1
|
Scalese G, Pérez N, Pereyra J, Sanabria Y, Blacque O, Machado I, Pérez-Díaz L, Gambino D. Broadening the chemical diversity of oxidovanadium(V) complexes for targeting neglected tropical diseases. J Inorg Biochem 2025; 269:112891. [PMID: 40112427 DOI: 10.1016/j.jinorgbio.2025.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/01/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Chagas disease and Leishmaniasis, caused by Trypanosoma cruzi and Leishmania spp., respectively, are highly prevalent neglected tropical diseases (NTDs) that pose significant global health challenges. In our pursuit of effective vanadium-based therapeutics against these diseases, we previously developed several series of oxidovanadium(V) complexes featuring bidentate bioactive ligands and Schiff base tridentate ligands. The current study extends our previous research by incorporating in the same molecule, a tridentate bromo-substituted isonicotinyl hydrazone Schiff base ligand, BrIS, and a 8-hydroxyquinoline derivative (L), leading to the synthesis and comprehensive characterization of five new complexes, [VVO(BrIS-2H)(L-H)]. Most of new complexes exhibited activity in the micromolar range against the infective trypomastigote form of T. cruzi (EC50, 24h: 0.73-7.95 μM) and against L. infantum promastigotes (IC50, 5 days: 1.14-1.16 μM) and some of them showed good selectivity indexes towards the parasites (SI up to 52). Notably, the vanadium uptake by the parasites was higher for the new [VVO(BrIS-2H)(L-H)] compounds compared to [VVO(IN-2H)(L-H)] analogues previously developed, where IN is the structurally related 2-hydroxy-1-naphtaldehyde isonicotinoylhydrazone ligand, with accumulation in the soluble cell fraction. High-dose incubations resulted in trypanocidal effects and suggested the generation of reactive oxygen species (ROS). Further analysis revealed that [VVO(BrIS-2H)(L-H)] complexes induced a higher percentage of apoptosis, whereas the [VVO(IN-2H)(L-H)] series was associated with autophagic cell death. These findings highlight the potential of the [VVO(BrIS-2H)(L-H)] series as promising anti-T. cruzi agents and underscore the need for further research to optimize their therapeutic efficacy and explore their mechanisms of action.
Collapse
Affiliation(s)
- Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Nicolás Pérez
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Josefina Pereyra
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Yasmina Sanabria
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Ignacio Machado
- Área Química Analítica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leticia Pérez-Díaz
- Sección Genómica Funcional, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay..
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Rezende WS, Neto AM, Corbi JJ, Corbi PP, de Paiva REF, Bergamini FRG. Coordination Compounds as Antivirals against Neglected Tropical Diseases. ChemMedChem 2025; 20:e202400799. [PMID: 39591549 DOI: 10.1002/cmdc.202400799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Neglected tropical viral diseases are a burden to social and economic welfare being responsible for higher pathogen-related mortality rates and chronic debilitating patient conditions. Climatic changes have widened up the infectibility ratio of such diseases, with autochthonous transmission in formerly temperate-to-cold environments. The slow-paced development of potential vaccines followed by the inexistence of antiviral drugs for such diseases considerably worsens the situation. Coordination compounds are a class of molecules that have been extensively explored as antiviral drugs for viruses such as poliovirus, HIV and, more recently, SARS-CoV-2, figuring as potential molecules to be explored and capitalized as antivirals against neglected viral strains. In this review the current efforts from the inorganic medicinal chemistry to address viral neglected tropical diseases, with emphasis to coordination compounds, is presented. Since many of neglected viruses are also arthropod-borne viruses, relying on a vector for transmission, coordination entities able to mitigate vectors are also presented as a parallel strategy to prevent and control such diseases.
Collapse
Affiliation(s)
- Wallace S Rezende
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Antonio Marçal Neto
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| | - Juliano J Corbi
- Department of Hydraulics and Sanitation, University of São Paulo-USP, 13566-590, São Carlos, São Paulo, Brazil
| | - Pedro P Corbi
- Institute of Chemistry, University of Campinas-UNICAMP, PO Box 6154, Campinas, São Paulo, 13083-970, Brazil
| | - Raphael E F de Paiva
- Donostia International Physics Center-DIPC, Paseo Manuel de Lardizabal, 4 Donostia, Euskadi, Gipuzkoa, 20018, Spain
| | - Fernando R G Bergamini
- Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlândia-UFU, João Naves de Avila Avenue, 2121, 38408-100, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
3
|
Minori K, Gadelha FR, Bonsignore R, Alcántar GM, Fontes JV, Abbehausen C, Brioschi MBC, de Sousa LM, Consonni SR, Casini A, Miguel DC. An organogold compound impairs Leishmania amazonensis amastigotes survival and delays lesion progression in murine cutaneous leishmaniasis: Mechanistic insights. Biochem Pharmacol 2025; 232:116716. [PMID: 39674234 DOI: 10.1016/j.bcp.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Leishmaniasis is one of the most important neglected diseases, classically characterized by three clinical forms that if left untreated can lead to skin lesions, lifelong scarring, or death depending on the parasite species. Unfortunately, treatment is unsatisfactory and the search for an improved therapy has been a priority. Gold compounds have emerged as promising candidates and among them, Au(I)bis-N-heterocyclic carbene (Au(BzTMX)2) has stood out. We have shown that it alters the plasma membrane permeability of Leishmania amazonensis and L. braziliensis, with superior activity for L. amazonensis. Herein, we moved a step forward towards the elucidation of its mechanism of action in L. amazonensis axenic amastigotes in vitro and in vivo. After 24 h incubation, Au(BzTMX)2 induced changes in safranin O uptake, reflecting the ultrastructural changes observed in mitochondria, especially cristae swelling, and oxygen consumption rates. Besides mitochondrial alterations, plasma membrane blebbing and the formation of multilamellar structures were also observed suggesting an autophagy-like process induction. In vivo, Au(BzTMX)2 was capable of delaying lesion progression, decreasing the total ulcerated area and leading to a marked reduction in the parasite burden of infected BALB/c mice. Taking all into consideration, our results give support to the current knowledge of the importance of gold compounds in therapeutics and open new possibilities for leishmaniasis treatment.
Collapse
Affiliation(s)
- Karen Minori
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Fernanda R Gadelha
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Riccardo Bonsignore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Edificio 17, Palermo 90128, Italy.
| | - Guillermo Moreno Alcántar
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraβe 4, 85748 Garching b München, Germany.
| | - Josielle V Fontes
- Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Camilla Abbehausen
- Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Mariana B C Brioschi
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Lizandra Maia de Sousa
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Sílvio R Consonni
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstraβe 4, 85748 Garching b München, Germany.
| | - Danilo C Miguel
- Instituto de Biologia, Universidade Estadual de Campinas - UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Mahdavi SM, Bockfeld D, Esarev IV, Lippmann P, Frank R, Brönstrup M, Ott I, Tamm M. Gold(i) and gold(iii) carbene complexes from the marine betaine norzooanemonin: inhibition of thioredoxin reductase, antiproliferative and antimicrobial activity. RSC Med Chem 2024:d4md00358f. [PMID: 39185451 PMCID: PMC11342128 DOI: 10.1039/d4md00358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
The natural marine betaine norzooanemonin (1,3-dimethylimidazolim-4-carboxylate) and its methyl and ethyl esters were used as ligand precursors to prepare a systematic series (12 members) of neutral monocarbene gold(i/iii) and cationic dicarbene gold(i/iii) complexes. The complexes were evaluated as inhibitors of bacterial thioredoxin reductase and for their antiproliferative and antimicrobial activities. While gold complexes with the parent norzooanemonin scaffold resulted in overall poor performance, the more lipophilic esters proved to be highly bioactive agents, related to their higher cellular uptake. The monocarbene gold(i/iii) complexes showed significant potency as inhibitors of bacterial thioredoxin reductase. In most assays, the efficacy of both gold(i) and gold(iii) analogues was found to be comparable. The cytotoxicity of dicarbene gold(i/iii) complexes against cancer cells was strong, in some cases exceeding that of the standard reference auranofin.
Collapse
Affiliation(s)
- Seyedeh Mahbobeh Mahdavi
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| | - Igor V Esarev
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstraße 55 38106 Braunschweig Germany
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstraße 55 38106 Braunschweig Germany
| | - René Frank
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research GmbH Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig Beethovenstraße 55 38106 Braunschweig Germany
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig Hagenring30 38106 Braunschweig Germany
| |
Collapse
|
5
|
Borges AP, Obata MMS, Libardi SH, Trevisan RO, Deflon VM, Abram U, Ferreira FB, Costa LAS, Patrocínio AOT, da Silva MV, Borges JC, Maia PIS. Gold(I) and Silver(I) Complexes Containing Hybrid Sulfonamide/Thiourea Ligands as Potential Leishmanicidal Agents. Pharmaceutics 2024; 16:452. [PMID: 38675113 PMCID: PMC11053681 DOI: 10.3390/pharmaceutics16040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Leishmaniasis is a group of parasitic diseases with the potential to infect more than 1 billion people; however, its treatment is still old and inadequate. In order to contribute to changing this view, this work consisted of the development of complexes derived from MI metal ions with thioureas, aiming to obtain potential leishmanicidal agents. The thiourea ligands (HLR) were obtained by reactions of p-toluenesulfohydrazide with R-isothiocyanates and were used in complexation reactions with AgI and AuI, leading to the formation of complexes of composition [M(HLR)2]X (M = Ag or Au; X = NO3- or Cl-). All compounds were characterized by FTIR, 1H NMR, UV-vis, emission spectroscopy and elemental analysis. Some representatives were additionally studied by ESI-MS and single-crystal XRD. Their properties were further analyzed by DFT calculations. Their cytotoxicity on Vero cells and the extracellular leishmanicidal activity on Leishmania infantum and Leishmania braziliensis cells were evaluated. Additionally, the interaction of the complexes with the Old Yellow enzyme of the L. braziliensis (LbOYE) was examined. The biological tests showed that some compounds present remarkable leishmanicidal activity, even higher than that of the standard drug Glucantime, with different selectivity for the two species of Leishmania. Finally, the interaction studies with LbOYE revealed that this enzyme could be one of their biological targets.
Collapse
Affiliation(s)
- Alice P. Borges
- Bioactive Compounds Development Research Group, Federal University of Triângulo Mineiro, Av. Dr. Randolfo Borges 1400, Uberaba 38025-440, MG, Brazil;
| | - Malu M. S. Obata
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Av. Getúlio Guarita, Uberaba 38025-440, MG, Brazil; (M.M.S.O.); (R.O.T.); (M.V.d.S.)
| | - Silvia H. Libardi
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13566-590, SP, Brazil; (S.H.L.); (V.M.D.); (J.C.B.)
| | - Rafael O. Trevisan
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Av. Getúlio Guarita, Uberaba 38025-440, MG, Brazil; (M.M.S.O.); (R.O.T.); (M.V.d.S.)
| | - Victor M. Deflon
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13566-590, SP, Brazil; (S.H.L.); (V.M.D.); (J.C.B.)
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstr. 34/36, 14195 Berlin, Germany;
| | - Francis B. Ferreira
- Associated Faculties of Uberaba, Av. do Tutuna 720, Uberaba 38061-500, MG, Brazil;
| | - Luiz Antônio S. Costa
- Computational Chemistry Research Group, Institute of Exact Sciences, Federal University of Juiz de Fora, Campus Universitário s/n Martelos, Juiz de Fora 36036-900, MG, Brazil;
| | - Antonio O. T. Patrocínio
- Laboratory of Photochemistry and Material Science, Institute of Chemistry, Federal University of Uberlândia, Av. João Naves de Ávila 2121, Uberlândia 38400-902, MG, Brazil;
| | - Marcos V. da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triângulo Mineiro, Av. Getúlio Guarita, Uberaba 38025-440, MG, Brazil; (M.M.S.O.); (R.O.T.); (M.V.d.S.)
| | - Júlio C. Borges
- São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13566-590, SP, Brazil; (S.H.L.); (V.M.D.); (J.C.B.)
| | - Pedro I. S. Maia
- Bioactive Compounds Development Research Group, Federal University of Triângulo Mineiro, Av. Dr. Randolfo Borges 1400, Uberaba 38025-440, MG, Brazil;
| |
Collapse
|
6
|
de Andrade Querino AL, de Sousa AM, Thomas SR, de Lima GM, Dittz D, Casini A, do Monte-Neto RL, Silva H. Organogold(III)-dithiocarbamate compounds and their coordination analogues as anti-tumor and anti-leishmanial metallodrugs. J Inorg Biochem 2023; 247:112346. [PMID: 37536162 DOI: 10.1016/j.jinorgbio.2023.112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
The limited chemical stability of gold(III)-based compounds in physiological environment has been a challenge in drug discovery, and organometallic chemistry might provide the solution to overcome this issue. In this work, four novel cationic organogold(III)-dithiocarbamate complexes of general structure [(C^N)AuIIIDTC]PF6 (C1a - C4a, DTC = dithiocarbamate, L1 - L4, C^N = 2-anilinopyridine) are presented, and compared to their coordination gold(III)-dithiocarbamate analogues [AuIIIDTCCl2] (C1b - C4b), as potential anti-cancer and anti-leishmanial drugs. Most of the complexes effectively inhibited cancer cell growth, notably C3a presented anti-proliferative effect in the nanomolar range against breast cancer (MCF-7 and MDA-MB-231 cells with moderate selectivity. Pro-apoptotic studies on treated MCF-7 cells showed a high population of cells in early apoptosis. Reactivity studies of C3a towards model thiols (N-acetyl-L-cysteine) refer to a possible mode of action involving bonding between the organogold(III)-core and the thiolate. In the scope of neglected diseases, gold complexes are emerging as promising therapeutic alternatives against leishmaniasis. In this regard, all gold(III)-dithiocarbamate complexes presented anti-leishmanial activity against at least one Leishmania species. Complexes C1a, C4a, C1b, C4b were active against all tested parasites with IC50 values varying between 0.12 and 42 μM, and, overall, organometallic compounds presented more intriguing inhibition profiles. For C4a selectivity over 500-fold for L. braziliensis; even higher than the reference anti-leishmanial drug amphotericin B. Overall, our findings revealed that the organogold(III) moiety significantly amplified the anti-cancer and anti-leishmanial effects with respect to the coordination analogues; thus, showing the great potential of organometallic chemistry in metallodrug-based chemotherapy for cancer and leishmaniasis.
Collapse
Affiliation(s)
- Ana Luiza de Andrade Querino
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching b. Munich, Germany.
| | - Alessandra Mara de Sousa
- RdM Lab - Biotechnology Applied to Pathogens Research Group, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sophie R Thomas
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching b. Munich, Germany
| | - Geraldo Magela de Lima
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Universidade Federal do Piaui, Teresina, Brazil
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching b. Munich, Germany
| | - Rubens Lima do Monte-Neto
- RdM Lab - Biotechnology Applied to Pathogens Research Group, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Heveline Silva
- Laboratório de Síntese e Interações Bioinorgânicas (SibLab), Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Dar MO, Mir RH, Mohiuddin R, Masoodi MH, Sofi FA. Metal complexes of xanthine and its derivatives: Synthesis and biological activity. J Inorg Biochem 2023; 246:112290. [PMID: 37327591 DOI: 10.1016/j.jinorgbio.2023.112290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Xanthine and its derivatives are considered an important class of N-heterocyclic purine compounds that have gained significant importance in medicinal chemistry. N-heterocyclic carbene (NHC) and N-coordinated metal complexes of xanthine and its derivatives have revealed a range of new possibilities for their use as therapeutic agents in addition to their established catalytic behavior. The metal complexes of xanthine and its derivatives have been designed and synthesized for the exploration of their potential therapeutic applications. These metal complexes based on the xanthine scaffold exhibited various potential medicinal applications including anticancer, antibacterial, and antileishmanial activity. The metal complexes of xanthine and its derivatives shall pave the way for the rational design and development of new therapeutic agents. In the present comprehensive review, we highlighted the recent advancements in the synthesis and medicinal applications of metal complexes based on N-heterocyclic carbene (NHC) derived from xanthine scaffolds.
Collapse
Affiliation(s)
- Mohammad Ovais Dar
- Department of Pharmaceutical Chemistry, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Reyaz Hassan Mir
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Roohi Mohiuddin
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| | - Mubashir H Masoodi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India
| | - Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J & K, India.
| |
Collapse
|
8
|
Greif CE, Mertens RT, Berger G, Parkin S, Awuah SG. An anti-glioblastoma gold(i)-NHC complex distorts mitochondrial morphology and bioenergetics to induce tumor growth inhibition. RSC Chem Biol 2023; 4:592-599. [PMID: 37547458 PMCID: PMC10398352 DOI: 10.1039/d3cb00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/19/2023] [Indexed: 08/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal brain cancer subtype, often advanced by the time of initial diagnosis. Existing treatment modalities including surgery, chemotherapy and radiation have been stymied by recurrence, metastasis, drug resistance and brain targetability. Here, we report a geometrically distinct Au(i) complex ligated by N^N-bidentate ligands and supported by a N-heterocyclic ligand that modulates mitochondrial morphology to inhibit GBM in vitro and in vivo. This work benefits from the facile preparation of anti-GBM Au(i)-NHC complexes.
Collapse
Affiliation(s)
- Charles E Greif
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - R Tyler Mertens
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Gilles Berger
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
- Microbiology, Bioorganic & Macromolecular Chemistry, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe 1050 Brussels Belgium
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Lexington Kentucky 40536 USA
- University of Kentucky Markey Cancer Center, University of Kentucky Lexington KY 40536 USA
| |
Collapse
|
9
|
Mertens RT, Gukathasan S, Arojojoye AS, Olelewe C, Awuah SG. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem Rev 2023; 123:6612-6667. [PMID: 37071737 PMCID: PMC10317554 DOI: 10.1021/acs.chemrev.2c00649] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gold drugs, gold sodium thiomalate (Myocrisin), aurothioglucose (Solganal), and the orally administered auranofin (Ridaura), are utilized in modern medicine for the treatment of inflammatory arthritis including rheumatoid and juvenile arthritis; however, new gold agents have been slow to enter the clinic. Repurposing of auranofin in different disease indications such as cancer, parasitic, and microbial infections in the clinic has provided impetus for the development of new gold complexes for biomedical applications based on unique mechanistic insights differentiated from auranofin. Various chemical methods for the preparation of physiologically stable gold complexes and associated mechanisms have been explored in biomedicine such as therapeutics or chemical probes. In this Review, we discuss the chemistry of next generation gold drugs, which encompasses oxidation states, geometry, ligands, coordination, and organometallic compounds for infectious diseases, cancer, inflammation, and as tools for chemical biology via gold-protein interactions. We will focus on the development of gold agents in biomedicine within the past decade. The Review provides readers with an accessible overview of the utility, development, and mechanism of action of gold-based small molecules to establish context and basis for the thriving resurgence of gold in medicine.
Collapse
Affiliation(s)
- R Tyler Mertens
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sailajah Gukathasan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Adedamola S Arojojoye
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Chibuzor Olelewe
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- University of Kentucky Markey Cancer Center, Lexington, Kentucky 40536, United States
| |
Collapse
|
10
|
De Franco M, Saab M, Porchia M, Marzano C, Nolan SP, Nahra F, Van Hecke K, Gandin V. Unveiling the Potential of Innovative Gold(I) and Silver(I) Selenourea Complexes as Anticancer Agents Targeting TrxR and Cellular Redox Homeostasis. Chemistry 2022; 28:e202201898. [PMID: 36106679 PMCID: PMC10092581 DOI: 10.1002/chem.202201898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/11/2022]
Abstract
A series of NHC-based selenourea Ag(I) and Au(I) complexes were evaluated for their anticancer potential in vitro, on 2D and 3D human cancer cell systems. All NHC-based selenourea complexes possess an outstanding cytotoxic potency, which was comparable or even better than that of the reference metallodrug auranofin, and were also able to overcome both platinum-based and multi-drug resistances. Intriguingly, their cytotoxic potency did not correlate with solution stability, partition coefficient or cellular uptake. On the other hand, mechanistic studies in cancer cells revealed their ability to strongly and selectively inhibit the redox-regulating enzyme Thioredoxin Reductase (TrxR), being even more effective than auranofin, a well-known TrxR inhibitor, without affecting other redox enzymes such as Glutathione Reductase (GR). The inhibition of TrxR in H157 human cancer cells caused, in turn, the disruption of cellular thiol-redox homeostasis and of mitochondria pathophysiology, ultimately leading to cancer cell death through apoptosis.
Collapse
Affiliation(s)
- Michele De Franco
- Dipartimento di Scienze del FarmacoUniversità degli Studi di PadovaVia F. Marzolo 5I-35131PadovaItaly
| | - Marina Saab
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
| | | | - Cristina Marzano
- Dipartimento di Scienze del FarmacoUniversità degli Studi di PadovaVia F. Marzolo 5I-35131PadovaItaly
| | - Steven P. Nolan
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
| | - Fady Nahra
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
- VITO (Flemish Institute for Technological Research)Boeretang 2002400MolBelgium
| | - Kristof Van Hecke
- Department of ChemistryCenter for Sustainable Chemistry Ghent UniversityKrigsman 281, Building S39000 GhentBelgium
| | - Valentina Gandin
- Dipartimento di Scienze del FarmacoUniversità degli Studi di PadovaVia F. Marzolo 5I-35131PadovaItaly
| |
Collapse
|
11
|
Kaußler C, Wragg D, Schmidt C, Moreno-Alcántar G, Jandl C, Stephan J, Fischer RA, Leoni S, Casini A, Bonsignore R. "Dynamical Docking" of Cyclic Dinuclear Au(I) Bis-N-heterocyclic Complexes Facilitates Their Binding to G-Quadruplexes. Inorg Chem 2022; 61:20405-20423. [PMID: 36484812 PMCID: PMC9953335 DOI: 10.1021/acs.inorgchem.2c03041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aim to improve the design of metal complexes as stabilizers of noncanonical DNA secondary structures, namely, G-quadruplexes (G4s), a series of cyclic dinuclear Au(I) N-heterocyclic carbene complexes based on xanthine and benzimidazole ligands has been synthesized and characterized by various methods, including X-ray diffraction. Fluorescence resonance energy transfer (FRET) and CD DNA melting assays unraveled the compounds' stabilization properties toward G4s of different topologies of physiological relevance. Initial structure-activity relationships have been identified and recognize the family of xanthine derivatives as those more selective toward G4s versus duplex DNA. The binding modes and free-energy landscape of the most active xanthine derivative (featuring a propyl linker) with the promoter sequence cKIT1 have been studied by metadynamics. The atomistic simulations evidenced that the Au(I) compound interacts noncovalently with the top G4 tetrad. The theoretical results on the Au(I) complex/DNA Gibbs free energy of binding were experimentally validated by FRET DNA melting assays. The compounds have also been tested for their antiproliferative properties in human cancer cells in vitro, showing generally moderate activity. This study provides further insights into the biological activity of Au(I) organometallics acting via noncovalent interactions and underlines their promise for tunable targeted applications by appropriate chemical modifications.
Collapse
Affiliation(s)
- Clemens Kaußler
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Darren Wragg
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Claudia Schmidt
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Guillermo Moreno-Alcántar
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany
| | - Christian Jandl
- Catalysis
Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany
| | - Johannes Stephan
- Catalysis
Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany
| | - Roland A. Fischer
- Catalysis
Research Center & Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany,Chair
of Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technische Universität München, Ernst-Otto-Fischer Str. 1, Garching b. MünchenD-85748, Germany
| | - Stefano Leoni
- School
of Chemistry, Cardiff University, Park Place, CardiffCF10 3AT, U.K.
| | - Angela Casini
- Chair
of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching b. MünchenD-85748, Germany,
| | - Riccardo Bonsignore
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Edificio 17, Palermo90128, Italy,
| |
Collapse
|
12
|
Rivas F, Del Mármol C, Scalese G, Pérez-Díaz L, Machado I, Blacque O, Medeiros A, Comini M, Gambino D. New multifunctional Ru(II) organometallic compounds show activity against Trypanosoma brucei and Leishmania infantum. J Inorg Biochem 2022; 237:112016. [PMID: 36244312 DOI: 10.1016/j.jinorgbio.2022.112016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Human African trypanosomiasis (sleeping sickness) and leishmaniasis are prevalent zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Leishmania spp). Additionally, both are co-endemic in certain regions of the world. Only a small number of old drugs exist for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these trypanosomatid parasites by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: 8-hydroxyquinoline derivatives (8HQs) and polypyridyl ligands (NN). Three [Ru(8HQs)(dppf)(NN)](PF6) compounds were synthesized and fully characterized. They showed in vitro activity on bloodstream Trypanosoma brucei (IC50 140-310 nM) and on Leishmania infantum promastigotes (IC50 3.0-4.8 μM). The compounds showed good selectivity towards T. brucei in respect to J774 murine macrophages as mammalian cell model (SI 15-38). Changing hexafluorophosphate counterion by chloride led to a three-fold increase in activity on both parasites and to a two to three-fold increase in selectivity towards the pathogens. The compounds affect in vitro at least the targets of the individual bioactive moieties included in the new chemical entities: DNA and generation of ROS. The compounds are stable in solution and are more lipophilic than the free bioactive ligands. No clear correlation between lipophilicity, interaction with DNA or generation of ROS and activity was detected, which agrees with their overall similar anti-trypanosoma potency and selectivity. These compounds are promising candidates for further drug development.
Collapse
Affiliation(s)
- Feriannys Rivas
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Programa de Posgrado en Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carolina Del Mármol
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Scalese
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ignacio Machado
- Área Química Analítica, Universidad de la República, Montevideo, Uruguay
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Andrea Medeiros
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Dinorah Gambino
- Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
13
|
Fontes JV, Santos IA, Rosa LB, Lima RLA, Jardim ACG, Miguel DC, Abbehausen C. Antileishmanial and Anti‐Chikungunya Activity of Cu(I)‐N‐Heterocyclic Carbenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Josielle V. Fontes
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| | - Igor A. Santos
- Institute of Biomedical Sciences Federal University of Uberlândia Uberlandia MG Brazil
| | - Letícia B. Rosa
- Institute of Biology University of Campinas - UNICAMP 13083-862 Campinas SP Brazil
| | - Rochanna L. A. Lima
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| | - Ana C. G. Jardim
- Institute of Biomedical Sciences Federal University of Uberlândia Uberlandia MG Brazil
| | - Danilo C. Miguel
- Institute of Biology University of Campinas - UNICAMP 13083-862 Campinas SP Brazil
| | - Camilla Abbehausen
- Institute of Chemistry University of Campinas - UNICAMP PO Box 6154 13083-970 Campinas SP Brazil
| |
Collapse
|
14
|
Rosa LB, Galuppo C, Lima RLA, Fontes JV, Siqueira FS, Júdice WAS, Abbehausen C, Miguel DC. Antileishmanial activity and insights into the mechanisms of action of symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. J Inorg Biochem 2022; 229:111726. [PMID: 35065320 DOI: 10.1016/j.jinorgbio.2022.111726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 01/03/2023]
Abstract
Leishmania amazonensis and L. braziliensis are the main etiological agents of the American Tegumentary Leishmaniasis (ATL). Taking into account the limited effectiveness and high toxicity of the current drug arsenal to treat ATL, novel options are urgently needed. Inspired by the fact that gold-based compounds are promising candidates for antileishmanial drugs, we studied the biological action of a systematic series of six (1)-(6) symmetric Au(I) benzyl and aryl-N-heterocyclic carbenes. All compounds were active at low micromolar concentrations with 50% effective concentrations ranging from 1.57 to 8.30 μM against Leishmania promastigotes. The mesityl derivative (3) proved to be the best candidate from this series, with a selectivity index ~13 against both species. The results suggest an effect of the steric and electronic parameters of the N-substituent in the activity. Intracellular infections were drastically reduced after 24h of (2)-(5) incubation in terms of infection rate and amastigote burden. Further investigations showed that our compounds induced significant parasites' morphological alterations and membrane permeability. Also, (3) and (6) were able to reduce the residual activity of three Leishmania recombinant cysteine proteases, known as possible targets for Au(I) complexes. Our promising results open the possibility of exploring gold complexes as leishmanicidal molecules to be further screened in in vivo models of infection.
Collapse
Affiliation(s)
- Letícia B Rosa
- Department of Animal Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Carolina Galuppo
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Rochanna L A Lima
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Josielle V Fontes
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fábio S Siqueira
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Wagner A S Júdice
- Interdisciplinary Center for Biochemical Research, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | - Camilla Abbehausen
- Department of Inorganic Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Danilo C Miguel
- Department of Animal Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
15
|
Nolan VC, Rafols L, Harrison J, Soldevila-Barreda JJ, Crosatti M, Garton NJ, Wegrzyn M, Timms DL, Seaton CC, Sendron H, Azmanova M, Barry NP, Pitto-Barry A, Cox JA. Indole-containing arene-ruthenium complexes with broad spectrum activity against antibiotic-resistant bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100099. [PMID: 35059676 PMCID: PMC8760505 DOI: 10.1016/j.crmicr.2021.100099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
A new family of indole-containing arene ruthenium organometallic compounds are active against several bacterial species and drug resistant strains Bactericidal activity observed against various Gram negative, Gram positive and acid-fast bacteria, demonstrating broad-spectrum inhibitory activity Compound series exhibits low toxicity against human cells Shows considerable promise as next generation antibiotics
Antimicrobial resistant (AMR) bacteria are emerging and spreading globally, threatening our ability to treat common infectious diseases. The development of new classes of antibiotics able to kill or inhibit the growth of such AMR bacteria through novel mechanisms of action is therefore urgently needed. Here, a new family of indole-containing arene ruthenium organometallic compounds are screened against several bacterial species and drug resistant strains. The most active complex [(p-cym)Ru(O-cyclohexyl-1H-indole-2-carbothioate)Cl] (3) shows growth inhibition and bactericidal activity against different organisms (Acinetobacter baumannii, Mycobacterium abscessus, Mycobacterium tuberculosis, Staphylococcus aureus, Salmonella enterica serovar Typhi and Escherichia coli), demonstrating broad-spectrum inhibitory activity. Importantly, this compound series exhibits low toxicity against human cells. Owing to the novelty of the antibiotic family, their moderate cytotoxicity, and their inhibitory activity against Gram positive, Gram negative and acid-fast, antibiotic resistant microorganisms, this series shows significant promise for further development.
Collapse
|
16
|
Büssing R, Karge B, Lippmann P, Jones PG, Brönstrup M, Ott I. Gold(I) and Gold(III) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. ChemMedChem 2021; 16:3402-3409. [PMID: 34268875 PMCID: PMC9290826 DOI: 10.1002/cmdc.202100381] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/10/2021] [Indexed: 12/14/2022]
Abstract
A series of (NHC)Au(I)Cl monocarbene complexes and their gold(III) analogues (NHC)Au(III)Cl3 were prepared and investigated as antibacterial agents and inhibitors of bacterial TrxR. The complexes showed stronger antibacterial effects against the Gram-positive MRSA and E. faecium strains than against several Gram-negative bacteria. All complexes were efficient inhibitors of bacterial thioredoxin reductase, indicating that inhibition of this enzyme might be involved in their mechanism of action. The efficacy of gold(I) and gold(III) analogues was comparable in most of the assays. The cytotoxicity of the gold NHC compounds against cancer and human cells was overall weaker than the activity against the Gram-positive bacteria, suggesting that their optimization as antibacterials warrants further investigation.
Collapse
Affiliation(s)
- Rolf Büssing
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstrasse 5538106BraunschweigGermany
| | - Bianka Karge
- Department of Chemical BiologyHelmholtz Centre for Infection Research and German Centre for Infection Research (DZIF)Inhoffenstrasse 738124BraunschweigGermany
| | - Petra Lippmann
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstrasse 5538106BraunschweigGermany
| | - Peter G. Jones
- Institute of Inorganic and Analytical ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Mark Brönstrup
- Department of Chemical BiologyHelmholtz Centre for Infection Research and German Centre for Infection Research (DZIF)Inhoffenstrasse 738124BraunschweigGermany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical ChemistryTechnische Universität BraunschweigBeethovenstrasse 5538106BraunschweigGermany
| |
Collapse
|
17
|
Chakraborty P, Oosterhuis D, Bonsignore R, Casini A, Olinga P, Scheffers D. An Organogold Compound as Potential Antimicrobial Agent against Drug-Resistant Bacteria: Initial Mechanistic Insights. ChemMedChem 2021; 16:3060-3070. [PMID: 34181818 PMCID: PMC8518660 DOI: 10.1002/cmdc.202100342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/07/2023]
Abstract
The rise of antimicrobial resistance has necessitated novel strategies to efficiently combat pathogenic bacteria. Metal-based compounds have been proven as a possible alternative to classical organic drugs. Here, we have assessed the antibacterial activity of seven gold complexes of different families. One compound, a cyclometalated Au(III) C^N complex, showed activity against Gram-positive bacteria, including multi-drug resistant clinical strains. The mechanism of action of this compound was studied in Bacillus subtilis. Overall, the studies point towards a complex mode of antibacterial action, which does not include induction of oxidative stress or cell membrane damage. A number of genes related to metal transport and homeostasis were upregulated upon short treatment of the cells with gold compound. Toxicity tests conducted on precision-cut mouse tissue slices ex vivo revealed that the organogold compound is poorly toxic to mouse liver and kidney tissues, and may thus, be treated as an antibacterial drug candidate.
Collapse
Affiliation(s)
- Parichita Chakraborty
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Riccardo Bonsignore
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Dirk‐Jan Scheffers
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
18
|
Ftouh S, Bourgeade-Delmas S, Belkadi M, Deraeve C, Hemmert C, Valentin A, Gornitzka H. Synthesis, Characterization, and Antileishmanial Activity of Neutral Gold(I) Complexes with N-heterocyclic Carbene Ligands Bearing Sulfur-Containing Side Arms. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Soumia Ftouh
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
- (LSPBE), Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB,
B.P 1505, El Mnaouer, Oran 31000, Algeria
| | | | - Mohamed Belkadi
- (LSPBE), Département de Génie Chimique, Faculté de Chimie, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MB,
B.P 1505, El Mnaouer, Oran 31000, Algeria
| | - Céline Deraeve
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | | | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, Toulouse 31400, France
| | - Heinz Gornitzka
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| |
Collapse
|
19
|
Farine G, Migliore C, Terenzi A, Lo Celso F, Santoro A, Bruno G, Bonsignore R, Barone G. On the G‐Quadruplex Binding of a New Class of Nickel(II), Copper(II), and Zinc(II) Salphen‐Like Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gianluca Farine
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Claudio Migliore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Fabrizio Lo Celso
- Dipartimento di Fisica e Chimica “E. Segre” Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
- Institute of Structure of Matter National Research Council Laboratorio Liquidi Ionici Rome Italy
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche Biologiche Farmaceutiche e Ambientali Università degli Studi di Messina Via Stagno d'Alcontres 98166 Messina Italy
| | - Giuseppe Bruno
- Dipartimento di Scienze Chimiche Biologiche Farmaceutiche e Ambientali Università degli Studi di Messina Via Stagno d'Alcontres 98166 Messina Italy
| | - Riccardo Bonsignore
- Department of Chemistry Technical University of Munich (TUM) Lichtenbergstr. 4 85748 Garching b. München Germany
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| |
Collapse
|
20
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
21
|
Grazzia N, Boaventura S, Garcia VL, Gadelha FR, Miguel DC. Dihydroartemisinin, an active metabolite of artemisinin, interferes with Leishmania braziliensis mitochondrial bioenergetics and survival. Parasitol Res 2021; 120:705-713. [PMID: 33415404 DOI: 10.1007/s00436-020-07019-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022]
Abstract
Leishmaniasis is one of the most neglected parasitic infections of the world and current therapeutic options show several limitations. In the search for more effective drugs, plant compounds represent a powerful natural source. Artemisinin is a sesquiterpene lactone extracted from Artemisia annua L. leaves, from which dihydroartemisinin (DQHS) and artesunic acid (AA)/artesunate are examples of active derivatives. These lactones have been applied successfully on malaria therapy for decades. Herein, we investigated the sensitivity of Leishmania braziliensis, one of the most prevalent Leishmania species that cause cutaneous manifestations in the New World, to artemisinin, DQHS, and AA. L. braziliensis promastigotes and the stage that is targeted for therapy, intracelular amastigotes, were more sensitive to DQHS, showing EC50 of 62.3 ± 1.8 and 8.9 ± 0.9 μM, respectively. Cytotoxicity assays showed that 50% of bone marrow-derived macrophages cultures were inhibited with 292.8 ± 3.8 μM of artemisinin, 236.2 ± 4.0 μM of DQHS, and 396.8 ± 6.7 μM of AA. The control of intracellular infection may not be essentially attributed to the production of nitric oxide. However, direct effects on mitochondrial bioenergetics and H2O2 production appear to be associated with the leishmanicidal effect of DQHS. Our data provide support for further studies of artemisinin and derivatives repositioning for experimental leishmaniasis.
Collapse
Affiliation(s)
- Nathalia Grazzia
- Departamento de Biologia Animal - Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Sinésio Boaventura
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, UNICAMP, Paulínia, São Paulo, Brazil
| | - Vera Lucia Garcia
- Divisão de Química Orgânica e Farmacêutica, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, UNICAMP, Paulínia, São Paulo, Brazil
| | - Fernanda R Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil
| | - Danilo C Miguel
- Departamento de Biologia Animal - Parasitologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
22
|
Stoppa V, Scattolin T, Bevilacqua M, Baron M, Graiff C, Orian L, Biffis A, Menegazzo I, Roverso M, Bogialli S, Visentin F, Tubaro C. Mononuclear and dinuclear gold( i) complexes with a caffeine-based di(N-heterocyclic carbene) ligand: synthesis, reactivity and structural DFT analysis. NEW J CHEM 2021. [DOI: 10.1039/d0nj05906d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two gold(i) complexes with caffeine-based di(N-heterocyclic carbene) ligands were synthesised and fully characterised.
Collapse
|
23
|
Minori K, Rosa LB, Bonsignore R, Casini A, Miguel DC. Comparing the Antileishmanial Activity of Gold(I) and Gold(III) Compounds in L. amazonensis and L. braziliensis in Vitro. ChemMedChem 2020; 15:2146-2150. [PMID: 32830445 PMCID: PMC7756297 DOI: 10.1002/cmdc.202000536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/13/2022]
Abstract
A series of mononuclear coordination or organometallic AuI /AuIII complexes (1-9) have been comparatively studied in vitro for their antileishmanial activity against promastigotes and amastigotes, the clinically relevant parasite form, of Leishmania amazonensis and Leishmania braziliensis. One of the cationic AuI bis-N-heterocyclic carbenes (3) has low EC50 values (ca. 4 μM) in promastigotes cells and no toxicity in host macrophages. Together with two other AuIII complexes (6 and 7), the compound is also extremely effective in intracellular amastigotes from L. amazonensis. Initial mechanistic studies include an evaluation of the gold complexes' effect on L. amazonensis' plasma membrane integrity.
Collapse
Affiliation(s)
- Karen Minori
- Department of Animal Biology, Biology InstituteUniversity of Campinas (UNICAMP)Rua Monteiro Lobato, 25513083-862.CampinasSPBrazil
| | - Letícia B. Rosa
- Department of Animal Biology, Biology InstituteUniversity of Campinas (UNICAMP)Rua Monteiro Lobato, 25513083-862.CampinasSPBrazil
| | - Riccardo Bonsignore
- Department of ChemistryTechnical University of Munich (TUM)Lichtenbergstraße 485748Garching b. MünchenGermany
| | - Angela Casini
- Department of ChemistryTechnical University of Munich (TUM)Lichtenbergstraße 485748Garching b. MünchenGermany
| | - Danilo C. Miguel
- Department of Animal Biology, Biology InstituteUniversity of Campinas (UNICAMP)Rua Monteiro Lobato, 25513083-862.CampinasSPBrazil
| |
Collapse
|