1
|
Kučerová-Chlupáčová M. Systematic Review on 1,2,3-Oxadiazoles, 1,2,4-Oxadiazoles, and 1,2,5-Oxadiazoles in the Antimycobacterial Drug Discovery. ChemMedChem 2025; 20:e202400971. [PMID: 39846226 DOI: 10.1002/cmdc.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Tuberculosis remains a leading global health threat, exacerbated by the emergence of multi-drug-resistant strains. The search for novel therapeutic agents is critical in addressing this challenge. This review systematically summarizes the potential of oxadiazole derivatives as promising candidates in antimycobacterial drug discovery. We focus on various classes of oxadiazoles, especially 1,2,3-oxadiazoles, 1,2,4-oxadiazoles, and 1,2,5-s in structure-activity relationship studies are discussed, emphasizing the mechanisms of antimycobacterial action. Additionally, the synergistic potential of 1,2,4-oxadiazoles in enhancing the efficacy of existing tuberculosis treatment with ethionamide is also discussed. By integrating insights from recent research, this review aims to provide a comprehensive overview of the role of oxadiazoles in the fight against tuberculosis, paving the way for future investigations and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Marta Kučerová-Chlupáčová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203/8, 50003, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Robichaud MA, Chiasson AI, Doiron JA, Hébert MPA, Surette ME, Touaibia M. Novel Oxadiazole-Based Bioisostere of Caffeic Acid Phenethyl Ester: Synthesis, Anticancer Activity, and Inhibition of Lipoxygenase Product Biosynthesis. Drug Dev Res 2025; 86:e70099. [PMID: 40320854 PMCID: PMC12050906 DOI: 10.1002/ddr.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 04/15/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Caffeic acid phenethyl ester (1), a honeybee propolis component, possesses many bioactive properties, making it a useful scaffold for drug research. Further, CAPE (1) is a more effective inhibitor of the biosynthesis of 5-lipoxygenase (5-LO) products compared to Zileuton, the only clinically-approved direct 5-LO inhibitor. However, CAPE (1) suffers from a poor metabolic profile, being rapidly metabolized to caffeic acid (CA). In this study, we synthesized and performed several biological assays on a new bioisostere of CAPE (1) possessing a 1,2,4-oxadiazole ring. The new bioisostere (OB-CAPE (5)) has a similar antiproliferative effect to CAPE (1) on NCI-60 cancer cell lines and maintains the activity of CAPE (1) as an inhibitor of the biosynthesis of 5-, 12- and 15-LO products and as an iron chelator. In human polymorphonuclear leukocytes, OB-CAPE (5) inhibits the biosynthesis of 5-LO products with an IC50 of 0.93 µM compared to 1.0 µM for CAPE (1). Both compounds have similar antioxidant activity, with IC50 values of 1.2 µM for OB-CAPE (5) and 1.1 µM for CAPE (1). The new hydrogen bond predicted for the oxadiazole ring and the GLN363 amino acid in the 5-LO active site may explain the small improvement in the affinity of OB-CAPE (5) for the protein compared to CAPE (1). Finally, stability studies in human plasma reveal that OB-CAPE (5) is 25% more stable than CAPE (1). Therefore, the increase in stability associated with the replacement of the ester function with its bioisostere, while maintaining the anti-inflammatory and anticancer properties of CAPE (1), suggests that OB-CAPE (5) may be a comparable yet more stable candidate for in vivo studies in disease models.
Collapse
Affiliation(s)
- Mika A. Robichaud
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| | | | - Jérémie A. Doiron
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
- Atlantic Cancer Research InstituteMonctonNew BrunswickCanada
| | - Mathieu P. A. Hébert
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| | - Marc E. Surette
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
- New Brunswick Center for Precision MedicineMonctonNew BrunswickCanada
| | - Mohamed Touaibia
- Department of Chemistry and BiochemistryUniversité de MonctonMonctonNew BrunswickCanada
| |
Collapse
|
3
|
Camci M, Şenol H, Kose A, Karaman Mayack B, Alayoubi MM, Karali N, Gezginci MH. Bioisosteric replacement of the carboxylic acid group in Hepatitis-C virus NS5B thumb site II inhibitors: phenylalanine derivatives. Eur J Med Chem 2024; 279:116832. [PMID: 39288595 DOI: 10.1016/j.ejmech.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Hepatitis C virus (HCV) is a global health concern and the NS5B RNA-dependent RNA polymerase (RdRp) of HCV is an attractive target for drug discovery due to its role in viral replication. This study focuses on NS5B thumb site II inhibitors, specifically phenylalanine derivatives, and explores bioisosteric replacement and prodrug strategies to overcome limitations associated with carboxylic acid functionality. The synthesized compounds demonstrated antiviral activity, with compound 6d showing the most potent activity with an EC50 value of 3.717 μM. The hydroxamidine derivatives 7a-d showed EC50 values ranging from 3.9 μM to 11.3 μM. However, the acidic heterocyclic derivatives containing the oxadiazolone (8a-d) and oxadiazolethione (9a-d) rings did not exhibit measurable activity. A methylated heterocycle 10b showed a hint of activity at 8.09 μM. The pivaloyloxymethyl derivatives 11a and 11b did not show antiviral activity. Further studies are warranted to fully understand the effects of these modifications and to explore additional strategies for developing novel therapeutic options for HCV.
Collapse
Affiliation(s)
- Merve Camci
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey; Graduate School of Health Sciences, Istanbul University, 34126, Istanbul, Turkey.
| | - Halil Şenol
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093, Istanbul, Turkey.
| | - Aytekin Kose
- Aksaray University, Faculty of Science and Letters, Department of Chemistry, 68100, Aksaray, Turkey.
| | - Berin Karaman Mayack
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey; Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
| | | | - Nilgun Karali
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey.
| | - Mikail Hakan Gezginci
- Istanbul University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34116, Istanbul, Turkey.
| |
Collapse
|
4
|
Ru Y, Fu W, Guo S, Li X, Zhou C, Xu Z, Cheng J, Li Z, Shao X. Discovery of Novel Nicotinamide Derivatives by a Two-Step Strategy of Azo-Incorporating and Bioisosteric Replacement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20794-20804. [PMID: 39276343 DOI: 10.1021/acs.jafc.4c02999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Azobenzene moieties can serve as active fragments in antimicrobials and exert trans/cis conversions of molecules. Herein, a series of novel nicotinamide derivatives (NTMs) were developed by employing a two-step strategy, including azo-incorporating and bioisosteric replacement. Azo-incorporation can conveniently provide compounds that can be easily optically interconverted between trans/cis isomers, enhancing the structural diversity of azo compounds. It is noteworthy that the replacement of the azo bond with a 1,2,4-oxadiazole motif through further bioisosteric replacement led to the discovery of a novel compound, NTM18, which made a breakthrough in preventing rice sheath blight disease. A control effect value of 94.44% against Rhizoctonia solani could be observed on NTM18, while only 11.11% was determined for boscalid at 200 mg·L-1. Further mechanism validations were conducted, and the molecular docking analysis demonstrated that compound NTM18 might have a tight binding with SDH via an extra π-π interaction between the oxadiazole ring and residue of D_Y586. This work sets up a typical case for the united applications of azo-incorporating and bioisosteric replacement in fungicide design, posing an innovative approach in structural diversity-based development of pesticides.
Collapse
Affiliation(s)
- Yifan Ru
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, Guizhou China
| | - Sifan Guo
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Li
- College of Humanities and Economic Management, Yantai Institute of China Agricultural University, Yantai 264670, Shandong China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Góral I, Wichur T, Sługocka E, Grygier P, Głuch-Lutwin M, Mordyl B, Honkisz-Orzechowska E, Szałaj N, Godyń J, Panek D, Zaręba P, Sarka A, Żmudzki P, Latacz G, Pustelny K, Bucki A, Czarna A, Menezes F, Więckowska A. Exploring Novel GSK-3β Inhibitors for Anti-Neuroinflammatory and Neuroprotective Effects: Synthesis, Crystallography, Computational Analysis, and Biological Evaluation. ACS Chem Neurosci 2024; 15:3181-3201. [PMID: 39158934 PMCID: PMC11378298 DOI: 10.1021/acschemneuro.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
In the pathogenesis of Alzheimer's disease, the overexpression of glycogen synthase kinase-3β (GSK-3β) stands out due to its multifaced nature, as it contributes to the promotion of amyloid β and tau protein accumulation, as well as neuroinflammatory processes. Therefore, in the present study, we have designed, synthesized, and evaluated a new series of GSK-3β inhibitors based on the N-(pyridin-2-yl)cyclopropanecarboxamide scaffold. We identified compound 36, demonstrating an IC50 of 70 nM against GSK-3β. Subsequently, through crystallography studies and quantum mechanical analysis, we elucidated its binding mode and identified the structural features crucial for interactions with the active site of GSK-3β, thereby understanding its inhibitory potency. Compound 36 was effective in the cellular model of hyperphosphorylated tau-induced neurodegeneration, where it restored cell viability after okadaic acid treatment and showed anti-inflammatory activity in the LPS model, significantly reducing NO, IL-6, and TNF-α release. In ADME-tox in vitro studies, we confirmed the beneficial profile of 36, including high permeability in PAMPA (Pe equals 9.4) and high metabolic stability in HLMs as well as lack of significant interactions with isoforms of the CYP enzymes and lack of considerable cytotoxicity on selected cell lines (IC50 > 100 μM on HT-22 cells and 89.3 μM on BV-2 cells). Based on promising pharmacological activities and favorable ADME-tox properties, compound 36 may be considered a promising candidate for in vivo research as well as constitute a reliable starting point for further studies.
Collapse
Affiliation(s)
- Izabella Góral
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, 16 Lazarza St., Krakow 31-530, Poland
| | - Tomasz Wichur
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Emilia Sługocka
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, 16 Lazarza St., Krakow 31-530, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow 30-387, Poland
| | - Przemysław Grygier
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza 11, Krakow 30-348, Poland
| | - Monika Głuch-Lutwin
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Barbara Mordyl
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Natalia Szałaj
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Justyna Godyń
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Dawid Panek
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Paula Zaręba
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Anna Sarka
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Paweł Żmudzki
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Katarzyna Pustelny
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Gronostajowa 7 St., Krakow 30-387, Poland
| | - Adam Bucki
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| | - Anna Czarna
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, Krakow 30-387, Poland
| | - Filipe Menezes
- Helmholtz
Munich, Molecular Targets and Therapeutics Center, Institute of Structural
Biology, Ingolstädter
Landstr. 1, Neuherberg 85764, Germany
| | - Anna Więckowska
- Department
of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow 30-688, Poland
| |
Collapse
|
6
|
Shah D, Patel A. Eco-friendly approaches to 1,3,4-oxadiazole derivatives: A comprehensive review of green synthetic strategies. Arch Pharm (Weinheim) 2024; 357:e2400185. [PMID: 38877614 DOI: 10.1002/ardp.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
This review article offers an environmentally benign synthesis of 1,3,4-oxadiazole derivatives, with a focus on sustainable methodologies that have minimal impact on the environment. These derivatives, known for their diverse applications, have conventionally been associated with synthesis methods that utilize hazardous reagents and produce significant waste, thereby raising environmental concerns. The green synthesis of 1,3,4-oxadiazole derivatives employs renewable substrates, nontoxic catalysts, and mild reaction conditions, aiming to minimize the environmental impact. Innovative techniques such as catalyst-based, catalyst-free, electrochemical synthesis, green-solvent-mediated synthesis, grinding, microwave-mediated synthesis, and photosynthesis are implemented, providing benefits in terms of scalability, cost-effectiveness, and ease of purification. This review emphasizes the significance of sustainable methodologies in the synthesis of 1,3,4-oxadiazole and boots for continued exploration in this research domain.
Collapse
Affiliation(s)
- Drashti Shah
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad, India
| | - Ashish Patel
- Department of Pharmaceutical Chemistry, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand, Gujarat, India
| |
Collapse
|
7
|
Belsuzarri MM, Sako Y, Brown TD, Chan M, Cozza R, Jin J, Sato-Kaneko F, Yao S, Pu M, Messer K, Hayashi T, Cottam HB, Corr M, Carson DA, Shukla NM. Structure-Activity Relationship Studies in Benzothiadiazoles as Novel Vaccine Adjuvants. J Med Chem 2024; 67:13703-13722. [PMID: 39115891 DOI: 10.1021/acs.jmedchem.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Extracellular vesicles (EVs) can transfer antigens and immunomodulatory molecules, and such EVs released by antigen-presenting cells equipped with immunostimulatory functions have been utilized for vaccine formulations. A prior high-throughput screening campaign led to the identification of compound 634 (1), which enhanced EV release and increased intracellular Ca2+ influx. Here, we performed systematic structure-activity relationship (SAR) studies to investigate the scaffold for its potency as a vaccine adjuvant. Synthesized compounds were analyzed in vitro for CD63 reporter activity (a marker for EV biogenesis) in human THP-1 cells, induction of Ca2+ influx, IL-12 production, and cell viability in murine bone-marrow-derived dendritic cells. The SAR studies indicated that the ester functional group was requisite, and the sulfur atom of the benzothiadiazole ring replaced with a higher selenium atom (9f) or a bioisosteric ethenyl group (9h) retained potency. Proof-of-concept vaccination studies validated the potency of the selected compounds as novel vaccine adjuvants.
Collapse
Affiliation(s)
- Masiel M Belsuzarri
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Yukiya Sako
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Tyler D Brown
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Michael Chan
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Renna Cozza
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Jasmine Jin
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Fumi Sato-Kaneko
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Shiyin Yao
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Minya Pu
- UC San Diego Moores Cancer Center, University of California San Diego, La Jolla, California 92093, United States
| | - Karen Messer
- Division of Biostatistics, Herbert Wertheim School of Public Health and Longevity, University of California San Diego, La Jolla, California 92093, United States
| | - Tomoko Hayashi
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Howard B Cottam
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Maripat Corr
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Dennis A Carson
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Nikunj M Shukla
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
8
|
Ayoup MS, Ghanem M, Abdel-Hamid H, Abu-Serie MM, Masoud A, Ghareeb DA, Hawsawi MB, Sonousi A, Kassab AE. New 1,2,4-oxadiazole derivatives as potential multifunctional agents for the treatment of Alzheimer's disease: design, synthesis, and biological evaluation. BMC Chem 2024; 18:130. [PMID: 39003489 PMCID: PMC11246588 DOI: 10.1186/s13065-024-01235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
A series of new 1,2,4-oxadiazole-based derivatives were synthesized and evaluated for their anti-AD potential. The results revealed that eleven compounds (1b, 2a-c, 3b, 4a-c, and 5a-c) exhibited excellent inhibitory potential against AChE, with IC50 values ranging from 0.00098 to 0.07920 µM. Their potency was 1.55 to 125.47 times higher than that of donepezil (IC50 = 0.12297 µM). In contrast, the newly synthesized oxadiazole derivatives with IC50 values in the range of 16.64-70.82 µM exhibited less selectivity towards BuChE when compared to rivastigmine (IC50 = 5.88 µM). Moreover, oxadiazole derivative 2c (IC50 = 463.85 µM) was more potent antioxidant than quercetin (IC50 = 491.23 µM). Compounds 3b (IC50 = 536.83 µM) and 3c (IC50 = 582.44 µM) exhibited comparable antioxidant activity to that of quercetin. Oxadiazole derivatives 3b (IC50 = 140.02 µM) and 4c (IC50 = 117.43 µM) showed prominent MAO-B inhibitory potential. They were more potent than biperiden (IC50 = 237.59 µM). Compounds 1a, 1b, 3a, 3c, and 4b exhibited remarkable MAO-A inhibitory potential, with IC50 values ranging from 47.25 to 129.7 µM. Their potency was 1.1 to 3.03 times higher than that of methylene blue (IC50 = 143.6 µM). Most of the synthesized oxadiazole derivatives provided significant protection against induced HRBCs lysis, revealing the nontoxic effect of the synthesized compounds, thus making them safe drug candidates. The results unveiled oxadiazole derivatives 2b, 2c, 3b, 4a, 4c, and 5a as multitarget anti-AD agents. The high AChE inhibitory potential can be computationally explained by the synthesized oxadiazole derivatives' significant interactions with the AChE active site. Compound 2b showed good physicochemical properties. All these data suggest that 2b could be considered as a promising candidate for future development.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt.
| | - Mariam Ghanem
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria, 21321, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Aliaa Masoud
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Doaa A Ghareeb
- Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications (SRTA-city), New Borg El Arab, Alexandria, Egypt
- Research Projects Unit, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Amr Sonousi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt
- University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Cairo, Egypt.
| |
Collapse
|
9
|
Wang Y, Cheng X, Liu X, Xu J, Wang L, Zhang S, Liu S, Peng T. Design and Synthesis of 3-(2 H-Chromen-3-yl)-5-aryl-1,2,4-oxadiazole Derivatives as Novel Toll-like Receptor 2/1 Agonists That Inhibit Lung Cancer In Vitro and In Vivo. J Med Chem 2024; 67:4583-4602. [PMID: 38498304 DOI: 10.1021/acs.jmedchem.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Toll-like receptor (TLR) 2 is a transmembrane receptor that participates in the innate immune response by forming a heterodimer with TLR1 or TLR6. TLR2 agonists play an important role in tumor therapy. Herein, we synthesized a series of 3-(2H-chromen-3-yl)-5-aryl-1,2,4-oxadiazole derivatives and identified WYJ-2 as a potent small and selective molecule agonist of TLR2/1, with an EC50 of 18.57 ± 0.98 nM in human TLR2 and TLR1 transient-cotransfected HEK 293T cells. WYJ-2 promoted the formation of TLR2/1 heterodimers and activated the nuclear factor kappa B (NF-κB) signaling pathway. Moreover, our study indicated that WYJ-2 could induce pyroptosis in cancer cells, mediated by activating the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. WYJ-2 exhibited effective anti-non-small cell lung cancer (NSCLC) activity in vitro and in vivo. The discovery that activating TLR2/1 induces pyroptosis in cancer cells may highlight the prospects of TLR2/1 agonists in cancer treatment in the future.
Collapse
Affiliation(s)
- Yijie Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| | - Xu Cheng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| | - Xinru Liu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| | - Jing Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| | - Lin Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| | - Shouguo Zhang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| | - Shuchen Liu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| | - Tao Peng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, P. R. China
| |
Collapse
|
10
|
Gupta O, Chawla G, Pradhan T. 1,3,4-Oxadiazole Scaffold in Antidiabetic Drug Discovery: An Overview. Mini Rev Med Chem 2024; 24:1800-1821. [PMID: 38644715 DOI: 10.2174/0113895575298181240410041029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/23/2024]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. With the increasing number of cases of diabetes and drug-resistant diabetes, there is an urgent need to develop new potent molecules capable of combating this cruel disease. Medicinal chemistry concerns the discovery, development, identification, and interpretation of the mode of action of biologically active compounds at the molecular level. Oxadiazole-based derivatives have come up as a potential option for antidiabetic drug research. Oxadiazole is a five-membered heterocyclic organic compound containing two nitrogen atoms and one oxygen atom in its ring. Oxadiazole hybrids have shown the ability to improve glucose tolerance, enhance insulin sensitivity, and reduce fasting blood glucose levels. The mechanisms underlying the antidiabetic effects of oxadiazole involve the modulation of molecular targets such as peroxisome proliferator-activated receptor gamma (PPARγ), α-glucosidase, α-amylase and GSK-3β which regulate glucose metabolism and insulin secretion. The present review article describes the chemical structure and properties of oxadiazoles and highlights the antidiabetic activity through action on different targets. The SAR for the oxadiazole hybrids has been discussed in this article, which will pave the way for the design and development of new 1,3,4-oxadiazole derivatives as promising antidiabetic agents in the future. We expect that this article will provide comprehensive knowledge and current innovation on oxadiazole derivatives with antidiabetic potential and will fulfil the needs of the scientific community in designing and developing efficacious antidiabetic agents.
Collapse
Affiliation(s)
- Ojasvi Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Gita Chawla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Tathagata Pradhan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
11
|
Zhou M, Boulos JC, Omer EA, Klauck SM, Efferth T. Modes of Action of a Novel c-MYC Inhibiting 1,2,4-Oxadiazole Derivative in Leukemia and Breast Cancer Cells. Molecules 2023; 28:5658. [PMID: 37570631 PMCID: PMC10419799 DOI: 10.3390/molecules28155658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The c-MYC oncogene regulates multiple cellular activities and is a potent driver of many highly aggressive human cancers, such as leukemia and triple-negative breast cancer. The oxadiazole class of compounds has gained increasing interest for its anticancer activities. The aim of this study was to investigate the molecular modes of action of a 1,2,4-oxadiazole derivative (ZINC15675948) as a c-MYC inhibitor. ZINC15675948 displayed profound cytotoxicity at the nanomolar range in CCRF-CEM leukemia and MDA-MB-231-pcDNA3 breast cancer cells. Multidrug-resistant sublines thereof (i.e., CEM/ADR5000 and MDA-MB-231-BCRP) were moderately cross-resistant to this compound (<10-fold). Molecular docking and microscale thermophoresis revealed a strong binding of ZINC15675948 to c-MYC by interacting close to the c-MYC/MAX interface. A c-MYC reporter assay demonstrated that ZINC15675948 inhibited c-MYC activity. Western blotting and qRT-PCR showed that c-MYC expression was downregulated by ZINC15675948. Applying microarray hybridization and signaling pathway analyses, ZINC15675948 affected signaling routes downstream of c-MYC in both leukemia and breast cancer cells as demonstrated by the induction of DNA damage using single cell gel electrophoresis (alkaline comet assay) and induction of apoptosis using flow cytometry. ZINC15675948 also caused G2/M phase and S phase arrest in CCRF-CEM cells and MDA-MB-231-pcDNA3 cells, respectively, accompanied by the downregulation of CDK1 and p-CDK2 expression using western blotting. Autophagy induction was observed in CCRF-CEM cells but not MDA-MB-231-pcDNA3 cells. Furthermore, microarray-based mRNA expression profiling indicated that ZINC15675948 may target c-MYC-regulated ubiquitination, since the novel ubiquitin ligase (ELL2) was upregulated in the absence of c-MYC expression. We propose that ZINC15675948 is a promising natural product-derived compound targeting c-MYC in c-MYC-driven cancers through DNA damage, cell cycle arrest, and apoptosis.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Joelle C. Boulos
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Disease (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|