, Jinhua, 321299 China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Longguang Tang
- International institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000 China
| |
Collapse
|
23
|
Gutiérrez-Fernández E, Sena-Fernández J, Rebollar E, Ezquerra TA, Hermoso-Pinilla FJ, Sanz M, Gálvez O, Nogales A. Development of polar phases in ferroelectric poly(vinylidene fluoride) (PVDF) nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
25
|
Hu B, Zhang Y, Zhang G, Li Z, Jing Y, Yao J, Sun S. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022; 350:377-388. [PMID: 36007681 DOI: 10.1016/j.jconrel.2022.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Bone metastases are common in malignant tumors and the effect of conventional treatment is limited. How to effectively inhibit tumor bone metastasis and deliver the drug to the bone has become an urgent issue to be solved. While bone targeting drug delivery systems have obvious advantages in the treatment of bone tumors. The research on bone-targeted anti-tumor therapy has made significant progress in recent years. We introduced the related tumor pathways of bone metastases. The tumor microenvironment plays an important role in metastatic bone tumors. We introduce a drug-loading systems based on different environment-responsive nanocomposites for anti-tumor and anti-metastatic research. According to the process of bone metastases and the structure of bone tissue, we summarized the information on bone-targeting molecules. Bisphosphate has become the first choice of bone-targeted drug delivery carrier because of its affinity with hydroxyapatite in bone. Therefore, we sought to summarize the bone-targeting molecule of bisphosphate to identify the modification effect on bone-targeting. And this paper discusses the relationship between bisphosphate bone targeting molecular structure and drug delivery carriers, to provide some new ideas for the research and development of bone-targeting drug delivery carriers. Targeted therapy will make a more outstanding contribution to the treatment of tumors.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China; State Key Laboratory Breeding Base-Hebei Province, Key Laboratory of Molecular Chemistry for Drug, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongkang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Guogang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Zhongqiu Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Jun Yao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| | - Shiguo Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| |
Collapse
|
26
|
Guo L, Qin X, Xue L, Yang JY, Zhang Y, Zhu S, Ye G, Tang R, Yang W. A novel form of docetaxel polymeric micelles demonstrates anti-tumor and ascites-inhibitory activities in animal models as monotherapy or in combination with anti-angiogenic agents. Front Pharmacol 2022; 13:964076. [PMID: 36091776 PMCID: PMC9449419 DOI: 10.3389/fphar.2022.964076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Malignant ascites (MA) is caused by intraperitoneal spread of solid tumor cells and results in a poor quality of life. Chemotherapy is a common first-line treatment for patients with MA. Taxotere ® (DTX) is widely used in solid tumor therapies. However, the low water solubility and side effects caused by additives in the formulation restrict the clinical application of docetaxel. HT001 is a clinical stage docetaxel micelle developed to overcome the solubility issue with improved safety profiles. To support clinical development and expand clinical application of HT001, this study used in vitro and in vivo approaches to investigate the anti-tumor effects of HT001 when applied as monotherapy or in combination with anti-angiogenic agents. HT001 demonstrated comparable anti-proliferative activities as docetaxel in a broad range of cancer cell lines in vitro. Furthermore, HT001 suppressed tumor growth in a dose-dependent manner in A549, MCF-7, and SKOV-3 xenograft tumor mouse models in vivo. In a hepatocellular carcinoma H22 malignant ascites-bearing mouse model, HT001 presented a dose-dependent inhibition of ascites production, prolonged animal survival, and reduced VEGF levels. When dosed at 20 mg/kg, the HT001-treated group exhibited curative results, with no ascites formation in 80% of mice at the end of the study while all the mice in the vehicle control group succumbed. Similar results were obtained in HT001 treatment of mice bearing malignant ascites produced by human ovarian cancer ES-2 cells. Notably, the combination of HT001 with Endostar not only significantly reduced ascites production but also prolonged survival of H22 ascites-bearing mice. HT001 showed similar PK and tissue distribution profiles as DTX in non-rodent hosts. Collectively, these results demonstrate potent anti-tumor activity of HT001 in multiple solid tumor models or malignant ascites models, and reveal synergistic effects with anti-angiogenic agents, supporting the clinical development and clinical expansion plans for HT001.
Collapse
Affiliation(s)
- Leilei Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Xiaokang Qin
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Liting Xue
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Janine Y. Yang
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Yumei Zhang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shunwei Zhu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Gang Ye
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
- *Correspondence: WenQing Yang, ; Renhong Tang,
| | - WenQing Yang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co. Ltd, Nanjing, China
- *Correspondence: WenQing Yang, ; Renhong Tang,
| |
Collapse
|
27
|
Pothukuchi RP, Radhakrishna M. Understanding the stimuli responsive behavior of polyion grafted nanoparticles in the presence of salt and polyelectrolytes. SOFT MATTER 2022; 18:6124-6137. [PMID: 35943182 DOI: 10.1039/d2sm00650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of nanoparticles (NPs) that respond to external stimuli like pH, temperature, and electric or magnetic fields has found immense interest in various fields of nanotechnology like nanomedicine, drug delivery, and cancer therapy. Nanoparticles grafted with polymeric ligands have been extensively used as building blocks in the directed self assembly of nanoparticles. These moieties not only assemble into various morphologies but also respond to a wide range of external stimuli. In this work, we have used coarse grained molecular dynamics simulations to understand the stimuli-responsive behavior of assemblies of NPs grafted with oppositely charged polyions (PGNs) in the presence of salt and polyelectrolytes. At low grafting density, a transformation from ring morphology to form dimers/strings/dispersed NPs was observed upon addition of divalent/trivalent salts. NPs grafted with longer grafts showed higher stability to remain as rings compared to shorter grafts. The change in NP morphology was a direct consequence of preferential interaction of the polyaion grafts with the oppositely charged salt ions compared to the oppositely charged grafts on the NPs. At fixed salt valency, the size of the salt ion, concentration and molecular connectivity played a crucial role in the stimuli responsive behavior of polyion grafted NPs in solutions. Further, in the presence of polyelectrolytes, these transitions occurred at lower monomer valency due to the stronger electrostatic interactions between the grafted chains and oppositely charged free polyelectrolytes in solutions. Disordered and ordered aggregates assemblies formed at higher grafting density were broken into smaller NP assemblies in the presence of salt. Drug encapsulation studies in the presence of salt and polyelectrolytes were performed on model drug moieties in order to demonstrate the potential use of the modelled stimuli responsive nanoparticle assemblies in drug delivery applications.
Collapse
Affiliation(s)
- Rajesh Pavan Pothukuchi
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar, Palaj, Gujarat 382355, India.
| | - Mithun Radhakrishna
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
28
|
Vikas, Sahu HK, Mehata AK, Viswanadh MK, Priya V, Muthu MS. Dual-receptor-targeted nanomedicines: emerging trends and advances in lung cancer therapeutics. Nanomedicine (Lond) 2022; 17:1375-1395. [PMID: 36317852 DOI: 10.2217/nnm-2021-0470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide. Among all cancer types, lung cancer is recognized as the most lethal and highly metastatic. The application of targeted nanomedicine loaded with anticancer drugs is highly desirable for successful lung cancer treatment. However, due to the heterogenicity and complexity of lung cancer, the therapeutic effectiveness of a single receptor targeting nanomedicine is unfortunately limited. Therefore, the concept of dual-receptor-targeted nanomedicine is an emerging trend for the advancement in lung cancer therapeutics. In this review, the authors discuss various single- and dual-receptor-targeted nanomedicines that have been developed for lung cancer treatment. Furthermore, the authors also discussed all the types of receptors that can be utilized in combination for the development of dual-receptor-targeted nanomedicines.
Collapse
Affiliation(s)
- Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Hemendra Kumar Sahu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Matte Kasi Viswanadh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
29
|
Fabrication and Phase Behavior of Thermo- and/or pH-Responsive Polymer-Grafted SiO2 Nanoparticles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three series of thermo- and/or pH-responsive polymer-grafted SiO2 nanoparticles, SiO2-graft-poly(oligo(ethylene glycol) methacrylate) (SiO2-g-POEGMA), SiO2-graft-poly(acrylic acid) (SiO2-g-PAA) and SiO2-graft-poly(oligo(ethylene glycol) methacrylate-state-acrylic acid (SiO2-g-P(OEGMA-stat-AA)), were prepared by grafting POEGMA and/or PAA onto the surface of silica nanoparticles through the surface-initiated atom transfer radical polymerization (SI-ATRP). The lower critical solution temperature (LCST) of SiO2-g-POEGMA (MOEGMA = 300 g/mol) was found to be 64 °C. For SiO2-g-PAA nanoparticles, at the pH range from 8 to 12, the hydrodynamic diameter of the nanoparticles increases with increasing pH, and the zeta potential of SiO2-g-PAA nanoparticles is negatively charged and decreases with increasing pH. Owing to the thermo- and pH-responsive, the hydrodynamic diameters of SiO2-g-P(OEGMA-stat-AA) nanoparticles increase with the increasing pH, and the LCSTs of those nanoparticles increase with the increase of POEGMA content.
Collapse
|
30
|
Singh D, Kaur P, Attri S, Singh S, Sharma P, Mohana P, Kaur K, Kaur H, Singh G, Rashid F, Singh D, Kumar A, Rajput A, Bedi N, Singh B, Buttar HS, Arora S. Recent Advances in the Local Drug Delivery Systems for Improvement of Anticancer Therapy. Curr Drug Deliv 2021; 19:560 - 586. [PMID: 34906056 DOI: 10.2174/1567201818666211214112710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022]
Abstract
The conventional anticancer chemotherapies not only cause serious toxic effects, but also produce resistance in tumor cells exposed to long-term therapy. Usually, the killing of metastasized cancer cells requires long-term therapy with higher drug doses, because the cancer cells develop resistance due to the induction of poly-glycoproteins (P-gps) that act as a transmembrane efflux pump to transport drugs out of the cells. During the last few decades, scientists have been exploring new anticancer drug delivery systems such as microencapsulation, hydrogels, and nanotubes to improve bioavailability, reduce drug-dose requirement, decrease multiple drug resistance, and to save normal cells as non-specific targets. Hopefully, the development of novel drug delivery vehicles (nanotubes, liposomes, supramolecules, hydrogels, and micelles) will assist to deliver drug molecules at the specific target site and reduce the undesirable side effects of anticancer therapies in humans. Nanoparticles and lipid formulations are also designed to deliver small drug payload at the desired tumor cell sites for their anticancer actions. This review will focus on the recent advances in the drug delivery systems, and their application in treating different cancer types in humans.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Pallavi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Gurdeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga. India
| | - Avinash Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. 0
| | - Harpal Singh Buttar
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, Ottawa, Ontario. Canada
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
31
|
Chen J, Jiang Z, Zhang YS, Ding J, Chen X. Smart transformable nanoparticles for enhanced tumor theranostics. APPLIED PHYSICS REVIEWS 2021; 8. [DOI: 10.1063/5.0061530] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The physical morphologies of nanoparticles, especially size and shape, always significantly influence their biological behaviors. In the past, nanoparticles with constant physical morphologies have been widely investigated and applied in tumor theranostics. With the increased in-depth knowledge of tumors and physiological microenvironments, nanoparticles are required to self-adjust their physical morphologies during their circulation in varying physiological microenvironments and when reaching tumor site that possess distinct microenvironments. Therefore, smart transformable nanomaterials, which can alter their morphologies under different physiological conditions, show great potential in advanced tumor theranostics. This review summarizes the influence of nanoparticles' physical morphologies on their biological behaviors under different physiological conditions, highlights the designs of transformable nanoparticles serving as a guideline for their construction, intensively discusses the recent biomedical applications of these smart transformable nanoparticles for tumor theranostics, and also proposes future challenges and perspectives in the development of smart transformable nanoparticles for tumor theranostics.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 2 , 107 Yanjiang West Road, Guangzhou 510120, People's Republic of China
| | - Zhongyu Jiang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 3 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School 4 , 65 Landsdown Street, Cambridge, Massachusetts 02139, USA
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 3 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| |
Collapse
|
32
|
Foglietta F, Serpe L, Canaparo R. The Effective Combination between 3D Cancer Models and Stimuli-Responsive Nanoscale Drug Delivery Systems. Cells 2021; 10:3295. [PMID: 34943803 PMCID: PMC8699241 DOI: 10.3390/cells10123295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Stimuli-responsive drug-delivery systems (DDSs) have emerged as a potential tool for applications in healthcare, mainly in the treatment of cancer where versatile nanocarriers are co-triggered by endogenous and exogenous stimuli. Two-dimensional (2D) cell cultures are the most important in vitro model used to evaluate the anticancer activity of these stimuli-responsive DDSs due to their easy manipulation and versatility. However, some limitations suggest that these in vitro models poorly predict the outcome of in vivo studies. One of the main drawbacks of 2D cell cultures is their inadequate representation of the 3D environment's physiological complexity, which sees cells interact with each other and the extracellular matrix (ECM) according to their specific cellular organization. In this regard, 3D cancer models are a promising approach that can overcome the main shortcomings of 2D cancer cell cultures, as these in vitro models possess many peculiarities by which they mimic in vivo tumors, including physiologically relevant cell-cell and cell-ECM interactions. This is, in our opinion, even more relevant when a stimuli-responsive DDS is being investigated. In this review, we therefore report and discuss endogenous and exogenous stimuli-responsive DDSs whose effectiveness has been tested using 3D cancer cell cultures.
Collapse
Affiliation(s)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (F.F.); (R.C.)
| | | |
Collapse
|
33
|
Forouhari S, Beygi Z, Mansoori Z, Hajsharifi S, Heshmatnia F, Gheibihayat SM. Liposomes: Ideal drug delivery systems in breast cancer. Biotechnol Appl Biochem 2021; 69:1867-1884. [PMID: 34505736 DOI: 10.1002/bab.2253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) has been recognized as the most common type of cancer in females across the world, accounting for 12% of each cancer case. In this sense, better diagnosis and screening have been thus far proven to contribute to higher survival rates. Moreover, traditional (or standard) chemotherapy is still known as one of the several prominent therapeutic options available, though it suffers from unsuitable cell selectivity, severe consequences, as well as resistance. In this regard, nanobased drug delivery systems (DDSs) are likely to provide promising grounds for BC treatment. Liposomes are accordingly effective nanosystems, having the benefits of multiple formulations verified to treat different diseases. Such systems possess specific features, including smaller size, biodegradability, hydrophobic/hydrophilic characteristics, biocompatibility, lower toxicity, as well as immunogenicity, which can all lead to considerable efficacy in treating various types of cancer. As chemotherapy uses drugs to target tumors, generates higher drug concentrations in tumors, which can provide for their slow release, and enhances drug stability, it can be improved via liposomes in DDSs for BC treatment. Therefore, the present study aims to review the existing issues regarding BC treatment and discuss liposome-based targeting in order to overcome barriers to conventional drug therapy.
Collapse
Affiliation(s)
- Sedighe Forouhari
- Infertility Research Center, Research Center of Quran, Hadith, and Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Beygi
- Department of Nursing and Midwife, Maybod Branch, Islamic Azad University, Maybod, Iran
| | - Zahra Mansoori
- Faculty of Educational Sciences and Psychology, Department of Sports Sciences, Shiraz University, Shiraz, Iran
| | - Sara Hajsharifi
- Student Research Committee, Department of Midwifery, Fatemeh (PBUH) School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Heshmatnia
- Student Research Committee, Department of Midwifery, Fatemeh (PBUH) School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
34
|
Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Preparation, Physical Properties, and Applications of Water-Based Functional Polymer Inks. Polymers (Basel) 2021; 13:polym13091419. [PMID: 33925696 PMCID: PMC8124647 DOI: 10.3390/polym13091419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, water-based functional polymer inks are prepared using different solvent displacement methods, in particular, polymer functional inks based on semiconducting polymer poly(3-hexylthiophene) and the ferroelectric polymer poly(vinylidene fluoride) and its copolymers with trifluoroethylene. The nanoparticles that are included in the inks are prepared by miniemulsion, as well as flash and dialysis nanoprecipitation techniques and we discuss the properties of the inks obtained by each technique. Finally, an example of the functionality of a semiconducting/ferroelectric polymer coating prepared from water-based inks is presented.
Collapse
|
36
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
37
|
Saeedi S, Murjan S, Nabid MR. Redox and pH dual sensitive folate-modified star-like amphiphilic copolymer based on castor oil for controlled doxorubicin delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Derakhshankhah H, Jahanban‐Esfahlan R, Vandghanooni S, Akbari‐Nakhjavani S, Massoumi B, Haghshenas B, Rezaei A, Farnudiyan‐Habibi A, Samadian H, Jaymand M. A bio‐inspired gelatin‐based
pH
‐ and thermal‐sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.50578] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology School of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Sattar Akbari‐Nakhjavani
- Department of Molecular Medicine School of Advanced Technologies in Medicine, Tehran University of Medical Sciences Tehran Iran
| | | | - Babak Haghshenas
- Regenerative Medicine Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Amir Farnudiyan‐Habibi
- Department of Pharmaceutical Biomaterials Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
- Medical Biomaterials Research Center Faculty of Pharmacy, Tehran University of Medical Sciences Tehran Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
39
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
40
|
Fu Q, Li Z, Fu F, Chen X, Song J, Yang H. Stimuli-Responsive Plasmonic Assemblies and Their Biomedical Applications. NANO TODAY 2021; 36:101014. [PMID: 33250931 PMCID: PMC7687854 DOI: 10.1016/j.nantod.2020.101014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among the diverse development of stimuli-responsive assemblies, plasmonic nanoparticle (NP) assemblies functionalized with responsive molecules are of a major interest. In this review, we outline a comprehensive and up-to-date overview of recently reported studies on in vitro and in vivo assembly/disassembly and biomedical applications of plasmonic NPs, wherein stimuli such as enzymes, light, pH, redox potential, temperature, metal ions, magnetic or electric field, and/or multi-stimuli were involved. Stimuli-responsive assemblies have been applied in various biomedical fields including biosensors, surfaced-enhanced Raman scattering (SERS), photoacoustic (PA) imaging, multimodal imaging, photo-activated therapy, enhanced X-ray therapy, drug release, stimuli-responsive aggregation-induced cancer therapy, and so on. The perspectives on the use of stimuli-responsive plasmonic assemblies are discussed by addressing future scientific challenges involving assembly/disassembly strategies and applications.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi Li
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Fengfu Fu
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Jibin Song
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Huanghao Yang
- MOE key laboratory for analytical science of food safety and biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
41
|
Phan H, Taresco V, Penelle J, Couturaud B. Polymerisation-induced self-assembly (PISA) as a straightforward formulation strategy for stimuli-responsive drug delivery systems and biomaterials: recent advances. Biomater Sci 2021; 9:38-50. [PMID: 33179646 DOI: 10.1039/d0bm01406k] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive amphiphilic block copolymers have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, the presence of redox agents, and temperature. The formulation of amphiphilic block copolymers into polymeric drug-loaded nanoparticles is typically achieved by various methods (e.g. oil-in-water emulsion solvent evaporation, solid dispersion, microphase separation, dialysis or microfluidic separation). Despite much progress that has been made, there remain many challenges to overcome to produce reliable polymeric systems. The main drawbacks of the above methods are that they produce very low solid contents (<1 wt%) and involve multiple-step procedures, thus limiting their scope. Recently, a new self-assembly methodology, polymerisation-induced self-assembly (PISA), has shown great promise in the production of polymer-derived particles using a straightforward one-pot approach, whilst facilitating high yield, scalability, and cost-effectiveness for pharmaceutical industry protocols. We therefore focus this review primarily on the most recent studies involved in the design and preparation of PISA-generated nano-objects which are responsive to specific stimuli, thus providing insight into how PISA may become an effective formulation strategy for the preparation of precisely tailored drug delivery systems and biomaterials, while some of the current challenges and limitations are also critically discussed.
Collapse
Affiliation(s)
- Hien Phan
- Univ Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France.
| | | | | | | |
Collapse
|
42
|
Thomas RG, Surendran SP, Jeong YY. Tumor Microenvironment-Stimuli Responsive Nanoparticles for Anticancer Therapy. Front Mol Biosci 2020; 7:610533. [PMID: 33392264 PMCID: PMC7775573 DOI: 10.3389/fmolb.2020.610533] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is a disease that affects a large number of people all over the world. For treating cancer, nano-drug delivery system has been introduced recently with objective of increasing therapeutic efficiency of chemotherapeutic drug. The main characteristics of this system are the encapsulation of the insoluble chemotherapeutic cargo, increasing the period of circulation in the body, as well as the delivery of the drug at that specific site. Currently, the nano-drug delivery system based on the stimuli response is becoming more popular because of the extra features for controlling the drug release based on the internal atmosphere of cancer. This review provides a summary of different types of internal (pH, redox, enzyme, ROS, hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspective for upcoming times.
Collapse
Affiliation(s)
- Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
- BioMolecular Theranostics (BiT) Laboratory, Department of Biomedical Sciences, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju, South Korea
| | - Suchithra Poilil Surendran
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
- BioMolecular Theranostics (BiT) Laboratory, Department of Biomedical Sciences, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
- BioMolecular Theranostics (BiT) Laboratory, Department of Biomedical Sciences, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju, South Korea
| |
Collapse
|
43
|
Fathi M, Abdolahinia ED, Barar J, Omidi Y. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine (Lond) 2020; 15:2171-2200. [DOI: 10.2217/nnm-2020-0146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Solid tumors form a permissive microenvironment with irregular features, including high pressured tumor interstitial fluid with acidic pH, co-adaptation of cancer cells with other cells like the immune system cells, abnormal metabolism and anomalous overexpression of various pieces of molecular machinery. The functional expressions of several oncomarkers in different solid tumors have led to the development of targeted drug-delivery systems (DDSs). As a new class of DDSs, stimuli-responsive nanomedicines (SRNMs) have been developed using advanced nanobiomaterials such as biopolymers that show excellent biocompatibility with low inherent immunogenicity. In this review, we aim to overview different types of SRNMs, present deep insights into the stimuli-responsive biopolymers and discuss the most up-to-date progress in the design and development of SRNMs used as advanced DDSs for targeted therapy of cancer.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
44
|
Affiliation(s)
- Karine Cappuccio de Castro
- Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Rodovia José Aurélio Vilela, Poços de Caldas, Minas Gerais, Brazil
| | - Josiel Martins Costa
- Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Rodovia José Aurélio Vilela, Poços de Caldas, Minas Gerais, Brazil
| | - Maria Gabriela Nogueira Campos
- Science and Technology Institute, Federal University of Alfenas (UNIFAL-MG), Rodovia José Aurélio Vilela, Poços de Caldas, Minas Gerais, Brazil
| |
Collapse
|
45
|
The Ouzo effect: A tool to elaborate high-payload nanocapsules. J Control Release 2020; 324:430-439. [DOI: 10.1016/j.jconrel.2020.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 01/29/2023]
|
46
|
The prominence of the dosage form design to treat ocular diseases. Int J Pharm 2020; 586:119577. [PMID: 32622806 DOI: 10.1016/j.ijpharm.2020.119577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The eye is susceptible to various diseases commonly difficult to treat. To overcome the barriers imposed by this organ for required drugs penetration, technological strategies have been implemented to ocular formulations. Among them are the use of temperature or electric stimuli and the development of nanoparticles. The objective of this review is to present the main barriers to ocular drug delivery and to discuss strategies used in the development of ocular dosage forms, primarily for topical delivery, to increase the local bioavailability of drugs, target their delivery and increase patient compliance. Results obtained in the last years related to the topical administration of liposomes, dendrimers, iontophoresis, among other nanoparticulate systems focused on ophthalmic delivery, will be addressed. Finally, some clinical trials and marketed formulations that use nanotechnology to topically treat eye diseases will be presented.
Collapse
|
47
|
Khoee S, Keivanshokouh A. Anisotropic modification of SPIONs surface with thiol and alkyne groups for fabrication of poly (2-hydroxyethyl methacrylate)/polydopamine amphiphilic Janus nanoparticles via double-click reaction. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Kim Y, Uthaman S, Pillarisetti S, Noh K, Huh KM, Park IK. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy. Acta Biomater 2020; 108:273-284. [PMID: 32205212 DOI: 10.1016/j.actbio.2020.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
Bioactivatable polymer nanoparticles (NPs) have attracted considerable attention as a prospective cancer therapy. Herein, we describe bioactivatable reactive oxygen species (ROS)-sensitive prodrug NPs designed to elicit spatiotemporally controlled, phototriggered chemo-photodynamic therapy. First, an effective anticancer agent, doxorubicin (DOX), was conjugated to poly(ethylene glycol) (PEG) via an ROS-responsive degradable thioketal (TK) linker. The resulting amphiphilic PEG-DOX conjugate (PEG-TK-DOX) self-assembled into a bioactivatable ROS-responsive NP system could efficiently encapsulate a hydrophobic photodynamic therapy (PDT) agent, pheophorbide A (PhA), with good colloidal stability and unimodal size distribution. Second, after the selective retention of NPs in the tumor, the site-specific release of DOX and PhA was spatiotemporally controlled, initially by endogenous ROS and subsequently by exogenous ROS produced during PDT. The locoregional treatment not only photoactivates PhA molecules to generate cytotoxic ROS but also triggers an ROS cascade, which accelerates the release of DOX and PhA via the ROS-mediated structural destruction of NPs, resulting in an enhanced anticancer therapeutic effect. This prodrug-NP system may function as an effective nanomedicine platform, working synergistically to maximize the efficacy of the combination of chemotherapy and photodynamic therapy with a remote-controlled release mechanism. STATEMENT OF SIGNIFICANCE: Photodynamic therapy (PDT) is a noninvasive therapy involving local ROS generation through the activation of photosensitizer (PS) molecules induced via external irradiation with near-infrared (NIR) light. Combinational therapies with PDT could synergistically enhance the therapeutic efficacy and overcome the limitations of monotherapy. In this study, we describe bioactivatable reactive oxygen species (ROS)-sensitive prodrug nanoparticles designed to elicit spatiotemporally controlled, photo triggered chemo-photodynamic therapy. Upon accumulation in tumor by enhanced permeation and retention (EPR) effect, the nanoparticles exhibited target-specific release of chemo-drug and photosensitizer in a spatiotemporally controlled cascade manner by endogenous ROS in the initial stage and the excessive production of exogenous ROS during PDT, leading to a further ROS cascade that accelerates the release of therapeutic cargo.
Collapse
|
49
|
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quiñones-Díaz BI, Noriega-Rivera RA, Martínez-Zayas G, Santana-Rivera Y, Santiago-Sánchez GS, Valiyeva F, Vivas-Mejía PE. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int J Nanomedicine 2020; 15:2809-2828. [PMID: 32368056 PMCID: PMC7185647 DOI: 10.2147/ijn.s241055] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian I Rios-Vicil
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L Lozada-Delgado
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo A Noriega-Rivera
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Gabriel Martínez-Zayas
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Ginette S Santiago-Sánchez
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
50
|
A multifuctional nanoplatform for drug targeted delivery based on radiation-engineered nanogels. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|