1
|
Zhu H, Conley JM, Karavadhi S, LaVigne JE, Watts VJ, Sun H, Shen M, Hall MD, Ren H, Patnaik S. Discovery of novel and selective GPR17 antagonists as pharmacological tools for developing new therapeutic strategies in diabetes and obesity. Eur J Med Chem 2025; 295:117794. [PMID: 40460721 DOI: 10.1016/j.ejmech.2025.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 06/11/2025]
Abstract
G protein coupled receptors (GPCRs) are promising targets for diabetes and obesity therapy due to their roles in metabolism and excellent potential for pharmacological manipulation. We previously reported that Gpr17 ablation in the brain-gut axis leads to improved metabolic homeostasis, suggesting GPR17 antagonism could be developed for diabetes and obesity treatment. Here, we performed high throughput screening (HTS) and identified two new GPR17 antagonists (compound 978 and 527). Both compounds antagonized downstream Gαi/o, Gαq and β-arrestin signaling with high selectivity for GPR17, but not the closely related purinergic and cysteinyl leukotriene receptors. The molecular mechanisms of antagonism were revealed through Schild analysis, structure-activity relationship (SAR) studies and homology modeling. Compound 978, a competitive antagonist against the surrogate small molecule agonist MDL29,951 (MDL), and its analog (793) attenuated GPR17 signaling and promoted glucagon-like peptide-1 (GLP-1) secretion in enteroendocrine cells. In summary, we identified selective GPR17 antagonists through HTS, which represent promising pharmacological tools for developing new therapeutic strategies in diabetes and obesity.
Collapse
Affiliation(s)
- Hu Zhu
- Early Translational Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jason M Conley
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, USA
| | - Surendra Karavadhi
- Early Translational Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Hongmao Sun
- Early Translational Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- Early Translational Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Matthew D Hall
- Early Translational Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Hongxia Ren
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, USA; Center for Diabetes and Metabolic Diseases, USA; Stark Neurosciences Research Institute, USA; Department of Anatomy, Cell Biology & Physiology, USA; Department of Biochemistry & Molecular Biology, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Samarjit Patnaik
- Early Translational Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA.
| |
Collapse
|
2
|
Wallin J, Forsberg A, Svenningsson P. Effects of Montelukast on Neuroinflammation in Parkinson's Disease: An Open Label Safety and Tolerability Trial with CSF Markers and [ 11C]PBR28 PET. Mov Disord 2025; 40:739-744. [PMID: 39912596 PMCID: PMC12006882 DOI: 10.1002/mds.30144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Dysregulated leukotriene signaling is proposed to be involved in pathogenesis of Parkinson's disease (PD). OBJECTIVE The objective was to examine the safety and tolerability of montelukast, a cysteinyl-leukotriene receptor1 and GPR17 antagonist, in patients with PD. Secondary outcomes were target engagement, effects on PD signs/symptoms, and central neuroinflammation. METHODS Fifteen PD patients were recruited to a 12-week open-label trial of 20 mg bi-daily montelukast treatment. Patients underwent ratings with the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS), the Montreal Cognitive Assessment (MoCA), Beck's Depression Inventory (BDI), Parkinson's Disease Questionnaire-39 (PDQ-39), [11C]PBR28-PET, and lumbar punctures before and during montelukast treatment. RESULTS All patients completed the study. Three patients reported loose stool. No serious adverse events related to treatment were reported. MDS-UPDRS-Total scores improved by 6.9 points. Very low levels of montelukast were detected in all cerebrospinal fluid (CSF) samples and resulted in a reduction in inflammation/metabolism markers. [11C]PBR28 binding was lowered in high, but not mixed, affinity binders after montelukast. CONCLUSIONS Montelukast crosses the blood-brain barrier at very low levels and is well tolerated and safe in PD patients. Preliminary effects on neuroinflammation and clinical scores motivate a future randomized controlled trial (RCT) in PD. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johan Wallin
- Center for Neurology, Region StockholmStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Anton Forsberg
- Centre for Psychiatry Research, Karolinska InstitutetStockholmSweden
| | - Per Svenningsson
- Center for Neurology, Region StockholmStockholmSweden
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| |
Collapse
|
3
|
Zhao T, Liang SH. Novel Pyrimidinyl Sulfonamide Derivatives as GPR17 Modulators. ACS Med Chem Lett 2025; 16:361-362. [PMID: 40104793 PMCID: PMC11912259 DOI: 10.1021/acsmedchemlett.5c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Indexed: 03/20/2025] Open
Abstract
The present invention relates to novel pyrimidinyl sulfonamide derivatives represented by formula I. These compounds are specifically designed to bind to and modulate GPR17 activities, making them particularly promising for treating diseases associated with GPR17 antagonism.
Collapse
Affiliation(s)
- Taoqian Zhao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Boshta NM, Lewash M, Köse M, Namasivayam V, Sarkar S, Voss JH, Liedtke AJ, Junker A, Tian M, Stößel A, Rashed M, Mahal A, Merten N, Pegurier C, Hockemeyer J, Kostenis E, Müller CE. Discovery of Anthranilic Acid Derivatives as Antagonists of the Pro-Inflammatory Orphan G Protein-Coupled Receptor GPR17. J Med Chem 2024; 67:19365-19394. [PMID: 39484825 DOI: 10.1021/acs.jmedchem.4c01755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The G protein-coupled receptor 17 (GPR17) is an orphan receptor involved in inflammatory diseases. GPR17 antagonists have been proposed for the treatment of multiple sclerosis due to their potential to induce remyelination. Potent, selective antagonists are required to enable target validation. In the present study, we describe the discovery of a novel class of GPR17 antagonists based on an anthranilic acid scaffold. The compounds' potencies were evaluated in calcium mobilization and radioligand binding assays, and structure-activity relationships were analyzed. Selected antagonists were additionally studied in cAMP and G protein activation assays. The most potent antagonists were 5-methoxy-2-(5-(3'-methoxy-[1,1'-biphenyl]-2-yl)furan-2-carboxamido)benzoic acid (52, PSB-22269, Ki 8.91 nM) and its 3'-trifluoromethyl analog (54, PSB-24040, Ki 83.2 nM). Receptor-ligand docking studies revealed that the compounds' binding site is characterized by positively charged arginine residues and a lipophilic pocket. These findings yield valuable insights into this poorly characterized receptor providing a basis for future drug development.
Collapse
Affiliation(s)
- Nader M Boshta
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Michael Lewash
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Soumya Sarkar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Andy J Liedtke
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anna Junker
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anne Stößel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Mahmoud Rashed
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Ahmed Mahal
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Nicole Merten
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | | | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Evi Kostenis
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| |
Collapse
|
5
|
di Filippo L, Terenzi U, Di Ienno G, Trasciatti S, Bonaretti S, Giustina A. Novel protective circulating miRNA are associated with preserved vitamin D levels in patients with mild COVID-19 presentation at hospital admission not progressing into severe disease. Endocrine 2024; 86:119-123. [PMID: 38856841 PMCID: PMC11445338 DOI: 10.1007/s12020-024-03900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Low vitamin D levels were reported to negatively influence the outcomes of acute COVID-19, as well as other biochemical markers were linked to COVID-19, including microRNAs (miRNAs). This study aimed to prospectively evaluate miRNAs and vitamin D relationship in predicting COVID-19 outcomes. METHODS COVID-19 patients were part of a previously reported cohort and enrolled in a matched-ratio based on the presence/or not of severe disease at hospital admission. 25(OH) vitamin D levels and miRNAs expression were evaluated. RESULTS Patients affected by non-severe COVID-19 were characterized by a higher expression of miRNAs hsa-miR-3115 and hsa-miR-7151-3p, as compared to those affected by severe disease. In non-severe patients, these miRNAs were more frequently expressed in those who subsequently did not develop worsening outcomes. In addition, patients with miRNA-7151 expression and without worsening disease were characterized by higher 25(OH) vitamin D levels and lower prevalence of vitamin D deficiency. CONCLUSIONS The expression of two novel miRNAs was reported for the first-time to be associated with a less severe COVID-19 form and to prospectively predict the occurrence of disease outcome. Furthermore, the association observed between vitamin D deficiency and lack of miRNA-7151 expression in COVID-19 patients with worse outcomes may support the hypothesis that the co-existence of these two conditions may have a strong negative prognostic role.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Umberto Terenzi
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| | - Giovanni Di Ienno
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita Salute University and IRCCS San Raffaele Hospital, Milan, Italy
| | | | | | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, San Raffaele Vita Salute University and IRCCS San Raffaele Hospital, Milan, Italy.
| |
Collapse
|
6
|
Pietrantonio F, Serreqi A, Zerbe H, Svenningsson P, Aigner L. The leukotriene receptor antagonist montelukast as a potential therapeutic adjuvant in multiple sclerosis - a review. Front Pharmacol 2024; 15:1450493. [PMID: 39346564 PMCID: PMC11427386 DOI: 10.3389/fphar.2024.1450493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple Sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS). It is characterized by a heightened activation of the immune system with ensuing inflammation, demyelination and neurodegeneration with consequences such as motor, sensory, cognitive, as well as autonomic dysfunctions. While a range of immune-modulatory drugs have shown certain efficacy in alleviating pathology and symptoms, none of the currently available therapeutics regenerates the damaged CNS to restore function. There is emerging evidence for leukotrienes and leukotriene receptors being involved in the various aspects of the MS pathology including neuroinflammation and de/remyelination. Moreover, leukotriene receptor antagonists such as the asthma drug montelukast diminish inflammation and promote regeneration/remyelination. Indeed, montelukast has successfully been tested in animal models of MS and a recent retrospective case-control study suggests that montelukast treatment reduces relapses in patients with MS. Therefore, we propose montelukast as a therapeutic adjuvant to the standard immune-modulatory drugs with the potential to reduce pathology and promote structural and functional restoration. Here, we review the current knowledge on MS, its pathology, and on the potential of leukotriene receptor antagonists as therapeutics for MS.
Collapse
Affiliation(s)
| | | | | | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Chen X, Li C, Wang Z, Zhou Y, Chu M. Computational screening of biomarkers and potential drugs for arthrofibrosis based on combination of sequencing and large nature language model. J Orthop Translat 2024; 44:102-113. [PMID: 38304615 PMCID: PMC10831815 DOI: 10.1016/j.jot.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 02/03/2024] Open
Abstract
Background Arthrofibrosis (AF) is a fibrotic joint disease resulting from excessive collagen production and fibrous scar formation after total knee arthroplasty (TKA). This devastating complication may cause consistent pain and dramatically reduction of functionality. Unfortunately, the conservative treatments to prevent the AF in the early stage are largely unknown due to the lack of specific biomarkers and reliable therapeutic targets. Methods In this study, we extracted1782 fibrosis related genes (FRGs) from 373,461published literature based on the large natural language processing models (ChatGPT) and intersected with the 2750 differential expressed genes (DEGs) from mRNA microarray (GSE135854). A total of 311 potential AF biomarker genes (PABGs) were obtained and functional analysis were performed including gene ontology (GO) annotation and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Subsequently, we accomplished validation in AF animal models with immobilization of the unilateral knee joints of 16 rabbits for 1-week, 2-weeks, 3-weeks and 4-weeks. Finally, we tested the biomarkers in a retrospective cohort enrolled 35 AF patients and 35 control group patients. Results We identified G-protein-coupled receptor 17 (GPR17) as a reliable therapeutic biomarker for AF diagnosis with higher AUC (0.819) in the ROC curve. A total of 21 potential drugs targeted to GPR17 were screened. Among them, pranlukast and montelukast have achieved therapeutic effect in animal models. In addition, we established an online AF database for data integration (https://chenxi2023.shinyapps.io/afdbv1). Conclusions These results unveiling therapeutic biomarkers for AF diagnosis, and provide potential drugs for clinical treatment. The translational potential of this article Our study demonstrated that GPR17 holds significant promise as a potential biomarker and therapeutic target for arthrofibrosis. Moreover, pranlukast and montelukast targeted to GPR17 that could be instrumental in the treatment of AF.
Collapse
Affiliation(s)
- Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing, 100035, China
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, China
| | - Cheng Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing, 100035, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, China
| | - Yixin Zhou
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing, 100035, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- NHC Key Laboratory of Medical Immunology (Peking University), Beijing, 100191, China
| |
Collapse
|
8
|
Liang Y, Kang X, Zhang H, Xu H, Wu X. Knockdown and inhibition of hippocampal GPR17 attenuates lipopolysaccharide-induced cognitive impairment in mice. J Neuroinflammation 2023; 20:271. [PMID: 37990234 PMCID: PMC10662506 DOI: 10.1186/s12974-023-02958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Previously we reported that inhibition of GPR17 prevents amyloid β 1-42 (Aβ1-42)-induced cognitive impairment in mice. However, the role of GPR17 on cognition is still largely unknown. METHODS Herein, we used a mouse model of cognitive impairment induced by lipopolysaccharide (LPS) to further investigate the role of GPR17 in cognition and its potential mechanism. The mice were pretreated with GPR17 shRNA lentivirus and cangrelor by microinjection into the dentate gyrus (DG) region of the hippocampus. After 21 days, LPS (0.25 mg/kg, i.p.) was administered for 7 days. Animal behavioral tests as well as pathological and biochemical assays were performed to evaluate the cognitive function in mice. RESULTS LPS exposure resulted in a significant increase in GPR17 expression at both protein and mRNA levels in the hippocampus. Gene reduction and pharmacological blockade of GPR17 improved cognitive impairment in both the Morris water maze and novel object recognition tests. Knockdown and inhibition of GPR17 inhibited Aβ production, decreased the expression of NF-κB p65, increased CREB phosphorylation and elevated BDNF expression, suppressed the accumulation of pro-inflammatory cytokines, inhibited Glial cells (microglia and astrocytes) activation, and increased Bcl-2, PSD-95, and SYN expression, reduced Bax expression as well as decreased caspase-3 activity and TUNEL-positive cells in the hippocampus of LPS-treated mice. Notably, knockdown and inhibition of GPR17 not only provided protective effects against cholinergic dysfunction but also facilitated the regulation of oxidative stress. In addition, cangrelor pretreatment can effectively inhibit the expression of inflammatory cytokines by suppressing NF-κB/CREB/BDNF signaling in BV-2 cells stimulated by LPS. However, activation of hippocampal GPR17 with MDL-29951 induced cognitive impairment in normal mice. CONCLUSIONS These observations indicate that GPR17 may possess a neuroprotective effect against LPS-induced cognition deficits, and neuroinflammation by modulation of NF-κB/CREB/BDNF signaling in mice, indicating that GPR17 may be a promising new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yusheng Liang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xu Kang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Haiwang Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Heng Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
9
|
Kari S, Murugesan A, Thiyagarajan R, Kidambi S, Razzokov J, Selvaraj C, Kandhavelu M, Marimuthu P. Bias-force guided simulations combined with experimental validations towards GPR17 modulators identification. Biomed Pharmacother 2023; 160:114320. [PMID: 36716660 DOI: 10.1016/j.biopha.2023.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is known to be by far the most aggressive brain tumor to affect adults. The median survival rate of GBM patient's is < 15 months, while the GBM cells aggressively develop resistance to chemo- and radiotherapy with their self-renewal capacity which suggests the pressing need to develop novel preventative measures. We have recently proved that GPR17 -an orphan G protein-coupled receptor- is highly expressed on the GBM cell surface and it has a vital role to play in the disease progression. Despite the progress made on GBM downregulation, there still remain difficulties in developing a promising modulator for GPR17, till date. Here, we have performed robust virtual screening combined with biased-force pulling molecular dynamic (MD) simulations to predict high-affinity GPR17 modulators followed by experimental validation. Initially, the database containing 1379 FDA-approved drugs were screened against the orthosteric binding pocket of the GPR17. The external bias-potentials were then applied to the screened hits during the MD simulations which enabled to predict a spectrum of rupture peak force values that were used to select four approved drugs -ZINC000003792417 (Sacubitril), ZINC000014210457 (Victrelis), ZINC000001536109 (Pralatrexate) and ZINC000003925861 (Vorapaxar)- as top hits. The hits selected turns out to demonstrate unique dissociation pathways, interaction pattern, and change in polar network over time. Subsequently the selected hits with GPR17 were measured by inhibiting the forskolin-stimulated cAMP accumulation in GBM cell lines, LN229 and SNB19. The ex vivo validations shows that Sacubitril drug can act as a full agonist, while Vorapaxar functions as a partial agonist for GPR17. The pEC50 of Sacubitril was identified as 4.841 and 4.661 for LN229 and SNB19, respectively. Small interference of the RNA (siRNA)- silenced the GPR17 to further validate the targeted binding of Sacubitril with GPR17. In the current investigation, we have identified new repurposable GPR17 specific drugs which are likely to increase the opportunity to treat orphan deadly diseases.
Collapse
Affiliation(s)
- Sana Kari
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101 Tampere, Finland
| | - Akshaya Murugesan
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101 Tampere, Finland
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N 16th Street, 207 Othmer Hall, NE 68588, USA
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan; College of Engineering, Akfa University, Milliy Bog Street 264, 111221 Tashkent, Uzbekistan; Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, 100084 Tashkent, Uzbekistan; Department of Physics, National University of Uzbekistan, Universitet 4, 100174 Tashkent, Uzbekistan; Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Universitet 7, 100174 Tashkent, Uzbekistan
| | - Chandrabose Selvaraj
- Department of Biotechnology, Division of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University and BioMediTech, P.O.Box 553, 33101 Tampere, Finland.
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL - Pharmacy) and Structural Bioinformatics Laboratory (SBL - Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.
| |
Collapse
|
10
|
Ye F, Wong T, Chen G, Zhang Z, Zhang B, Gan S, Gao W, Li J, Wu Z, Pan X, Du Y. Cryo-EM structure of G-protein-coupled receptor GPR17 in complex with inhibitory G protein. MedComm (Beijing) 2022; 3:e159. [PMID: 36105372 PMCID: PMC9464062 DOI: 10.1002/mco2.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
GPR17 is a class A orphan G protein-coupled receptor (GPCR) expressed in neurons and oligodendrocyte progenitors of the central nervous system (CNS). The signalling of GPR17 occurs through the heterotrimeric Gi, but its activation mechanism is unclear. Here, we employed cryo-electron microscopy (cryo-EM) technology to elucidate the structure of activated GPR17-Gi complex. The 3.02 Å resolution structure, together with mutagenesis studies, revealed that the extracellular loop2 of GPR17 occupied the orthosteric binding pocket to promote its self-activation. The active GPR17 carried several typical microswitches like other class A GPCRs. Moreover, the Gi interacted with the key residues of transmembrane helix 3 (TM3), the amphipathic helix 8 (Helix8), and intracellular loops 3 (ICL3) in GPR17 to engage in the receptor core. In summary, our results highlight the activation mechanism of GPR17 from the structural basis. Elucidating the structural and activation mechanism of GPR17 may facilitate the pharmacological intervention for acute/chronic CNS injury.
Collapse
Affiliation(s)
- Fang Ye
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| | - Thian‐Sze Wong
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Geng Chen
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Binghao Zhang
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Wei Gao
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Jiancheng Li
- Instrumental Analysis CenterShenzhen UniversityShenzhenGuangdongChina
| | - Zhangsong Wu
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Xin Pan
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
| | - Yang Du
- Kobilka Institute of Innovative Drug DiscoveryShenzhen Key Laboratory of Steroid Drug Discovery and DevelopmentSchool of MedicineThe Chinese University of Hong KongShenzhenGuangdongChina
- The Chinese University of Hong KongShenzhen Futian Biomedical Innovation R&D CenterShenzhenGuangdongChina
| |
Collapse
|
11
|
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy 2022; 77:3513-3526. [PMID: 35892227 PMCID: PMC10087875 DOI: 10.1111/all.15455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Metabolic health and immune function are intimately connected via diet and the microbiota. Nearly 90% of all immune cells in the body are associated with the gastrointestinal tract and these immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important systemic ramifications. Microbial dysbiosis has consistently been observed in patients with atopic dermatitis, food allergy and asthma and the molecular mechanisms linking changes in microbial populations with disease risk and disease endotypes are being intensively investigated. The discovery of novel bacterial metabolites that impact immune function is at the forefront of host-microbe research. Co-evolution of microbial communities within their hosts has resulted in intertwined metabolic pathways that affect physiological and pathological processes. However, recent dietary and lifestyle changes are thought to negatively influence interactions between microbes and their host. This review provides an overview of some of the critical metabolite-receptor interactions that have been recently described, which may underpin the immunomodulatory effects of the microbiota, and are of relevance for allergy, asthma and infectious diseases.
Collapse
Affiliation(s)
- Brian Forde
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Lu Yao
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Rupin Shaha
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | | | - Nonhlanhla Lunjani
- APC Microbiome Ireland, UCC, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland.,Department of Medicine, UCC, Cork, Ireland
| |
Collapse
|
12
|
Bassani D, Pavan M, Federico S, Spalluto G, Sturlese M, Moro S. The Multifaceted Role of GPCRs in Amyotrophic Lateral Sclerosis: A New Therapeutic Perspective? Int J Mol Sci 2022; 23:4504. [PMID: 35562894 PMCID: PMC9106011 DOI: 10.3390/ijms23094504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerating disease involving the motor neurons, which causes a progressive loss of movement ability, usually leading to death within 2 to 5 years from the diagnosis. Much effort has been put into research for an effective therapy for its eradication, but still, no cure is available. The only two drugs approved for this pathology, Riluzole and Edaravone, are onlyable to slow down the inevitable disease progression. As assessed in the literature, drug targets such as protein kinases have already been extensively examined as potential drug targets for ALS, with some molecules already in clinical trials. Here, we focus on the involvement of another very important and studied class of biological entities, G protein-coupled receptors (GPCRs), in the onset and progression of ALS. This workaimsto give an overview of what has been already discovered on the topic, providing useful information and insights that can be used by scientists all around the world who are putting efforts into the fight against this very important neurodegenerating disease.
Collapse
Affiliation(s)
- Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; (S.F.); (G.S.)
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (D.B.); (M.P.); (M.S.)
| |
Collapse
|
13
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
14
|
Eicosanoid receptors as therapeutic targets for asthma. Clin Sci (Lond) 2021; 135:1945-1980. [PMID: 34401905 DOI: 10.1042/cs20190657] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Eicosanoids comprise a group of oxidation products of arachidonic and 5,8,11,14,17-eicosapentaenoic acids formed by oxygenases and downstream enzymes. The two major pathways for eicosanoid formation are initiated by the actions of 5-lipoxygenase (5-LO), leading to leukotrienes (LTs) and 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and cyclooxygenase (COX), leading to prostaglandins (PGs) and thromboxane (TX). A third group (specialized pro-resolving mediators; SPMs), including lipoxin A4 (LXA4) and resolvins (Rvs), are formed by the combined actions of different oxygenases. The actions of the above eicosanoids are mediated by approximately 20 G protein-coupled receptors, resulting in a variety of both detrimental and beneficial effects on airway smooth muscle and inflammatory cells that are strongly implicated in asthma pathophysiology. Drugs targeting proinflammatory eicosanoid receptors, including CysLT1, the receptor for LTD4 (montelukast) and TP, the receptor for TXA2 (seratrodast) are currently in use, whereas antagonists of a number of other receptors, including DP2 (PGD2), BLT1 (LTB4), and OXE (5-oxo-ETE) are under investigation. Agonists targeting anti-inflammatory/pro-resolving eicosanoid receptors such as EP2/4 (PGE2), IP (PGI2), ALX/FPR2 (LXA4), and Chemerin1 (RvE1/2) are also being examined. This review summarizes the contributions of eicosanoid receptors to the pathophysiology of asthma and the potential therapeutic benefits of drugs that target these receptors. Because of the multifactorial nature of asthma and the diverse pathways affected by eicosanoid receptors, it will be important to identify subgroups of asthmatics that are likely to respond to any given therapy.
Collapse
|
15
|
Luo Q, Liu R, Qu K, Liu G, Hang M, Chen G, Xu L, Jin Q, Guo D, Kang Q. Cangrelor ameliorates CLP-induced pulmonary injury in sepsis by inhibiting GPR17. Eur J Med Res 2021; 26:70. [PMID: 34229761 PMCID: PMC8262027 DOI: 10.1186/s40001-021-00536-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis is a common complication of severe wound injury and infection, with a very high mortality rate. The P2Y12 receptor inhibitor, cangrelor, is an antagonist anti-platelet drug. METHODS In our study, we investigated the protective mechanisms of cangrelor in CLP-induced pulmonary injury in sepsis, using C57BL/6 mouse models. RESULTS TdT-mediated dUTP Nick-End Labeling (TUNEL) and Masson staining showed that apoptosis and fibrosis in lungs were alleviated by cangrelor treatment. Cangrelor significantly promoted surface expression of CD40L on platelets and inhibited CLP-induced neutrophils in Bronchoalveolar lavage fluid (BALF) (p < 0.001). We also found that cangrelor decreased the inflammatory response in the CLP mouse model and inhibited the expression of inflammatory cytokines, IL-1β (p < 0.01), IL-6 (p < 0.05), and TNF-α (p < 0.001). Western blotting and RT-PCR showed that cangrelor inhibited the increased levels of G-protein-coupled receptor 17 (GPR17) induced by CLP (p < 0.001). CONCLUSION Our study indicated that cangrelor repressed the levels of GPR17, followed by a decrease in the inflammatory response and a rise of neutrophils in BALF, potentially reversing CLP-mediated pulmonary injury during sepsis.
Collapse
Affiliation(s)
- Qiancheng Luo
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Rui Liu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Kaili Qu
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135, People's Republic of China
| | - Guorong Liu
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Min Hang
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Guo Chen
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Lei Xu
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Qinqin Jin
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China
| | - Dongfeng Guo
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China.
| | - Qi Kang
- Department of Critical Care Medicine, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
16
|
Biringer RG. A review of non-prostanoid, eicosanoid receptors: expression, characterization, regulation, and mechanism of action. J Cell Commun Signal 2021; 16:5-46. [PMID: 34173964 DOI: 10.1007/s12079-021-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
Eicosanoid signaling controls a wide range of biological processes from blood pressure homeostasis to inflammation and resolution thereof to the perception of pain and to cell survival itself. Disruption of normal eicosanoid signaling is implicated in numerous disease states. Eicosanoid signaling is facilitated by G-protein-coupled, eicosanoid-specific receptors and the array of associated G-proteins. This review focuses on the expression, characterization, regulation, and mechanism of action of non-prostanoid, eicosanoid receptors.
Collapse
Affiliation(s)
- Roger G Biringer
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Blvd, Bradenton, FL, 34211, USA.
| |
Collapse
|
17
|
Mishra S, Shah MI, Udhaya Kumar S, Thirumal Kumar D, Gopalakrishnan C, Al-Subaie AM, Magesh R, George Priya Doss C, Kamaraj B. Network analysis of transcriptomics data for the prediction and prioritization of membrane-associated biomarkers for idiopathic pulmonary fibrosis (IPF) by bioinformatics approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 123:241-273. [PMID: 33485486 DOI: 10.1016/bs.apcsb.2020.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare yet crucial persistent lung disorder that actuates scarring of lung tissues, which makes breathing difficult. Smoking, environmental pollution, and certain viral infections could initiate lung scarring. However, the molecular mechanism involved in IPF remains elusive. To develop an efficient therapeutic arsenal against IPF, it is vital to understand the pathology and deviations in biochemical pathways that lead to disorder. In this study, we availed network analysis and other computational pipelines to delineate the prominent membrane proteins as diagnostic biomarkers and therapeutic targets for IPF. This study yielded a significant role of glycosaminoglycan binding, endothelin, and GABA-B receptor signaling pathway in IPF pathogenesis. Furthermore, ADCY8, CRH, FGB, GPR17, MCHR1, NMUR1, and SAA1 genes were found to be immensely involved with IPF, and the enrichment pathway analysis suggests that most of the pathways were corresponding to membrane transport and signal transduction functionalities. This analysis could help in better understanding the molecular mechanism behind IPF to develop an efficient therapeutic target or biomarkers for IPF.
Collapse
Affiliation(s)
- Smriti Mishra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India; Navipoint Health India Pvt Ltd, Moula-Ali, Hyderabad, Telangana, India
| | - Mohammad Imran Shah
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India; Navipoint Health India Pvt Ltd, Moula-Ali, Hyderabad, Telangana, India
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - D Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Abeer Mohammed Al-Subaie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - R Magesh
- Faculty of Biomedical Sciences, Technology & Research, Department of Biotechnology, Sri Ramachandra University, Chennai, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balu Kamaraj
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| |
Collapse
|
18
|
Yang J, Gong Z, Lu YB, Xu CJ, Wei TF, Yang MS, Zhan TW, Yang YH, Lin L, Liu J, Tang C, Zhang WP. FLIM-FRET-Based Structural Characterization of a Class-A GPCR Dimer in the Cell Membrane. J Mol Biol 2020; 432:4596-4611. [PMID: 32553728 DOI: 10.1016/j.jmb.2020.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/30/2022]
Abstract
Class-A G protein-coupled receptors (GPCRs) are known to homo-dimerize in the membrane. Yet, methods to characterize the structure of GPCR dimer in the native environment are lacking. Accordingly, the molecular basis and functional relevance of the class-A GPCR dimerization remain unclear. Here, we present the dimeric structural model of GPR17 in the cell membrane. The dimer mainly involves transmembrane helix 5 (TM5) at the interface, with F229 in TM5, a critical residue. An F229A mutation makes GPR17 monomeric regardless of the expression level of the receptor. Monomeric mutants of GPR17 display impaired ERK1/2 activation and cannot be properly internalized upon agonist treatment. Conversely, the F229C mutant is cross-linked as a dimer and behaves like wild-type. Importantly, the GPR17 dimer structure has been modeled using sparse inter-protomer FRET distance restraints obtained from fluorescence lifetime imaging microscopy. The same approach can be applied to characterizing the interactions of other important membrane proteins in the cell.
Collapse
Affiliation(s)
- Ju Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhou Gong
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yun-Bi Lu
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chan-Juan Xu
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao-Feng Wei
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng-Shi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Tian-Wei Zhan
- Department of Thoracic Surgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang 310009, China
| | - Yu-Hong Yang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Li Lin
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianfeng Liu
- College of Life Science and Technology, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Chun Tang
- Key Laboratory of Magnetic Resonance in Biological Systems of the Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China.
| | - Wei-Ping Zhang
- Department of Pharmacology and Department Of Neurosurgery, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
19
|
Ye XY, Wang DY, Xu Y, Wang J. [Effect of pranlukast on neonatal rats with periventricular leukomalacia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:656-661. [PMID: 32571468 PMCID: PMC7390222 DOI: 10.7499/j.issn.1008-8830.1912139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To study the effect of pranlukast (Pran) on neonatal rats with periventricular leukomalacia (PVL). METHODS The rats, aged 3 days, were randomly divided into a sham-operation group, a PVL group, and a Pran group. A rat model of PVL was prepared by right common carotid artery ligation and postoperative hypoxia. The rats in the sham-operation group were given isolation of the right common carotid artery without ligation or hypoxic treatment. The rats in the Pran group were given intraperitoneal injection of Pran (0.1 mg/kg) once every 12 hours, for 3 consecutive days, and those in the sham-operation group and the PVL group were given intraperitoneal injection of an equal volume of normal saline. On day 14 after modeling, hematoxylin-eosin (HE) staining was used to observe the pathological changes of brain tissue; immunofluorescent staining was used to measure the expression of myelin basic protein (MBP) in brain tissue (n=8); Western blot was used to measure the expression of cyclic nucleotide phosphodiesterase (CNPase), MBP, and G protein-coupled receptor 17 (GPR17) (n=8). On day 21 after modeling, Morris water maze test was used to evaluate the learning and memory abilities of rats in each group (n=8). RESULTS The results of HE staining showed that the PVL group had greater pathological changes of white matter than the sham-operation group, and compared with the PVL group, the Pran group had a significant improvement in such pathological changes. The results of immunofluorescence assay showed that the PVL group had a lower mean fluorescence intensity of MBP than the sham-operation group (P<0.05), and the Pran group had a higher mean fluorescence intensity of MBP than the PVL group (P<0.05). Western blot showed that compared with the sham-operation group, the PVL group had significantly lower relative expression of MBP and CNPase (P<0.05) and significantly higher relative expression of GPR17 (P<0.05), and compared with the PVL group, the Pran group had significantly higher relative expression of MBP and CNPase (P<0.05) and significantly lower relative expression of GPR17 (P<0.05). Morris water maze test showed that compared with the sham-operation group, the PVL group had a significant increase in escape latency and a significant reduction in the number of platform crossings, and compared with the PVL group, the Pran group had a significant reduction in escape latency and a significant increase in the number of platform crossings (P<0.05). CONCLUSIONS Pran can alleviate brain damage, promote myelination, and improve long-term learning and memory abilities in neonatal rats with PVL, possibly by reducing the expression of GPR17.
Collapse
Affiliation(s)
- Xiao-Yan Ye
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| | | | | | | |
Collapse
|
20
|
Méndez-Enríquez E, Hallgren J. Mast Cells and Their Progenitors in Allergic Asthma. Front Immunol 2019; 10:821. [PMID: 31191511 PMCID: PMC6548814 DOI: 10.3389/fimmu.2019.00821] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Mast cells and their mediators have been implicated in the pathogenesis of asthma and allergy for decades. Allergic asthma is a complex chronic lung disease in which several different immune cells, genetic factors and environmental exposures influence the pathology. Mast cells are key players in the asthmatic response through secretion of a multitude of mediators with pro-inflammatory and airway-constrictive effects. Well-known mast cell mediators, such as histamine and bioactive lipids are responsible for many of the physiological effects observed in the acute phase of allergic reactions. The accumulation of mast cells at particular sites of the allergic lung is likely relevant to the asthma phenotype, severity and progression. Mast cells located in different compartments in the lung and airways have different characteristics and express different mediators. According to in vivo experiments in mice, lung mast cells develop from mast cell progenitors induced by inflammatory stimuli to migrate to the airways. Human mast cell progenitors have been identified in the blood circulation. A high frequency of circulating human mast cell progenitors may reflect ongoing pathological changes in the allergic lung. In allergic asthma, mast cells become activated mainly via IgE-mediated crosslinking of the high affinity receptor for IgE (FcεRI) with allergens. However, mast cells can also be activated by numerous other stimuli e.g. toll-like receptors and MAS-related G protein-coupled receptor X2. In this review, we summarize research with implications on the role and development of mast cells and their progenitors in allergic asthma and cover selected activation pathways and mast cell mediators that have been implicated in the pathogenesis. The review places an emphasis on describing mechanisms identified using in vivo mouse models and data obtained by analysis of clinical samples.
Collapse
Affiliation(s)
- Erika Méndez-Enríquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Roberts NA, Hilton EN, Lopes FM, Singh S, Randles MJ, Gardiner NJ, Chopra K, Coletta R, Bajwa Z, Hall RJ, Yue WW, Schaefer F, Weber S, Henriksson R, Stuart HM, Hedman H, Newman WG, Woolf AS. Lrig2 and Hpse2, mutated in urofacial syndrome, pattern nerves in the urinary bladder. Kidney Int 2019; 95:1138-1152. [PMID: 30885509 PMCID: PMC6481288 DOI: 10.1016/j.kint.2018.11.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/21/2018] [Indexed: 12/29/2022]
Abstract
Mutations in leucine-rich-repeats and immunoglobulin-like-domains 2 (LRIG2) or in heparanase 2 (HPSE2) cause urofacial syndrome, a devastating autosomal recessive disease of functional bladder outlet obstruction. It has been speculated that urofacial syndrome has a neural basis, but it is unknown whether defects in urinary bladder innervation are present. We hypothesized that urofacial syndrome features a peripheral neuropathy of the bladder. Mice with homozygous targeted Lrig2 mutations had urinary defects resembling those found in urofacial syndrome. There was no anatomical blockage of the outflow tract, consistent with a functional bladder outlet obstruction. Transcriptome analysis revealed differential expression of 12 known transcripts in addition to Lrig2, including 8 with established roles in neurobiology. Mice with homozygous mutations in either Lrig2 or Hpse2 had increased nerve density within the body of the urinary bladder and decreased nerve density around the urinary outflow tract. In a sample of 155 children with chronic kidney disease and urinary symptoms, we discovered novel homozygous missense LRIG2 variants that were predicted to be pathogenic in 2 individuals with non-syndromic bladder outlet obstruction. These observations provide evidence that a peripheral neuropathy is central to the pathobiology of functional bladder outlet obstruction in urofacial syndrome, and emphasize the importance of LRIG2 and heparanase 2 for nerve patterning in the urinary tract.
Collapse
Affiliation(s)
- Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK.
| | - Emma N Hilton
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Subir Singh
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Michael J Randles
- School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Natalie J Gardiner
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Karl Chopra
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Riccardo Coletta
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Zunera Bajwa
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK
| | - Robert J Hall
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK
| | - Franz Schaefer
- Division of Pediatric Nephrology, Centre for Pediatric and Adolescent Medicine, University Hospital of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| | - Stefanie Weber
- Pediatric Nephrology, University-Children's Hospital Marburg, Philipps-University Marburg, Germany
| | - Roger Henriksson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden; Regional Cancer Center Stockholm/Gotland, Stockholm, Sweden
| | - Helen M Stuart
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
22
|
Marucci G, Dal Ben D, Lambertucci C, Martí Navia A, Spinaci A, Volpini R, Buccioni M. GPR17 receptor modulators and their therapeutic implications: review of recent patents. Expert Opin Ther Pat 2019; 29:85-95. [PMID: 30640576 DOI: 10.1080/13543776.2019.1568990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The GPR17 receptor, phylogenetically related to both purinergic P2Y and CysLT receptors, is mainly expressed in the CNS and, in general, in organs that can typically undergo ischemic damage. This receptor is involved in various pathologies including stroke, brain and spinal cord trauma, multiple sclerosis and in all diseases characterized by neuronal and myelin dysfunction. Therefore, there is a strong needed to identify molecules capable of binding specifically to GPR17 receptors. AREAS COVERED The review provides a summary of patents, published between 2009 and 2018, on chemicals and biologics and their clinical use. In this work, information is reported about the representative structures and biological activity of recently developed GPR17 receptor ligands. EXPERT OPINION The GPR17 receptor is an enigmatic receptor and an interesting therapeutic target in a variety of brain disorders and demyelinating diseases such as multiple sclerosis, stroke, schizophrenia, and depression. The modulation of this receptor could also be potentially useful in obesity treatment. Unfortunately, so far, there are no compounds under investigation in clinical trials but many researchers and companies are investing in the discovery of future potential GPR17 receptor drugs.
Collapse
Affiliation(s)
- Gabriella Marucci
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Diego Dal Ben
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Catia Lambertucci
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Aleix Martí Navia
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Andrea Spinaci
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Rosaria Volpini
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| | - Michela Buccioni
- a School of Pharmacy, Medicinal Chemistry Unit , University of Camerino , Camerino , Italy
| |
Collapse
|
23
|
Baqi Y, Pillaiyar T, Abdelrahman A, Kaufmann O, Alshaibani S, Rafehi M, Ghasimi S, Akkari R, Ritter K, Simon K, Spinrath A, Kostenis E, Zhao Q, Köse M, Namasivayam V, Müller CE. 3-(2-Carboxyethyl)indole-2-carboxylic Acid Derivatives: Structural Requirements and Properties of Potent Agonists of the Orphan G Protein-Coupled Receptor GPR17. J Med Chem 2018; 61:8136-8154. [PMID: 30048589 DOI: 10.1021/acs.jmedchem.7b01768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The orphan receptor GPR17 may be a novel drug target for inflammatory diseases. 3-(2-Carboxyethyl)-4,6-dichloro-1 H-indole-2-carboxylic acid (MDL29,951, 1) was previously identified as a moderately potent GPR17 agonist. In the present study, we investigated the structure-activity relationships (SARs) of 1. Substitution of the indole 1-, 5-, or 7-position was detrimental. Only small substituents were tolerated in the 4-position while the 6-position accommodated large lipophilic residues. Among the most potent compounds were 3-(2-carboxyethyl)-1 H-indole-2-carboxylic acid derivatives containing the following substituents: 6-phenoxy (26, PSB-1737, EC50 270 nM), 4-fluoro-6-bromo (33, PSB-18422, EC50 27.9 nM), 4-fluoro-6-iodo (35, PSB-18484, EC50 32.1 nM), and 4-chloro-6-hexyloxy (43, PSB-1767, EC50 67.0 nM). (3-(2-Carboxyethyl)-6-hexyloxy-1 H-indole-2-carboxylic acid (39, PSB-17183, EC50 115 nM) behaved as a partial agonist. Selected potent compounds tested at human P2Y receptor subtypes showed high selectivity for GPR17. Docking into a homology model of the human GPR17 and molecular dynamic simulation studies rationalized the observed SARs.
Collapse
Affiliation(s)
- Younis Baqi
- Department of Chemistry, Faculty of Science , Sultan Qaboos University , P.O. Box 36, 123 Muscat , Oman
| | - Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Olesja Kaufmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Samer Alshaibani
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Saman Ghasimi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Rhalid Akkari
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Kirsten Ritter
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Katharina Simon
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Andreas Spinrath
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, Section Molecular-, Cellular-, and Pharmacobiology, University of Bonn , Nußallee 6 , 53115 Bonn , Germany
| | - Qiang Zhao
- CAS Key Laboratory of Receptor Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Pudong , Shanghai 201203 , China
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany
| |
Collapse
|
24
|
Zhao B, Wang H, Li CX, Song SW, Fang SH, Wei EQ, Shi QJ. GPR17 mediates ischemia-like neuronal injury via microglial activation. Int J Mol Med 2018; 42:2750-2762. [PMID: 30226562 PMCID: PMC6192776 DOI: 10.3892/ijmm.2018.3848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
GPR17 is a G (i)-coupled dual receptor, linked to P2Y and CysLT receptors stimulated by uracil nucleotides and cysteinyl leukotrienes, respectively. Recent evidence has demonstrated that GPR17 inhibition ameliorates the progression of cerebral ischemic injury by regulating neuronal death and microglial activation. The present study aimed to assess the detailed regulatory roles of this receptor in oxygen-glucose deprivation/recovery (OGD/R)-induced ischemia-like injury in vitro and explore the underlying mechanism. The results demonstrated that OGD/R induced ischemic neuronal injury and microglial activation, including enhanced phagocytosis and increased inflammatory cytokine release in neuron‑glial mixed cultures of cortical cells. GPR17 upregulation during OGD/R was spatially and temporally correlated with neuronal injury and microglial activation. In addition, GPR17 knockdown inhibited OGD/R-induced responses in neuron-glial mixed cultures. GPR17 knockdown also attenuated cell injury induced by the agonist leukotriene D4 (LTD4) or uridine 5′-diphosphate (UDP) in neuron-glial mixed cultures. However, GPR17 knockdown did not affect OGD/R-induced ischemic neuronal injury in primary cultures of neurons. In primary astrocyte cultures, neither GPR17 nor OGD/R induced injury. By contrast, GPR17 knockdown ameliorated OGD/R-induced microglial activation, boosting phagocytosis and inflammatory cytokine release in primary microglia cultures. Finally, the results demonstrated that the conditioned medium of microglia pretreated with OGD/R induced neuronal death, and the neuronal injury was significantly inhibited by GPR17 knockdown. These findings suggested that GPR17 may mediate ischemia-like neuronal injury and microglial activation in vitro; however, the protective effects on ischemic neuronal injury might depend upon microglial activation. Whether GPR17 regulates neuronal injury mediated by oligodendrocyte linkage remains to be investigated.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hao Wang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Cai-Xia Li
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Sheng-Wen Song
- Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - San-Hua Fang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Er-Qing Wei
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiao-Juan Shi
- Experimental Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
25
|
Zhan TW, Tian YX, Wang Q, Wu ZX, Zhang WP, Lu YB, Wu M. Cangrelor alleviates pulmonary fibrosis by inhibiting GPR17-mediated inflammation in mice. Int Immunopharmacol 2018; 62:261-269. [PMID: 30036769 DOI: 10.1016/j.intimp.2018.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis is a progressive and intractable lung disease. Macrophages play a critical role in the progression of pulmonary fibrosis. Cangrelor, an anti-platelet agent, is also a non-selective Gprotein-coupled receptor 17 (GPR17) antagonist. GPR17 mediates microglial inflammation in the chronic phase of cerebral ischemia and regulates allergic pulmonary inflammation. In this study, we observed the effects of cangrelor on bleomycin (BLM)-induced macrophage cellular inflammation and BLM-induced pulmonary fibrosis in C57BL/6J mice. We found that BLM significantly increased GPR17 expression, the mRNA synthesis and release of inflammatory cytokines including TNF-α, IL-6 and TGF-β1 in murine RAW 264.7 macrophage cells. Knockdown of GPR17 attenuated the BLM-induced inflammatory responses. Cangrelor (2.5 μM-10 μM) significantly alleviated BLM-induced inflammatory response in RAW 264.7 macrophage cells in concentration-dependent manner. In BLM-induced fibrotic mouse lungs, GPR17 expression and GPR17-positive macrophages were increased. Cangrelor (2.5 mg/kg-10 mg/kg) alleviated pulmonary fibrosis in dose-dependent manner. Cangrelor not only reduced the number of GPR17-positive macrophages, but also decreased BLM-induced mRNA synthesis and release of inflammatory cytokine. As such, we concluded that cangrelor alleviates BLM-induced pulmonary fibrosis by suppressing GPR17-mediated inflammation. Cangrelor could be a potential therapeutic drug for pulmonary fibrosis.
Collapse
Affiliation(s)
- Tian-Wei Zhan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jie-Fang Road, Hangzhou, Zhejiang 310009, China
| | - Yu-Xin Tian
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058, China
| | - Qi Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jie-Fang Road, Hangzhou, Zhejiang 310009, China
| | - Zi-Xiang Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jie-Fang Road, Hangzhou, Zhejiang 310009, China
| | - Wei-Ping Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058, China
| | - Yun-Bi Lu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yu-Hang-Tang Road, Hangzhou, Zhejiang 310058, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jie-Fang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
26
|
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:169-192. [PMID: 28828731 DOI: 10.1007/5584_2017_92] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties.
Collapse
Affiliation(s)
- Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giusy T Coppolino
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Chiara Parravicini
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
27
|
Abstract
Platelets play a vital role in normal hemostasis to stem blood loss at sites of vascular injury by tethering and adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, releasing vasoactive small molecules and proteins, and assembling and activating plasma coagulation proteins in a tightly regulated temporal and spatial manner. In synchrony with specific end products of coagulation, primarily cross-linked fibrin, a stable thrombus quickly forms. Far beyond physiological hemostasis and pathological thrombosis, emerging evidence supports platelets playing a pivotal role in vascular homeostasis, inflammation, cellular repair, regeneration, and wide range of autocrine and paracrine functions. In essence, platelets play both structural and functional roles as reporters, messengers, and active transporters surveying the vasculature for cues of environmental or developmental stimuli and participating as first responders.1 In this review, we will provide a contemporary perspective of platelet physiology, including fundamental, translational, and clinical constructs that apply directly to human health and disease.
Collapse
Affiliation(s)
- Richard C Becker
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine.
| | - Travis Sexton
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| | - Susan S Smyth
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| |
Collapse
|
28
|
Le Duc D, Schulz A, Lede V, Schulze A, Thor D, Brüser A, Schöneberg T. P2Y Receptors in Immune Response and Inflammation. Adv Immunol 2017; 136:85-121. [PMID: 28950952 DOI: 10.1016/bs.ai.2017.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) are expressed in virtually all cells with implications in very diverse biological functions, including the well-established platelet aggregation (P2Y12), but also immune regulation and inflammation. The classical P2Y receptors bind nucleotides and are encoded by eight genes with limited sequence homology, while phylogenetically related receptors (e.g., P2Y12-like) recognize lipids and peptides, but also nucleotide derivatives. Growing lines of evidence suggest an important function of P2Y receptors in immune cell differentiation and maturation, migration, and cell apoptosis. Here, we give a perspective on the P2Y receptors' molecular structure and physiological importance in immune cells, as well as the related diseases and P2Y-targeting therapies. Extensive research is being undertaken to find modulators of P2Y receptors and uncover their physiological roles. We anticipate the medical applications of P2Y modulators and their immune relevance.
Collapse
Affiliation(s)
- Diana Le Duc
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Vera Lede
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Annelie Schulze
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Antje Brüser
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
29
|
Agier J, Różalska S, Wódz K, Brzezińska-Błaszczyk E. Leukotriene receptor expression in mast cells is affected by their agonists. Cell Immunol 2017; 317:37-47. [PMID: 28477840 DOI: 10.1016/j.cellimm.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/14/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
The effects of LTs are mediated by GPCRs: cysLTs interact with CYSLTR1, CYSLTR2, or GPR17, and LTB4 acts via BLT1R or BLT2R. Data relating to the presence of these receptors in mature tissue mast cells are not entirely known. By confocal microscopy with image analyses and flow cytometry, we established that native rat mast cells isolated from peritoneal cavity constitutively express all studied receptors. Moreover, we clearly documented that LTs by themselves can influence their own receptor expression. Low concentrations of LTs induce translocation of LT receptors from cell interior to plasma membrane, which can lead to increased mast cell responsiveness to LT stimulation. High concentrations of LTs cause internalization and, in consequence, reduction in the number of receptors on the cell surface, and it may result in desensitization of mast cells to subsequent LT stimulation. These observations may imply a physiological feedback mechanism regulating mast cell sensitivity to LT activation within tissues.
Collapse
Affiliation(s)
- Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Karolina Wódz
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
30
|
Pérez-Sen R, Gómez-Villafuertes R, Ortega F, Gualix J, Delicado EG, Miras-Portugal MT. An Update on P2Y 13 Receptor Signalling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:139-168. [PMID: 28815513 DOI: 10.1007/5584_2017_91] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y13 is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y12 and P2Y14. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y12 receptors but with unique features and roles. The P2RY12-14 genes all reside on human chromosome 3 at 3q25.1 and their strong sequence homology supports their evolutionary origin through gene duplication. Polymorphisms of P2Y13 receptors have been reported in different human populations, yet their consequences remain unknown. The P2Y13 receptor is versatile in its signalling, extending beyond the canonical signalling of a Gi-coupled receptor. Not only can it couple to different G proteins (Gs/Gq) but the P2Y13 receptor can also trigger several intracellular pathways related to the activation of MAPKs (mitogen-activated protein kinases) and the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 axis. Moreover, the availability of P2Y13 receptor knockout mice has highlighted the specific functions in which it is involved, mainly in the regulation of cholesterol and glucose metabolism, bone homeostasis and aspects of central nervous system function like pain transmission and neuroprotection. This review summarizes our current understanding of this elusive receptor, not only at the pharmacological and molecular level but also, in terms of its signalling properties and specific functions, helping to clarify the involvement of P2Y13 receptors in pathological situations.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| |
Collapse
|