1
|
Souza Tada da Cunha P, Rodriguez Gini AL, Man Chin C, dos Santos JL, Benito Scarim C. Recent Progress in Thiazole, Thiosemicarbazone, and Semicarbazone Derivatives as Antiparasitic Agents Against Trypanosomatids and Plasmodium spp. Molecules 2025; 30:1788. [PMID: 40333793 PMCID: PMC12029465 DOI: 10.3390/molecules30081788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025] Open
Abstract
Neglected tropical diseases (NTDs), including Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria, remain a major global health challenge, disproportionately affecting low-income populations. Current therapies for these diseases suffer from significant limitations, such as reduced efficacy, high toxicity, and emerging parasite resistance, highlighting the urgent need for new therapeutic strategies. In response, substantial efforts have been directed toward the synthesis of new molecules with improved potency, selectivity, and pharmacokinetic profiles. However, despite many of these compounds exhibiting favorable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles and strong in vitro activity, their translation into in vivo models remains limited. Key challenges include the lack of investment, the absence of fully representative experimental models, and difficulties in extrapolating cell-based assay results to more complex biological systems. In this review, we analyzed the latest advancements (2019-2024) in the development of these compound classes, correlating predictive parameters with their observed biological activity. Among these parameters, we highlighted the partition coefficient (LogP), which measures a compound's lipophilicity and influences its ability to cross biological membranes, and Caco-2 cell permeability, an in vitro model widely used to predict intestinal drug absorption. Additionally, we prioritized the most promising molecules and structural classes for pharmaceutical development, discussing structure-activity relationships (SARs) and the remaining challenges that must be overcome to enable the clinical application of these compounds in the treatment of NTDs.
Collapse
Affiliation(s)
| | | | | | | | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (P.S.T.d.C.); (A.L.R.G.); (C.M.C.); (J.L.d.S.)
| |
Collapse
|
2
|
Chaudhary J, Kaur G, Singh I. Synthesis strategies and anti-parasitic evaluation of novel compounds for chagas disease: Advancing drug discovery through structure-activity relationships. Eur J Med Chem 2025; 284:117203. [PMID: 39740321 DOI: 10.1016/j.ejmech.2024.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
This study presents a comprehensive exploration of the synthesis of novel compounds targeting Chagas Disease (CD) caused by Trypanosoma cruzi. It is a global health threat with over 6-7 million infections worldwide. Addressing challenges in current treatments, the investigation explores diverse compound classes, including thiazoles, thiazolidinone, imidazole, pyrazole, 1,6-diphenyl-1H-pyrazolo[3,4-b] pyridine, pyrrole, naphthoquinone, neolignan, benzeneacyl hydrazones, and chalcones-based compounds. Highlighting compounds with superior trypanocidal activity compared to standard drugs. The study elucidates structure-activity relationships, emphasizing the impact of substituents, fluorine presence, and substitution patterns. Noteworthy findings include neolignan derivatives demonstrating efficacy against intracellular amastigotes and free-moving trypomastigotes, with unsaturated side chains. Benzeneacylhydrazones and chalcones, as novel classes, showed varied efficacy, with certain compounds surpassing benznidazole. A novel series of triketone compounds exhibited strong anti-parasitic activity, outperforming standard drugs. Docking study revealed that the halogen and methoxy substituted phenyl ring, thiazole, thiazolidine-4-one, quinoline, isoindoline-1,3-dione, pyrrole heterocyclic motifs can play the key role in the designing of effective inhibitors of T. cruzi. Mutually, these insights placed the foundation for the development of innovative and effective treatments for CD, addressing the urgent need for improved therapeutic options.
Collapse
Affiliation(s)
- Jitendra Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Gurdeep Kaur
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, India
| | - Iqubal Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
3
|
Pintão AM, Santos T, Nogueira F. Antimalarial Activity of Aqueous Extracts of Nasturtium ( Tropaeolum majus L.) and Benzyl Isothiocyanate. Molecules 2024; 29:2316. [PMID: 38792178 PMCID: PMC11124403 DOI: 10.3390/molecules29102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 - GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 - GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC's GI was comparable to chloroquine's. BITC's IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery.
Collapse
Affiliation(s)
- Ana Maria Pintão
- Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
| | - Tiago Santos
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
4
|
Kalita T, Choudhury A, Shakya A, Ghosh SK, Singh UP, Bhat HR. A Review on Synthetic Thiazole Derivatives as an Antimalarial Agent. Curr Drug Discov Technol 2024; 21:e240124226141. [PMID: 38279721 DOI: 10.2174/0115701638276379231223101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Thiazole is a widely studied core structure in heterocyclic chemistry and has proven to be a valuable scaffold in medicinal chemistry. The presence of thiazole in both naturally occurring and synthetic pharmacologically active compounds demonstrates the adaptability of these derivatives. METHODS The current study attempted to review and compile the contributions of numerous researchers over the last 20 years to the medicinal importance of these scaffolds, with a primary focus on antimalarial activity. The review is based on an extensive search of PubMed, Google Scholar, Elsevier, and other renowned journal sites for a thorough literature survey involving various research and review articles. RESULTS A comprehensive review of the antimalarial activity of the thiazole scaffold revealed potential therapeutic targets in Plasmodium species. Furthermore, the correlation of structure-activity-relationship (SAR) studies from various articles suggests that the thiazole ring has therapeutic potential. CONCLUSION This article intends to point researchers in the right direction for developing potential thiazole-based compounds as antimalarial agents in the future.
Collapse
Affiliation(s)
- Tutumoni Kalita
- Department of Pharmaceutical Sciences, Girijananda Chowdhury Institute of Pharmaceutical Science, Hatkhowapara, Azara, Guwahati, Assam, India
| | - Ankita Choudhury
- Department of Pharmacy, Silchar Medical College and Hospital, Silchar, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| |
Collapse
|
5
|
Fernandes GFS, Lopes JR, Dos Santos JL, Scarim CB. Phthalimide as a versatile pharmacophore scaffold: Unlocking its diverse biological activities. Drug Dev Res 2023; 84:1346-1375. [PMID: 37492986 DOI: 10.1002/ddr.22094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Phthalimide, a pharmacophore exhibiting diverse biological activities, holds a prominent position in medicinal chemistry. In recent decades, numerous derivatives of phthalimide have been synthesized and extensively studied for their therapeutic potential across a wide range of health conditions. This comprehensive review highlights the latest developments in medicinal chemistry, specifically focusing on phthalimide-based compounds that have emerged within the last decade. These compounds showcase promising biological activities, including anti-inflammatory, anti-Alzheimer, antiepileptic, antischizophrenia, antiplatelet, anticancer, antibacterial, antifungal, antimycobacterial, antiparasitic, anthelmintic, antiviral, and antidiabetic properties. The physicochemical profiles of the phthalimide derivatives were carefully analyzed using the online platform pkCSM, revealing the remarkable versatility of this scaffold. Therefore, this review emphasizes the potential of phthalimide as a valuable scaffold for the development of novel therapeutic agents, providing avenues for the exploration and design of new compounds.
Collapse
Affiliation(s)
| | - Juliana R Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Cauê B Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
6
|
da Silva JG, Aires ADL, da Cunha RX, do Monte TVS, Assis SPDO, de Oliveira RN, Souza TGDS, Chagas CA, Silva Neto JDC, de Araújo HDA, Lima VLDM. Anti-Hyperuricemic, Anti-Arthritic, Hemolytic Activity and Therapeutic Safety of Glycoconjugated Triazole-Phthalimides. Biomedicines 2023; 11:2537. [PMID: 37760978 PMCID: PMC10526838 DOI: 10.3390/biomedicines11092537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperuricemia, the metabolic alteration that leads to gout or gouty arthritis, is increasing worldwide. Glycoconjugated triazole-phthalimides show potent anti-inflammatory activity. The aim of this study was to evaluate the anti-hyperuricemia effect of glycoconjugated triazole-phthalimides. To develop hyperuricemia, groups of mice received orally potassium oxonate (250 mg/kg) for 7 days, and F2, F3 and F4 glycoconjugated triazole-phthalimides (20 mg/kg), allopurinol (300 mg/kg), and 1% carboxymethylcellulose; indomethacin (2 and 4 mg/kg) was the positive control for anti-arthritic effect. Genotoxic and mutagenic effects were evaluated by the comet and micronucleus assays, respectively. The hemolytic action of the compounds was evaluated. Phthalimides F2, F3 and F4 significantly reduced the levels of serum uric acid, creatinine and urea in hyperuricemic animals. In addition, the compounds were efficient in reducing protein denaturation in a dose-dependent manner. In an interesting way, the histopathological analysis of kidneys from groups treated with F2, F3 and F4 showed a glomerular architecture, with the Bowman's capsule and renal tubules having a normal appearance and without inflammatory changes. Also, F2 and F4 showed a small increase in micronuclei, indicating a low mutagenic effect, whilst by comet assay only, we could infer that F4 affected the frequency and damage index, thus indicating a very small genotoxic action. Similarly, the phthalimides showed a low degree of erythrocyte hemolysis (<3%). Our data demonstrate that the new glycoconjugate triazole-phthalimides have potential to treat hyperuricemia and its secondary complications, such as gouty arthritis, with a low to non-significant rate of erythrocytes hemolysis, genotoxicity and mutagenicity making these molecules strong candidates as pharmaceutical agents for treatment requiring uric-acid-lowering therapy.
Collapse
Affiliation(s)
- José Guedes da Silva
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
- Faculdade de Medicina de Garanhuns (FAMEG), Garanhuns 55297-654, PE, Brazil
| | - André de Lima Aires
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Rebeca Xavier da Cunha
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Talyta Valéria Siqueira do Monte
- Centro de Ciências da Saúde (CCS), Departamento de Enfermagem, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Shalom Pôrto de Oliveira Assis
- Laboratório de Biotecnologia e Ciências Ambientais (NPCIAMB), Departamento de Medicina, Universidade Católica de Pernambuco (UNICAP), Recife 50050-900, PE, Brazil;
| | - Ronaldo Nascimento de Oliveira
- Laboratório de Síntese de Compostos Bioativos (LSCB), Departamento de Química, Universidade Federal Rural de Pernambuco (UFRPE), Recife 52171-900, PE, Brazil;
| | - Talita Giselly dos Santos Souza
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (T.G.d.S.S.); (C.A.C.)
| | - Cristiano Aparecido Chagas
- Laboratório de Biotecnologia e Fármacos, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (T.G.d.S.S.); (C.A.C.)
| | - Jacinto da Costa Silva Neto
- Laboratório de Pesquisas Citológicas e Moleculares (LPCM), Universidade Federal de Pernambuco (UFPE), Recife 50670-901, PE, Brazil;
| | - Hallysson Douglas Andrade de Araújo
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| | - Vera Lúcia de Menezes Lima
- Laboratório de Lipídeos e Aplicações de Biomoléculas em Doenças Prevalentes e Negligenciadas (LAB—DPN), Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil;
| |
Collapse
|
7
|
da Silva G, Luz AFS, Duarte D, Fontinha D, Silva VLM, Almeida Paz FA, Madureira AM, Simões S, Prudêncio M, Nogueira F, Silva AMS, Moreira R. Facile Access to Structurally Diverse Antimalarial Indoles Using a One-Pot A 3 Coupling and Domino Cyclization Approach. ChemMedChem 2023; 18:e202300264. [PMID: 37392377 DOI: 10.1002/cmdc.202300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
A multistep and diversity-oriented synthetic route aiming at the A3 coupling/domino cyclization of o-ethynyl anilines, aldehydes and s-amines is described. The preparation of the corresponding precursors included a series of transformations, such as haloperoxidation and Sonogashira cross-coupling reactions, amine protection, desilylation and amine reduction. Some products of the multicomponent reaction underwent further detosylation and Suzuki coupling. The resulting library of structurally diverse compounds was evaluated against blood and liver stage malaria parasites, which revealed a promising lead with sub-micromolar activity against intra-erythrocytic forms of Plasmodium falciparum. The results from this hit-to-lead optimization are hereby reported for the first time.
Collapse
Affiliation(s)
- Gustavo da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - André F S Luz
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Denise Duarte
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Filipe A Almeida Paz
- Department of Chemistry & CICECO -, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Madureira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Fátima Nogueira
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- GHTM - Global Health and Tropical Medicine, Universidade Nova de Lisboa, Rua da Junqueira n° 100, 1349-008, Lisboa, Portugal
| |
Collapse
|
8
|
Pathak S, Bhardwaj M, Agrawal N, Bhardwaj A. A comprehensive review on potential candidates for the treatment of chagas disease. Chem Biol Drug Des 2023; 102:587-605. [PMID: 37070386 DOI: 10.1111/cbdd.14257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Twenty different infectious disorders induced by bacteria, viruses, and parasites are categorized as neglected tropical diseases (NTDs) by WHO. The severity of chagas disease remains a major concern in endemic areas and an emerging public health hazard in nonendemic countries. Trypanosoma cruzi, the etiological agent of this NTD, is mostly transmitted by triatomine vectors and comprises a range of epidemiologically significant variants. Current chemotherapeutics are obsolete, and one of the primary reasons for treatment cessation is their poor safety and effectiveness. Due to the aforementioned challenges, researchers are now focusing on discovering alternative novel safe, and economically reachable therapies for the treatment of trypanosomiasis. Certain target-based drugs that target specific biochemical processes of the causative parasites have been described as potential antichagasic agents that possesses various types of heterocyclic scaffolds. These flexible molecules have a wide range of biological actions, and various synthesized compounds with strong activity have been documented. This review aims to discuss the available literature on synthetic anti-T. cruzi drugs that will give a food for thought to medicinal chemists thriving to design and develop such drugs. Furthermore, some of the studies discussed herein are concerned with the potential of novel drugs to block new viable sites in T. cruzi.
Collapse
Affiliation(s)
- Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Muskan Bhardwaj
- Hospital Administration, FCAM, SGT University, Gurugram, India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aditya Bhardwaj
- Department of Healthcare Management, Chitkara Business School, Chitkara University, Punjab, India
| |
Collapse
|
9
|
Cox Holanda de Barros Dias M, Souza Barbalho M, Bezerra de Oliveira Filho G, Veríssimo de Oliveira Cardoso M, Lima Leite AC, da Silva Santos AC, Cristovão Silva AC, Accioly Brelaz de Castro MC, Maria Nascimento Moura D, Gomes Rebello Ferreira LF, Zaldini Hernandes M, de Freitas E Silva R, Rêgo Alves Pereira V. 1,3-Thiazole derivatives as privileged structures for anti-Trypanosoma cruzi activity: Rational design, synthesis, in silico and in vitro studies. Eur J Med Chem 2023; 257:115508. [PMID: 37267753 DOI: 10.1016/j.ejmech.2023.115508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Chagas disease is a deadly and centenary neglected disease that is recently surging as a potential global threat. Approximately 30% of infected individuals develop chronic Chagas cardiomyopathy and current treatment with the reference benznidazole (BZN) is ineffective for this stage. We presently report the structural planning, synthesis, characterization, molecular docking prediction, cytotoxicity, in vitro bioactivity and mechanistic studies on the anti-T. cruzi activity of a series of 16 novel 1,3-thiazoles (2-17) derived from thiosemicarbazones (1a, 1b) in a two-step and reproducible Hantzsch-based synthesis approach. The anti-T. cruzi activity was evaluated in vitro against the epimastigote, amastigote and trypomastigote forms of the parasite. In the bioactivity assays, all thiazoles were more potent than BZN against epimastigotes. We found that the compounds presented an overall increased anti-tripomastigote selectivity (Cpd 8 was 24-fold more selective) than BZN, and they mostly presented anti-amastigote activity at very low doses (from 3.65 μM, cpd 15). Mechanistic studies on cell death suggested that the series of 1,3-thiazole compounds herein reported cause parasite cell death through apoptosis, but without compromising the mitochondrial membrane potential. In silico prediction of physicochemical properties and pharmacokinetic parameters showed promising drug-like results, being all the reported compounds in compliance with Lipinski and Veber rules. In summary, our work contributes towards a more rational design of potent and selective antitripanosomal drugs, using affordable methodology to yield industrially viable drug candidates.
Collapse
Affiliation(s)
- Mabilly Cox Holanda de Barros Dias
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil.
| | - Mayara Souza Barbalho
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670- 420, Recife, Pernambuco, Brazil
| | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | | | | | | - Luiz Felipe Gomes Rebello Ferreira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
10
|
Cruz Filho IJDA, Oliveira JFDE, Santos ACS, Pereira VRA, Lima MCADE. Synthesis of 4-(4-chlorophenyl)thiazole compounds: in silico and in vitro evaluations as leishmanicidal and trypanocidal agents. AN ACAD BRAS CIENC 2023; 95:e20220538. [PMID: 37132749 DOI: 10.1590/0001-3765202320220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/23/2023] [Indexed: 05/04/2023] Open
Abstract
Neglected tropical diseases are a diverse group of communicable pathologies that mainly prevail in tropical and subtropical regions. Thus, the objective of this work was to evaluate the biological potential of eight 4-(4-chlorophenyl)thiazole compounds. Tests were carried out in silico to evaluate the pharmacokinetic properties, the antioxidant, cytotoxic activities in animal cells and antiparasitic activities were evaluated against the different forms of Leishmania amazonensis and Trypanosoma cruzi in vitro. The in silico study showed that the evaluated compounds showed good oral availability. In a preliminary in vitro study, the compounds showed moderate to low antioxidant activity. Cytotoxicity assays show that the compounds showed moderate to low toxicity. In relation to leishmanicidal activity, the compounds presented IC50 values that ranged from 19.86 to 200 µM for the promastigote form, while for the amastigote forms, IC50 ranged from 101 to more than 200 µM. The compounds showed better results against the forms of T. cruzi with IC50 ranging from 1.67 to 100 µM for the trypomastigote form and 1.96 to values greater than 200 µM for the amastigote form. This study showed that thiazole compounds can be used as future antiparasitic agents.
Collapse
Affiliation(s)
- Iranildo José DA Cruz Filho
- Federal University of Pernambuco (UFPE), Department of Antibiotics, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jamerson F DE Oliveira
- University of International Integration of Afro-Brazilian Lusophony (UNILAB), Av. da Abolição, 3, Centro 62790-970 Redenção, CE, Brazil
| | - Aline Caroline S Santos
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Prof. Moraes Rego, 1235, Cidade Universitária 50670-901 Recife, PE, Brazil
| | - Valéria R A Pereira
- Oswaldo Cruz Pernambuco Foundation (Fiocruz/PE), Department of Immunology, Av. Prof. Moraes Rego, 1235, Cidade Universitária 50670-901 Recife, PE, Brazil
| | - Maria Carmo A DE Lima
- Federal University of Pernambuco (UFPE), Department of Antibiotics, Av. Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
11
|
Araújo DMF, da Cruz Filho IJ, Santos T, Pereira DTM, Marques DSC, da Conceição Alves de Lima A, de Aquino TM, de Moraes Rocha GJ, do Carmo Alves de Lima M, Nogueira F. Biological activities and physicochemical characterization of alkaline lignins obtained from branches and leaves of Buchenavia viridiflora with potential pharmaceutical and biomedical applications. Int J Biol Macromol 2022; 219:224-245. [DOI: 10.1016/j.ijbiomac.2022.07.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
|
12
|
Rubio-Hernández M, Alcolea V, Pérez-Silanes S. Potential of sulfur-selenium isosteric replacement as a strategy for the development of new anti-chagasic drugs. Acta Trop 2022; 233:106547. [PMID: 35667455 DOI: 10.1016/j.actatropica.2022.106547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Current treatment for Chagas disease is based on only two drugs: benznidazole and nifurtimox. Compounds containing sulfur (S) in their structure have shown promising results in vitro and in vivo against Trypanosoma cruzi, the parasite causing Chagas disease. Notably, some reports show that the isosteric replacement of S by selenium (Se) could be an interesting strategy for the development of new compounds for the treatment of Chagas disease. To date, the activity against T. cruzi of three Se- containing groups has been compared with their S counterparts: selenosemicarbazones, selenoquinones, and selenocyanates. More studies are needed to confirm the positive results of Se compounds. Therefore, we have investigated S compounds described in the literature tested against T. cruzi. We focused on those tested in vivo that allowed isosteric replacement to propose their Se counterparts as promising compounds for the future development of new drugs against Chagas disease.
Collapse
|
13
|
Bismuth complex of quinoline thiosemicarbazone restores carbapenem sensitivity in NDM-1-positive Klebsiella pneumoniae. J Inorg Biochem 2022; 234:111887. [DOI: 10.1016/j.jinorgbio.2022.111887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022]
|
14
|
Chagas disease: Immunology of the disease at a glance. Cytokine Growth Factor Rev 2021; 62:15-22. [PMID: 34696979 DOI: 10.1016/j.cytogfr.2021.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Chagas disease is an important neglected disease that affects 6-7 million people worldwide. The disease has two phases: acute and chronic, in which there are different clinical symptoms. Controlling the infection depends on innate and acquired immune responses, which are activated during the initial infection and are critical for host survival. Furthermore, the immune system plays an important role in the therapeutic success. Here we summarize the importance of the immune system cytokines in the pathology outcome, as well as in the treatment.
Collapse
|