1
|
Yang C, Wu Y, Tu H, Yeh Y, Lin TE, Sung T, Li M, Yen S, Hsieh J, Yu M, Hsieh S, Hsieh H, Pan S, Hsu K. Identification and Biological Evaluation of a Novel CLK4 Inhibitor Targeting Alternative Splicing in Pancreatic Cancer Using Structure-Based Virtual Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416323. [PMID: 40126184 PMCID: PMC12097107 DOI: 10.1002/advs.202416323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/02/2025] [Indexed: 03/25/2025]
Abstract
Pancreatic cancer is an aggressive malignancy with a poor prognosis and limited treatment options. Cdc-like kinase 4 (CLK4), a kinase that regulates alternative splicing by phosphorylating spliceosome components, is implicated in aberrant splicing events driving pancreatic cancer progression. In this study, we established a computational model that integrates pharmacological interactions of CLK4 inhibitors with an improved hit rate. Through this model, we identified a novel CLK4 inhibitor, compound 150441, with a 50% inhibitory concentration (IC50) value of 21.4 nm. Structure-activity relationship analysis was performed to investigate key interactions and functional groups. Kinase profiling revealed that compound 150441 is selective for CLK4. Subsequent in vitro assays demonstrated that this inhibitor effectively suppressed cell growth and viability of pancreatic cancer cells. In addition, it inhibited the phosphorylation of key splicing factors, including serine- and arginine-rich splicing factor (SRSF) 4 and SRSF6. Cell cycle analysis further indicated that the compound induced G2/M arrest, leading to apoptosis. RNA-seq analysis revealed that the compound induced significant changes in alternative splicing and key biological pathways, including RNA processing, DNA replication, DNA damage, and mitosis. These findings suggest that compound 150441 has promising potential for further development as a novel pancreatic cancer treatment.
Collapse
Affiliation(s)
- Chun‐Lin Yang
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Yi‐Wen Wu
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Huang‐Ju Tu
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Yun‐Hsuan Yeh
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Tzu‐Ying Sung
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
| | - Mu‐Chun Li
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei115202Taiwan
| | - Shih‐Chung Yen
- Warshel Institute for Computational BiologySchool of MedicineThe Chinese University of Hong Kong (Shenzhen)ShenzhenGuangdong518172China
| | - Jui‐Hua Hsieh
- Division of Translational ToxicologyNational Institute of Environmental Health SciencesNational Institutes of HealthDurhamNC27709USA
| | - Ming‐Chin Yu
- College of MedicineChang Gung UniversityTaoyuan333323Taiwan
- Department of SurgeryNew Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation)TuchengNew Taipei City236043Taiwan
- Graduate Institute of Clinical Medical SciencesChang Gung UniversityGuishanTaoyuan333323Taiwan
| | - Sen‐Yung Hsieh
- College of MedicineChang Gung UniversityTaoyuan333323Taiwan
- Department of Gastroenterology and HepatologyChang Gung Memorial HospitalLinkouTaoyuan333423Taiwan
| | - Hsing‐Pang Hsieh
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesMiaoli County350401Taiwan
- Biomedical Translation Research CenterAcademia SinicaTaipei115202Taiwan
- Department of ChemistryNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Shiow‐Lin Pan
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipei110301Taiwan
| | - Kai‐Cheng Hsu
- Graduate Institute of Cancer Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug DiscoveryCollege of Medical Science and TechnologyTaipei Medical UniversityTaipei110301Taiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipei110301Taiwan
- Cancer CenterWan Fang Hospital, Taipei Medical UniversityTaipei116079Taiwan
| |
Collapse
|
2
|
Hu T, Huang J, Chen R, Zhang H, Liu M, Wang R, Zhou W, Huang D, Cao M, Li D, Li Z, Wu H, Bian J. Discovery of CLKs inhibitors for the treatment of non-small cell lung cancer. Eur J Med Chem 2024; 280:116952. [PMID: 39406119 DOI: 10.1016/j.ejmech.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Targeted inhibition of the Wnt pathway is a promising strategy for treating NSCLC. CDC2-like kinase 2 (CLK2), a dual-specificity kinase responsible for phosphorylating serine/arginine-rich (SR) proteins, can modulate Wnt signaling through the alternative splicing of Wnt target genes, making CLK2 an attractive therapeutic target for NSCLC. In this study, we report the synthesis, optimization, and evaluation of CLK2 inhibitors that effectively suppress the proliferation of NSCLC cells, with the identification of the lead compound LBM22. Notably, compound LBM22 demonstrated potent inhibition of CLK2 (IC50 = 3.9 nM), leading to broad suppression of NSCLC cells proliferation and induction of apoptosis. Furthermore, LBM22 dose-dependently suppressed SR protein phosphorylation (pSRSF4, pSRSF5, and pSRSF6) in NSCLC cells, while downregulating the expression of Wnt pathway-related proteins (p-β-catenin, Axin 2, and c-Myc) as well as anti-apoptotic proteins (Bcl-2 and Mcl-1). Additionally, significant antiproliferative activity was observed for LBM22 in 3D cultured H1975OR cells. In conclusion, LBM22 emerges as a promising CLK2 inhibitor for the treatment of NSCLC.
Collapse
Affiliation(s)
- Tianxing Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jiali Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Rui Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hui Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Mai Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Renbing Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wenyi Zhou
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Mingkang Cao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Depeng Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Hongxi Wu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
3
|
Aboelfotouh HG, Abdallah M, Khalifa H, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. N 1-Benzoylated 5-(4-pyridinyl)indazole-based kinase inhibitors: Attaining haspin and Clk4 selectivity via modulation of the benzoyl substituents. Arch Pharm (Weinheim) 2024; 357:e2400020. [PMID: 38478964 DOI: 10.1002/ardp.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 06/04/2024]
Abstract
Haspin and Clk4 are both understudied protein kinases (PKs), offering potential targets for the development of new anticancer agents. Thus, the identification of new inhibitors targeting these PKs is of high interest. However, the inhibitors targeting haspin or Clk4 developed to date show a poor selectivity profile over other closely related PKs, increasing the risk of side effects. Herein, we present two newly developed N1-benzyolated 5-(4-pyridinyl)indazole-based inhibitors (18 and 19), derived from a newly identified indazole hit. These inhibitors exhibit an exceptional inhibitory profile toward haspin and/or Clk4. Compound 18 (2-acetyl benzoyl) showed a preference to inhibit Clk4 and haspin over a panel of closely related kinases, with sixfold selectivity for Clk4 (IC50 = 0.088 and 0.542 μM, respectively). Compound 19 (4-acetyl benzoyl) showed high selectivity against haspin over the common off-target kinases (Dyrks and Clks) with an IC50 of 0.155 μM for haspin. Molecular docking studies explained the remarkable selectivity of 18 and 19, elucidating how the new scaffold can be modified to toggle between inhibition of haspin or Clk4, despite the high homology of the ATP-binding sites. Their distinguished profile allows these compounds to be marked as interesting chemical probes to assess the selective inhibition of haspin and/or Clk4.
Collapse
Affiliation(s)
- Habiba G Aboelfotouh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mennatallah Abdallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
4
|
Henderson SH, Sorrell FJ, Bennett JM, Fedorov O, Hanley MT, Godoi PH, Ruela de Sousa R, Robinson S, Navratilova IH, Elkins JM, Ward SE. Imidazo[1,2-b]pyridazines as inhibitors of DYRK kinases. Eur J Med Chem 2024; 269:116292. [PMID: 38479168 DOI: 10.1016/j.ejmech.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/07/2024]
Abstract
Selective inhibitors of DYRK1A are of interest for the treatment of cancer, Type 2 diabetes and neurological disorders. Optimization of imidazo [1,2-b]pyridazine fragment 1 through structure-activity relationship exploration and in silico drug design efforts led to the discovery of compound 17 as a potent cellular inhibitor of DYRK1A with selectivity over much of the kinome. The binding mode of compound 17 was elucidated with X-ray crystallography, facilitating the rational design of compound 29, an imidazo [1,2-b]pyridazine with improved kinase selectivity with respect to closely related CLK kinases.
Collapse
Affiliation(s)
- Scott H Henderson
- Sussex Drug Discovery Centre, University of Sussex, Brighton, BN1 9RH, UK.
| | - Fiona J Sorrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - James M Bennett
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Oleg Fedorov
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Marcus T Hanley
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK
| | - Paulo H Godoi
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Roberta Ruela de Sousa
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil
| | - Sean Robinson
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Iva Hopkins Navratilova
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, OX4 4GE, UK; University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Jonathan M Elkins
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK; Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello, 550, Barão Geraldo, Campinas, SP, 13083-886, Brazil.
| | - Simon E Ward
- Medicines Discovery Institute, Cardiff University, CF10 3AT, UK.
| |
Collapse
|
5
|
Sun Y, Hu T, Zhang M, Song J, Qin Z, Liu M, Ji J, Li Z, Qiu Z, Bian J. Structure-Guided Discovery of Potent and Selective CLK2 Inhibitors for the Treatment of Knee Osteoarthritis. J Med Chem 2024; 67:4603-4623. [PMID: 38500250 DOI: 10.1021/acs.jmedchem.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Osteoarthritis is the most common joint disorder. However, there are no disease-modifying drugs approved for OA treatment. CDC2-like kinase 2 (CLK2) could modulate Wnt signaling via alternative splicing of Wnt target genes and further affect bone differentiation, chondrocyte function, and inflammation, making CLK2 an attractive target for OA therapy. In this study, we designed and synthesized a series of highly potent CLK2 inhibitors based on Indazole 1. Among them, compound LQ23 showed more elevated inhibitory activity against CLK2 than the lead compound (IC50, 1.4 nM) with high CLK2/CLK3 selectivity (>70-fold). Furthermore, LQ23 showed outstanding antiosteoarthritis effects in vitro and in vivo, with the roles specific in decreased inflammatory cytokines, downregulated cartilage degradative enzymes, and increased joint cartilage via suppressing CLK2/Wnt signaling pathway. Overall, these data support LQ23 as a potential candidate for intra-articular knee OA therapy, leveraging its unique mechanism of action for targeted treatment.
Collapse
Affiliation(s)
- Yongqiang Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianxing Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mengdi Zhang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiaxing Song
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mai Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinliang Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
6
|
Borisevich SS, Aksinina TE, Ilyina MG, Shender VO, Anufrieva KS, Arapidi GP, Antipova NV, Anizon F, Esvan YJ, Giraud F, Tatarskiy VV, Moreau P, Shakhparonov MI, Pavlyukov MS, Shtil AA. The Nitro Group Reshapes the Effects of Pyrido[3,4- g]quinazoline Derivatives on DYRK/CLK Activity and RNA Splicing in Glioblastoma Cells. Cancers (Basel) 2024; 16:834. [PMID: 38398225 PMCID: PMC10886777 DOI: 10.3390/cancers16040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Serine-threonine protein kinases of the DYRK and CLK families regulate a variety of vital cellular functions. In particular, these enzymes phosphorylate proteins involved in pre-mRNA splicing. Targeting splicing with pharmacological DYRK/CLK inhibitors emerged as a promising anticancer strategy. Investigation of the pyrido[3,4-g]quinazoline scaffold led to the discovery of DYRK/CLK binders with differential potency against individual enzyme isoforms. Exploring the structure-activity relationship within this chemotype, we demonstrated that two structurally close compounds, pyrido[3,4-g]quinazoline-2,10-diamine 1 and 10-nitro pyrido[3,4-g]quinazoline-2-amine 2, differentially inhibited DYRK1-4 and CLK1-3 protein kinases in vitro. Unlike compound 1, compound 2 efficiently inhibited DYRK3 and CLK4 isoenzymes at nanomolar concentrations. Quantum chemical calculations, docking and molecular dynamic simulations of complexes of 1 and 2 with DYRK3 and CLK4 identified a dramatic difference in electron donor-acceptor properties critical for preferential interaction of 2 with these targets. Subsequent transcriptome and proteome analyses of patient-derived glioblastoma (GBM) neurospheres treated with 2 revealed that this compound impaired CLK4 interactions with spliceosomal proteins, thereby altering RNA splicing. Importantly, 2 affected the genes that perform critical functions for cancer cells including DNA damage response, p53 signaling and transcription. Altogether, these results provide a mechanistic basis for the therapeutic efficacy of 2 previously demonstrated in in vivo GBM models.
Collapse
Affiliation(s)
- Sophia S Borisevich
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa 450054, Russia
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - Tatiana E Aksinina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Margarita G Ilyina
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Ufa 450054, Russia
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, Moscow 115409, Russia
| | - Victoria O Shender
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia
| | - Ksenia S Anufrieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia
| | - Georgij P Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow 119435, Russia
| | - Nadezhda V Antipova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Fabrice Anizon
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Clermont Auvergne Institut National Polytechnique, Institute of Chemistry of Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Yannick J Esvan
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Clermont Auvergne Institut National Polytechnique, Institute of Chemistry of Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Francis Giraud
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Clermont Auvergne Institut National Polytechnique, Institute of Chemistry of Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pascale Moreau
- Université Clermont Auvergne, Centre National de la Recherche Scientifique, Clermont Auvergne Institut National Polytechnique, Institute of Chemistry of Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Mikhail I Shakhparonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Marat S Pavlyukov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| |
Collapse
|
7
|
Song M, Pang L, Zhang M, Qu Y, Laster KV, Dong Z. Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:148. [PMID: 37029108 PMCID: PMC10082069 DOI: 10.1038/s41392-023-01409-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliceosome molecular machinery, and modulating the activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the clinical treatment of various human diseases.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Luping Pang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Research Center of Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengmeng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingzi Qu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
8
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
9
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
10
|
Exploring the roles of the Cdc2-like kinases in cancers. Bioorg Med Chem 2022; 70:116914. [PMID: 35872347 DOI: 10.1016/j.bmc.2022.116914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
Abstract
The Cdc2-like kinases (CLKs 1-4) are involved in regulating the alternative splicing of a variety of genes. Their activity contributes to important cellular processes such as proliferation, differentiation, apoptosis, migration, and cell cycle regulation. Abnormal expression of CLKs can lead to cancers; therefore, pharmacological inhibition of CLKs may be a useful therapeutic strategy. This review summarises what is known about the roles of each of the CLKs in cancerous cells, as well as the effects of relevant small molecule CLK inhibitors.
Collapse
|
11
|
El-Gamil DS, ElHady AK, Chen PJ, Hwang TL, Abadi AH, Abdel-Halim M, Engel M. Development of novel conformationally restricted selective Clk1/4 inhibitors through creating an intramolecular hydrogen bond involving an imide linker. Eur J Med Chem 2022; 238:114411. [DOI: 10.1016/j.ejmech.2022.114411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
|
12
|
Al-Tawil MF, Daoud S, Hatmal MM, Taha MO. Discovery of new Cdc2-like kinase 4 (CLK4) inhibitors via pharmacophore exploration combined with flexible docking-based ligand/receptor contact fingerprints and machine learning. RSC Adv 2022; 12:10686-10700. [PMID: 35424985 PMCID: PMC8982525 DOI: 10.1039/d2ra00136e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
Cdc2-like kinase 4 (CLK4) inhibitors are of potential therapeutic value in many diseases particularly cancer. In this study, we combined extensive ligand-based pharmacophore exploration, ligand-receptor contact fingerprints generated by flexible docking, physicochemical descriptors and machine learning-quantitative structure-activity relationship (ML-QSAR) analysis to investigate the pharmacophoric/binding requirements for potent CLK4 antagonists. Several ML methods were attempted to tie these properties with anti-CLK4 bioactivities including multiple linear regression (MLR), random forests (RF), extreme gradient boosting (XGBoost), probabilistic neural network (PNN), and support vector regression (SVR). A genetic function algorithm (GFA) was combined with each method for feature selection. Eventually, GFA-SVR was found to produce the best self-consistent and predictive model. The model selected three pharmacophores, three ligand-receptor contacts and two physicochemical descriptors. The GFA-SVR model and associated pharmacophore models were used to screen the National Cancer Institute (NCI) structural database for novel CLK4 antagonists. Three potent hits were identified with the best one showing an anti-CLK4 IC50 value of 57 nM.
Collapse
Affiliation(s)
- Mai Fayiz Al-Tawil
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Safa Daoud
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Sciences Private University Amman Jordan
| | - Ma'mon M Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University PO Box 330127 Zarqa 13133 Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11942 Jordan
| |
Collapse
|
13
|
Qin Z, Qin L, Feng X, Li Z, Bian J. Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions. J Med Chem 2021; 64:13191-13211. [PMID: 34519506 DOI: 10.1021/acs.jmedchem.1c00985] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cdc2-like kinases (CLKs; CLK1-4) are associated with various neurodegenerative disorders, metabolic regulation, and viral infection and have been recognized as potential drug targets. Human CLK2 has received increasing attention as a regulator that phosphorylates serine- and arginine-rich (SR) proteins and subsequently modulates the alternative splicing of precursor mRNA (pre-mRNA), which is an attractive target for degenerative disease and cancer. Numerous CLK2 inhibitors have been identified, with several molecules currently in clinical development. The first CLK2 inhibitor Lorecivivint (compound 1) has recently entered phase 3 clinical trials. However, highly selective CLK2 inhibitors are rarely reported. This Perspective summarizes the biological roles and therapeutic potential of CLK2 along with progress on the development of CLK2 inhibitors and discusses the achievements and future prospects of CLK2 inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Zhen Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Lian Qin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| |
Collapse
|
14
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
15
|
Uzor S, Porazinski SR, Li L, Clark B, Ajiro M, Iida K, Hagiwara M, Alqasem AA, Perks CM, Wilson ID, Oltean S, Ladomery MR. CDC2-like (CLK) protein kinase inhibition as a novel targeted therapeutic strategy in prostate cancer. Sci Rep 2021; 11:7963. [PMID: 33846420 PMCID: PMC8041776 DOI: 10.1038/s41598-021-86908-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Dysregulation of alternative splicing is a feature of cancer, both in aetiology and progression. It occurs because of mutations in splice sites or sites that regulate splicing, or because of the altered expression and activity of splice factors and of splice factor kinases that regulate splice factor activity. Recently the CDC2-like kinases (CLKs) have attracted attention due to their increasing involvement in cancer. We measured the effect of the CLK inhibitor, the benzothiazole TG003, on two prostate cancer cell lines. TG003 reduced cell proliferation and increased apoptosis in PC3 and DU145 cells. Conversely, the overexpression of CLK1 in PC3 cells prevented TG003 from reducing cell proliferation. TG003 slowed scratch closure and reduced cell migration and invasion in a transwell assay. TG003 decisively inhibited the growth of a PC3 cell line xenograft in nude mice. We performed a transcriptomic analysis of cells treated with TG003. We report widespread and consistent changes in alternative splicing of cancer-associated genes including CENPE, ESCO2, CKAP2, MELK, ASPH and CD164 in both HeLa and PC3 cells. Together these findings suggest that targeting CLKs will provide novel therapeutic opportunities in prostate cancer.
Collapse
Affiliation(s)
- Simon Uzor
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
- Department of Medical Laboratory Science, Ebonyi State University, P.M.B. 53, Abakaliki, Nigeria
| | - Sean R Porazinski
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Ling Li
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
| | - Bethany Clark
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kei Iida
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Abdullah A Alqasem
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- IGFs and Metabolic Endocrinology Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Ian D Wilson
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK.
| | - Michael R Ladomery
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
16
|
Sireesha R, Sreenivasulu R, Chandrasekhar C, Jadav SS, Pavani Y, Rao MVB, Subbarao M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Shibata S, Ajiro M, Hagiwara M. Mechanism-Based Personalized Medicine for Cystic Fibrosis by Suppressing Pseudo Exon Inclusion. Cell Chem Biol 2020; 27:1472-1482.e6. [DOI: 10.1016/j.chembiol.2020.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/29/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
|
18
|
Martín Moyano P, Němec V, Paruch K. Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential. Int J Mol Sci 2020; 21:E7549. [PMID: 33066143 PMCID: PMC7593917 DOI: 10.3390/ijms21207549] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protein kinases represent a very pharmacologically attractive class of targets; however, some members of the family still remain rather unexplored. The biology and therapeutic potential of cdc-like kinases (CLKs) have been explored mainly over the last decade and the first CLK inhibitor, compound SM08502, entered clinical trials only recently. This review summarizes the biological roles and therapeutic potential of CLKs and their heretofore published small-molecule inhibitors, with a focus on the compounds' potential to be utilized as quality chemical biology probes.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
| | - Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|
19
|
Schröder M, Bullock AN, Fedorov O, Bracher F, Chaikuad A, Knapp S. DFG-1 Residue Controls Inhibitor Binding Mode and Affinity, Providing a Basis for Rational Design of Kinase Inhibitor Selectivity. J Med Chem 2020; 63:10224-10234. [PMID: 32787076 DOI: 10.1021/acs.jmedchem.0c00898] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selectivity remains a challenge for ATP-mimetic kinase inhibitors, an issue that may be overcome by targeting unique residues or binding pockets. However, to date only few strategies have been developed. Here we identify that bulky residues located N-terminal to the DFG motif (DFG-1) represent an opportunity for designing highly selective inhibitors with unexpected binding modes. We demonstrate that several diverse inhibitors exerted selective, noncanonical binding modes that exclusively target large hydrophobic DFG-1 residues present in many kinases including PIM, CK1, DAPK, and CLK. By use of the CLK family as a model, structural and biochemical data revealed that the DFG-1 valine controlled a noncanonical binding mode in CLK1, providing a rationale for selectivity over the closely related CLK3 which harbors a smaller DFG-1 alanine. Our data suggest that targeting the restricted back pocket in the small fraction of kinases that harbor bulky DFG-1 residues offers a versatile selectivity filter for inhibitor design.
Collapse
Affiliation(s)
- Martin Schröder
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestraße 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Max von Lauestraße 15, 60438 Frankfurt, Germany
| | - Alex N Bullock
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, U.K
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestraße 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Max von Lauestraße 15, 60438 Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max von Lauestraße 9, 60438 Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Max von Lauestraße 15, 60438 Frankfurt, Germany.,German Translational Cancer Network (DKTK), Frankfurt/Mainz Site, 60438 Frankfurt, Germany
| |
Collapse
|
20
|
Karim RM, Chan A, Zhu JY, Schönbrunn E. Structural Basis of Inhibitor Selectivity in the BRD7/9 Subfamily of Bromodomains. J Med Chem 2020; 63:3227-3237. [PMID: 32091206 DOI: 10.1021/acs.jmedchem.9b01980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibition of the bromodomain containing protein 9 (BRD9) by small molecules is an attractive strategy to target mutated SWI/SNF chromatin-remodeling complexes in cancer. However, reported BRD9 inhibitors also inhibit the closely related bromodomain-containing protein 7 (BRD7), which has different biological functions. The structural basis for differential potency and selectivity of BRD9 inhibitors is largely unknown because of the lack of structural information on BRD7. Here, we biochemically and structurally characterized diverse inhibitors with varying degrees of potency and selectivity for BRD9 over BRD7. Novel cocrystal structures of BRD7 liganded with new and previously reported inhibitors of five different chemical scaffolds were determined alongside BRD9 and BRD4. We also report the discovery of first-in-class dual bromodomain-kinase inhibitors outside the bromodomain and extraterminal family targeting BRD7 and BRD9. Combined, the data provide a new framework for the development of BRD7/9 inhibitors with improved selectivity or additional polypharmacologic properties.
Collapse
Affiliation(s)
- Rezaul Md Karim
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Alice Chan
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Jin-Yi Zhu
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Ernst Schönbrunn
- Department of Drug Discovery, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, United States.,Department of Molecular Medicine, USF Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
21
|
Yeung W, Ruan Z, Kannan N. Emerging roles of the αC-β4 loop in protein kinase structure, function, evolution, and disease. IUBMB Life 2020; 72:1189-1202. [PMID: 32101380 DOI: 10.1002/iub.2253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
The faithful propagation of cellular signals in most organisms relies on the coordinated functions of a large family of protein kinases that share a conserved catalytic domain. The catalytic domain is a dynamic scaffold that undergoes large conformational changes upon activation. Most of these conformational changes, such as movement of the regulatory αC-helix from an "out" to "in" conformation, hinge on a conserved, but understudied, loop termed the αC-β4 loop, which mediates conserved interactions to tether flexible structural elements to the kinase core. We previously showed that the αC-β4 loop is a unique feature of eukaryotic protein kinases. Here, we review the emerging roles of this loop in kinase structure, function, regulation, and diseases. Through a kinome-wide analysis, we define the boundaries of the loop for the first time and show that sequence and structural variation in the loop correlate with conformational and regulatory variation. Many recurrent disease mutations map to the αC-β4 loop and contribute to drug resistance and abnormal kinase activation by relieving key auto-inhibitory interactions associated with αC-helix and inter-lobe movement. The αC-β4 loop is a hotspot for post-translational modifications, protein-protein interaction, and Hsp90 mediated folding. Our kinome-wide analysis provides insights for hypothesis-driven characterization of understudied kinases and the development of allosteric protein kinase inhibitors.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Zheng Ruan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia.,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
22
|
Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. J Biol Chem 2019; 294:13545-13559. [PMID: 31341017 PMCID: PMC6746438 DOI: 10.1074/jbc.ra119.009725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Indexed: 01/07/2023] Open
Abstract
The homeodomain-interacting protein kinase (HIPK) family is comprised of four nuclear protein kinases, HIPK1-4. HIPK proteins phosphorylate a diverse range of transcription factors involved in cell proliferation, differentiation, and apoptosis. HIPK2, thus far the best-characterized member of this largely understudied family of protein kinases, plays a role in the activation of p53 in response to DNA damage. Despite this tumor-suppressor function, HIPK2 is also found overexpressed in several cancers, and its hyperactivation causes chronic fibrosis. There are currently no structures of HIPK2 or of any other HIPK kinase. Here, we report the crystal structure of HIPK2's kinase domain bound to CX-4945, a casein kinase 2α (CK2α) inhibitor currently in clinical trials against several cancers. The structure, determined at 2.2 Å resolution, revealed that CX-4945 engages the HIPK2 active site in a hybrid binding mode between that seen in structures of CK2α and Pim1 kinases. The HIPK2 kinase domain crystallized in the active conformation, which was stabilized by phosphorylation of the activation loop. We noted that the overall kinase domain fold of HIPK2 closely resembles that of evolutionarily related dual-specificity tyrosine-regulated kinases (DYRKs). Most significant structural differences between HIPK2 and DYRKs included an absence of the regulatory N-terminal domain and a unique conformation of the CMGC-insert region and of a newly defined insert segment in the αC-β4 loop. This first crystal structure of HIPK2 paves the way for characterizing the understudied members of the HIPK family and for developing HIPK2-directed therapies for managing cancer and fibrosis.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Lijun Liu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wei Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wayland Yeung
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Natarajan Kannan
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - David Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115, Supported by the Kazan McClain Partners' Foundation and the H. N. and Frances C. Berger Foundation. To whom correspondence may be addressed:
1600 Divisadero St., A745, San Francisco, CA 94115. Tel.:
415-353-7502; E-mail:
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, To whom correspondence may be addressed:
555 Mission Bay Blvd. S., Rm. 452W, San Francisco, CA 94158. Tel.:
415-514-1133; E-mail:
| |
Collapse
|
23
|
Structural Basis for the Selective Inhibition of Cdc2-Like Kinases by CX-4945. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6125068. [PMID: 31531359 PMCID: PMC6720368 DOI: 10.1155/2019/6125068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
Cdc2-like kinases (CLKs) play a crucial role in the alternative splicing of eukaryotic pre-mRNAs through the phosphorylation of serine/arginine-rich proteins (SR proteins). Dysregulation of this processes is linked with various diseases including cancers, neurodegenerative diseases, and many genetic diseases. Thus, CLKs have been regarded to have a potential as a therapeutic target and significant efforts have been exerted to discover an effective inhibitor. In particular, the small molecule CX-4945, originally identified as an inhibitor of casein kinase 2 (CK2), was further revealed to have a strong CLK-inhibitory activity. Four isoforms of CLKs (CLK1, CLK2, CLK3, and CLK4) can be inhibited by CX-4945, with the highest inhibitory effect on CLK2. This study aimed to elucidate the structural basis of the selective inhibitory effect of CX-4945 on different isoforms of CLKs. We determined the crystal structures of CLK1, CLK2, and CLK3 in complex with CX-4945 at resolutions of 2.4 Å, 2.8 Å, and 2.6 Å, respectively. Comparative analysis revealed that CX-4945 was bound in the same active site pocket of the CLKs with similar interacting networks. Intriguingly, the active sites of CLK/CX-4945 complex structures had different sizes and electrostatic surface charge distributions. The active site of CLK1 was somewhat narrow and contained a negatively charged patch. CLK3 had a protruded Lys248 residue in the entrance of the active site pocket. In addition, Ala319, equivalent to Val324 (CLK1) and Val326 (CLK2), contributed to the weak hydrophobic interactions with the benzonaphthyridine ring of CX-4945. In contrast, the charge distribution pattern of CLK2 was the weakest, favoring its interactions with benzonaphthyridine ring. Thus, the relatively strong binding affinities of CX-4945 with CLK2 are consistent with its strong inhibitory effect defined in the previous study. These results may provide insights into structure-based drug discovery processes.
Collapse
|
24
|
Artarini A, Meyer M, Shin YJ, Huber K, Hilz N, Bracher F, Eros D, Orfi L, Keri G, Goedert S, Neuenschwander M, von Kries J, Domovich-Eisenberg Y, Dekel N, Szabadkai I, Lebendiker M, Horváth Z, Danieli T, Livnah O, Moncorgé O, Frise R, Barclay W, Meyer TF, Karlas A. Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Res 2019; 168:187-196. [PMID: 31176694 DOI: 10.1016/j.antiviral.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Influenza A virus carries eight negative single-stranded RNAs and uses spliced mRNAs to increase the number of proteins produced from them. Several genome-wide screens for essential host factors for influenza A virus replication revealed a necessity for splicing and splicing-related factors, including Cdc-like kinase 1 (CLK1). This CLK family kinase plays a role in alternative splicing regulation through phosphorylation of serine-arginine rich (SR) proteins. To examine the influence that modulation of splicing regulation has on influenza infection, we analyzed the effect of CLK1 knockdown and inhibition. CLK1 knockdown in A549 cells reduced influenza A/WSN/33 virus replication and increased the level of splicing of segment 7, which encodes the viral M1 and M2 proteins. CLK1-/- mice infected with influenza A/England/195/2009 (H1N1pdm09) virus supported lower levels of virus replication than wild-type mice. Screening of newly developed CLK inhibitors revealed several compounds that have an effect on the level of splicing of influenza A gene segment M in different models and decrease influenza A/WSN/33 virus replication in A549 cells. The promising inhibitor KH-CB19, an indole-based enaminonitrile with unique binding mode for CLK1, and its even more selective analogue NIH39 showed high specificity towards CLK1 and had a similar effect on influenza mRNA splicing regulation. Taken together, our findings indicate that targeting host factors that regulate splicing of influenza mRNAs may represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Anita Artarini
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Meyer
- Steinbeis Innovation, Center for Systems Biomedicine, 14612, Falkensee, Germany
| | - Yu Jin Shin
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Nikolaus Hilz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Daniel Eros
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Laszlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, 1092, Hungary
| | - Gyorgy Keri
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Sigrid Goedert
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Neuenschwander
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Jens von Kries
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Yael Domovich-Eisenberg
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - István Szabadkai
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Zoltán Horváth
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Olivier Moncorgé
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Rebecca Frise
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Wendy Barclay
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Alexander Karlas
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|