1
|
Tu MM, Carfrae LA, Rachwalski K, French S, Catacutan D, Gordzevich R, MacNair CR, Speagle ME, Werah F, Stokes JM, Brown ED. Exploiting the fitness cost of metallo-β-lactamase expression can overcome antibiotic resistance in bacterial pathogens. Nat Microbiol 2025; 10:53-65. [PMID: 39747690 DOI: 10.1038/s41564-024-01883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Carbapenems are last-resort antibiotics for treating bacterial infections. The widespread acquisition of metallo-β-lactamases, such as VIM-2, contributes to the emergence of carbapenem-resistant pathogens, and currently, no metallo-β-lactamase inhibitors are available in the clinic. Here we show that bacteria expressing VIM-2 have impaired growth in zinc-deprived environments, including human serum and murine infection models. Using transcriptomic, genomic and chemical probes, we identified molecular pathways critical for VIM-2 expression under zinc limitation. In particular, disruption of envelope stress response pathways reduced the growth of VIM-2-expressing bacteria in vitro and in vivo. Furthermore, we showed that VIM-2 expression disrupts the integrity of the outer membrane, rendering VIM-2-expressing bacteria more susceptible to azithromycin. Using a systemic murine infection model, we showed azithromycin's therapeutic potential against VIM-2-expressing pathogens. In all, our findings provide a framework to exploit the fitness trade-offs of resistance, potentially accelerating the discovery of additional treatments for infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Megan M Tu
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Shawn French
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Denise Catacutan
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Rodion Gordzevich
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Craig R MacNair
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Melissa E Speagle
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Firas Werah
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan M Stokes
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Phillips MJA, Huston WM, McDonagh AM, Rawling T. 4-Chloroisocoumarins as Chlamydial Protease Inhibitors and Anti-Chlamydial Agents. Molecules 2024; 29:1519. [PMID: 38611800 PMCID: PMC11013143 DOI: 10.3390/molecules29071519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
4-Chloroisocoumarin compounds have broad inhibitory properties against serine proteases. Here, we show that selected 3-alkoxy-4-chloroisocoumarins preferentially inhibit the activity of the conserved serine protease High-temperature requirement A of Chlamydia trachomatis. The synthesis of a new series of isocoumarin-based scaffolds has been developed, and their anti-chlamydial properties were investigated. The structure of the alkoxy substituent was found to influence the potency of the compounds against High-temperature requirement A, and modifications to the C-7 position of the 3-alkoxy-4-chloroisocoumarin structure attenuate anti-chlamydial properties.
Collapse
Affiliation(s)
- Matthew J. A. Phillips
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Wilhelmina M. Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Andrew M. McDonagh
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
3
|
Wang K, Lu H, Zou M, Wang G, Zhao J, Huang X, Ren F, Hu H, Huang J, Min X. DegS protease regulates antioxidant capacity and adaptability to oxidative stress environment in Vibrio cholerae. Front Cell Infect Microbiol 2023; 13:1290508. [PMID: 38053530 PMCID: PMC10694293 DOI: 10.3389/fcimb.2023.1290508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Adaptation to oxidative stress is critical for survival of Vibrio cholerae in aquatic ecosystems and hosts. DegS activates the σE envelope stress response. We have previously revealed that DegS may be involved in regulating the oxidative stress response. In this study, we demonstrated that deletion of the degS gene attenuates the antioxidant capacity of V. cholerae. In addition, our results further revealed that the regulation of antioxidant capacity by DegS in V. cholerae could involve the cAMP-CRP complex, which regulates rpoS. XthA is an exonuclease that repairs oxidatively damaged cells and affects the bacterial antioxidant capacity. qRT-PCR showed that DegS, σE, cAMP, CRP, and RpoS positively regulate xthA gene transcription. XthA overexpression partially compensates for antioxidant deficiency in the degS mutant. These results suggest that DegS affects the antioxidant capacity of V.cholerae by regulating xthA expression via the cAMP-CRP-RpoS pathway. In a mouse intestinal colonization experiment, our data showed that V.cholerae degS, rpoE, and rpoS gene deletions were associated with significantly reduced resistance to oxidative stress and the ability to colonize the mouse intestine. In conclusion, these findings provide new insights into the regulation of antioxidant activity by V.cholerae DegS.
Collapse
Affiliation(s)
- Kaiying Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huifang Lu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mei Zou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangli Wang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiajun Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoyu Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Fangyu Ren
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huaqin Hu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian Huang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xun Min
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- School of Laboratory Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
4
|
Gupta AK, Singh K, Patidar Y, Sharma R, Sardesai AA, Reddy G, Gopal B. Allosteric Determinants in High Temperature Requirement A Enzymes Are Conserved and Regulate the Population of Active Conformations. ACS Chem Biol 2023; 18:1487-1499. [PMID: 37319329 DOI: 10.1021/acschembio.2c00921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High temperature requirement A (HtrA) are allosterically regulated enzymes wherein effector binding to the PDZ domain triggers proteolytic activity. Yet, it remains unclear if the inter-residue network governing allostery is conserved across HtrA enzymes. Here, we investigated and identified the inter-residue interaction networks by molecular dynamics simulations on representative HtrA proteases, Escherichia coli DegS and Mycobacterium tuberculosis PepD, in effector-bound and free forms. This information was used to engineer mutations that could potentially perturb allostery and conformational sampling in a different homologue, M. tuberculosis HtrA. Mutations in HtrA perturbed allosteric regulation─a finding consistent with the hypothesis that the inter-residue interaction network is conserved across HtrA enzymes. Electron density from data collected on cryo-protected HtrA crystals revealed that mutations altered the topology of the active site. Ensemble models fitted into electron density calculated from room-temperature diffraction data showed that only a fraction of these models had a catalytically competent active site conformation alongside a functional oxyanion hole thus providing experimental evidence that these mutations influenced conformational sampling. Mutations at analogous positions in the catalytic domain of DegS perturbed the coupling between effector binding and proteolytic activity, thus confirming the role of these residues in the allosteric response. The finding that a perturbation in the conserved inter-residue network alters conformational sampling and the allosteric response suggests that an ensemble allosteric model best describes regulated proteolysis in HtrA enzymes.
Collapse
Affiliation(s)
- Arvind Kumar Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Yogesh Patidar
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ravish Sharma
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | | | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
5
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
6
|
Song Y, Ke Y, Kang M, Bao R. Function, molecular mechanisms, and therapeutic potential of bacterial HtrA proteins: An evolving view. Comput Struct Biotechnol J 2022; 20:40-49. [PMID: 34976310 PMCID: PMC8671199 DOI: 10.1016/j.csbj.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 02/05/2023] Open
Abstract
Members of the high temperature requirement A (HtrA) protein family are widely distributed amongst prokaryotic and eukaryotic species. HtrA proteins have ATP-independent dual chaperone-protease activity and mediate protein quality control. Emerging evidence indicates that HtrA family members are vital for establishing infections and bacterial survival under stress conditions. Bacterial HtrA proteins are increasingly thought of as important new targets for antibacterial drug development. Recent literature suggests that HtrA protein AlgW from Pseudomonas aeruginosa has distinct structural, functional, and regulatory characteristics. The novel dual-signal activation mechanism seen in AlgW is required to modulate stress and drug responses in bacteria, prompting us to review our understanding of the many HtrA proteins found in microorganisms. Here, we describe the distribution of HtrA gene orthologues in pathogenic bacteria, discuss their structure–function relationships, outline the molecular mechanisms exhibited by different bacterial HtrA proteins in bacteria under selective pressure, and review the significance of recently developed small molecule inhibitors targeting HtrA in pathogenic bacteria.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yitao Ke
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Corresponding authors.
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
- Corresponding authors.
| |
Collapse
|
7
|
Hwang J, Strange N, Mazraani R, Phillips MJ, Gamble AB, Huston WM, Tyndall JDA. Design, synthesis and biological evaluation of P2-modified proline analogues targeting the HtrA serine protease in Chlamydia. Eur J Med Chem 2021; 230:114064. [PMID: 35007862 DOI: 10.1016/j.ejmech.2021.114064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 11/19/2022]
Abstract
High temperature requirement A (HtrA) serine proteases have emerged as a novel class of antibacterial target, which are crucial in protein quality control and are involved in the pathogenesis of a wide array of bacterial infections. Previously, we demonstrated that HtrA in Chlamydia is essential for bacterial survival, replication and virulence. Here, we report a new series of proline (P2)-modified inhibitors of Chlamydia trachomatis HtrA (CtHtrA) developed by proline ring expansion and Cγ-substitutions. The structure-based drug optimization process was guided by molecular modelling and in vitro pharmacological evaluation of inhibitory potency, selectivity and cytotoxicity. Compound 25 from the first-generation 4-substituted proline analogues increased antiCtHtrA potency and selectivity over human neutrophil elastase (HNE) by approximately 6- and 12-fold, respectively, relative to the peptidic lead compound 1. Based on this compound, second-generation substituted proline residues containing 1,2,3-triazole moieties were synthesized by regioselective azide-alkyne click chemistry. Compound 49 demonstrated significantly improved antichlamydial activity in whole cell assays, diminishing the bacterial infectious progeny below the detection limit at the lowest dose tested. Compound 49 resulted in approximately 9- and 22-fold improvement in the inhibitory potency and selectivity relative to 1, respectively. To date, compound 49 is the most potent HtrA inhibitor developed against Chlamydia spp.
Collapse
Affiliation(s)
- Jimin Hwang
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Natalie Strange
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Rami Mazraani
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Matthew J Phillips
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia.
| | | |
Collapse
|
8
|
Elie J, Fruit C, Besson T. Microwave-Assisted Sequential One-Pot Synthesis of 8-Substituted Pyrazolo[1,5- a][1,3,5]triazines. Molecules 2021; 26:molecules26123540. [PMID: 34200623 PMCID: PMC8230123 DOI: 10.3390/molecules26123540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
This paper reports a convenient sequential one-pot approach for the synthesis of an array of 14 pyrazolo[1,5-a][1,3,5]triazines, substituted in C8 by halogen (Br), various functions (CN and CO2Et) and alkyl or (het)aryl groups. This study confirms the interest of combining the efficient heating obtained under dielectric microwave heating and the achievement of sequential one-pot reactions, avoiding the tedious work-up and purification of intermediate compounds, achieving sustainable synthesis processes. Considering usual conventional methods, this microwave protocol is featured by advantages in terms of yields, reaction times, and convenient gram scale synthesis.
Collapse
Affiliation(s)
- Jonathan Elie
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; (J.E.); (C.F.)
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France
| | - Corinne Fruit
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; (J.E.); (C.F.)
| | - Thierry Besson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; (J.E.); (C.F.)
- Correspondence: ; Tel.: +33-235-522-904
| |
Collapse
|
9
|
Guo W, Xie Z, Cai L, Liu G, Deng L, Mei W, Zou X, Zhong Y, Zhuo X, Zheng L, Fan X. Synthesis of Purine Analogues: Photocatalyst-Free Visible-Light-Enhanced Annulation Approach to Pyrazolo[1,5- a][1,3,5]triazine-2,4-diamines. J Org Chem 2021; 86:8365-8380. [PMID: 34097406 DOI: 10.1021/acs.joc.1c00783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new photocatalyst-free visible-light-enhanced strategy for the synthesis of pyrazolo[1,5-a][1,3,5]triazine-2,4-diamines via the formation of electron donor-acceptor (EDA) complexes is reported. The in situ generated pyrazolthiourea intermediates from 1H-pyrazol-3-amines and isothiocyanates undergo formal [4 + 2] annulation with 1,1,3,3-tetramethylguanidines (TMG) to deliver the corresponding products involved in three C-N bond formations in a one-pot protocol. The formation of EDA complex from pyrazolthiourea and TMG is confirmed by UV-vis spectroscopy and 1H NMR experiments. Moreover, this mild reaction proceeds in the absence of any external transition metals, oxidants, bases, and ligands. This efficient methodology for the synthesis of purine analogues pyrazolo[1,5-a][1,3,5]triazine-2,4-diamines provides potential synthetic applications in the field of drug research and development.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Ling Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Yumei Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
10
|
Saha S, Lach SR, Konovalova A. Homeostasis of the Gram-negative cell envelope. Curr Opin Microbiol 2021; 61:99-106. [PMID: 33901778 DOI: 10.1016/j.mib.2021.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The Gram-negative bacterial cell envelope is a complex structure and its homeostasis is essential for bacterial survival. Envelope stress responses (ESRs) are signal transduction pathways that monitor the fidelity of envelope assembly during normal growth and also detect and repair envelope damage caused by external assaults, including immune factors, protein toxins, and antibiotics. In this review, we focus on three best-studied ESRs and discuss the mechanisms by which ESRs detect various perturbations of envelope assembly and integrity and regulate envelope remodeling to promote bacterial survival. We will highlight the complex relationship of ESRs with envelope biogenesis pathways and discuss some of the challenges in this field on the road to mapping the global regulatory network of envelope homeostasis.
Collapse
Affiliation(s)
- Shreya Saha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sarah R Lach
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Anna Konovalova
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Köcher S, Resch S, Kessenbrock T, Schrapp L, Ehrmann M, Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Nat Prod Rep 2021; 37:163-174. [PMID: 31451830 DOI: 10.1039/c9np00033j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.
Collapse
Affiliation(s)
- Steffen Köcher
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Sarah Resch
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Till Kessenbrock
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Lukas Schrapp
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| |
Collapse
|
12
|
Nam HY, Song D, Eo J, Choi NE, Hong JA, Hong KT, Lee JS, Seo J, Lee J. Activity-Based Probes for the High Temperature Requirement A Serine Proteases. ACS Chem Biol 2020; 15:2346-2354. [PMID: 32786264 DOI: 10.1021/acschembio.0c00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The high temperature requirement A (HTRA) family of serine proteases mediates protein quality control. These proteins process misfolded proteins in several diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). While their structures and activation mechanisms have been studied, the precise details of the regulation of their activity under physiological conditions have not been completely elucidated, partly due to the lack of suitable chemical probes. In the present study, we developed novel activity-based probes (ABPs) targeting the HTRAs and demonstrated their utility in the monitoring and quantification of changes in enzyme activity in live cells. Using our probes, we found the activity of HTRA1 to be highly elevated in an AD-like cell-based model. We also observed the active HTRA2 in live cells by using a mitochondrion-targeted probe. We believe that our probes can serve as a useful tool to study the role of human HTRAs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ho Yeon Nam
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dasom Song
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jinny Eo
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | - Na-Eun Choi
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | - Jong-Ah Hong
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| | - Kyung Tae Hong
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Republic of Korea
| |
Collapse
|