1
|
Wagih N, Abdel-Rahman IM, El-Koussi NA, El-Din A Abuo-Rahma G. Anticancer benzimidazole derivatives as inhibitors of epigenetic targets: a review article. RSC Adv 2025; 15:966-1010. [PMID: 39807197 PMCID: PMC11726184 DOI: 10.1039/d4ra05014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy. Benzimidazole derivatives have gained attention for their potent epigenetic modulatory effects as they interact with various epigenetic targets, including DNA methyltransferases, histone deacetylases and histone methyltransferases. This review provides a comprehensive overview of benzimidazole derivatives that inhibit different acetylation and methylation reader, writer and eraser epigenetic targets. Herein, we emphasize the therapeutic potential of these compounds in developing targeted, less toxic cancer therapies. Presently, some promising benzimidazole derivatives have entered clinical trials and shown great advancements in the fields of hematological and solid malignancy therapies. Accordingly, we highlight the recent advancements in benzimidazole research as epigenetic agents that could pave the way for designing new multi-target drugs to overcome resistance and improve clinical outcomes for cancer patients. This review can help researchers in designing new anticancer benzimidazole derivatives with better properties.
Collapse
Affiliation(s)
- Nardin Wagih
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Islam M Abdel-Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Nawal A El-Koussi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University 71526 Assiut Egypt
| | - Gamal El-Din A Abuo-Rahma
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| |
Collapse
|
2
|
Viviano M, Cipriano A, Fabbrizi E, Feoli A, Castellano S, Sbardella G, Mai A, Milite C, Rotili D. Successes and challenges in the development of BD1-selective BET inhibitors: a patent review. Expert Opin Ther Pat 2024; 34:529-545. [PMID: 38465537 DOI: 10.1080/13543776.2024.2327300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. The BET family consists of four members, each of which contains two bromodomains (BD1 and BD2) able to recognize the acetylated mark. Pan-BET inhibitors (BETi) have shown a promising anticancer potential in many clinical trials; however, their further development has been in part hampered by the side effects due to their lack of selectivity. Mounting evidence suggests that BD1 is primarily involved in cancer and that its selective inhibition can phenocopy the anticancer effects of pan-BETi with increased tolerability. Therefore, the development of BD1 selective inhibitors is highly pursed in both academia and industry. AREAS COVERED This review aims at giving an overview of the patent literature of BD1-selective BETi between 2014 and 2023. WIPO, USPTO, EPO, and SciFinder® databases were used for the search of patents. EXPERT OPINION The development of BD1-selective BETi, despite challenging, is highly desirable as it could have a great impact on the development of new safer anticancer therapeutics. Several strategies could be applied to discover potent and selective compounds with limited side effects.
Collapse
Affiliation(s)
- Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno, Fisciano, SA, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
4
|
Donati G, Viviano M, D'Amore VM, Cipriano A, Diakogiannaki I, Amato J, Tomassi S, Brancaccio D, Russomanno P, Di Leva FS, Arosio D, Seneci P, Taliani S, Magiera-Mularz K, Musielak B, Skalniak L, Holak TA, Castellano S, La Pietra V, Marinelli L. A combined approach of structure-based virtual screening and NMR to interrupt the PD-1/PD-L1 axis: Biphenyl-benzimidazole containing compounds as novel PD-L1 inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300583. [PMID: 38110703 DOI: 10.1002/ardp.202300583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Immunotherapy has emerged as a game-changing approach for cancer treatment. Although monoclonal antibodies (mAbs) targeting the programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1) axis have entered the market revolutionizing the treatment landscape of many cancer types, small molecules, although presenting several advantages including the possibility of oral administration and/or reduced costs, struggled to enter in clinical trials, suffering of water insolubility and/or inadequate potency compared with mAbs. Thus, the search for novel scaffolds for both the design of effective small molecules and possible synergistic strategies is an ongoing field of interest. In an attempt to find novel chemotypes, a virtual screening approach was employed, resulting in the identification of new chemical entities with a certain binding capability, the most versatile of which was the benzimidazole-containing compound 10. Through rational design, a small library of its derivatives was synthesized and evaluated. The homogeneous time-resolved fluorescence (HTRF) assay revealed that compound 17 shows the most potent inhibitory activity (IC50 ) in the submicromolar range and notably, differently from the major part of PD-L1 inhibitors, exhibits satisfactory water solubility properties. These findings highlight the potential of benzimidazole-based compounds as novel promising candidates for PD-L1 inhibition.
Collapse
Affiliation(s)
- Greta Donati
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | | | | | | | - Bogdan Musielak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Cracow, Poland
| | | | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
6
|
Bradley E, Fusani L, Chung CW, Craggs PD, Demont EH, Humphreys PG, Mitchell DJ, Phillipou A, Rioja I, Shah RR, Wellaway CR, Prinjha RK, Palmer DS, Kerr WJ, Reid M, Wall ID, Cookson R. Structure-Guided Design of a Domain-Selective Bromodomain and Extra Terminal N-Terminal Bromodomain Chemical Probe. J Med Chem 2023; 66:15728-15749. [PMID: 37967462 PMCID: PMC10726358 DOI: 10.1021/acs.jmedchem.3c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.
Collapse
Affiliation(s)
- Erin Bradley
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Lucia Fusani
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Chun-wa Chung
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Peter D. Craggs
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | | | | | - Alex Phillipou
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Inmaculada Rioja
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rishi R. Shah
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | | | - Rab K. Prinjha
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - David S. Palmer
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - William J. Kerr
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Marc Reid
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Ian D. Wall
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| | - Rosa Cookson
- GSK,
Medicines Research Centre, Stevenage SG1 2NY, Hertfordshire, U.K.
| |
Collapse
|
7
|
Thomas AM, Serafini M, Grant EK, Coombs EAJ, Bluck JP, Schiedel M, McDonough MA, Reynolds JK, Lee B, Platt M, Sharlandjieva V, Biggin PC, Duarte F, Milne TA, Bush JT, Conway SJ. Mutate and Conjugate: A Method to Enable Rapid In-Cell Target Validation. ACS Chem Biol 2023; 18:2405-2417. [PMID: 37874862 PMCID: PMC10660337 DOI: 10.1021/acschembio.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Target validation remains a challenge in drug discovery, which leads to a high attrition rate in the drug discovery process, particularly in Phase II clinical trials. Consequently, new approaches to enhance target validation are valuable tools to improve the drug discovery process. Here, we report the combination of site-directed mutagenesis and electrophilic fragments to enable the rapid identification of small molecules that selectively inhibit the mutant protein. Using the bromodomain-containing protein BRD4 as an example, we employed a structure-based approach to identify the L94C mutation in the first bromodomain of BRD4 [BRD4(1)] as having a minimal effect on BRD4(1) function. We then screened a focused, KAc mimic-containing fragment set and a diverse fragment library against the mutant and wild-type proteins and identified a series of fragments that showed high selectivity for the mutant protein. These compounds were elaborated to include an alkyne click tag to enable the attachment of a fluorescent dye. These clickable compounds were then assessed in HEK293T cells, transiently expressing BRD4(1)WT or BRD4(1)L94C, to determine their selectivity for BRD4(1)L94C over other possible cellular targets. One compound was identified that shows very high selectivity for BRD4(1)L94C over all other proteins. This work provides a proof-of-concept that the combination of site-directed mutagenesis and electrophilic fragments, in a mutate and conjugate approach, can enable rapid identification of small molecule inhibitors for an appropriately mutated protein of interest. This technology can be used to assess the cellular phenotype of inhibiting the protein of interest, and the electrophilic ligand provides a starting point for noncovalent ligand development.
Collapse
Affiliation(s)
- Adam M. Thomas
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marta Serafini
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emma K. Grant
- Department
of Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Edward A. J. Coombs
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph P. Bluck
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Matthias Schiedel
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jessica K. Reynolds
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bernadette Lee
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Michael Platt
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Vassilena Sharlandjieva
- MRC
Molecular Haematology Unit, MRC Weatherall Institute of Molecular
Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United
Kingdom
| | - Philip C. Biggin
- Department
of Biochemistry, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Fernanda Duarte
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Thomas A. Milne
- MRC
Molecular Haematology Unit, MRC Weatherall Institute of Molecular
Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United
Kingdom
| | - Jacob T. Bush
- Department
of Chemical Biology, GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry & Biochemistry, University
of California Los Angeles, 607 Charles E. Young Drive East, P.O. Box 951569, Los Angeles, California 90095-1569, United States
| |
Collapse
|