1
|
Hjelmager JS, Andersen K, Andersen TE, Stærk K. What is chronic urinary tract infection? A systematic review. BJU Int 2025. [PMID: 40326061 DOI: 10.1111/bju.16764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
OBJECTIVE To define 'chronic' urinary tract infection (UTI) by reviewing current published research that employs this term. METHODS We systematically searched Medline and Embase for studies covering all aspects of human UTI. For comparison, current urological and infectious disease guidelines were also reviewed. RESULTS The electronic search yielded a total of 2175 articles, of which 154 were eventually included for data extraction. Of these, six studies presented a definition of chronic UTI within the text. The definitions were highly incongruent among studies and often identical to the current definition of 'recurrent' UTI. CONCLUSION Chronic UTI is an undefined term, which has nevertheless been increasingly used in the past 15 years. Chronic UTI does not represent a distinct clinical or microbiological condition that justifies its use as medical diagnosis.
Collapse
Affiliation(s)
- Janni Søvsø Hjelmager
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
| | - Karin Andersen
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Tram NDT, Xu J, Chan KH, Rajamani L, Ee PLR. Bacterial clustering biomaterials as anti-infective therapies. Biomaterials 2025; 316:123017. [PMID: 39708775 DOI: 10.1016/j.biomaterials.2024.123017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/23/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
In Nature, bacterial clustering by host-released peptides or nucleic acids is an evolutionarily conserved immune defense strategy employed to prevent adhesion of pathogenic microbes, which is prerequisite for most infections. Synthetic anti-adhesion strategies present as non-lethal means of targeting bacteria and may potentially be used to avoid resistance against antimicrobial therapies. From bacteria-agglutinating biomolecules discovered in nature to synthetic designs involving peptides, cationic polymers and nanoparticles, the modes of actions appear broad and unconsolidated. Herein, we present a critical review and update of the state-of-the-art in synthetic bacteria-clustering designs with proposition of a more streamlined nomenclature and classification. Overall, this review aims to consolidate the conceptual framework in the field of bacterial clustering and highlight its potentials as an avenue for discovering novel antibacterial biomaterials.
Collapse
Affiliation(s)
- Nhan Dai Thien Tram
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Jian Xu
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore; NUS College, National University of Singapore, 18 College Avenue East, Singapore, 138593, Singapore
| | - Lakshminarayanan Rajamani
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore; Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, Singapore, 169856, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Pui Lai Rachel Ee
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, Singapore, 117559, Singapore.
| |
Collapse
|
3
|
Fares M, Imberty A, Titz A. Bacterial lectins: multifunctional tools in pathogenesis and possible drug targets. Trends Microbiol 2025:S0966-842X(25)00083-6. [PMID: 40307096 DOI: 10.1016/j.tim.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 05/02/2025]
Abstract
Glycans are vital macromolecules with diverse biological roles, decoded by lectins - specialized carbohydrate-binding proteins crucial in pathogenesis. The WHO identifies bacterial antimicrobial resistance (AMR) as a critical global health challenge, necessitating innovative strategies that also target non-antibiotic pathways. Recent studies highlight bacterial lectins as key players in pathogenesis and promising therapeutic targets, with early clinical success using glycomimetics and vaccines to treat and prevent AMR-related infections. This review covers the current knowledge on bacterial lectins, their classifications, and roles in host recognition and adhesion, biofilm formation, cytotoxicity, and host immune evasion, with examples of well-characterized lectins. It also explores their therapeutic potential and highlights novel lectins with unknown functions, encouraging further research.
Collapse
Affiliation(s)
- Mario Fares
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 601 rue de la chimie, Grenoble 38000, France
| | - Alexander Titz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.
| |
Collapse
|
4
|
Heimann D, Kohnhäuser D, Kohnhäuser AJ, Brönstrup M. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025; 85:293-323. [PMID: 39847315 PMCID: PMC11891108 DOI: 10.1007/s40265-024-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high. A detailed analysis of the scientific foundations behind each of these compounds is provided, including their pharmacodynamic profiles, current development state, and potential for overcoming existing limitations in antibiotic therapy. By presenting this subset of chemically novel antibacterials, the review highlights the ability to innovate in antibiotic drug development to counteract bacterial resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel Kohnhäuser
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
5
|
Mohammed AF, Othman SA, Abou-Ghadir OF, Kotb AA, Mostafa YA, El-Mokhtar MA, Abdu-Allah HHM. Design, synthesis, biological evaluation and docking study of some new aryl and heteroaryl thiomannosides as FimH antagonists. Bioorg Chem 2024; 145:107258. [PMID: 38447463 DOI: 10.1016/j.bioorg.2024.107258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
FimH is a mannose-recognizing lectin that is expressed by Escherichia coli guiding its ability to adhere and infect cells. It is involved in pathogenesis of urinary tract infections and Chron's disease. Several X-ray structure-guided ligand design studies were extensively utilized in the discovery and optimization of small molecule aryl mannoside FimH antagonists. These antagonists retain key specific interactions of the mannose scaffolds with the FimH carbohydrate recognition domains. Thiomannosides are attractive and stable scaffolds, and this work reports the synthesis of some of their new aryl and heteroaryl derivatives as FimH antagonists. FimH-competitive binding assays as well as biofilm inhibition of the new compounds (24-32) were determined in comparison with the reference n-heptyl α-d-mannopyranoside (HM). The affinity among these compounds was found to be governed by the structure of the aryl and heteroarylf aglycones. Two compounds 31 and 32 revealed higher activity than HM. Molecular docking and total hydrophobic to topological polar surface area ratio calculations attributed to explain the obtained biological results. Finally, the SAR study suggested that introducing an aryl or heteroaryl aglycone of sufficient hydrophobicity and of proper orientation within the tyrosine binding site considerably enhance binding affinity. The potent and synthetically feasible FimH antagonists described herein hold potential as leads for the development of sensors for detection of E. coli and treatment of its diseases.
Collapse
Affiliation(s)
- Anber F Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Shimaa A Othman
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ola F Abou-Ghadir
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ahmed A Kotb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Hajjaj H M Abdu-Allah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
6
|
Maddirala AR, Tamadonfar K, Pinkner JS, Sanick D, Hultgren SJ, Janetka JW. Discovery of Orally Bioavailable FmlH Lectin Antagonists as Treatment for Urinary Tract Infections. J Med Chem 2024; 67:3668-3678. [PMID: 38308631 PMCID: PMC10994195 DOI: 10.1021/acs.jmedchem.3c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
FmlH, a bacterial adhesin of uropathogenic Escherichia coli (UPEC), has been shown to provide a fitness advantage in colonizing the bladder during chronic urinary tract infections (UTIs). Previously reported ortho-biphenyl glycosides based on βGal and βGalNAc have excellent binding affinity to FmlH and potently block binding to its natural carbohydrate receptor, but they lack oral bioavailability. In this paper, we outline studies where we have optimized compounds for improved pharmacokinetics, leading to the discovery of novel analogues with good oral bioavailability. We synthesized galactosides with the anomeric O-linker replaced with more stable S- and C-linked linkers. We also investigated modifications to the GalNAc sugar and modifications to the biphenyl aglycone. We identified GalNAc 69 with an IC50 of 0.19 μM against FmlH and 53% oral bioavailability in mice. We also obtained a FimlH-bound X-ray structure of lead compound 69 (AM4085) which has potential as a new antivirulence therapeutic for UTIs.
Collapse
Affiliation(s)
- Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Denise Sanick
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Women’s Infectious Disease Research, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Women’s Infectious Disease Research, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Zheng H, Wang C, Yu X, Zheng W, An Y, Zhang J, Zhang Y, Wang G, Qi M, Lin H, Wang F. The Role of Metabolomics and Microbiology in Urinary Tract Infection. Int J Mol Sci 2024; 25:3134. [PMID: 38542107 PMCID: PMC10969911 DOI: 10.3390/ijms25063134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 08/25/2024] Open
Abstract
One of the common illnesses that affect women's physical and mental health is urinary tract infection (UTI). The disappointing results of empirical anti-infective treatment and the lengthy time required for urine bacterial culture are two issues. Antibiotic misuse is common, especially in females who experience recurrent UTI (rUTI). This leads to a higher prevalence of antibiotic resistance in the microorganisms that cause the infection. Antibiotic therapy will face major challenges in the future, prompting clinicians to update their practices. New testing techniques are making the potential association between the urogenital microbiota and UTIs increasingly apparent. Monitoring changes in female urinary tract (UT) microbiota, as well as metabolites, may be useful in exploring newer preventive treatments for UTIs. This review focuses on advances in urogenital microbiology and organismal metabolites relevant to the identification and handling of UTIs in an attempt to provide novel methods for the identification and management of infections of the UT. Particular attention is paid to the microbiota and metabolites in the patient's urine in relation to their role in supporting host health.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Xiao Yu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Wenxue Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Yiming An
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Jiaqi Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Yuhan Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Mingran Qi
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Hongqiang Lin
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
Al-Mughaid H, Jaradat Y, Khazaaleh M, Al-Taani I. Click chemistry inspired facile one-pot synthesis of mannosyl triazoles and their hemagglutination inhibitory properties: The effect of alkyl chain spacer length between the triazole and phthalimide moieties in the aglycone backbone. Carbohydr Res 2023; 534:108965. [PMID: 37852130 DOI: 10.1016/j.carres.2023.108965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
An efficient one-pot synthesis of a new series of mannosyl triazoles has been achieved through CuAAC reaction where the alkyl chain spacer between the phthalimide moiety and the triazole ring in the aglycone backbone is varied from one methylene to six methylene units. The target compounds were evaluated in terms of their inhibitory potency against FimH using hemagglutination inhibition (HAI) assay. It was found that the length of four methylene units was the optimum for the fitting/binding of the compound to FimH as exemplified by compound 11 (HAI = 1.9 μM), which was approximately 200 times more potent than the reference ligand 1(HAI = 385 μM). The successful implementation of one-pot protocol with building blocks 1-7 and the architecture of ligand 11 will be the subject of our future work for developing more potent FimH inhibitors.
Collapse
Affiliation(s)
- Hussein Al-Mughaid
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan.
| | - Younis Jaradat
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Maha Khazaaleh
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| | - Ibrahim Al-Taani
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
9
|
Palmioli A, Moretti L, Vezzoni CA, Legnani L, Sperandeo P, Baldini L, Sansone F, Airoldi C, Casnati A. Multivalent calix[4]arene-based mannosylated dendrons as new FimH ligands and inhibitors. Bioorg Chem 2023; 138:106613. [PMID: 37224739 DOI: 10.1016/j.bioorg.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
We report the synthesis and biological characterization of a novel class of multivalent glycoconjugates as hit compounds for the design of new antiadhesive therapies against urogenital tract infections (UTIs) caused by uropathogenic E. coli strains (UPEC). The first step of UTIs is the molecular recognition of high mannose N-glycan expressed on the surface of urothelial cells by the bacterial lectin FimH, allowing the pathogen adhesion required for mammalian cell invasion. The inhibition of FimH-mediated interactions is thus a validated strategy for the treatment of UTIs. To this purpose, we designed and synthesized d-mannose multivalent dendrons supported on a calixarene core introducing a significant structural change from a previously described family of dendrimers bearing the same dendrons units on a flexible pentaerythritol scaffold core. The new molecular architecture increased the inhibitory potency against FimH-mediated adhesion processes by about 16 times, as assessed by yeast agglutination assay. Moreover, the direct molecular interaction of the new compounds with FimH protein was assessed by on-cell NMR experiments acquired in the presence of UPEC cells.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Luca Moretti
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Carlo Alberto Vezzoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Laura Legnani
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Laura Baldini
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| |
Collapse
|
10
|
Timm MR, Tamadonfar KO, Nye TM, Pinkner JS, Dodson KW, Ellebedy AH, Hultgren SJ. Vaccination with Acinetobacter baumannii adhesin Abp2D provides protection against catheter-associated urinary tract infection. RESEARCH SQUARE 2023:rs.3.rs-3213777. [PMID: 37609304 PMCID: PMC10441454 DOI: 10.21203/rs.3.rs-3213777/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) contribute greatly to the burden of healthcare associated infections. Acinetobacter baumannii is a Gram-negative bacterium with high levels of antibiotic resistance that is of increasing concern as a CAUTI pathogen. A. baumannii expresses fibrinogen-binding adhesins (Abp1D and Abp2D) that mediate colonization and biofilm formation on catheters, which become coated with fibrinogen upon insertion. We developed a protein subunit vaccine against Abp1DRBD and Abp2DRBD and showed that vaccination significantly reduced bladder bacterial titers in a mouse model of CAUTI. We then determined that immunity to Abp2DRBD alone was sufficient for protection. Mechanistically, we defined the B cell response to Abp2DRBD vaccination and demonstrated that immunity was transferrable to naïve mice through passive immunization with Abp2DRBD-immune sera. This work represents a novel strategy in the prevention of A. baumannii CAUTI and has an important role to play in the global fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Morgan R Timm
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin O Tamadonfar
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor M Nye
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen W Dodson
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Center for Vaccines and Immunity to Microbial Pathogens, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
12
|
Singh K, Kulkarni SS. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. J Med Chem 2022; 65:8525-8549. [PMID: 35777073 DOI: 10.1021/acs.jmedchem.1c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofilm formation by most pathogenic bacteria is considered as one of the key mechanisms associated with virulence and antibiotic resistance. Biofilm-forming bacteria adhere to the surfaces of biological or implant medical devices and create communities within their self-produced extracellular matrix that are difficult to treat by existing antibiotics. There is an urgent need to synthesize and screen structurally diverse molecules for their antibiofilm activity that can remove or minimize the bacterial biofilm. The development of carbohydrate-based small molecules as antibiofilm agents holds a great promise in addressing the problem of the eradication of biofilm-related infections. Owing to their structural diversity and specificity, the sugar scaffolds are valuable entities for developing antibiofilm agents. In this perspective, we discuss the literature pertaining to carbohydrate-based natural antibiofilm agents and provide an overview of the design, activity, and mode of action of potent synthetic carbohydrate-based molecules.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| | - Suvarn S Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India 400076
| |
Collapse
|
13
|
Al-Mughaid H, Nawasreh S, Naser H, Jaradat Y, Al-Zoubi RM. Synthesis and hemagglutination inhibitory properties of mannose-tipped ligands: The effect of terminal phenyl groups and the linker between the mannose residue and the triazole moiety. Carbohydr Res 2022; 515:108559. [DOI: 10.1016/j.carres.2022.108559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022]
|
14
|
Manzer HS, Villarreal RI, Doran KS. Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B streptococcal meningitis. PLoS Pathog 2022; 18:e1010397. [PMID: 35316308 PMCID: PMC8939794 DOI: 10.1371/journal.ppat.1010397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and the rise of antibiotic resistance necessitates development of alternative treatments. Pathogen adhesins that bind to host cells initiate disease pathogenesis and represent potential therapeutic targets. We have shown previously that the BspC adhesin in Group B Streptococcus (GBS), the leading cause of bacterial neonatal meningitis, interacts with host vimentin to promote attachment to brain endothelium and disease development. Here we determined that the BspC variable (V-) domain contains the vimentin binding site and promotes GBS adherence to brain endothelium. Site directed mutagenesis identified a binding pocket necessary for GBS host cell interaction and development of meningitis. Using a virtual structure-based drug screen we identified compounds that targeted the V-domain binding pocket, which blocked GBS adherence and entry into the brain in vivo. These data indicate the utility of targeting the pathogen-host interface to develop anti-virulence therapeutics.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Ricardo I. Villarreal
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
15
|
Wenjie S, Jinxia A, He T, Mengran J, Hui G. A Biomimetic Nonantibiotic Nanoplatform for Low-Temperature Photothermal Treatment of Urinary Tract Infections Caused by Uropathogenic Escherichia coli. Adv Healthc Mater 2022; 11:e2101633. [PMID: 34741792 DOI: 10.1002/adhm.202101633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/30/2021] [Indexed: 11/08/2022]
Abstract
Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) remain a matter of concern, as the clinical use of multiple antibiotics induces antibiotic resistance in bacteria, resulting in the failure of treatments. Despite the emergence of anti-adhesion strategies that can prevent the development of bacterial drug resistance, these strategies are mainly used for disease prevention rather than effective treatment. Photothermal therapy (PTT) has emerged as an efficient alternative for the elimination of bacteria. Nevertheless, high local temperatures related to PTT probably cause damage to surrounding healthy tissue. Herein, a biomimetic nonantibiotic nanoplatform for low-temperature photothermal treatment of UTIs is developed. The nanoplatform comprises polydopamine (PDA) photothermal core and biphenyl mannoside (Man) shell with multivalent high-affinity to UPEC. Scanning electron microscope (SEM) shows PDA-Man possessed ultra-strong targeting binding ability toward UPEC. It is the fact that this impulse UPEC to form a large bacterial cluster. Consequently, the high photothermal energy of the PDA-Man appears predominantly in the affected bacterial area, while the overall environment remains at a low temperature. The fabricated nanoplatform shows excellent photothermal bactericidal effects, approximately 100% in a UTI model. Overall, this low-temperature photothermal nanoplatform provides an appropriate strategy for the elimination of bacteria in clinical applications.
Collapse
Affiliation(s)
- Shi Wenjie
- School of Chemistry and Chemical Engineering Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin University of Technology Tianjin 300384 P. R. China
| | - An Jinxia
- School of Chemistry and Chemical Engineering Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin University of Technology Tianjin 300384 P. R. China
| | - Tan He
- School of Chemistry and Chemical Engineering Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin University of Technology Tianjin 300384 P. R. China
| | - Jia Mengran
- School of Chemistry and Chemical Engineering Tianjin Key Laboratory of Drug Targeting and Bioimaging Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin University of Technology Tianjin 300384 P. R. China
| | - Gao Hui
- State Key Laboratory of Separation Membranes and Membrane Processes School of Materials Science and Engineering Tiangong University Tianjin P. R. China
| |
Collapse
|
16
|
Al-Mughaid H, Jaradat Y, Khazaaleh M. Synthesis and biological evaluation of mannosyl triazoles and varying the nature of substituents on the terminal phthalimido moiety in the aglycone backbone. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
The urobiome, urinary tract infections, and the need for alternative therapeutics. Microb Pathog 2021; 161:105295. [PMID: 34801647 DOI: 10.1016/j.micpath.2021.105295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Improvements in bacterial culturing and DNA sequencing techniques have revealed a diverse, and hitherto unknown, urinary tract microbiome (urobiome). The potential role of this microbial community in contributing to health and disease, particularly in the context of urinary tract infections (UTIs) is of significant clinical importance. However, while several studies have confirmed the existence of a core urobiome, the role of its constituent microbes is not yet fully understood, particularly in the context of health and disease. Herein, we review the current state of the art, concluding that the urobiome represents an important component of the body's innate immune defences, and a potentially rich resource for the development of alternative treatment and control strategies for UTIs.
Collapse
|
18
|
The Antibiofilm Nanosystems for Improved Infection Inhibition of Microbes in Skin. Molecules 2021; 26:molecules26216392. [PMID: 34770799 PMCID: PMC8587837 DOI: 10.3390/molecules26216392] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Biofilm formation is an important virulence factor for the opportunistic microorganisms that elicit skin infections. The recalcitrant feature of biofilms and their antibiotic tolerance impose a great challenge on the use of conventional therapies. Most antibacterial agents have difficulty penetrating the matrix produced by a biofilm. One novel approach to address these concerns is to prevent or inhibit the formation of biofilms using nanoparticles. The advantages of using nanosystems for antibiofilm applications include high drug loading efficiency, sustained or prolonged drug release, increased drug stability, improved bioavailability, close contact with bacteria, and enhanced accumulation or targeting to biomasses. Topically applied nanoparticles can act as a strategy for enhancing antibiotic delivery into the skin. Various types of nanoparticles, including metal oxide nanoparticles, polymeric nanoparticles, liposomes, and lipid-based nanoparticles, have been employed for topical delivery to treat biofilm infections on the skin. Moreover, nanoparticles can be designed to combine with external stimuli to produce magnetic, photothermal, or photodynamic effects to ablate the biofilm matrix. This study focuses on advanced antibiofilm approaches based on nanomedicine for treating skin infections. We provide in-depth descriptions on how the nanoparticles could effectively eliminate biofilms and any pathogens inside them. We then describe cases of using nanoparticles for antibiofilm treatment of the skin. Most of the studies included in this review were supported by in vivo animal infection models. This article offers an overview of the benefits of nanosystems for treating biofilms grown on the skin.
Collapse
|
19
|
Al-Mughaid H, Khazaaleh M. α-d-Mannoside ligands with a valency ranging from one to three: Synthesis and hemagglutination inhibitory properties. Carbohydr Res 2021; 508:108396. [PMID: 34298357 DOI: 10.1016/j.carres.2021.108396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 11/28/2022]
Abstract
Six mono-, di-, and trivalent α-d-mannopyranosyl conjugates built on aromatic scaffolds were synthesized in excellent yields by Cu(I) catalyzed azide-alkyne cycloaddition reaction (CuAAC). These conjugates were designed to have unique, flexible tails that combine a mid-tail triazole ring, to interact with the tyrosine gate, with a terminal phenyl group armed with benzylic hydroxyl groups to avoid solubility problems as well as to provide options to connect to other supports. Biological evaluation of the prepared conjugates in hemagglutination inhibition (HAI) assay revealed that potency increases with valency and the trivalent ligand 6d (HAI = 0.005 mM) is approximately sevenfold better than the best meta-oriented monovalent analogues 2d and 4d (HAI ≈ 0.033 mM) and so may serve as a good starting point to find new lead ligands.
Collapse
Affiliation(s)
- Hussein Al-Mughaid
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan.
| | - Maha Khazaaleh
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| |
Collapse
|
20
|
Palmioli A, Sperandeo P, Bertuzzi S, Polissi A, Airoldi C. On-cell saturation transfer difference NMR for the identification of FimH ligands and inhibitors. Bioorg Chem 2021; 112:104876. [PMID: 33845337 DOI: 10.1016/j.bioorg.2021.104876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
We describe the development of an on-cell NMR method for the rapid screening of FimH ligands and the structural identification of ligand binding epitopes. FimH is a mannose-binding bacterial adhesin expressed at the apical end of type 1 pili of uropathogenic bacterial strains and responsible for their d-mannose sensitive adhesion to host mammalian epithelial cells. Because of these properties, FimH is a key virulence factor and an attractive therapeutic target for urinary tract infection. We prepared synthetic d-mannose decorated dendrimers, we tested their ability to prevent the FimH-mediated yeast agglutination, and thus we used the compounds showing the best inhibitory activity as models of FimH multivalent ligands to set up our NMR methodology. Our experimental protocol, based on on-cell STD NMR techniques, is a suitable tool for the screening and the epitope mapping of FimH ligands aimed at the development of new antiadhesive and diagnostic tools against urinary tract infection pathogens. Notably, the study is carried out in a physiological environment, i.e. at the surface of living pathogen cells expressing FimH.
Collapse
Affiliation(s)
- Alessandro Palmioli
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Sara Bertuzzi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy; Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC-bioGUNE), 48160 Derio, Spain
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Cristina Airoldi
- BioOrg NMR Lab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza, 2, 20126 Milan, Italy.
| |
Collapse
|
21
|
Mousavifar L, Roy R. Recent development in the design of small 'drug-like' and nanoscale glycomimetics against Escherichia coli infections. Drug Discov Today 2021; 26:2124-2137. [PMID: 33667654 DOI: 10.1016/j.drudis.2021.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Glycoconjugates are involved in several pathological processes. Glycomimetics that can favorably emulate complex carbohydrate structures, while competing with natural ligands as inhibitors, are gaining considerable attention owing to their improved hydrolytic stability, binding affinity, and pharmacokinetic (PK) properties. Of particular interest are the families of α-d-mannopyranoside analogs, which can be used as inhibitors against adherent invasive Escherichia coli infections. Bacterial resistance to modern antibiotics triggers the search for new alternative antibacterial strategies that are less susceptible to acquiring resistance. In this review, we highlight recent progress in the chemical syntheses of this family of compounds, one of which having reached clinical trials against Crohn's disease (CD).
Collapse
Affiliation(s)
- Leila Mousavifar
- Department of Chemistry, Université du Québec à Montréal, PO Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, PO Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; INRS - Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
22
|
Hatton NE, Baumann CG, Fascione MA. Developments in Mannose-Based Treatments for Uropathogenic Escherichia coli-Induced Urinary Tract Infections. Chembiochem 2021; 22:613-629. [PMID: 32876368 PMCID: PMC7894189 DOI: 10.1002/cbic.202000406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/28/2020] [Indexed: 12/16/2022]
Abstract
During their lifetime almost half of women will experience a symptomatic urinary tract infection (UTI) with a further half experiencing a relapse within six months. Currently UTIs are treated with antibiotics, but increasing antibiotic resistance rates highlight the need for new treatments. Uropathogenic Escherichia coli (UPEC) is responsible for the majority of symptomatic UTI cases and thus has become a key pathological target. Adhesion of type one pilus subunit FimH at the surface of UPEC strains to mannose-saturated oligosaccharides located on the urothelium is critical to pathogenesis. Since the identification of FimH as a therapeutic target in the late 1980s, a substantial body of research has been generated focusing on the development of FimH-targeting mannose-based anti-adhesion therapies. In this review we will discuss the design of different classes of these mannose-based compounds and their utility and potential as UPEC therapeutics.
Collapse
Affiliation(s)
- Natasha E. Hatton
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| | | | - Martin A. Fascione
- York Structural Biology Lab, Department of ChemistryUniversity of YorkHeslington RoadYorkYO10 5DDUK
| |
Collapse
|
23
|
Ayerbe-Algaba R, Bayó N, Verdú E, Parra-Millán R, Seco J, Teixidó M, Pachón J, Giralt E, Smani Y. AOA-2 Derivatives as Outer Membrane Protein A Inhibitors for Treatment of Gram-Negative Bacilli Infections. Front Microbiol 2021; 12:634323. [PMID: 33643267 PMCID: PMC7907166 DOI: 10.3389/fmicb.2021.634323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Previously, we identified that a cyclic hexapeptide AOA-2 inhibited the interaction of Gram-negative bacilli (GNB) like Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli to host cells thereby preventing the development of infection in vitro and in a murine sepsis peritoneal model. In this work, we aimed to evaluate in vitro a library of AOA-2 derivatives in order to improve the effect of AOA-2 against GNB infections. Ten AOA-2 derivatives were synthetized for the in vitro assays. Their toxicities to human lung epithelial cells (A549 cells) for 24 h were evaluated by determining the A549 cells viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of these peptide derivatives and AOA-2 at 250, 125, 62.5, and 31.25 μg/mL on the attachment of A. baumannii ATCC 17978, P. aeruginosa PAO1 and E. coli ATCC 25922 strains to A549 cells was characterized by adherence and viability assays. None of the 10 derivatives showed toxicity to A549 cells. RW01 and RW06 have reduced more the adherence of ATCC 17978, PAO1 and ATCC 2599 strains to A549 cells when compared with the original compound AOA-2. Moreover, both peptides have increased slightly the viability of infected A549 cells by PAO1 and ATCC 25922 than those observed with AOA-2. Finally, RW01 and RW06 have potentiated the activity of colistin against ATCC 17978 strain in the same level with AOA-2. The optimization program of AOA-2 has generated two derivatives (RW01 and RW06) with best effect against interaction of GNB with host cells, specifically against P. aeruginosa and E. coli.
Collapse
Affiliation(s)
- Rafael Ayerbe-Algaba
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Nuria Bayó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Ester Verdú
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Raquel Parra-Millán
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| | - Jesús Seco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Meritxell Teixidó
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Jerónimo Pachón
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.,Department of Inorganic and Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío, Seville, Spain.,Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/Spanish National Research Council (CSIC)/University of Seville, Seville, Spain
| |
Collapse
|
24
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
25
|
Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol 2020; 10:548492. [PMID: 33409157 PMCID: PMC7779793 DOI: 10.3389/fcimb.2020.548492] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.
Collapse
Affiliation(s)
- Vânia Santos Braz
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
26
|
Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 2020; 18:211-226. [PMID: 32071440 DOI: 10.1038/s41579-020-0324-0] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common, recurrent infections that can be mild to life-threatening. The continued emergence of antibiotic resistance, together with our increasing understanding of the detrimental effects conferred by broad-spectrum antibiotic use on the health of the beneficial microbiota of the host, has underscored the weaknesses in our current treatment paradigm for UTIs. In this Review, we discuss how recent microbiological, structural, genetic and immunological studies have expanded our understanding of host-pathogen interactions during UTI pathogenesis. These basic scientific findings have the potential to shift the strategy for UTI treatment away from broad-spectrum antibiotics targeting conserved aspects of bacterial replication towards pathogen-specific antibiotic-sparing therapeutics that target core determinants of bacterial virulence at the host-pathogen interface.
Collapse
|
27
|
Mechanomicrobiology: how bacteria sense and respond to forces. Nat Rev Microbiol 2020; 18:227-240. [DOI: 10.1038/s41579-019-0314-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
|
28
|
Zhou Y, Liu W, Xing Z, Guan J, Song Z, Peng Y. External-photocatalyst-free visible-light-mediated aerobic oxidation and 1,4-bisfunctionalization of N-alkyl isoquinolinium salts. Org Chem Front 2020. [DOI: 10.1039/d0qo00663g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Visible-light-induced aerobic alternate transformations of N-alkyl isoquinolinium/quinolinium salts in the absence of any external photocatalyst have been developed.
Collapse
Affiliation(s)
- Youkang Zhou
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Wei Liu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhiming Xing
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Jiali Guan
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| |
Collapse
|
29
|
Lectin antagonists in infection, immunity, and inflammation. Curr Opin Chem Biol 2019; 53:51-67. [DOI: 10.1016/j.cbpa.2019.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
|
30
|
Magala P, Klevit RE, Thomas WE, Sokurenko EV, Stenkamp RE. RMSD analysis of structures of the bacterial protein FimH identifies five conformations of its lectin domain. Proteins 2019; 88:593-603. [PMID: 31622514 DOI: 10.1002/prot.25840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/14/2023]
Abstract
FimH is a bacterial adhesin protein located at the tip of Escherichia coli fimbria that functions to adhere bacteria to host cells. Thus, FimH is a critical factor in bacterial infections such as urinary tract infections and is of interest in drug development. It is also involved in vaccine development and as a model for understanding shear-enhanced catch bond cell adhesion. To date, over 60 structures have been deposited in the Protein Data Bank showing interactions between FimH and mannose ligands, potential inhibitors, and other fimbrial proteins. In addition to providing insights about ligand recognition and fimbrial assembly, these structures provide insights into conformational changes in the two domains of FimH that are critical for its function. To gain further insights into these structural changes, we have superposed FimH's mannose binding lectin domain in all these structures and categorized the structures into five groups of lectin domain conformers using RMSD as a metric. Many structures also include the pilin domain, which anchors FimH to the fimbriae and regulates the conformation and function of the lectin domain. For these structures, we have also compared the relative orientations of the two domains. These structural analyses enhance our understanding of the conformational changes associated with FimH ligand binding and domain-domain interactions, including its catch bond behavior through allosteric action of force in bacterial adhesion.
Collapse
Affiliation(s)
- Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, WA
| | | | - Ronald E Stenkamp
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA.,Department of Biological Structure, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
32
|
Maddirala AR, Klein R, Pinkner JS, Kalas V, Hultgren SJ, Janetka JW. Biphenyl Gal and GalNAc FmlH Lectin Antagonists of Uropathogenic E. coli (UPEC): Optimization through Iterative Rational Drug Design. J Med Chem 2019; 62:467-479. [PMID: 30540910 DOI: 10.1021/acs.jmedchem.8b01561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The F9/Yde/Fml pilus, tipped with the FmlH adhesin, has been shown to provide uropathogenic Escherichia coli (UPEC) a fitness advantage in urinary tract infections (UTIs). Here, we used X-ray structure guided design to optimize our previously described ortho-biphenyl Gal and GalNAc FmlH antagonists such as compound 1 by replacing the carboxylate with a sulfonamide as in 50. Other groups which can accept H-bonds were also tolerated. We pursued further modifications to the biphenyl aglycone resulting in significantly improved activity. Two of the most potent compounds, 86 (IC50 = 0.051 μM) and 90 (IC50 = 0.034 μM), exhibited excellent metabolic stability in mouse plasma and liver microsomes but showed only limited oral bioavailability (<1%) in rats. Compound 84 also showed a good pharmacokinetic (PK) profile in mice after IP dosing with compound exposure above the IC50 for 6 h. These new FmlH antagonists represent new antivirulence drugs for UTIs.
Collapse
Affiliation(s)
- Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Roger Klein
- Department of Molecular Microbiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Jerome S Pinkner
- Department of Molecular Microbiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Vasilios Kalas
- Department of Molecular Microbiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - Scott J Hultgren
- Department of Molecular Microbiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States.,Center for Women's Infectious Disease Research, Department of Molecular Microbiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , St. Louis , Missouri 63110 , United States.,Center for Women's Infectious Disease Research, Department of Molecular Microbiology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| |
Collapse
|
33
|
Kamolvit W, Nilsén V, Zambrana S, Mohanty S, Gonzales E, Östenson CG, Brauner A. Lupinus mutabilis Edible Beans Protect against Bacterial Infection in Uroepithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:1098015. [PMID: 30643523 PMCID: PMC6311276 DOI: 10.1155/2018/1098015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 01/11/2023]
Abstract
Lupinus mutabilis is a South American herb with edible beans, known to reduce serum glucose levels in diabetic patients. Furthermore, L. mutabilis contains phytochemicals known to decrease bacterial load. Based on the increased urinary tract infections experienced among patients with diabetes, we investigated the effect of L. mutabilis on bladder epithelial cells in the protection of E. coli infection during normal and high glucose concentrations. We did not observe any direct antibacterial effect by L. mutabilis extract. Instead we observed an influence on the host cells, with indirect impact on bacteria and their possibility of causing infection. L. mutabilis extract decreased adhesion to bladder epithelial cells of uropathogenic bacteria, including drug-resistant strains. Moreover, uroplakin1a, involved in adhesion, was downregulated while the antimicrobial peptide RNase 7 was upregulated in L. mutabilis treated cells irrespectively of glucose concentration. This supports an early effect fighting bacteria. Additionally, L. mutabilis prevented bacterial biofilm formation, which is used by bacteria to evade the immune system and antibiotics. In summary, L. mutabilis protects against bacterial infection in uroepithelial cells by preventing adhesion through alteration of the cell surface, increasing antimicrobial peptide expression, and reducing biofilm formation. Together, this promotes bacterial clearance, suggesting that L. mutabilis as extract or as a dietary item can contribute to the prevention of urinary tract infections, which is of importance in an era of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Vera Nilsén
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
- Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Eduardo Gonzales
- Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
34
|
Salam AM, Quave CL. Opportunities for plant natural products in infection control. Curr Opin Microbiol 2018; 45:189-194. [PMID: 30218951 DOI: 10.1016/j.mib.2018.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
The continued spread of antimicrobial resistance represents one of the most serious infectious disease threats to global health. There is consensus that a key component of addressing this threat is to replenish the waning pipeline of antimicrobials, with attention being paid to novel mechanisms of action. This includes the development of new classes of classic bacteriostatic and bactericidal antibiotics as well as antivirulence drugs, and it is especially in these areas where plant natural products demonstrate great potential. To this end, we discuss the unique characteristics of plant natural products, the advantages of plants as a resource for anti-infective drug discovery, and recent technologies that have further enabled this path of inquiry. As a result of emerging realization of their advantages, plant natural products have recently enjoyed increased scrutiny in antimicrobial lead discovery, and they will continue to serve as a source of leads. We conclude that plant natural products represent a promising and largely untapped source of new chemical entities from which novel anti-infectives can be discovered.
Collapse
Affiliation(s)
- Akram M Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University College of Arts and Sciences, Atlanta, GA, United States; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, United States; Antibiotic Resistance Center, Emory University, Atlanta, GA, United States; Emory University Herbarium, Atlanta, GA, United States.
| |
Collapse
|
35
|
Krammer EM, de Ruyck J, Roos G, Bouckaert J, Lensink MF. Targeting Dynamical Binding Processes in the Design of Non-Antibiotic Anti-Adhesives by Molecular Simulation-The Example of FimH. Molecules 2018; 23:E1641. [PMID: 29976867 PMCID: PMC6099838 DOI: 10.3390/molecules23071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Located at the tip of type I fimbria of Escherichia coli, the bacterial adhesin FimH is responsible for the attachment of the bacteria to the (human) host by specifically binding to highly-mannosylated glycoproteins located on the exterior of the host cell wall. Adhesion represents a necessary early step in bacterial infection and specific inhibition of this process represents a valuable alternative pathway to antibiotic treatments, as such anti-adhesive drugs are non-intrusive and are therefore unlikely to induce bacterial resistance. The currently available anti-adhesives with the highest affinities for FimH still feature affinities in the nanomolar range. A prerequisite to develop higher-affinity FimH inhibitors is a molecular understanding of the FimH-inhibitor complex formation. The latest insights in the formation process are achieved by combining several molecular simulation and traditional experimental techniques. This review summarizes how molecular simulation contributed to the current knowledge of the molecular function of FimH and the importance of dynamics in the inhibitor binding process, and highlights the importance of the incorporation of dynamical aspects in (future) drug-design studies.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Jerome de Ruyck
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Goedele Roos
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Julie Bouckaert
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Marc F Lensink
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
36
|
Sattigeri JA, Garg M, Bhateja P, Soni A, Rauf ARA, Gupta M, Deshmukh MS, Jain T, Alekar N, Barman TK, Jha P, Chaira T, Bambal RB, Upadhyay DJ, Nishi T. Synthesis and evaluation of thiomannosides, potent and orally active FimH inhibitors. Bioorg Med Chem Lett 2018; 28:2993-2997. [PMID: 30017316 DOI: 10.1016/j.bmcl.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/05/2018] [Accepted: 06/11/2018] [Indexed: 10/14/2022]
Abstract
FimH is a type I fimbrial lectin located at the tip of type-1 pili of Gram-negative uropathogenic Escherichia coli (UPEC) guiding its ability to adhere and infect urothelial cells. Accordingly, blocking FimH with small molecule inhibitor is considered as a promising new therapeutic alternative to treat urinary tract infections caused by UPEC. Herein, we report that compounds having the S-glycosidic bond (thiomannosides) had improved metabolic stability and plasma exposures when dosed orally. Especially compound 5h showed the potential to inhibit biofilm formation and also to disrupt the preformed biofilm. And compound 5h showed prophylactic effect in UTI model in mice.
Collapse
Affiliation(s)
- Jitendra A Sattigeri
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India.
| | - Malvika Garg
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Pragya Bhateja
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Ajay Soni
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Abdul Rehman Abdul Rauf
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Mahendrakumar Gupta
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Mahesh S Deshmukh
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Tarun Jain
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Nidhi Alekar
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Tarani Kanta Barman
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Paras Jha
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Tridib Chaira
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Ramesh B Bambal
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Dilip J Upadhyay
- Daiichi Sankyo India Pharma Pvt Ltd., Village Sarhaul, Sector 18, Udyog Vihar Industrial Area, Gurugram 122015, Haryana, India
| | - Takahide Nishi
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| |
Collapse
|
37
|
Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc Natl Acad Sci U S A 2018; 115:E2819-E2828. [PMID: 29507247 PMCID: PMC5866590 DOI: 10.1073/pnas.1720140115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Treatment of bacterial infections is becoming a serious clinical challenge due to the global dissemination of multidrug antibiotic resistance, necessitating the search for alternative treatments to disarm the virulence mechanisms underlying these infections. Uropathogenic Escherichia coli (UPEC) employs multiple chaperone-usher pathway pili tipped with adhesins with diverse receptor specificities to colonize various host tissues and habitats. For example, UPEC F9 pili specifically bind galactose or N-acetylgalactosamine epitopes on the kidney and inflamed bladder. Using X-ray structure-guided methods, virtual screening, and multiplex ELISA arrays, we rationally designed aryl galactosides and N-acetylgalactosaminosides that inhibit the F9 pilus adhesin FmlH. The lead compound, 29β-NAc, is a biphenyl N-acetyl-β-galactosaminoside with a Ki of ∼90 nM, representing a major advancement in potency relative to the characteristically weak nature of most carbohydrate-lectin interactions. 29β-NAc binds tightly to FmlH by engaging the residues Y46 through edge-to-face π-stacking with its A-phenyl ring, R142 in a salt-bridge interaction with its carboxylate group, and K132 through water-mediated hydrogen bonding with its N-acetyl group. Administration of 29β-NAc in a mouse urinary tract infection (UTI) model significantly reduced bladder and kidney bacterial burdens, and coadministration of 29β-NAc and mannoside 4Z269, which targets the type 1 pilus adhesin FimH, resulted in greater elimination of bacteria from the urinary tract than either compound alone. Moreover, FmlH specifically binds healthy human kidney tissue in a 29β-NAc-inhibitable manner, suggesting a key role for F9 pili in human kidney colonization. Thus, these glycoside antagonists of FmlH represent a rational antivirulence strategy for UPEC-mediated UTI treatment.
Collapse
|
38
|
Spaulding CN, Klein RD, Schreiber HL, Janetka JW, Hultgren SJ. Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes 2018; 4:4. [PMID: 29507749 PMCID: PMC5829159 DOI: 10.1038/s41522-018-0048-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023] Open
Abstract
The emergence of drug-resistant pathogens has led to a decline in the efficacy of traditional antimicrobial therapy. The rise in resistance has been driven by widespread use, and in some cases misuse, of antibacterial agents in treating a variety of infections. A growing body of research has begun to elucidate the harmful effects of broad-spectrum antibiotic therapy on the beneficial host microbiota. To combat these threats, increasing effort is being directed toward the development of precision antimicrobial therapeutics that target key virulence determinants of specific pathogens while leaving the remainder of the host microbiota undisturbed. This includes the recent development of small molecules termed “mannosides” that specifically target uropathogenic E. coli (UPEC). Mannosides are glycomimetics of the natural mannosylated host receptor for type 1 pili, extracellular appendages that promotes UPEC colonization in the intestine. Type 1 pili are also critical for colonization and infection in the bladder. In both cases, mannosides act as molecular decoys which potently prevent bacteria from binding to host tissues. In mice, oral treatment with mannosides simultaneously clears active bladder infection and removes intestinal UPEC while leaving the gut microbiota structure relatively unchanged. Similar treatment strategies successfully target other pathogens, like adherent-invasive E. coli (AIEC), an organism associated with Crohn’s disease (CD), in mouse models. While not without its challenges, antibiotic-sparing therapeutic approaches hold great promise in a variety of disease systems, including UTI, CD, otitis media (OM), and others. In this perspective we highlight the benefits, progress, and roadblocks to the development of precision antimicrobial therapeutics.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- 1Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Roger D Klein
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Henry L Schreiber
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James W Janetka
- 3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA.,4Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Scott J Hultgren
- 2Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110 USA.,3Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
39
|
Kane TL, Carothers KE, Lee SW. Virulence Factor Targeting of the Bacterial Pathogen Staphylococcus aureus for Vaccine and Therapeutics. Curr Drug Targets 2018; 19:111-127. [PMID: 27894236 PMCID: PMC5957279 DOI: 10.2174/1389450117666161128123536] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Staphylococcus aureus is a major bacterial pathogen capable of causing a range of infections in humans from gastrointestinal disease, skin and soft tissue infections, to severe outcomes such as sepsis. Staphylococcal infections in humans can be frequent and recurring, with treatments becoming less effective due to the growing persistence of antibiotic resistant S. aureus strains. Due to the prevalence of antibiotic resistance, and the current limitations on antibiotic development, an active and highly promising avenue of research has been to develop strategies to specifically inhibit the activity of virulence factors produced S. aureus as an alternative means to treat disease. OBJECTIVE In this review we specifically highlight several major virulence factors produced by S. aureus for which recent advances in antivirulence approaches may hold promise as an alternative means to treating diseases caused by this pathogen. Strategies to inhibit virulence factors can range from small molecule inhibitors, to antibodies, to mutant and toxoid forms of the virulence proteins. CONCLUSION The major prevalence of antibiotic resistant strains of S. aureus combined with the lack of new antibiotic discoveries highlight the need for vigorous research into alternative strategies to combat diseases caused by this highly successful pathogen. Current efforts to develop specific antivirulence strategies, vaccine approaches, and alternative therapies for treating severe disease caused by S. aureus have the potential to stem the tide against the limitations that we face in the post-antibiotic era.
Collapse
Affiliation(s)
- Trevor L. Kane
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn E. Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
40
|
Role for FimH in Extraintestinal Pathogenic Escherichia coli Invasion and Translocation through the Intestinal Epithelium. Infect Immun 2017; 85:IAI.00581-17. [PMID: 28808163 DOI: 10.1128/iai.00581-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/27/2022] Open
Abstract
The translocation of bacteria across the intestinal epithelium of immunocompromised patients can lead to bacteremia and life-threatening sepsis. Extraintestinal pathogenic Escherichia coli (ExPEC), so named because this pathotype infects tissues distal to the intestinal tract, is a frequent cause of such infections, is often multidrug resistant, and chronically colonizes a sizable portion of the healthy population. Although several virulence factors and their roles in pathogenesis are well described for ExPEC strains that cause urinary tract infections and meningitis, they have not been linked to translocation through intestinal barriers, a fundamentally distant yet important clinical phenomenon. Using untransformed ex situ human intestinal enteroids and transformed Caco-2 cells, we report that ExPEC strain CP9 binds to and invades the intestinal epithelium. ExPEC harboring a deletion of the gene encoding the mannose-binding type 1 pilus tip protein FimH demonstrated reduced binding and invasion compared to strains lacking known E. coli virulence factors. Furthermore, in a murine model of chemotherapy-induced translocation, ExPEC lacking fimH colonized at levels comparable to that of the wild type but demonstrated a statistically significant reduction in translocation to the kidneys, spleen, and lungs. Collectively, this study indicates that FimH is important for ExPEC translocation, suggesting that the type 1 pilus is a therapeutic target for the prevention of this process. Our study also highlights the use of human intestinal enteroids in the study of enteric diseases.
Collapse
|
41
|
Touaibia M, Krammer EM, Shiao TC, Yamakawa N, Wang Q, Glinschert A, Papadopoulos A, Mousavifar L, Maes E, Oscarson S, Vergoten G, Lensink MF, Roy R, Bouckaert J. Sites for Dynamic Protein-Carbohydrate Interactions of O- and C-Linked Mannosides on the E. coli FimH Adhesin. Molecules 2017; 22:molecules22071101. [PMID: 28671638 PMCID: PMC6152123 DOI: 10.3390/molecules22071101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 01/28/2023] Open
Abstract
Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Eva-Maria Krammer
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Tze C Shiao
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Nao Yamakawa
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Qingan Wang
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Anja Glinschert
- Center for Synthesis and Chemical Biology (CSCB), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Alex Papadopoulos
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Leila Mousavifar
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Emmanuel Maes
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Stefan Oscarson
- Center for Synthesis and Chemical Biology (CSCB), University College Dublin, Belfield, Dublin 4, Ireland.
| | - Gerard Vergoten
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - Marc F Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| | - René Roy
- Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 du CNRS, Université de Lille, F-59000 Lille, France.
| |
Collapse
|
42
|
Dickey SW, Cheung GY, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 PMCID: PMC11849574 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 516] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W. Dickey
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Gordon Y.C. Cheung
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL, Cusumano ZT, Dodson KW, Pinkner JS, Fremont DH, Janetka JW, Remaut H, Gordon JI, Hultgren SJ. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 2017; 546:528-532. [PMID: 28614296 PMCID: PMC5654549 DOI: 10.1038/nature22972] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022]
Abstract
Urinary tract infections (UTI) caused by uropathogenic E. coli (UPEC) affect 150 million people annually1,2. Despite effective antibiotic therapy, 30–50% of patients experience recurrent UTI (rUTI)1. Additionally, the growing prevelance of UPEC resistant to last-line antibiotic treatments, and more recently carbapenems and colistin, make UTIs a prime example of the antibiotic-resistance crisis and emphasize the need for new approaches to treat and prevent bacterial infections3–5. UPEC strains establish reservoirs in the gut from which they are shed in the feces, can colonize the peri-urethral area or vagina and subsequently ascend through the urethra to the urinary tract, where they cause UTI6. UPEC isolates encode up to 16 distinct chaperone-usher pathway (CUP) pili and each pilus type likely enables colonization of a habitat in the host or environment7. For example, the type 1 pilus adhesin, FimH, binds mannose on the bladder surface, mediating bladder colonization. However, little is known regarding the mechanisms underlying UPEC persistence in the gut5. Using a mouse model, we found that F17-like and type 1 pili promote intestinal colonization and show distinct binding to epithelial cells distributed along colonic crypts. Phylogenomic and structural analyses reveal that F17-like pili are closely related to pilus types carried by intestinal pathogens, but are restricted to extra-intestinal pathogenic E. coli. Moreover, we show that targeting FimH with a high-affinity inhibitor, mannoside M4284, reduces intestinal colonization of genetically diverse UPEC isolates, while simultaneously treating UTI, without significantly disrupting the the structural configuration of the gut microbiota. By selectively depleting the intestinal UPEC reservoir, mannosides could significantly reduce the rate of UTI and rUTI.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Roger D Klein
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Ségolène Ruer
- Structural and Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrew L Kau
- Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Medicine, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Zachary T Cusumano
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Daved H Fremont
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - James W Janetka
- Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Han Remaut
- Structural and Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Gut Microbiome and Nutrition Research, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| |
Collapse
|
44
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|
45
|
Al-Mughaid H, Al-Zoubi RM, Khazaaleh M, Grindley TB. Assembly and inhibitory activity of monovalent mannosides terminated with aromatic methyl esters: The effect of naphthyl groups. Carbohydr Res 2017; 446-447:76-84. [PMID: 28549256 DOI: 10.1016/j.carres.2017.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 10/19/2022]
Abstract
A series of monovalent α-D-mannoside ligands terminated with aromatic methyl esters have been synthesized in excellent yields using the Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition ("click chemistry"). These mannosides were designed to have a unique aglycone moiety (tail) that combines a triazole ring attached to aromatic methyl esters via a six carbon alkyl chain. The mannose unit of these ligands was linked at the ortho, meta, and para positions of substituted methyl benzoates and 1-, 3-, and 6-substituted methyl 2-napthaoates. In hemagglutination assays, ligands (32A-38A) showed better inhibitory activities than the standard inhibitor, methyl α-D-mannopyranoside. Overall, the naphthyl-based mannoside ligand (37A) showed the best activity and therefore merits further development.
Collapse
Affiliation(s)
- Hussein Al-Mughaid
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan; Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3, Canada.
| | - Raed M Al-Zoubi
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - Maha Khazaaleh
- Department of Chemistry, Jordan University of Science and Technology, PO Box 3030, Irbid 22110, Jordan
| | - T Bruce Grindley
- Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3, Canada.
| |
Collapse
|
46
|
Kotoku N, Ito A, Shibuya S, Mizuno K, Takeshima A, Nogata M, Kobayashi M. Short-step synthesis and structure-activity relationship of cortistatin A analogs. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
48
|
2- C -Branched mannosides as a novel family of FimH antagonists—Synthesis and biological evaluation. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.pisc.2016.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Mydock-McGrane L, Cusumano Z, Han Z, Binkley J, Kostakioti M, Hannan T, Pinkner JS, Klein R, Kalas V, Crowley J, Rath NP, Hultgren SJ, Janetka JW. Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections. J Med Chem 2016; 59:9390-9408. [PMID: 27689912 PMCID: PMC5087331 DOI: 10.1021/acs.jmedchem.6b00948] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Gram-negative
uropathogenic Escherichia coli (UPEC)
bacteria are a causative pathogen of urinary tract infections
(UTIs). Previously developed antivirulence inhibitors of the type
1 pilus adhesin, FimH, demonstrated oral activity in animal models
of UTI but were found to have limited compound exposure due to the
metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having
the O-glycosidic bond replaced with carbon linkages
had improved stability and inhibitory activity against FimH. We report
on the design, synthesis, and in vivo evaluation of this promising
new class of carbon-linked C-mannosides that show
improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically
modulated by hydroxyl substitution on the methylene linker, where
the R-hydroxy isomer has a 60-fold increase in potency.
This new class of C-mannoside antagonists have significantly
increased compound exposure and, as a result, enhanced efficacy in
mouse models of acute and chronic UTI.
Collapse
Affiliation(s)
| | - Zachary Cusumano
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | - Thomas Hannan
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | | | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri , Saint Louis, Missouri 63121 United States
| | - Scott J Hultgren
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | - James W Janetka
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| |
Collapse
|
50
|
McLellan LK, Hunstad DA. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol Med 2016; 22:946-957. [PMID: 27692880 DOI: 10.1016/j.molmed.2016.09.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023]
Abstract
The clinical syndromes comprising urinary tract infection (UTI) continue to exert significant impact on millions of patients worldwide, most of whom are otherwise healthy women. Antibiotic therapy for acute cystitis does not prevent recurrences, which plague up to one fourth of women after an initial UTI. Rising antimicrobial resistance among uropathogenic bacteria further complicates therapeutic decisions, necessitating new approaches based on fundamental biological investigation. In this review, we highlight contemporary advances in the field of UTI pathogenesis and how these might inform both our clinical perspective and future scientific priorities.
Collapse
Affiliation(s)
- Lisa K McLellan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|