1
|
Zhang J, Xue Y, Zhang L, Chen J, Ma D, Zhang Y, Han Y. A Targeted Core-Shell ZIF-8/Au@Fe 3O 4 Platform with Multiple Antibacterial Pathways for Infected Skin Wound Regeneration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20901-20918. [PMID: 40132060 DOI: 10.1021/acsami.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Bacterial infections seriously retard skin wound healing. To enhance the antibacterial efficiency and subsequent skin regeneration, a core-shell structured therapeutic platform, named FZAM, was designed with multiple antimicrobial pathways. FZAM consists of nanosized Fe3O4 as the core and ZIF-8 loaded with Au nanoparticles (NPs) and maltodextrin as the shell. Fe3O4 and Au NPs form a heterojunction that generates hyperthermia and abundant reactive oxide species (ROS) under near-infrared (NIR) irradiation. This heterojunction also exhibits outstanding peroxidase-like activity. When bacteria invade, maltodextrin plays a targeting effect to increase the interaction between FZAM and bacteria, and with the synergistic action of NIR-induced hyperthermia and ROS as well as Zn2+ from ZIF-8, FZAM kills more than 99% of bacteria at 200 μg mL-1. Fortunately, FZAM is cytocompatible and even promotes the biofunctions of fibroblasts and endothelial cells. In infected skin wound models, FZAM sterilizes bacteria with NIR irradiation and subsequently reduces the inflammatory response and accelerates skin regeneration. This work provides a core-shell structured therapy platform for treating infection with the assistance of NIR irradiation and helping skin wound healing.
Collapse
Affiliation(s)
- Jing Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Xue
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lan Zhang
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Chen
- Department of Osteology, Xi'an People's Hospital (Xi'an No. 4 Hospital), Xi'an 710100, China
| | - Dayan Ma
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingang Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Takemiya K, Seo W, Voll RJ, Zhao S, Joseph G, Wang S, Zeng F, Nye JA, Murthy N, Taylor WR, Goodman MM. Synthesis, radiolabeling, and biological evaluation of methyl 6-deoxy-6-[ 18F]fluoro-4-thio-α-d-maltotrioside as a positron emission tomography bacterial imaging agent. RSC Adv 2025; 15:8809-8829. [PMID: 40124918 PMCID: PMC11927393 DOI: 10.1039/d5ra00693g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
We developed fluorine-18 ([18F]) labeled methyl 6-deoxy-6-fluoro-4-thio-α-d-maltotrioside ([18F]MFTMT) for bacterial imaging and evaluated its stability and efficacy in vitro and in vivo. We found that Staphylococcus aureus (S. aureus) internalized [18F]MFTMT whereas Escherichia coli (E. coli) and CHO-K1 cells did not, in in vitro. Positron emission tomography imaging with [18F]MFTMT revealed that radioactivity accumulated not only in the S. aureus-infected group but also in the E. coli-infected and non-infectious inflammation groups. Further studies revealed that rat serum digested [18F]MFTMT into [18F]-methyl 6-deoxy-6-fluoro-4-thio-α-d-maltoside ([18F]MFTM), while [18F]MFTMT was stable in human serum for 210 min. [18F]MFTM was identified as the only radioactive metabolite in vivo. Similar to [18F]MFTMT, [18F]MFTM was internalized only by S. aureus. [18F]MFTM was identified as the only radioactive metabolite in vivo. We found that the sodium-glucose co-transporter 1 (SGLT1) is expressed in inflammatory tissue, and SGLT1 overexpressing cells showed increased retention of [18F]MFTMT and [18F]MFTM in vitro. Our study showed that the thio-glycosyl bond is stable against enzymatic digestion, and maltotetraose or a longer maltodextrin backbone is desirable for bacteria-specific imaging to avoid nonspecific uptake by SGLT1.
Collapse
Affiliation(s)
- Kiyoko Takemiya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Wonewoo Seo
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Ronald J Voll
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Sheng Zhao
- Department of Bioengineering, University of California at Berkeley Stanley Hall 306 Berkeley California 94720 USA
| | - Giji Joseph
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Shelly Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Fanxing Zeng
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
- Department of Radiology and Radiological Science, Medical University of South Carolina 261 Calhoun Street Charleston South Carolina 29425 USA
| | - Niren Murthy
- Department of Bioengineering, University of California at Berkeley Stanley Hall 306 Berkeley California 94720 USA
| | - W Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine 1750 Haygood Dr NE Atlanta Georgia 30322 USA
- Joseph Maxwell Cleland Atlanta VA Medical Center 1670 Clairmont Road Decatur Georgia 30033 USA
- Wallace H. Coulter Department of Biomedical Engineering, School of Medicine, Emory University 1750 Haygood Dr NE Atlanta Georgia 30322 USA
| | - Mark M Goodman
- Department of Radiology and Imaging Sciences, School of Medicine, Emory University 1841 Clifton Road NE Atlanta Georgia 30322 USA
- Center for Systems Imaging, Emory University 1364 Clifton Rd NE Atlanta Georgia 30022 USA
| |
Collapse
|
3
|
Wan J, Yin C, Chen X, Wu K, Zhang C, Zhou Y, Feng Y, Chang J, Wang T. Biorecognition-Based Nanodiagnostics: Maltotriose-Functionalized Magnetic Nanoparticles for Targeted Magnetic Resonance Imaging of Bacterial Infections. Bioengineering (Basel) 2025; 12:296. [PMID: 40150762 PMCID: PMC11939673 DOI: 10.3390/bioengineering12030296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Bacterial infections remain a global healthcare challenge, requiring precise diagnostic modalities to guide therapeutic interventions. Current molecular imaging agents predominantly detect nonspecific hemodynamic alterations and lack pathogen-specific targeting capabilities for magnetic resonance imaging (MRI). Leveraging the selective bacterial uptake of maltotriose via the maltodextrin transport pathway, we engineered maltotriose-functionalized magnetic nanoparticles (Malt-MNPs) as a novel MRI contrast agent. Basic physicochemical characterization confirmed the nanosystem's colloidal stability, biocompatibility, and superparamagnetism (saturation magnetization > 50 emu/g). In a rat bacterial infection model, intravenously administered Malt-MNPs selectively accumulated at infection sites, inducing a >50% MRI signal change within 24 h while exhibiting minimal off-target retention in sterile inflammatory lesions (<10% signal change). This specificity enabled clear MRI-based differentiation between bacterial infections and noninfectious inflammation. These findings provide a promising strategy for clinical translation in infection imaging and treatment.
Collapse
Affiliation(s)
- Junshan Wan
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (J.W.); (C.Y.); (X.C.); (C.Z.); (Y.Z.); (Y.F.)
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Chuqiang Yin
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (J.W.); (C.Y.); (X.C.); (C.Z.); (Y.Z.); (Y.F.)
| | - Xiaotong Chen
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (J.W.); (C.Y.); (X.C.); (C.Z.); (Y.Z.); (Y.F.)
| | - Keying Wu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Chonghui Zhang
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (J.W.); (C.Y.); (X.C.); (C.Z.); (Y.Z.); (Y.F.)
| | - Yu Zhou
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (J.W.); (C.Y.); (X.C.); (C.Z.); (Y.Z.); (Y.F.)
- Department of Health and Life Science, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Yugong Feng
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (J.W.); (C.Y.); (X.C.); (C.Z.); (Y.Z.); (Y.F.)
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266003, China
| | - Ting Wang
- Department of Clinical Medicine, Qingdao Medical College, Qingdao University, Qingdao 266071, China; (J.W.); (C.Y.); (X.C.); (C.Z.); (Y.Z.); (Y.F.)
| |
Collapse
|
4
|
Siebold K, Chikunova E, Lorz N, Jordan C, Gossert AD, Gilmour R. Fluoro-Fucosylation Enables the Interrogation of the Le a-LecB Interaction by BioNMR Spectroscopy. Angew Chem Int Ed Engl 2025; 64:e202423782. [PMID: 39902623 DOI: 10.1002/anie.202423782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Fucosylation patterns in cell-surface glycans are essential mediators of recognition and signalling. Aberrations in these signatures serve as vital diagnostic markers of disease progression, and so understanding fucose-protein interactions at the molecular level is crucial. Molecular editing of l-fucose (Fuc) at C2 with fluorine provides a platform to reconcile the ubiquity of fucosylation with the paucity of strategies to interrogate site-specific interactions. Through judicious introduction of a pseudo-equatorial fluorine [C(sp3)-F] adjacent to the anomeric position, β-selective fucosylation can be achieved with a range of diverse acceptors (>50 : 1): the selectivity of this process can be inverted through changes in the donor scaffold. Reaction development was driven by the desire to construct a fluorinated analogue of Lewis antigen a (F-Lea), in which fluorine replaces a key OH group at C2. Lea is a ligand for Lectin B (LecB) in the pathogen Pseudomonas aeruginosa and thus delineating the importance of key interactions in this complex has ramifications for drug discovery. Independent syntheses of Lea and F-Lea, and systematic bioNMR analyses with both glycans has unequivocally established the essential role of O2 of fucose in the Lea-LecB complex.
Collapse
Affiliation(s)
- Kathrin Siebold
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Elena Chikunova
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Lorz
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Christina Jordan
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Alvar D Gossert
- Department of Biology, ETH Zürich, Hönggerbergring 64, 8093, Zürich, Switzerland
| | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
5
|
Landau F, Hermann S, Schelhaas S, Schäfers M, Niemann S, Faust A. 18F-labelled gentiobiose as potential PET-radiotracer for specific bacterial imaging: precursor synthesis, radiolabelling and in vitro evaluation. Nuklearmedizin 2024; 63:300-305. [PMID: 39084346 DOI: 10.1055/a-2365-8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
AIM Bacterial infections are a clinical challenge, requiring fast and specific diagnosis to ensure effective treatment. Therefore, this project is dedicated to development of positron emission tomography (PET) radiotracers specifically targeting bacteria. Unlike previously developed bacteria-specific radiotracers, which are successful in detecting Gram-negative bacteria, tracers capable of imaging Gram-positive infections are still lacking. METHODS The disaccharide gentiobiose as abundant part of the cell wall of Gram-positive bacteria could fill this gap. Herein, the synthesis and evaluation of 2'-deoxy-2'-[18F]fluorogentiobiose ([18F]FLA280) is reported. The precursor for radiolabelling was obtained from a convergent synthesis under application of a benzylidene/benzyl group protecting strategy. RESULTS The first catalytic hydrogenation in 18F-radiochemistry is reported as proof of concept. The deprotection was carried out without any side product formation, giving the final radiotracer [18F]FLA280 in good radiochemical yield and excellent radiochemical purity. [18F]FLA280 was proven to be stable in murine and human blood serum for 120 minutes and was subjected to in vitro bacterial uptake studies towards S. aureus and E. coli resulting in a low bacterial uptake. CONCLUSION The observed bacterial uptake indicates that [18F]FLA280 may be not a promising tracer candidate for in vivo translation and alternative candidates particularly for Gram-positive bacteria are required. However, further development on the concept of labelled carbohydrates and cell wall building blocks might be promising.
Collapse
Affiliation(s)
- Felicitas Landau
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Zlitni A, Yang S, Achterberg FB, Gowrishankar G, Steinberg I, Azevedo C, Gambhir SS, Valdez TA. Bridging the Translation of ICG-1-Maltotriose: A Multimodal Sensor for Monitoring and Detecting Bacterial Infections. ACS Sens 2024; 9:2806-2814. [PMID: 38810251 DOI: 10.1021/acssensors.3c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Bacterial infections lack reliable, specific, and quick detection methods, which incur substantial costs to patients and caretakers. Our team conjugated the FDA-approved fluorescent dye indocyanine green (ICG) with a maltotriose sugar, resulting in two highly specific imaging agents (ICG-DBCO-1-Maltotriose and ICG-Amide-1-Maltotriose) for detecting bacterial infections. We then evaluated the two derivatives using fluorescence imaging (FLI), bioluminescence imaging (BLI), and photoacoustic imaging (PAI) in bacterial infection murine models. Our findings indicate that both imaging agents can correlate with and reliably detect the infection site using FLI and PAI for both Gram-negative and Gram-positive strains, with various bacterial loads. Furthermore, the differences in pharmacokinetic (PK) properties between the two agents allow for one to be used for immediate imaging (2-4 h postinjection), while the other is more effective for longitudinal studies (18-40 h postinjection).
Collapse
Affiliation(s)
- Aimen Zlitni
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Stella Yang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Friso B Achterberg
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Gayatri Gowrishankar
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Idan Steinberg
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Carmen Azevedo
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California 94304, United States
| |
Collapse
|
7
|
Mahanti M, Bhaskar Pal K, Wallentin CJ, Galan MC. Hypervalent Iodine Compounds in Carbohydrate Chemistry: Glycosylation, Functionalization and Oxidation. Chemistry 2024; 30:e202400087. [PMID: 38349955 DOI: 10.1002/chem.202400087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/15/2024]
Abstract
This mini review article provides an overview on the use of hypervalent iodine compounds (HICs) in carbohydrate synthesis, focusing on their chemistry and recent applications. HICs are similar to transition metals in their reactivity but have the added benefit of being environmentally benign, and are therefore commonly used as selective oxidants and eco-friendly reagents in organic synthesis. Herein, we summarize various synthetic uses of hypervalent iodine reagents in reactions such as glycosylation, oxidations, functionalization, and C-C bond-forming reactions. The goal of this review is to illustrate the advantages and versatility of using HICs as an environmentally sustainable alternative to heavy metals in carbohydrate chemistry.
Collapse
Affiliation(s)
- Mukul Mahanti
- School of Chemistry, University of Bristol Cantock's Close, BS81TS, Bristol, United Kingdom
| | - Kumar Bhaskar Pal
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90, Gothenburg, Sweden
| | - Carl Johan Wallentin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 7B, 413 90, Gothenburg, Sweden
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close, BS81TS, Bristol, United Kingdom
| |
Collapse
|
8
|
Margeta R, Schelhaas S, Hermann S, Schäfers M, Niemann S, Faust A. A novel radiolabelled salmochelin derivative for bacteria-specific PET imaging: synthesis, radiolabelling and evaluation. Chem Commun (Camb) 2024; 60:3507-3510. [PMID: 38385843 DOI: 10.1039/d4cc00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
For specific imaging of bacterial infections we aimed at targeting the exclusive bacterial iron transport system via siderophore-based radiotracers. De novo synthesis and radiolabeling yielded the salmochelin-based PET radiotracer [68Ga]Ga-RMA693, which showed a favourable biodistribution and a bacteria-specific uptake in an animal model of Escherichia coli infection.
Collapse
Affiliation(s)
- Renato Margeta
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), University Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
9
|
Roll W, Faust A, Hermann S, Schäfers M. Infection Imaging: Focus on New Tracers? J Nucl Med 2023; 64:59S-67S. [PMID: 37918846 DOI: 10.2967/jnumed.122.264869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/31/2023] [Indexed: 11/04/2023] Open
Abstract
Infections account for relevant morbidity and mortality, especially if the cardiovascular system is affected. Clinical manifestations are often unspecific, resulting in a challenging diagnostic work-up. The use of molecular imaging methods, namely [18F]FDG PET and leukocyte scintigraphy, is increasingly recognized in recently published international guidelines. However, these 2 established methods focus on the host's immune response to the pathogen and are therefore virtually unable to differentiate infection from inflammation. Targeting the microorganism responsible for the infection directly with novel imaging agents is a promising strategy to overcome these limitations. In this review, we discuss clinically approved [18F]FDG PET with its advantages and limitations in cardiovascular infections, followed by new PET-based approaches for the detection of cardiovascular infections by bacteria-specific molecular imaging methods. A multitude of different targeting options has already been preclinically evaluated, but most still lack clinical translation. We give an overview not only on promising tracer candidates for noninvasive molecular imaging of infections but also on issues hampering clinical translation.
Collapse
Affiliation(s)
- Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; and
| | - Andreas Faust
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; and
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; and
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Kleynhans J, Sathekge MM, Ebenhan T. Preclinical Research Highlighting Contemporary Targeting Mechanisms of Radiolabelled Compounds for PET Based Infection Imaging. Semin Nucl Med 2023; 53:630-643. [PMID: 37012169 DOI: 10.1053/j.semnuclmed.2023.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/04/2023]
Abstract
It is important to constantly monitor developments in the preclinical imaging arena of infection. Firstly, novel radiopharmaceuticals with the correct characteristics must be identified to funnel into the clinic. Secondly, it must be evaluated if enough innovative research is being done and adequate resources are geared towards the development of radiopharmaceuticals that could feed into the Nuclear Medicine Clinic in the near future. It is proposed that the ideal infection imaging agent will involve PET combined with CT but more ideally MRI. The radiopharmaceuticals currently presented in preclinical literature have a wide selection of vectors and targets. Ionic formulations of PET-radionuclides such 64CuCl2 and 68GaCl2 are evaluated for bacterial infection imaging. Many small molecule based radiopharmaceuticals are being investigated with the most prominent targets being cell wall synthesis, maltodextrin transport (such as [18F]F-maltotriose), siderophores (bacterial and fungal infections), the folate synthesis pathway (such as [18F]F-PABA) and protein synthesis (radiolabelled puromycin). Mycobacterial specific antibiotics, antifungals and antiviral agents are also under investigation as infection imaging agents. Peptide based radiopharmaceuticals are developed for bacterial, fungal and viral infections. The radiopharmaceutical development could even react quickly enough on a pandemic to develop a SARS-CoV-2 imaging agent in a timely fashion ([64Cu]Cu-NOTA-EK1). New immuno-PET agents for the imaging of viruses have recently been published, specifically for HIV persistence but also for SARS-CoV2. A very promising antifungal immuno-PET agent (hJ5F) is also considered. Future technologies could include the application of aptamers and bacteriophages and even going as far as the design of theranostic infection. Another possibility would be the application of nanobodies for immuno-PET applications. Standardization and optimization of the preclinical evaluation of radiopharmaceuticals could enhance clinical translation and reduce time spent in pursuing less than optimal candidates.
Collapse
Affiliation(s)
- Janke Kleynhans
- Department of Pharmaceutical and Pharmacological sciences, Radiopharmaceutical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Mike Machaba Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa; Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | - Thomas Ebenhan
- Preclinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pretoria, South Africa; Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
11
|
Sorlin A, López-Álvarez M, Rabbitt SJ, Alanizi AA, Shuere R, Bobba KN, Blecha J, Sakhamuri S, Evans MJ, Bayles KW, Flavell RR, Rosenberg OS, Sriram R, Desmet T, Nidetzky B, Engel J, Ohliger MA, Fraser JS, Wilson DM. Chemoenzymatic Syntheses of Fluorine-18-Labeled Disaccharides from [ 18F] FDG Yield Potent Sensors of Living Bacteria In Vivo. J Am Chem Soc 2023; 145:17632-17642. [PMID: 37535945 PMCID: PMC10436271 DOI: 10.1021/jacs.3c03338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 08/05/2023]
Abstract
Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[18F]-fluoro-d-glucose ([18F]FDG), the most common tracer used in clinical imaging, to form [18F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [18F]FDG was reacted with β-d-glucose-1-phosphate in the presence of maltose phosphorylase, the α-1,4- and α-1,3-linked products 2-deoxy-[18F]-fluoro-maltose ([18F]FDM) and 2-deoxy-2-[18F]-fluoro-sakebiose ([18F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (β-1,3), and cellobiose (β-1,4) phosphorylases to synthesize 2-deoxy-2-[18F]fluoro-trehalose ([18F]FDT), 2-deoxy-2-[18F]fluoro-laminaribiose ([18F]FDL), and 2-deoxy-2-[18F]fluoro-cellobiose ([18F]FDC). We subsequently tested [18F]FDM and [18F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. Both [18F]FDM and [18F]FSK were stable in human serum with high accumulation in preclinical infection models. The synthetic ease and high sensitivity of [18F]FDM and [18F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of these tracers to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [18F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.
Collapse
Affiliation(s)
- Alexandre
M. Sorlin
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Marina López-Álvarez
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sarah J. Rabbitt
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Aryn A. Alanizi
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Rebecca Shuere
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Joseph Blecha
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Sasank Sakhamuri
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Michael J. Evans
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Kenneth W. Bayles
- Department
of Pathology and Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Robert R. Flavell
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| | - Oren S. Rosenberg
- Department
of Medicine University of California, San
Francisco, San Francisco, California 94158, United States
| | - Renuka Sriram
- Department
of Biotechnology, Ghent University, Gent B-9000, Belgium
| | - Tom Desmet
- Department
of Biotechnology, Ghent University, Gent B-9000, Belgium
| | - Bernd Nidetzky
- Institute
of Biotechnology and Biochemical Engineering, Graz University of Technology, Graz 8010, Austria
| | - Joanne Engel
- Department
of Biotechnology, Ghent University, Gent B-9000, Belgium
| | - Michael A. Ohliger
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
- Department
of Radiology Zuckerberg San Francisco General
Hospital, San Francisco, California 94110, United States
| | - James S. Fraser
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - David M. Wilson
- Department
of Radiology and Biomedical Imaging, University
of California, San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Lv K, Li G, Pan X, Liu L, Chen Z, Zhang Y, Xu H, Ma D. Bacteria-Targeted Combined with Photothermal/NO Nanoparticles for the Treatment and Diagnosis of MRSA Infection In Vivo. Adv Healthc Mater 2023; 12:e2300247. [PMID: 37002944 DOI: 10.1002/adhm.202300247] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Indexed: 04/03/2023]
Abstract
Currently, undeveloped diagnosis and delayed treatment of bacteria-infected sites in vivo not only expand the risk of tissue infection but are also a major clinical cause of multiple drug-resistant bacterial infections. Herein, an efficient nanoplatform for near-infrared (NIR)-light-controlled release and bacteria-targeted delivery of nitric oxide (NO) combined with photothermal therapy (PTT) is presented. Using maltotriose-decorated mesoporous polydopamine (MPDA-Mal) and BNN6, a smart antibacterial (B@MPDA-Mal) is developed to combine bacterial targeting, gas-controlled release, and PTT. Utilizing bacteria's unique maltodextrin transport system, B@MPDA-Mal can accurately distinguish bacterial infection from sterile inflammation and target the bacteria-infected sites for efficient drug enrichment. Moreover, NIR-light causes MPDA to generate heat, which not only effectively induces BNN6 to produce NO, but also raises the temperature to harm the bacteria further. NO/photothermal combination therapy effectively eliminates biofilm and drug-resistant bacteria. The myositis model of methicillin-resistant Staphylococcus aureus infection is established and indicates that B@MPDA-Mal can successfully eradicate inflammation and abscesses in mice. Meanwhile, magnetic resonance imaging technology is used to monitor the treatment procedure and healing outcomes. Given the aforementioned advantages, the smart antibacterial nanoplatform B@MPDA-Mal can be used as a potential therapeutic tool in the biomedical field against drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Kai Lv
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Guowei Li
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiangjun Pan
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510630, China
| | - Luxuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Ziheng Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- Department of Ultrasound Medicine, Zhucheng People's Hospital, Zhucheng, 262200, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
13
|
Campbell E, Jordan C, Gilmour R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem Soc Rev 2023; 52:3599-3626. [PMID: 37171037 PMCID: PMC10243284 DOI: 10.1039/d3cs00037k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/13/2023]
Abstract
Carbohydrate diversity is foundational in the molecular literacy that regulates cellular function and communication. Consequently, delineating and leveraging this structure-function interplay continues to be a core research objective in the development of candidates for biomedical diagnostics. A totemic example is the ubiquity of 2-deoxy-2-[18F]-fluoro-D-glucose (2-[18F]-FDG) as a radiotracer for positron emission tomography (PET), in which metabolic trapping is harnessed. Building on this clinical success, more complex sugars with unique selectivities are gaining momentum in molecular recognition and personalised medicine: this reflects the opportunities that carbohydrate-specific targeting affords in a broader sense. In this Tutorial Review, key milestones in the development of 2-[18F]-FDG and related glycan-based radiotracers for PET are described, with their diagnostic functions, to assist in navigating this rapidly expanding field of interdisciplinary research.
Collapse
Affiliation(s)
- Emma Campbell
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Christina Jordan
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany.
- Cells in Motion Interfaculty Centre, Westfälische Wilhelms-Universität Münster, Röntgenstraße 16, 48149, Münster, Germany
| |
Collapse
|
14
|
Sorlin AM, López-Álvarez M, Rabbitt SJ, Alanizi AA, Shuere R, Bobba KN, Blecha J, Sakhamuri S, Evans MJ, Bayles KW, Flavell RR, Rosenberg OS, Sriram R, Desmet T, Nidetzky B, Engel J, Ohliger MA, Fraser JS, Wilson DM. Chemoenzymatic syntheses of fluorine-18-labeled disaccharides from [ 18 F]FDG yield potent sensors of living bacteria in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541529. [PMID: 37293043 PMCID: PMC10245702 DOI: 10.1101/2023.05.20.541529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemoenzymatic techniques have been applied extensively to pharmaceutical development, most effectively when routine synthetic methods fail. The regioselective and stereoselective construction of structurally complex glycans is an elegant application of this approach, that is seldom applied to positron emission tomography (PET) tracers. We sought a method to dimerize 2-deoxy-[ 18 F]-fluoro-D-glucose ([ 18 F]FDG), the most common tracer used in clinical imaging, to form [ 18 F]-labeled disaccharides for detecting microorganisms in vivo based on their bacteria-specific glycan incorporation. When [ 18 F]FDG was reacted with β-D-glucose-1-phosphate in the presence of maltose phosphorylase, both the α-1,4 and α-1,3-linked products 2-deoxy-[ 18 F]-fluoro-maltose ([ 18 F]FDM) and 2-deoxy-2-[ 18 F]-fluoro-sakebiose ([ 18 F]FSK) were obtained. This method was further extended with the use of trehalose (α,α-1,1), laminaribiose (β-1,3), and cellobiose (β-1,4) phosphorylases to synthesize 2-deoxy-2-[ 18 F]fluoro-trehalose ([ 18 F]FDT), 2-deoxy-2-[ 18 F]fluoro-laminaribiose ([ 18 F]FDL), and 2-deoxy-2-[ 18 F]fluoro-cellobiose ([ 18 F]FDC). We subsequently tested [ 18 F]FDM and [ 18 F]FSK in vitro, showing accumulation by several clinically relevant pathogens including Staphylococcus aureus and Acinetobacter baumannii, and demonstrated their specific uptake in vivo. The lead sakebiose-derived tracer [ 18 F]FSK was stable in human serum and showed high uptake in preclinical models of myositis and vertebral discitis-osteomyelitis. Both the synthetic ease, and high sensitivity of [ 18 F]FSK to S. aureus including methicillin-resistant (MRSA) strains strongly justify clinical translation of this tracer to infected patients. Furthermore, this work suggests that chemoenzymatic radiosyntheses of complex [ 18 F]FDG-derived oligomers will afford a wide array of PET radiotracers for infectious and oncologic applications.
Collapse
|
15
|
Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Mater Today Bio 2023; 19:100559. [PMID: 36798535 PMCID: PMC9926023 DOI: 10.1016/j.mtbio.2023.100559] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
With the widespread prevalence of drug-resistant pathogens, traditional antibiotics have limited effectiveness and do not yield the desired outcomes. Recently, alternative antibacterial therapies based on ultrasound (US) have been explored to overcome the crisis of bacterial pathogens. Antimicrobial sonodynamic therapy (aSDT) offers an excellent solution that relies on US irradiation to produce reactive oxygen species (ROS) and achieve antibiotic-free mediated antimicrobial effects. In addition, aSDT possesses the advantage of superior tissue penetrability of US compared to light irradiation, demonstrating great feasibility in treating deep infections. Although existing conventional sonosensitizers can produce ROS for antimicrobial activity, some limitations, such as low penetration rate, nonspecific distribution and poor ROS production under hypoxic conditions, result in suboptimal sterilization in aSDT. Recently, emerging nanosonosensitizers have enormous advantages as high-performance agents in aSDT, which overcome the deficiencies of conventional sonosensitizers as described above. Thus, nanosonosensitizer-mediated aSDT has a bright future for the management of bacterial infections. This review classifies the current available nanosonosensitizers and provides an overview of the mechanisms, biomedical applications, recent advances and perspectives of aSDT.
Collapse
|
16
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Huang H, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z, Guo B, Xu J. Advances in image-guided drug delivery for antibacterial therapy. Adv Drug Deliv Rev 2023; 192:114634. [PMID: 36503884 DOI: 10.1016/j.addr.2022.114634] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
The emergence of antibiotic-resistant bacterial strains is seriously endangering the global healthcare system. There is an urgent need for combining imaging with therapies to realize the real-time monitoring of pathological condition and treatment progress. It also provides guidance on exploring new medicines and enhance treatment strategies to overcome the antibiotic resistance of existing conventional antibiotics. In this review, we provide a thorough overview of the most advanced image-guided approaches for bacterial diagnosis (e.g., computed tomography imaging, magnetic resonance imaging, photoacoustic imaging, ultrasound imaging, fluorescence imaging, positron emission tomography, single photon emission computed tomography imaging, and multiple imaging), and therapies (e.g., photothermal therapy, photodynamic therapy, chemodynamic therapy, sonodynamic therapy, immunotherapy, and multiple therapies). This review focuses on how to design and fabricate photo-responsive materials for improved image-guided bacterial theranostics applications. We present a potential application of different image-guided modalities for both bacterial diagnosis and therapies with representative examples. Finally, we highlighted the current challenges and future perspectives image-guided approaches for future clinical translation of nano-theranostics in bacterial infections therapies. We envision that this review will provide for future development in image-guided systems for bacterial theranostics applications.
Collapse
Affiliation(s)
- Haiyan Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yi Liu
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Xie
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box: 33, PC: 616, Oman
| | - Shubham Roy
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
18
|
Zhang Y, Hao M, Li L, Luo Q, Deng S, Yang Y, Liu Y, Fang W, Song E. Research progress of contrast agents for bacterial infection imaging in vivo. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D. Recent developments of sonodynamic therapy in antibacterial application. NANOSCALE 2022; 14:12999-13017. [PMID: 36052726 DOI: 10.1039/d2nr01847k] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid emergence of pathogenic bacteria poses a serious threat to global health. Notably, traditional antibiotic therapies suffer from the risk of strengthening bacterial drug resistance. Sonodynamic therapy (SDT) combining sonosensitizers and low-intensity ultrasound (US) has broadened the way towards treating drug-resistant bacteria. The allure of this therapy emerges from the capacity to focus the US energy on bacterial infection sites buried deep in tissues, locally activating the sonosensitizers to produce cytotoxic reactive oxygen species (ROS) with the ability to induce bacterial death. The past decade has witnessed the rapid development of antibacterial SDT owing to their excellent penetration, favorable biocompatibility and specific targeting ability. This review summarizes available sonosensitizers for antibacterial SDT, and digs into innovative biotechnologies to improve SDT efficiency, such as enhancing the targeting ability of sonosensitizers, image-guided assisted SDT, improvement of hypoxia and combination of SDT with other therapies. Finally, we conclude with the present challenges and provide insights into the future research of antibacterial SDT.
Collapse
Affiliation(s)
- Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
- State Key Laboratory of Ocean Engineering, Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China
| | - Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
20
|
Scott PJH. Unnatural amino acids offer new hope for accurate bacterial infection PET imaging in prosthetic joint infection. Eur J Nucl Med Mol Imaging 2022; 49:3610-3612. [PMID: 35652961 DOI: 10.1007/s00259-022-05857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
21
|
Woong Yoo S, Young Kwon S, Kang SR, Min JJ. Molecular imaging approaches to facilitate bacteria-mediated cancer therapy. Adv Drug Deliv Rev 2022; 187:114366. [PMID: 35654213 DOI: 10.1016/j.addr.2022.114366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022]
Abstract
Bacteria-mediated cancer therapy is a potential therapeutic strategy for cancer that has unique properties, including broad tumor-targeting ability, various administration routes, the flexibility of delivery, and facilitating the host's immune responses. The molecular imaging of bacteria-mediated cancer therapy allows the therapeutically injected bacteria to be visualized and confirms the accurate delivery of the therapeutic bacteria to the target lesion. Several hurdles make bacteria-specific imaging challenging, including the need to discriminate therapeutic bacterial infection from inflammation or other pathologic lesions. To realize the full potential of bacteria-specific imaging, it is necessary to develop bacteria-specific targets that can be associated with an imaging assay. This review describes the current status of bacterial imaging techniques together with the advantages and disadvantages of several imaging modalities. Also, we describe potential targets for bacterial-specific imaging and related applications.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Seong Young Kwon
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea
| | - Sae-Ryung Kang
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Hwasun, Jeonnam, Korea; Department of Nuclear Medicine, Chonnam National University Medical School, Hwasun, Jeonnam, Korea.
| |
Collapse
|
22
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
23
|
Peukert C, Langer LNB, Wegener SM, Tutov A, Bankstahl JP, Karge B, Bengel FM, Ross TL, Brönstrup M. Optimization of Artificial Siderophores as 68Ga-Complexed PET Tracers for In Vivo Imaging of Bacterial Infections. J Med Chem 2021; 64:12359-12378. [PMID: 34370949 DOI: 10.1021/acs.jmedchem.1c01054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The diagnosis of bacterial infections at deep body sites benefits from noninvasive imaging of molecular probes that can be traced by positron emission tomography (PET). We specifically labeled bacteria by targeting their iron transport system with artificial siderophores. The cyclen-based probes contain different binding sites for iron and the PET nuclide gallium-68. A panel of 11 siderophores with different iron coordination numbers and geometries was synthesized in up to 8 steps, and candidates with the best siderophore potential were selected by a growth recovery assay. The probes [68Ga]7 and [68Ga]15 were found to be suitable for PET imaging based on their radiochemical yield, radiochemical purity, and complex stability in vitro and in vivo. Both showed significant uptake in mice infected with Escherichia coli and were able to discern infection from lipopolysaccharide-triggered, sterile inflammation. The study qualifies cyclen-based artificial siderophores as readily accessible scaffolds for the in vivo imaging of bacteria.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Laura N B Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sophie M Wegener
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Tutov
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Center for Biomolecular Drug Research (BMWZ), Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
24
|
Maisuls I, Singh J, Salto IP, Steiner ST, Kirse TM, Niemann S, Strassert CA, Faust A. Conjugated Pt(II) Complexes as Luminescence-Switch-On Reporters Addressing the Microenvironment of Bacterial Biofilms. Inorg Chem 2021; 60:11058-11069. [PMID: 34255500 DOI: 10.1021/acs.inorgchem.1c00860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, the synthesis, structural and photophysical characterization of six phosphorescent H2O-soluble Pt(II) complexes are reported while addressing their emission maxima, photoluminescence quantum yields (ΦL), lifetimes (τ), aggregation tendency, and microenvironment sensitivity as a function of the substitution pattern on the main tridentate luminophore. Different ancillary ligands, namely, a trisulfonated phosphane and maltohexaose-conjugated pyridines (with or without amide bridges), were introduced and evaluated for the realization of switch-on-photoluminescent labels reporting on the microenvironment sensed in biofilms of Gram+ and Gram- models, namely, Staphylococcus aureus and Escherichia coli. With the aid of confocal luminescence micro(spectro)scopy, we observed that selected complexes specifically interact with the biofilms while leaving planktonic cells unlabeled. By using photoluminescence lifetime imaging microscopy, excited-state lifetimes within S. aureus biofilms were measured. The photoluminescence intensities were drastically boosted, and the excited state lifetimes were significantly prolonged upon binding to the viscous biofilm matrix, mainly due to the suppression of radiationless deactivation pathways upon shielding from physical quenching processes, such as interactions with solvent molecules and 3O2. The best performances were attained for non-aggregating complexes with maltohexaose targeting units and without amide bridges. Notably, in the absence of the maltodextrin, a hydrophobic adamantyl moiety suffices to attain a sizeable labeling capacity. Moreover, photoluminescence studies showed that selected complexes can also effectively interact with E. coli biofilms, where the bacterial cells are able to partially uptake the maltodextrin-based agents. In summary, the herein introduced concepts enable the development of specific biofilm reporters providing spatial resolution as well as lifetime- and spectrum-based readouts. Considering that most theragnostic agents reported so far mainly address metabolically active bacteria at the surface of biofilms but without reaching cells deeply immersed in the matrix, a new platform with a clear structure-property correlation is provided for the early detection of such bacterial arrays.
Collapse
Affiliation(s)
- Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Jasveer Singh
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Ileana P Salto
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany
| | - Simon T Steiner
- European Institute for Molecular Imaging, University of Münster, Münster, Waldeyerstr. 15, 48159 Münster, Germany
| | - Thomas M Kirse
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Silke Niemann
- Institute of Medical Microbiology, University Hospital Münster, Domagkstr. 10, 48149 Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CiMiC, SoN and CeNTech, Wesfälische Wilhelms-Universität Münster, Heisenbergstr. 11, 48149 Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, Münster, Waldeyerstr. 15, 48159 Münster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
25
|
Takemiya K, Røise JJ, He M, Taing C, Rodriguez AG, Murthy N, Goodman MM, Taylor WR. Maltohexaose-indocyanine green (MH-ICG) for near infrared imaging of endocarditis. PLoS One 2021; 16:e0247673. [PMID: 33647027 PMCID: PMC7920357 DOI: 10.1371/journal.pone.0247673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/11/2021] [Indexed: 11/19/2022] Open
Abstract
Infectious endocarditis is a life-threatening disease, and diagnostics are urgently needed to accurately diagnose this disease especially in the case of prosthetic valve endocarditis. We show here that maltohexaose conjugated to indocyanine green (MH-ICG) can detect Staphylococcus aureus (S. aureus) infection in a rat model of infective endocarditis. The affinity of MH-ICG to S. aureus was determined and had a Km and Vmax of 5.4 μM and 3.0 X 10−6 μmol/minutes/108 CFU, respectively. MH-ICG had no detectable toxicity to mammalian cells at concentrations as high as 100 μM. The in vivo efficiency of MH-ICG in rats was evaluated using a right heart endocarditis model, and the accumulation of MH-ICG in the bacterial vegetations was 2.5 ± 0.2 times higher than that in the control left ventricular wall. The biological half-life of MH-ICG in healthy rats was 14.0 ± 1.3 minutes, and approximately 50% of injected MH-ICG was excreted into the feces after 24 hours. These data demonstrate that MH-ICG was internalized by bacteria with high specificity and that MH-ICG specifically accumulated in bacterial vegetations in a rat model of endocarditis. These results demonstrate the potential efficacy of this agent in the detection of infective endocarditis.
Collapse
Affiliation(s)
- Kiyoko Takemiya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United states of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| | - Joachim J. Røise
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California at Berkeley, Berkeley, California, United States of America
| | - Maomao He
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
| | - Chung Taing
- Department of Chemistry, University of California at Berkeley, Berkeley, California, United States of America
| | - Alexander G. Rodriguez
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United states of America
| | - Niren Murthy
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, United States of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences, Emory Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia, United states of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| | - W. Robert Taylor
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United states of America
- Cardiology Division, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United states of America
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, Georgia, United states of America
- * E-mail: (KT); (NM); (MMG); (WRT)
| |
Collapse
|
26
|
Giron MC, Mazzi U. Molecular imaging of microbiota-gut-brain axis: searching for the right targeted probe for the right target and disease. Nucl Med Biol 2021; 92:72-77. [PMID: 33262001 DOI: 10.1016/j.nucmedbio.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022]
Abstract
The highly bidirectional dialogue between the gut and the brain is markedly stimulated and influenced by the microbiome through integrated neuroendocrine, neurological and immunological processes. Gut microbiota itself communicate with the host producing hormonal intermediates, metabolites, proteins, and toxins responsible for a variety of biochemical and functional inputs, thereby shaping host homeostasis. Indeed, a dysregulated microbiota-gut-brain axis might be the origin of many neuroimmune-mediated disorders, e.g. autism, multiple sclerosis, depression, Alzheimer's and Parkinson's disease, which appear months or even years prior to a diagnosis, corroborating the theory that the pathological process is spread from the gut to the brain. A much deeper comprehension of how commensal microbe can be manipulated to interfere with disease progression is crucial for developing new strategies to diagnose and treat diseases. In recent years, the potential of positron-emission-tomography (PET) in the field of bacteria detection has gained attention. The uptake of several PET tracers has been evaluated to investigate infection pathophysiology, e.g. sterile or pathogen-mediated infection, monitoring of progression, or as a surrogate endpoint in clinical trials. In this minireview, we briefly describe the role of microbiome-gut-brain axis in health and disease and we discuss the imaging modalities and agents that could be applied to study the dynamic interactions between microbiome, gut and brain. These are key aspects in understanding the biochemical lexicon underpinning the microbiome-host crosstalk that would enable the development of diagnostics and therapeutics by targeting the human microbiota.
Collapse
Affiliation(s)
- Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.
| | - Ulderico Mazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| |
Collapse
|
27
|
Axer A, Jumde RP, Adam S, Faust A, Schäfers M, Fobker M, Koehnke J, Hirsch AKH, Gilmour R. Enhancing glycan stability via site-selective fluorination: modulating substrate orientation by molecular design. Chem Sci 2020; 12:1286-1294. [PMID: 34163891 PMCID: PMC8179167 DOI: 10.1039/d0sc04297h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Single site OH → F substitution at the termini of maltotetraose leads to significantly improved hydrolytic stability towards α-amylase and α-glucosidase relative to the natural compound. To explore the effect of molecular editing, selectively modified oligosaccharides were prepared via a convergent α-selective strategy. Incubation experiments in purified α-amylase and α-glucosidase, and in human and murine blood serum, provide insight into the influence of fluorine on the hydrolytic stability of these clinically important scaffolds. Enhancements of ca. 1 order of magnitude result from these subtle single point mutations. Modification at the monosaccharide furthest from the probable enzymatic cleavage termini leads to the greatest improvement in stability. In the case of α-amylase, docking studies revealed that retentive C2-fluorination at the reducing end inverts the orientation in which the substrate is bound. A co-crystal structure of human α-amylase revealed maltose units bound at the active-site. In view of the evolving popularity of C(sp3)–F bioisosteres in medicinal chemistry, and the importance of maltodextrins in bacterial imaging, this discovery begins to reconcile the information-rich nature of carbohydrates with their intrinsic hydrolytic vulnerabilities. Single site OH → F substitution at the termini of maltotetraose leads to significantly improved hydrolytic stability towards α-amylase and α-glucosidase relative to the natural compound.![]()
Collapse
Affiliation(s)
- Alexander Axer
- Organisch Chemisches Institut, WWU Münster Corrensstraße 36 48149 Münster Germany
| | - Ravindra P Jumde
- Department of Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany
| | - Sebastian Adam
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Institute for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany
| | - Andreas Faust
- European Institute for Molecular Imaging Münster Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging Münster Germany.,Department of Nuclear Medicine, University Hospital (UKM) Münster Germany
| | - Manfred Fobker
- Center for Laboratory Medicine, WWU Münster Münster Germany
| | - Jesko Koehnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Institute for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany.,Department of Pharmacy, Saarland University 66123 Saarbrücken Germany
| | - Anna K H Hirsch
- Department of Drug Discovery and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) University Campus E8.1 66123 Saarbrücken Germany.,Department of Pharmacy, Saarland University 66123 Saarbrücken Germany
| | - Ryan Gilmour
- Organisch Chemisches Institut, WWU Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
28
|
Wang J, Pang X, Wang Z, Liu G. Sonoactivated Nanoantimicrobials: A Potent Armament in the Postantibiotic Era. ACS APPLIED BIO MATERIALS 2020; 3:7255-7264. [DOI: 10.1021/acsabm.0c01106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin Pang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
29
|
Bennai N, Chabrier A, Fatthalla MI, Tran C, Yen-Pon E, Belkadi M, Alami M, Grimaud L, Messaoudi S. Reversing Reactivity: Stereoselective Desulfurative 1,2- trans- O-Glycosylation of Anomeric Thiosugars with Carboxylic Acids under Copper or Cobalt Catalysis. J Org Chem 2020; 85:8893-8909. [PMID: 32524820 DOI: 10.1021/acs.joc.0c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have discovered a new mode of reactivity of 1-thiosugars in the presence of Cu(II) or Co(II) for a stereoselective O-glycosylation reaction. The process involves the use of a catalytic amount of Cu(acac)2 or Co(acac)2 and Ag2CO3 as an oxidant in α,α,α-trifluorotoluene. Moreover, this protocol turned out to have a broad scope, allowing the preparation of a wide range of complex substituted O-glycoside esters in good to excellent yields with an exclusive 1,2-trans-selectivity. The late-stage modification of pharmaceuticals by this method was also demonstrated. To obtain a closer insight into the reaction mechanism, cyclic voltammetry was performed.
Collapse
Affiliation(s)
- Nedjwa Bennai
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf, 31000 Bir El Djir, Algeria
| | - Amélie Chabrier
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Maha I Fatthalla
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Department of Chemistry, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo, Egypt
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Expédite Yen-Pon
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Mohamed Belkadi
- Université des sciences et de la technologie d'Oran-Mohamed-Boudiaf, 31000 Bir El Djir, Algeria
| | - Mouâd Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Laurence Grimaud
- Laboratoire des biomolécules (LBM), Sorbonne Université - Ecole Normale Supérieure - CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Samir Messaoudi
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
30
|
Zlitni A, Gowrishankar G, Steinberg I, Haywood T, Sam Gambhir S. Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections. Nat Commun 2020; 11:1250. [PMID: 32144257 PMCID: PMC7060353 DOI: 10.1038/s41467-020-14985-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
Currently, there are no non-invasive tools to accurately diagnose wound and surgical site infections before they become systemic or cause significant anatomical damage. Fluorescence and photoacoustic imaging are cost-effective imaging modalities that can be used to noninvasively diagnose bacterial infections when paired with a molecularly targeted infection imaging agent. Here, we develop a fluorescent derivative of maltotriose (Cy7-1-maltotriose), which is shown to be taken up in a variety of gram-positive and gram-negative bacterial strains in vitro. In vivo fluorescence and photoacoustic imaging studies highlight the ability of this probe to detect infection, assess infection burden, and visualize the effectiveness of antibiotic treatment in E. coli-induced myositis and a clinically relevant S. aureus wound infection murine model. In addition, we show that maltotriose is an ideal scaffold for infection imaging agents encompassing better pharmacokinetic properties and in vivo stability than other maltodextrins (e.g. maltohexose).
Collapse
Affiliation(s)
- Aimen Zlitni
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Gayatri Gowrishankar
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Idan Steinberg
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Tom Haywood
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, 94305, USA.
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, Department of Materials Science & Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Mota F, Ordonez AA, Firth G, Ruiz-Bedoya CA, Ma MT, Jain SK. Radiotracer Development for Bacterial Imaging. J Med Chem 2020; 63:1964-1977. [PMID: 32048838 DOI: 10.1021/acs.jmedchem.9b01623] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial infections remain a major threat to humanity and are a leading cause of death and disability. Antimicrobial resistance has been declared as one of the top ten threats to human health by the World Health Organization, and new technologies are urgently needed for the early diagnosis and monitoring of deep-seated and complicated infections in hospitalized patients. This review summarizes the radiotracers as applied to imaging of bacterial infections. We summarize the recent progress in the development of pathogen-specific imaging and the application of radiotracers in understanding drug pharmacokinetics as well as the local biology at the infection sites. We also highlight the opportunities for medicinal chemists in radiotracer development for bacterial infections, with an emphasis on target selection and radiosynthetic approaches. Imaging of infections is an emerging field. Beyond clinical applications, these technologies could provide unique insights into disease pathogenesis and expedite bench-to-bedside translation of new therapeutics.
Collapse
Affiliation(s)
- Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - George Firth
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
32
|
Chen W, Dilsizian V. Molecular Imaging of Cardiovascular Device Infection: Targeting the Bacteria or the Host–Pathogen Immune Response? J Nucl Med 2020; 61:319-326. [DOI: 10.2967/jnumed.119.228304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
|
33
|
Verdelet T, Benmahdjoub S, Benmerad B, Alami M, Messaoudi S. Copper-Catalyzed Anomeric O-Arylation of Carbohydrate Derivatives at Room Temperature. J Org Chem 2019; 84:9226-9238. [PMID: 31274301 DOI: 10.1021/acs.joc.9b01218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Direct and practical anomeric O-arylation of sugar lactols with substituted arylboronic acids has been established. Using copper catalysis at room temperature under an air atmosphere, the protocol proved to be general, and a variety of aryl O-glycosides have been prepared in good to excellent yields. Furthermore, this approach was extended successfully to unprotected carbohydrates, including α-mannose, and it was demonstrated here how the interaction between carbohydrates and boronic acids can be combined with copper catalysis to achieve selective anomeric O-arylation.
Collapse
Affiliation(s)
- Tristan Verdelet
- BioCIS , Univ. Paris-Sud, CNRS, University Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Sara Benmahdjoub
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes , Université de Bejaia , 06000 Bejaia , Algeria
| | - Belkacem Benmerad
- Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes , Université de Bejaia , 06000 Bejaia , Algeria
| | - Mouad Alami
- BioCIS , Univ. Paris-Sud, CNRS, University Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Samir Messaoudi
- BioCIS , Univ. Paris-Sud, CNRS, University Paris-Saclay , 92290 Châtenay-Malabry , France
| |
Collapse
|
34
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Roestenberg M, van Leeuwen FWB. An update on radiotracer development for molecular imaging of bacterial infections. Clin Transl Imaging 2019; 7:105-124. [DOI: 10.1007/s40336-019-00317-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
|
35
|
Pang X, Xiao Q, Cheng Y, Ren E, Lian L, Zhang Y, Gao H, Wang X, Leung W, Chen X, Liu G, Xu C. Bacteria-Responsive Nanoliposomes as Smart Sonotheranostics for Multidrug Resistant Bacterial Infections. ACS NANO 2019; 13:2427-2438. [PMID: 30657302 DOI: 10.1021/acsnano.8b09336] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid emergence of multidrug resistant (MDR) "superbugs" poses a severe threat to global health. Notably, undeveloped diagnosis and concomitant treatment failure remain highly challenging. Herein, we report a sonotheranostic strategy to achieve bacteria-specific labeling and visualized sonodynamic therapy (SDT). Using maltohexaose-decorated cholesterol and bacteria-responsive lipid compositions, a smart nanoliposomes platform (MLP18) was developed for precise delivery of purpurin 18, a potent sonosensitizer proved in this study. Taking advantage of the bacteria-specific maltodextrin transport pathway, the prepared MLP18 can specifically target the bacterial infection site and accurately distinguish the foci from sterile inflammation or cancer with a highly selective fluorescence/photoacoustic signal on the bacteria-infected site of mice. Moreover, the bacteria-responsive feature of MLP18 activated an efficient release and internalization of high concentration sonosensitizer into bacterial cells, resulting in effective sonodynamic elimination of MDR bacteria. In situ MRI monitoring visualized such potent sonodynamic activity and indicated that MLP18-mediated SDT could successfully eradicate inflammation and abscess from mice with bacterial myositis. In view of the above advantages, the developed nanoliposomes may serve as a promising sonotheranostic platform against MDR bacteria in the areas of healthcare.
Collapse
Affiliation(s)
- Xin Pang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Yi Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Lanlan Lian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Haiyan Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education , The University of Hong Kong , 999077 Pokfulam , Hong Kong
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , China
| |
Collapse
|
36
|
Dumont E, Vergalli J, Pajovic J, Bhamidimarri SP, Morante K, Wang J, Lubriks D, Suna E, Stavenger RA, Winterhalter M, Réfrégiers M, Pagès JM. Mechanistic aspects of maltotriose-conjugate translocation to the Gram-negative bacteria cytoplasm. Life Sci Alliance 2018; 2:e201800242. [PMID: 30620010 PMCID: PMC6311466 DOI: 10.26508/lsa.201800242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Small molecule accumulation in Gram-negative bacteria is a key challenge to discover novel antibiotics, because of their two membranes and efflux pumps expelling toxic molecules. An approach to overcome this challenge is to hijack uptake pathways so that bacterial transporters shuttle the antibiotic to the cytoplasm. Here, we have characterized maltodextrin-fluorophore conjugates that can pass through both the outer and inner membranes mediated by components of the Escherichia coli maltose regulon. Single-channel electrophysiology recording demonstrated that the compounds permeate across the LamB channel leading to accumulation in the periplasm. We have also demonstrated that a maltotriose conjugate distributes into both the periplasm and cytoplasm. In the cytoplasm, the molecule activates the maltose regulon and triggers the expression of maltose binding protein in the periplasmic space indicating that the complete maltose entry pathway is induced. This maltotriose conjugate can (i) reach the periplasmic and cytoplasmic compartments to significant internal concentrations and (ii) auto-induce its own entry pathway via the activation of the maltose regulon, representing an interesting prototype to deliver molecules to the cytoplasm of Gram-negative bacteria.
Collapse
Affiliation(s)
- Estelle Dumont
- Aix Marseille Univ, Institut National de la Santé et de la Recherche Médicale, Service de Santé des Armées, Institut de Recherche Biomédicale des Armées, Membranes et Cibles Thérapeutiques, Marseille, France
| | - Julia Vergalli
- Aix Marseille Univ, Institut National de la Santé et de la Recherche Médicale, Service de Santé des Armées, Institut de Recherche Biomédicale des Armées, Membranes et Cibles Thérapeutiques, Marseille, France
| | - Jelena Pajovic
- DISCO Beamline, Synchrotron Soleil, Saint-Aubin, France.,University of Belgrade, Faculty of Physics, Belgrade, Serbia
| | - Satya P Bhamidimarri
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Koldo Morante
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Jiajun Wang
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | | | - Edgars Suna
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert A Stavenger
- Antibacterial Discovery Performance Unit, Infectious Diseases Discovery, GlaxoSmithKline, Collegeville, PA, USA
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | | | - Jean-Marie Pagès
- Aix Marseille Univ, Institut National de la Santé et de la Recherche Médicale, Service de Santé des Armées, Institut de Recherche Biomédicale des Armées, Membranes et Cibles Thérapeutiques, Marseille, France
| |
Collapse
|
37
|
Lucchetti N, Gilmour R. Reengineering Chemical Glycosylation: Direct, Metal-Free Anomeric O-Arylation of Unactivated Carbohydrates. Chemistry 2018; 24:16266-16270. [DOI: 10.1002/chem.201804416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola Lucchetti
- Organisch Chemisches Institut; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Germany
| | - Ryan Gilmour
- Organisch Chemisches Institut; Westfälische Wilhelms-Universität Münster; Correnstraße 40 48149 Münster Germany
| |
Collapse
|
38
|
Zhang L, Liu Y, Zhang Q, Li T, Yang M, Yao Q, Xie X, Hu HY. Gadolinium-Labeled Aminoglycoside and Its Potential Application as a Bacteria-Targeting Magnetic Resonance Imaging Contrast Agent. Anal Chem 2018; 90:1934-1940. [PMID: 29293308 DOI: 10.1021/acs.analchem.7b04029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful diagnostic technique that can penetrate deep into tissue providing excellent spatial resolution without the need for ionizing radiation or harmful radionuclides. However, diagnosing bacterial infections in vivo with clinical MRI is severely hampered by the lack of contrast agents with high relaxivity, targeting capabilities, and bacterial penetration and specificity. Here, we report the development of the first gadolinium (Gd)-based bacteria-specific targeting MRI contrast agent, probe 1, by conjugating neomycin, an aminoglycoside antibiotic, with Dotarem (Gd-DOTA, an FDA approved T1-weighted MRI contrast agent). The T1 relaxivity of probe 1 was found to be comparable to that of Gd-DOTA; additionally, probe 1-treated bacteria generated a significantly brighter T1-weighted MR signal than Gd-DOTA-treated bacteria. More importantly, in vitro cellular studies and preliminary in vivo MRI demonstrated probe 1 exhibits the ability to efficiently target bacteria over macrophage-like cells, indicating its great potential for high-resolution imaging of bacterial infections in vivo.
Collapse
Affiliation(s)
| | - Yun Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences , Jinan, Shandong 250200, China.,Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan, Shandong 250062, China
| | | | | | | | - Qingqiang Yao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Key Laboratory for Biotech-Drugs Ministry of Health, Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan, Shandong 250062, China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University , Jinan 250014, China
| | | |
Collapse
|