1
|
Fotakopoulos G, Montasr MM, Georgakopoulou VE, Gatos C, Foroglou N. Association Between Polymorphisms in DNA Repair Genes and Glioma Susceptibility: A Meta-Analysis of Four Single Nucleotide Polymorphisms (rs3212986, rs13181, rs25487, and rs861539). Cureus 2024; 16:e76084. [PMID: 39834980 PMCID: PMC11743921 DOI: 10.7759/cureus.76084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Cases with central nervous system tumors represent a small amount of all tumors, and the diagnosis of high-grade gliomas (HGGs) is mostly difficult as they frequently show intratumoral morphological heterogeneity. Genetic factors, such as single nucleotide polymorphisms (SNPs), have an important role in modifying glioma susceptibility. We conducted a comprehensive meta-analysis to investigate the ERCC1 (rs3212986), ERCC2 (rs13181), XRCC1 (rs25487), and XRCC3 (rs861539) genes to see if they are any risk factors for glioma susceptibility. We identified 30 eligible studies investigating the PubMed records (up to January 2024) via a mishmash of the subsequent terms: brain tumors, glioma, glioblastoma, gene associations, SNPs, XRCC1, XRCC3, ERCC1, and ERCC2. The total number of patients was 23678 (9731 in cases (poor outcome) and 13947 in controls (good outcome)). This comprehensive meta-analysis declared a significant association between ERCC2 rs13181, XRCC1 rs25487, and the risk of glioma.
Collapse
Affiliation(s)
- George Fotakopoulos
- Department of Neurosurgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| | - Mohamed M Montasr
- Department of Neurosurgery, General University Hospital of Larissa, Larissa, GRC
| | | | - Charalabos Gatos
- Department of Neurosurgery, General University Hospital of Larissa, Larissa, GRC
| | - Nikolaos Foroglou
- Department of Neurosurgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| |
Collapse
|
2
|
Zhou X, Liang T, Ge Y, Wang Y, Ma W. The Crosstalk between the EGFR and IFN-γ Pathways and Synergistic Roles in Survival Prediction and Immune Escape in Gliomas. Brain Sci 2023; 13:1349. [PMID: 37759950 PMCID: PMC10526459 DOI: 10.3390/brainsci13091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common primary malignant brain tumor. The poor prognosis of gliomas, especially glioblastoma (GBM), is associated with their unique molecular landscape and tumor microenvironment (TME) features. The epidermal growth factor receptor (EGFR) gene is one of the frequently altered loci in gliomas, leading to the activation of the EGFR signaling pathway and thus, promoting the genesis of gliomas. Whether there exist factors within the TME that can lead to EGFR activation in the context of gliomas is currently unexplored. In total, 702 samples from The Cancer Genome Atlas (TCGA) and 325 samples from The Chinese Glioma Genome Atlas (CGGA) were enrolled in this study. Gene signatures related to EGFR signaling and interferon-γ (IFN-γ) response were established via the LASSO-COX algorithm. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) analysis were applied for function exploration. Kaplan-Meier (KM) curves and single sample GSEA (ssGSEA) of immune cell subpopulations were performed to analyze the prognosis and TME characteristics of different subgroups. Moreover, Western blotting (WB) and flow cytometry (FCM) demonstrated the correlation between IFN-γ and EGFR signaling activation and the subsequent induction of programmed death ligand 1 (PD-L1) expression. An EGFR signaling-related risk score was established, and a higher score was correlated with poorer prognosis and a more malignant phenotype in gliomas. Biological function analysis revealed that a higher EGFR-related score was significantly associated with various cytokine response pathways, especially IFN-γ. Long-term (7 days) exposure to IFN-γ (400 ng/mL) induced the activation of EGFR signaling in the u87 cell line. Next, an IFN-γ response-related risk score was established; the combination of these two scores could be used to further reclassify gliomas into subtypes with different clinical features and TME features. Double high-risk samples tended to have a poorer prognosis and more immunosuppressive TME. Additionally, FCM discovered that the activation of EGFR signaling via EGF (100 ng/mL) could trigger PD-L1 protein expression. This research indicates that IFN-γ, an inflammatory cytokine, can activate the EGFR pathway. The combination of EGFR signaling and IFN-γ response pathway can establish a more precise classification of gliomas.
Collapse
Affiliation(s)
- Xingang Zhou
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China;
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (T.L.); (Y.W.)
| | - Yulu Ge
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (T.L.); (Y.W.)
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (T.L.); (Y.W.)
| |
Collapse
|
3
|
Cao W, Xiong L, Meng L, Li Z, Hu Z, Lei H, Wu J, Song T, Liu C, Wei R, Shen L, Hong J. Prognostic analysis and nomogram construction for older patients with IDH-wild-type glioblastoma. Heliyon 2023; 9:e18310. [PMID: 37519736 PMCID: PMC10372674 DOI: 10.1016/j.heliyon.2023.e18310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
As many countries face an ageing population, the number of older patients with glioblastoma (GB) is increasing. Thus, there is an urgent need for prognostic models to aid in treatment decision-making and life planning. A total of 98 patients with isocitrate dehydrogenase (IDH)-wild-type GB aged ≥65 years were analysed from January 2012 to January 2020. Independent prognostic factors were identified by prognostic analysis. Using the independent prognostic factors for overall survival (OS), a nomogram was constructed by R software to predict the prognosis of older patients with IDH-wild-type GB. The concordance index (C-index) and receiver operating characteristic (ROC) curve were used to assess model discrimination, and the calibration curve was used to assess model calibration. Prognostic analysis showed that the extent of resection (EOR), adjusted Charlson comorbidity index (ACCI), O6-methylguanine-DNA methyltransferase (MGMT) methylation status, postoperative radiotherapy, and postoperative temozolomide (TMZ) chemotherapy were independent prognostic factors for OS. MGMT methylation status and subventricular zone (SVZ) involvement were independent prognostic factors for progression-free survival (PFS). A nomogram was constructed based on EOR, ACCI, MGMT methylation status, postoperative radiotherapy and postoperative TMZ chemotherapy to predict the 6-month, 12-month and 18-month OS of older patients with IDH-wild-type GB. The C-index of the nomogram was 0.72, and the ROC curves showed that the areas under the curve (AUCs) at 6, 12 and 18 months were 0.874, 0.739 and 0.779, respectively. The calibration plots showed that the nomogram was in good agreement with the actual observations in predicting the OS of older patients with IDH-wild-type GB. Older patients with IDH-wild-type GB can benefit from gross total resection (GTR), postoperative radiotherapy and postoperative TMZ chemotherapy. A high ACCI score and MGMT nonmethylation are poor prognostic factors. We constructed a nomogram including the ACCI to facilitate clinical decision-making and follow-up interval selection.
Collapse
Affiliation(s)
- Wenjun Cao
- Department of Hematology and Oncology, The First Hospital of Changsha, People's Republic of China
| | - Luqi Xiong
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Li Meng
- Department of Radiology, Xiangya Hospital, Central South University, People's Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Zhongliang Hu
- Department of Pathology, Xiangya Hospital, Central South University, People's Republic of China
| | - Huo Lei
- Department of Neurosurgery, Xiangya Hospital, Central South University, People's Republic of China
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, People's Republic of China
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, People's Republic of China
| | - Chao Liu
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Rui Wei
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| | - Jidong Hong
- Department of Oncology, Xiangya Hospital, Central South University, People's Republic of China
| |
Collapse
|
4
|
Tsai HP, Lin CJ, Wu CH, Chen YT, Lu YY, Kwan AL, Lieu AS. Prognostic Impact of Low-Level p53 Expression on Brain Astrocytomas Immunopositive for Epidermal Growth Factor Receptor. Curr Issues Mol Biol 2022; 44:4142-4151. [PMID: 36135196 PMCID: PMC9497491 DOI: 10.3390/cimb44090284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Although the expression of p53 and epidermal growth factor receptor (EGFR) is associated with therapeutic resistance and patient outcomes in many malignancies, the relationship in astrocytomas is unclear. This study aims to correlate p53 and EGFR expression in brain astrocytomas with overall patient survival. Eighty-two patients with astrocytomas were enrolled in the study. Semi-quantitative p53 and EGFR immunohistochemical staining was measured in tumor specimens. The mean follow-up after astrocytoma surgery was 18.46 months. The overall survival rate was 83%. Survival was reduced in EGFR-positive patients compared with survival in EGFR-negative patients (p < 0.05). However, no significant differences in survival were detected between patients with high and low p53 expression. In patients with low p53 expression, positive EGFR staining was associated with significantly worse survival compared with patients with negative EGFR staining (log-rank test: p < 0.001). Survival rates in positive and negative EGFR groups with high p53 protein expression were similar (log-rank test: p = 0.919). The IC50 of an EGFR inhibitor was higher in GBM cells with high p53 protein expression compared with the IC50 in cells with low p53 expression. Combined EGFR and p53 expression may have prognostic significance in astrocytomas.
Collapse
Affiliation(s)
- Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Ying-Yi Lu
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung City 807, Taiwan
- Cosmetic Applications and Management Department, Yuh-Ing Junior College of Health Care & Management, Kaohsiung City 807, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22903, USA
| | - Ann-Shung Lieu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
5
|
Galbraith K, Kumar A, Abdullah KG, Walker JM, Adams SH, Prior T, Dimentberg R, Henderson FC, Mirchia K, Sathe AA, Viapiano MS, Chin LS, Corona RJ, Hatanpaa KJ, Snuderl M, Xing C, Brem S, Richardson TE. Molecular Correlates of Long Survival in IDH-Wildtype Glioblastoma Cohorts. J Neuropathol Exp Neurol 2021; 79:843-854. [PMID: 32647886 DOI: 10.1093/jnen/nlaa059] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
IDH-wildtype glioblastoma is a relatively common malignant brain tumor in adults. These patients generally have dismal prognoses, although outliers with long survival have been noted in the literature. Recently, it has been reported that many histologically lower-grade IDH-wildtype astrocytomas have a similar clinical outcome to grade IV tumors, suggesting they may represent early or undersampled glioblastomas. cIMPACT-NOW 3 guidelines now recommend upgrading IDH-wildtype astrocytomas with certain molecular criteria (EGFR amplifications, chromosome 7 gain/10 loss, and/or TERT promoter mutations), establishing the concept of a "molecular grade IV" astrocytoma. In this report, we apply these cIMPACT-NOW 3 criteria to 2 independent glioblastoma cohorts, totaling 393 public database and institutional glioblastoma cases: 89 cases without any of the cIMPACT-NOW 3 criteria (GBM-C0) and 304 cases with one or more criteria (GBM-C1-3). In the GBM-C0 groups, there was a trend toward longer recurrence-free survival (median 12-17 vs 6-10 months), significantly longer overall survival (median 32-41 vs 15-18 months), younger age at initial diagnosis, and lower overall mutation burden compared to the GBM-C1-3 cohorts. These data suggest that while histologic features may not be ideal indicators of patient survival in IDH-wildtype astrocytomas, these 3 molecular features may also be important prognostic factors in IDH-wildtype glioblastoma.
Collapse
Affiliation(s)
- Kristyn Galbraith
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth & Development
| | - Kalil G Abdullah
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas
| | - Jamie M Walker
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas
| | - Steven H Adams
- College of Medicine, State University of New York, Upstate Medical University, Syracuse, New York
| | - Timothy Prior
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Dimentberg
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fraser C Henderson
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Kanish Mirchia
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | | | | | | | - Robert J Corona
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Kimmo J Hatanpaa
- State University of New York, Upstate Medical University, Syracuse, New York; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, New York
| | - Chao Xing
- Eugene McDermott Center for Human Growth & Development.,Department of Bioinformatics and Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy E Richardson
- From the Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York
| |
Collapse
|
6
|
Richard S, Tachon G, Milin S, Wager M, Karayan-Tapon L. Dual MGMT inactivation by promoter hypermethylation and loss of the long arm of chromosome 10 in glioblastoma. Cancer Med 2020; 9:6344-6353. [PMID: 32666673 PMCID: PMC7476845 DOI: 10.1002/cam4.3217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic inactivation of O6‐methylguanine‐methyltransferase (MGMT) gene by methylation of its promoter is predictive of Temozolomid (TMZ) response in glioblastoma (GBM). MGMT is located on chromosome 10q26 and the loss of chromosome 10q is observed in 70% of GBMs. In this study, we assessed the hypothesis that the dual inactivation of MGMT, by hypermethylation of MGMT promoter and by loss the long arm of chromosome 10 (10q), may confer greater sensitivity to TMZ. Methods A total of 149 tumor samples from patients diagnosed with GBM based on the WHO 2016 classification were included in this retrospective study between November 2016 and December 2018. Methylation status of MGMT promoter was evaluated by pyrosequencing and status of chromosome 10q was assessed by array comparative genomic hybridization. Results Glioblastoma patients with chromosome 10q loss associated with hypermethylation of MGMT promoter had significantly longer overall survival (OS) (P = .0024) and progression‐free survival (PFS) (P = .031). Indeed, median OS of patients with dual inactivation of MGMT was 21.5 months compared to 12 months and 8.1 months for groups with single MGMT inactivation by hypermethylation and by 10q loss, respectively. The group with no MGMT inactivation had 9.5 months OS. Moreover, all long‐term survivors with persistent response to TMZ treatment (OS ≥ 30 months) displayed dual inactivation of MGMT. Conclusions Our data suggest that the molecular subgroup characterized by the dual inactivation of MGMT receives greater benefit from TMZ treatment. The results of our study may be of immediate clinical interest since chromosome 10q status and methylation of MGMT promoter are commonly determined in routine practice.
Collapse
Affiliation(s)
- Sophie Richard
- Faculté de Médecine, Université de Poitiers, Poitiers, France.,Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France
| | - Gaëlle Tachon
- Faculté de Médecine, Université de Poitiers, Poitiers, France.,Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France.,Laboratoire des Neurosciences Expérimentales et Cliniques, INSERM 1084, Poitiers, France
| | - Serge Milin
- Laboratoire d'anatomopathologie, CHU de Poitiers, Poitiers, France
| | - Michel Wager
- Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France.,Laboratoire des Neurosciences Expérimentales et Cliniques, INSERM 1084, Poitiers, France.,CHU de Poitiers, Poitiers, France
| | - Lucie Karayan-Tapon
- Faculté de Médecine, Université de Poitiers, Poitiers, France.,Laboratoire de cancérologie biologique, CHU de Poitiers, Poitiers, France.,Laboratoire des Neurosciences Expérimentales et Cliniques, INSERM 1084, Poitiers, France
| |
Collapse
|
7
|
González-Tablas M, Arandia D, Jara-Acevedo M, Otero Á, Vital AL, Prieto C, González-Garcia N, Nieto-Librero AB, Tao H, Pascual D, Ruiz L, Sousa P, Galindo-Villardón P, Orfao A, Tabernero MD. Heterogeneous EGFR, CDK4, MDM4, and PDGFRA Gene Expression Profiles in Primary GBM: No Association with Patient Survival. Cancers (Basel) 2020; 12:cancers12010231. [PMID: 31963499 PMCID: PMC7016708 DOI: 10.3390/cancers12010231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The prognostic impact of the expression profile of genes recurrently amplified in glioblastoma multiforme (GBM) remains controversial. METHODS We investigated the RNA gene expression profile of epidermal growth factor receptor (EGFR), cyclin-dependent kinase 4 (CDK4), murine doble minute 4 (MDM4), and platelet derived growth factor receptor alpha (PDGFRA) in 83 primary GBM tumors vs. 42 normal brain tissue samples. Interphase FISH (iFISH) analysis for the four genes, together with analysis of intragenic deletions in EGFR and PDGFRA, were evaluated in parallel at the DNA level. As validation cohort, publicly available RNA gene expression data on 293 samples from 10 different GBM patient series were also studied. RESULTS At the RNA level, CDK4 was the most frequently overexpressed gene (90%) followed by EGFR (58%) and PDGFRA (58%). Chromosome 7 copy number alterations, i.e., trisomy (49%) and polysomy (44%), showed no clear association with EGFR gene expression levels. In turn, intragenic EGFR deletions were found in 39 patients (47%), including EGFRvIII (46%) in association with EGFRvIVa (4%), EGFRvII (2%) or other EGFR deletions (3%) and PDGFRA deletion of exons 8-9 was found in only two tumors (2%). CONCLUSIONS Overall, none of the gene expression profiles and/or intragenic EGFR deletions showed a significant impact on overall survival of GBM supporting the notion that other still unraveled features of the disease might play a more relevant prognostic role in GBM.
Collapse
Affiliation(s)
- María González-Tablas
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Daniel Arandia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - María Jara-Acevedo
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Sequencing DNA Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Ana-Luisa Vital
- Centre for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-561 Coimbra, Portugal;
| | - Carlos Prieto
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Bioinformatics Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Nerea González-Garcia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Ana Belén Nieto-Librero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Herminio Tao
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal;
| | - Daniel Pascual
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Laura Ruiz
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Pablo Sousa
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL-IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| |
Collapse
|
8
|
Muñoz-Hidalgo L, San-Miguel T, Megías J, Monleón D, Navarro L, Roldán P, Cerdá-Nicolás M, López-Ginés C. Somatic copy number alterations are associated with EGFR amplification and shortened survival in patients with primary glioblastoma. Neoplasia 2019; 22:10-21. [PMID: 31751860 PMCID: PMC6864306 DOI: 10.1016/j.neo.2019.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary tumor of the central nervous system. With no effective therapy, the prognosis for patients is terrible poor. It is highly heterogeneous and EGFR amplification is its most frequent molecular alteration. In this light, we aimed to examine the genetic heterogeneity of GBM and to correlate it with the clinical characteristics of the patients. For that purpose, we analyzed the status of EGFR and the somatic copy number alterations (CNAs) of a set of tumor suppressor genes and oncogenes. Thus, we found GBMs with high level of EGFR amplification, low level and with no EGFR amplification. Highly amplified tumors showed histological features of aggressiveness. Interestingly, accumulation of CNAs, as a measure of tumor mutational burden, was frequent and significantly associated to shortened survival. EGFR-amplified GBMs displayed both a higher number of concrete CNAs and a higher global tumor mutational burden than their no EGFR-amplified counterparts. In addition to genetic changes previously described in GBM, we found PARK2 and LARGE1 CNAs associated to EGFR amplification. The set of genes analyzed allowed us to explore relevant signaling pathways on GBM. Both PARK2 and LARGE1 are related to receptor tyrosine kinase/PI3K/PTEN/AKT/mTOR-signaling pathway. Finally, we found an association between the molecular pathways altered, EGFR amplification and a poor outcome. Our results underline the potential interest of categorizing GBM according to their EGFR amplification level and the usefulness of assessing the tumor mutational burden. These approaches would open new knowledge possibilities related to GBM biology and therapy.
Collapse
Affiliation(s)
| | - Teresa San-Miguel
- INCLIVA Research Institute, Av. Blasco Ibáñez, 17, 46010 Valencia, Spain; Department of Pathology, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain.
| | - Javier Megías
- INCLIVA Research Institute, Av. Blasco Ibáñez, 17, 46010 Valencia, Spain; Department of Pathology, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Daniel Monleón
- INCLIVA Research Institute, Av. Blasco Ibáñez, 17, 46010 Valencia, Spain; Department of Pathology, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Lara Navarro
- Consortium Hospital General Universitario de Valencia, Av. Tres cruces, 2, 46014 Valencia, Spain
| | - Pedro Roldán
- Department of Neurosurgery, Hospital Clínico Universitario de Valencia, Av. Blasco Ibáñez, 17, 46010 Valencia, Spain
| | - Miguel Cerdá-Nicolás
- INCLIVA Research Institute, Av. Blasco Ibáñez, 17, 46010 Valencia, Spain; Department of Pathology, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Concha López-Ginés
- INCLIVA Research Institute, Av. Blasco Ibáñez, 17, 46010 Valencia, Spain; Department of Pathology, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain
| |
Collapse
|
9
|
Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol 2018; 53:201-211. [PMID: 30031763 DOI: 10.1016/j.semcancer.2018.07.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/30/2022]
|
10
|
Abstract
Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein and a member of the tyrosine kinase superfamily receptor. Gliomas are tumors originating from glial cells, which show a range of aggressiveness depending on grade and stage. Many EGFR gene alterations have been identified in gliomas, especially glioblastomas, including amplifications, deletions and single nucleotide polymorphisms (SNPs). Glioblastomas are discussed as a separate entity due to their high correlation with EGFR mutants and the reported association of the latter with survival and response to treatment in this glioma subgroup. This review is a comprehensive report of EGFR gene alterations and their relations with several clinical factors in glioblastomas and other gliomas. It covers all EGFR gene alterations including point mutations, SNPs, methylations, copy number variations and amplifications, assessed with regard to different clinical variables, including response to therapy and survival. This review also discusses the current prognostic status of EGFR in glioblastomas and other gliomas, and highlights gaps in previous studies. This serves as an update for the medical community about the role of EGFR gene alterations in gliomas and specifically glioblastomas, as a means for targeted treatment and prognosis.
Collapse
|
11
|
Murad H, Alghamian Y, Aljapawe A, Madania A. Effects of ionizing radiation on the viability and proliferative behavior of the human glioblastoma T98G cell line. BMC Res Notes 2018; 11:330. [PMID: 29784026 PMCID: PMC5963135 DOI: 10.1186/s13104-018-3438-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023] Open
Abstract
Objective Radiotherapy is the traditional therapy for glioma patients. Glioma has poor response to ionizing radiation (IR). Studying radiation-induced cell death can help in understanding the cellular mechanisms underlying its radioresistance. T98G cell line was irradiated with Co60 source by 2 or 10 Gy. MTT assay was used to calculate the surviving fraction. Cell viability, cell cycle distribution and apoptosis assays were conducted by flow cytometry for irradiated and control cells for the 10 Gy dose.
Results The SF2 value for irradiated cells was 0.8. Cell viability was decreased from 93.29 to 73.61%, while, the Sub G0/G1 phase fraction was significantly increased at 10 Gy after 48 h. On the other hand, there was an increase in the percentage of apoptotic cells which reached 40.16% after 72 h at the same dose, while, it did not exceeds 2% for non-irradiated cells. Our results showed that, the T98G cells is radioresistant to IR up to 10 Gy. Effects of irradiation on the viability of T98G cells were relatively mild, since entering apoptosis was delayed for about 3 days after irradiation.
Collapse
Affiliation(s)
- Hossam Murad
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdulmunim Aljapawe
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Ammar Madania
- Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
12
|
Comparison of 1p and 19q status of glioblastoma by whole exome sequencing, array-comparative genomic hybridization, and fluorescence in situ hybridization. Med Oncol 2018; 35:60. [PMID: 29600313 DOI: 10.1007/s12032-018-1119-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
According to the 2016 World Health Organization classification of tumors of the central nervous system, detecting 1p/19q co-deletion became essential in clinical neuropathology for gliomas with oligodendroglioma-like morphology. Here, we assessed genomic profiles of glioblastoma in 80 cases including 1p/19q status using fluorescent in situ hybridization (FISH), array-comparative genomic hybridization (aCGH), and/or whole exome sequencing (WES). Paraffin-embedded tumor tissues were subjected to FISH analysis, and the corresponding frozen tissues from the same tumors were evaluated for aCGH and/or WES for 1p/19q co-deletion and other genetic parameters, which included IDH1-R132H, ATRX, TP53, CIC, and NOTCH1 mutations and MGMT methylation status. We also evaluated correlations between 1p/19q co-deletion status and molecular markers or clinical outcomes. The FISH analyses revealed 1p/19q co-deletion in two cases, isolated deletion of 1p in six cases, and 19q in two cases, whereas the aCGH and WES results showed isolated deletion of 19q in four cases and 19 monosomy in only one case. Eleven cases showed discordant 1p/19q results between aCGH/WES and FISH analysis, and in most of them, 1p and/or 19q deletion on FISH analysis corresponded to the partial deletions at 1p36 and/or 19q13 on aCGH/WES. Our cohort exhibited IDH1-R132H mutations (5.4%), MGMT promotor methylation (34.6%), and mutations in ATRX (9.5%), TP53 (33.3%), and NOTCH1 (3.8%) but not in CIC (0%). In addition, MGMT methylation and ATRX mutation were significantly associated with clinical prognosis. In glioblastomas, partial deletions of 1p36 and/or 19q13 were uncommon, some of which appeared as 1p and/or 19q deletions on FISH analysis.
Collapse
|
13
|
Li J, Liang R, Song C, Xiang Y, Liu Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018; 11:731-742. [PMID: 29445288 PMCID: PMC5808691 DOI: 10.2147/ott.s155160] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose There is a great controversy regarding the prognostic significance of epidermal growth factor receptor (EGFR) in glioma patients. The current meta-analysis was conducted to evaluate the effect of abnormal EGFR expression on overall survival in glioma patients. Materials and methods A comprehensive literature search of PubMed, EMBASE, Google Scholar, Web of Science, and Cochrane Library was conducted. The combined hazard ratio (HR) and its 95% confidence intervals (CIs) were used to evaluate the association between EGFR expression and survival in glioma. Results A total of 476 articles were screened, and 17 articles containing 1,458 patients were selected. The quality assessment of the included studies was performed by the Newcastle-Ottawa Scale. Overexpression of EGFR was found to be an indicator of poor prognosis in overall survival in glioma patients (HR =1.72, 95% CI 1.32-2.25, P=0.000, random effect) and glioblastoma multiforme patients (HR =1.57, 95% CI 1.15-2.14, P=0.004, random effect). Subgroup analysis was conducted to explore the source of high heterogeneity. Conclusion This meta-analysis indicated that high expression of EGFR may serve as a biomarker for poor prognosis in glioma patients.
Collapse
Affiliation(s)
- Junhong Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Ruofei Liang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Chen Song
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
14
|
Frequency and clinical significance of chromosome 7 and 10 aneuploidies, amplification of the EGFR gene, deletion of PTEN and TP53 genes, and 1p/19q deficiency in a sample of adult patients diagnosed with glioblastoma from Southern Brazil. J Neurooncol 2017; 135:465-472. [PMID: 28856550 DOI: 10.1007/s11060-017-2606-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/20/2017] [Indexed: 10/19/2022]
Abstract
Glioblastoma stands out as the most frequent central nervous system neoplasia, presenting a poor prognosis. The aim of this study was to verify the frequency and clinical significance of the aneuploidy of chromosomes 7 and 10, EGFR amplification, PTEN and TP53 deletions and 1p/19q deficiency in adult patients diagnosed with glioblastoma. The sample consisted of 40 patients treated from November 2011 to March 2015 at two major neurosurgery services from Southern Brazil. Molecular cytogenetic analyses of the tumor were performed through fluorescent in situ hybridization (FISH). The clinical features evaluated consisted of age, sex, tumor location, clinical symptoms, family history of cancer, type of resection and survival. The mean age of the patients was 59.3 years (ranged from 41 to 83). Most of them were males (70%). The median survival was 145 days. Chromosome 10 monosomy was detected in 52.5% of the patients, chromosome 7 polysomy in 50%, EGFR amplification in 42.5%, PTEN deletion in 35%, TP53 deletion in 22.5%, 1p deletion in 5% and 19q deletion in 7.5%. Age was shown to be a prognostic factor, and patients with lower age presented higher survival (p = 0.042). TP53 and PTEN deletions had a negative impact on survival (p = 0.011 and p = 0.037, respectively). Our data suggest that TP53 and PTEN deletions may be associated with a poorer prognosis. These findings may have importance over prognosis determination and choice of the therapy to be administered.
Collapse
|
15
|
Ohtaki S, Wanibuchi M, Kataoka-Sasaki Y, Sasaki M, Oka S, Noshiro S, Akiyama Y, Mikami T, Mikuni N, Kocsis JD, Honmou O. ACTC1 as an invasion and prognosis marker in glioma. J Neurosurg 2016; 126:467-475. [PMID: 27081897 DOI: 10.3171/2016.1.jns152075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Glioma is a major class of brain tumors, and glioblastoma (GBM) is the most aggressive and malignant type. The nature of tumor invasion makes surgical removal difficult, which results in remote recurrence. The present study focused on glioma invasion and investigated the expression of actin, alpha cardiac muscle 1 (ACTC1), which is 1 of 6 actin families implicated in cell motility. METHODS mRNA expression of ACTC1 expression was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) in 47 formalin-fixed, paraffin-embedded glioma tissues that were graded according to WHO criteria: Grade I (n = 4); Grade II (n = 12); Grade III (n = 6); and Grade IV (n = 25). Survival was analyzed using the Kaplan-Meier method. The relationships between ACTC1 expression and clinical features such as radiological findings at the time of diagnosis and recurrence, patient age, Karnofsky Performance Scale status (KPS), and the MIB-1 index were evaluated. RESULTS The incidence of ACTC1 expression as a qualitative assessment gradually increased according to WHO grade. The hazard ratio for the median overall survival (mOS) of the patients with ACTC1-positive high-grade gliomas as compared with the ACTC1-negative group was 2.96 (95% CI, 1.03-8.56). The mOS was 6.28 years in the ACTC1-negative group and 1.26 years in the positive group (p = 0.037). In GBM patients, the hazard ratio for mOS in the ACTC1-positive GBMs as compared with the ACTC1-negative group was 2.86 (95% CI 0.97-8.45). mOS was 3.20 years for patients with ACTC1-negative GBMs and 1.08 years for patients with ACTC1-positive GBMs (p = 0.048). By the radiological findings, 42.9% of ACTC1-positive GBM patients demonstrated invasion toward the contralateral cerebral hemisphere at the time of diagnosis, although no invasion was observed in ACTC1-negative GBM patients (p = 0.013). The recurrence rate of GBM was 87.5% in the ACTC1-positive group; in contrast, none of the ACTC1-negative patients demonstrated distant recurrence (0.007). No remarkable relationship was demonstrated among ACTC1 expression and patient age, KPS, and the MIB-1 index. CONCLUSIONS ACTC1 may serve as a novel independent prognostic and invasion marker in GBM.
Collapse
Affiliation(s)
- Shunya Ohtaki
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masahiko Wanibuchi
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Yuko Kataoka-Sasaki
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Masanori Sasaki
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.,Department of Neurology, Yale University School of Medicine, New Haven; and.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Shinichi Oka
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Shouhei Noshiro
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Takeshi Mikami
- Departments of 1 Neurosurgery and.,Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven; and.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Osamu Honmou
- Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.,Department of Neurology, Yale University School of Medicine, New Haven; and.,Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
16
|
Affiliation(s)
- Victor A Levin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, UCSF School of Medicine, San Francisco, CA, USA
- Department of Neurosurgery and Neurology, Kaiser Permanente, Redwood City, CA, USA
| |
Collapse
|
17
|
Karsy M, Neil JA, Guan J, Mahan MA, Mark MA, Colman H, Jensen RL. A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 2015; 38:E4. [PMID: 25727226 DOI: 10.3171/2015.1.focus14755] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite extensive efforts in research and therapeutics, achieving longer survival for patients with glioblastoma (GBM) remains a formidable challenge. Furthermore, because of rapid advances in the scientific understanding of GBM, communication with patients regarding the explanations and implications of genetic and molecular markers can be difficult. Understanding the important biomarkers that play a role in GBM pathogenesis may also help clinicians in educating patients about prognosis, potential clinical trials, and monitoring response to treatments. This article aims to provide an up-to-date review that can be discussed with patients regarding common molecular markers, namely O-6-methylguanine-DNA methyltransferase (MGMT), isocitrate dehydrogenase 1 and 2 (IDH1/2), p53, epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K), and 1p/19q. The importance of the distinction between a prognostic and a predictive biomarker as well as clinical trials regarding these markers and their relevance to clinical practice are discussed.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, Clinical Neuroscience Center; and
| | | | | | | | | | | | | |
Collapse
|
18
|
Loss of Heterozygosity of 9p Is Associated with Poorer Survival in Patients with Gliomas. Mol Neurobiol 2015; 53:6407-6412. [PMID: 26582467 DOI: 10.1007/s12035-015-9523-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023]
Abstract
The prognostic factors associated with the survival of glioma patients have not been well established. Loss of heterozygosity (LOH) of 9p was known to be a typical molecular signature of gliomas, but it was still unclear whether LOH of 9p was associated with poorer survival in patients with gliomas. We searched PubMed and Embase databases from the earliest records to May 2015 to identify studies that met the inclusion criteria. Either a fixed- or a random-effects model was used to calculate the pooled hazard ratio (HR) according to the between-study heterogeneity. Thirteen eligible studies involving 1465 cases of gliomas were included in the meta-analysis. There was little between-study heterogeneity (I 2 = 15 %), and the fixed-effects model was used to calculate the pooled HR. Meta-analysis of total 13 studies showed that LOH of 9p was significantly associated with poorer prognosis of glioma patients (HR = 1.39, 95%CI 1.17-1.64, P = 0.0002). Meta-analysis of eight studies reporting adjusted estimates showed that LOH of 9p was independently associated with poorer prognosis of glioma patients (HR = 1.40, 95%CI 1.14-1.72, P = 0.001). Subgroup analysis by types of gliomas showed that LOH of 9p was significantly associated with poorer prognosis in patients with glioblastoma (HR = 1.34, 95%CI 1.01-1.78, P = 0.04). There was no obvious risk of publication bias shown in the funnel plot. LOH of 9p is significantly associated with poorer prognosis of glioma patients, which is a useful biomarker in predicting patients' survival.
Collapse
|
19
|
Chen JR, Xu HZ, Yao Y, Qin ZY. Prognostic value of epidermal growth factor receptor amplification and EGFRvIII in glioblastoma: meta-analysis. Acta Neurol Scand 2015; 132:310-22. [PMID: 25846813 DOI: 10.1111/ane.12401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Epidermal growth factor receptor (EGFR) gene amplification and the EGFRvIII mutation may have prognostic value in patients with glioblastoma. This meta-analysis was to determine whether EGFR gene amplification or the EGFRvIII mutation are predictors of survival in patients with glioblastoma and anaplastic astrocytoma. MATERIALS AND METHODS Medline, the Cochrane Central Register of Controlled Trials, EMBASE, and Google Scholar databases were searched until July 31, 2014. Studies were selected for inclusion in the analysis if they included patients with anaplastic astrocytoma and/or glioblastoma, EGFR and/or EGFRvIII mutation status was reported, and overall survival (OS) data were reported. RESULTS Of 113 articles initially identified, only eight contained data with respect to the outcome of interest and were included in the meta-analysis. The number of cases ranged from 14 to 268, and the majority of patients were 60 or more years of age. There was no significant difference in OS between EGFR amplification-positive and EGFR amplification-negative glioblastoma patients (pooled hazard ratio [HR] = 1.101, 95% confidence interval [CI] 0.845, 1.434, P = 0.475) or anaplastic astrocytoma patients (pooled HR = 1.455, 95% CI 0.852, 2.482, P = 0.169). There was no significant difference in OS between EGFRvIII-positive and EGFRvIII-negative glioblastoma patients (pooled HR = 1.321, 95% CI: 0.881-1.981, P = 0.178). Significant heterogeneity existed between the studies, and the significance changed when the analysis was performed with studies removed in turn. CONCLUSIONS There is insufficient evidence that either EGFR amplification or the EGFRvIII mutation has prognostic value in patients with glioblastoma.
Collapse
Affiliation(s)
- J.-R. Chen
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| | - H.-Z. Xu
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| | - Y. Yao
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| | - Z.-Y. Qin
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|
20
|
Geisenberger C, Mock A, Warta R, Rapp C, Schwager C, Korshunov A, Nied AK, Capper D, Brors B, Jungk C, Jones D, Collins VP, Ichimura K, Bäcklund LM, Schnabel E, Mittelbron M, Lahrmann B, Zheng S, Verhaak RGW, Grabe N, Pfister SM, Hartmann C, von Deimling A, Debus J, Unterberg A, Abdollahi A, Herold-Mende C. Molecular profiling of long-term survivors identifies a subgroup of glioblastoma characterized by chromosome 19/20 co-gain. Acta Neuropathol 2015; 130:419-34. [PMID: 25931051 DOI: 10.1007/s00401-015-1427-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/04/2015] [Accepted: 04/18/2015] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is a devastating tumor and few patients survive beyond 3 years. Defining the molecular determinants underlying long-term survival is essential for insights into tumor biology and biomarker identification. We therefore investigated homogeneously treated, IDH (wt) long-term (LTS, n = 10) and short-term survivors (STS, n = 6) by microarray transcription profiling. While there was no association of clinical parameters and molecular subtypes with long-term survival, STS tumors were characterized by differential polarization of infiltrating microglia with predominance of the M2 phenotype detectable both on the mRNA and protein level. Furthermore, transcriptional signatures of LTS and STS predicted patient outcome in a large, IDH (wt) cohort (n = 468). Interrogation of overlapping genomic alterations identified concurrent gain of chromosomes 19 and 20 as a favorable prognostic marker. The strong association of this co-gain with survival was validated by aCGH in a second, independent cohort (n = 124). Finally, FISH and gene expression data revealed gains to constitute low-amplitude, clonal events with a strong impact on transcription. In conclusion, these findings provide important insights into the manipulation of the innate immune system by particularly aggressive GBM tumors. Furthermore, we genomically characterize a previously unknown, clinically relevant subgroup of glioblastoma, which can easily be identified through modern neuropathological workup.
Collapse
|
21
|
Di Stefano AL, Fucci A, Frattini V, Labussiere M, Mokhtari K, Zoppoli P, Marie Y, Bruno A, Boisselier B, Giry M, Savatovsky J, Touat M, Belaid H, Kamoun A, Idbaih A, Houillier C, Luo FR, Soria JC, Tabernero J, Eoli M, Paterra R, Yip S, Petrecca K, Chan JA, Finocchiaro G, Lasorella A, Sanson M, Iavarone A. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma. Clin Cancer Res 2015; 21:3307-17. [PMID: 25609060 PMCID: PMC4506218 DOI: 10.1158/1078-0432.ccr-14-2199] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 01/04/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Oncogenic fusions consisting of fibroblast growth factor receptor (FGFR) and TACC are present in a subgroup of glioblastoma (GBM) and other human cancers and have been proposed as new therapeutic targets. We analyzed frequency and molecular features of FGFR-TACC fusions and explored the therapeutic efficacy of inhibiting FGFR kinase in GBM and grade II and III glioma. EXPERIMENTAL DESIGN Overall, 795 gliomas (584 GBM, 85 grades II and III with wild-type and 126 with IDH1/2 mutation) were screened for FGFR-TACC breakpoints and associated molecular profile. We also analyzed expression of the FGFR3 and TACC3 components of the fusions. The effects of the specific FGFR inhibitor JNJ-42756493 for FGFR3-TACC3-positive glioma were determined in preclinical experiments. Two patients with advanced FGFR3-TACC3-positive GBM received JNJ-42756493 and were assessed for therapeutic response. RESULTS Three of 85 IDH1/2 wild-type (3.5%) but none of 126 IDH1/2-mutant grade II and III gliomas harbored FGFR3-TACC3 fusions. FGFR-TACC rearrangements were present in 17 of 584 GBM (2.9%). FGFR3-TACC3 fusions were associated with strong and homogeneous FGFR3 immunostaining. They are mutually exclusive with IDH1/2 mutations and EGFR amplification, whereas they co-occur with CDK4 amplification. JNJ-42756493 inhibited growth of glioma cells harboring FGFR3-TACC3 in vitro and in vivo. The two patients with FGFR3-TACC3 rearrangements who received JNJ-42756493 manifested clinical improvement with stable disease and minor response, respectively. CONCLUSIONS RT-PCR sequencing is a sensitive and specific method to identify FGFR-TACC-positive patients. FGFR3-TACC3 fusions are associated with uniform intratumor expression of the fusion protein. The clinical response observed in the FGFR3-TACC3-positive patients treated with an FGFR inhibitor supports clinical studies of FGFR inhibition in FGFR-TACC-positive patients.
Collapse
Affiliation(s)
- Anna Luisa Di Stefano
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France. AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France. Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alessandra Fucci
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Veronique Frattini
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Marianne Labussiere
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
| | - Karima Mokhtari
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France. AP-HP, Groupe Hospitalier Pitié Salpêtrière, Laboratoire de Neuropathologie R Escourolle, Paris, France. AP-HP Onconeurothèque, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Pietro Zoppoli
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York
| | - Yannick Marie
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France. Institut du Cerveau et de la Moelle épinière (ICM), Plateforme de Génotypage Séquençage, Paris, France
| | - Aurelie Bruno
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
| | - Blandine Boisselier
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
| | - Marine Giry
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
| | | | - Mehdi Touat
- Drug Development Department, Gustave Roussy Cancer Center, Paris, France
| | - Hayat Belaid
- AP-HP, Groupe Hospitalier Pitié Salpêtrière, Department of Neurosurgery, Paris, France
| | - Aurelie Kamoun
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France
| | - Ahmed Idbaih
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France. AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
| | - Caroline Houillier
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
| | - Feng R Luo
- Janssen Pharmaceutical Companies of Johnson and Johnson, Titusville, New Jersey
| | - Jean-Charles Soria
- Drug Development Department, Gustave Roussy Cancer Center, Paris, France
| | - Josep Tabernero
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marica Eoli
- Fondazione I.R.C.C.S Istituto Neurologico C. Besta, Milan, Italy
| | - Rosina Paterra
- Fondazione I.R.C.C.S Istituto Neurologico C. Besta, Milan, Italy
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Kevin Petrecca
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | | | | | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York. Department of Pediatrics and Pathology, Columbia University Medical Center, New York, New York
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France. AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2, Paris, France. AP-HP Onconeurothèque, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York. Department of Neurology and Pathology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
22
|
Idoate MA, Echeveste J, Diez-Valle R, Lozano MD, Aristu J. Biological and clinical significance of the intratumour heterogeneity of PTEN protein expression and the corresponding molecular abnormalities of the PTEN gene in glioblastomas. Neuropathol Appl Neurobiol 2015; 40:736-46. [PMID: 24417635 DOI: 10.1111/nan.12117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/08/2014] [Indexed: 01/26/2023]
Abstract
AIMS Glioblastomas display marked phenotypic and molecular heterogeneity. The expression of the PTEN protein in glioblastomas also shows great intratumour heterogeneity, but the significance of this heterogeneity has so far received little attention. METHODS We conducted a comparative study on paraffin and frozen samples from 60 glioblastomas. Based on PTEN immunostaining, paraffin glioblastomas were divided into positive (homogeneous staining) and both positive and negative (heterogeneous staining) tumours. DNA was extracted from manually microdissected samples from representative areas, and from frozen samples taken randomly from the same tumours. Loss of heterozygosity (LOH) of 10q23 and hypermethylation status of the PTEN promoter were studied, and the molecular findings were correlated with overall survival. RESULTS PTEN protein was present heterogeneously in 42 cases and homogeneously in 18 cases. In homogeneous glioblastomas, no correlation was found between PTEN protein expression and the LOH of the gene. Surprisingly, in the heterogeneous glioblastomas, LOH was found significantly more frequently (P < 0.001) in PTEN-positive areas (81%) than in PTEN-negative ones (35.7%). In general, molecular results of frozen tissue were representative of the tumour. Only two cases of methylation of the PTEN promoter were identified. A significant difference was found for overall survival for LOH10q23 status (P = 0.005) and for homogeneous vs. heterogeneous tumours (P = 0.014). CONCLUSION The expression of PTEN protein does not correlate with the abnormalities of the LOH of the gene. Interestingly, patients with glioblastomas presenting either LOH of 10q23 or heterogeneous PTEN expression have a poorer prognosis.
Collapse
Affiliation(s)
- Miguel A Idoate
- Pathology, University Hospital and Faculty of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
23
|
Thuy MN, Kam JK, Lee GC, Tao PL, Ling DQ, Cheng M, Goh SK, Papachristos AJ, Shukla L, Wall KL, Smoll NR, Jones JJ, Gikenye N, Soh B, Moffat B, Johnson N, Drummond KJ. A novel literature-based approach to identify genetic and molecular predictors of survival in glioblastoma multiforme: Analysis of 14,678 patients using systematic review and meta-analytical tools. J Clin Neurosci 2015; 22:785-99. [DOI: 10.1016/j.jocn.2014.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 01/08/2023]
|
24
|
Abstract
Recent advances in molecular diagnostics have led to better understanding of glioma tumorigenesis and biology. Numerous glioma biomarkers with diagnostic, prognostic, and predictive value have been identified. Although some of these markers are already part of the routine clinical management of glioma patients, data regarding others are limited and difficult to apply routinely. In addition, multiple methods for molecular subclassification have been proposed either together with or as an alternative to the current morphologic classification and grading scheme. This article reviews the literature regarding glioma biomarkers and offers a few practical suggestions.
Collapse
Affiliation(s)
- Melike Pekmezci
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, #M551, Box 0102, San Francisco, CA 94143, USA
| | - Arie Perry
- Division of Neuropathology, Department of Pathology, University of California, San Francisco, 505 Parnassus Avenue, #M551, Box 0102, San Francisco, CA 94143, USA; Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
25
|
Abstract
The WHO grading scheme for glial neoplasms assigns Grade II to 5 distinct tumors of astrocytic or oligodendroglial lineage: diffuse astrocytoma, oligodendroglioma, oligoastrocytoma, pleomorphic xanthoastrocytoma, and pilomyxoid astrocytoma. Although commonly referred to collectively as among the "low-grade gliomas," these 5 tumors represent molecularly and clinically unique entities. Each is the subject of active basic research aimed at developing a more complete understanding of its molecular biology, and the pace of such research continues to accelerate. Additionally, because managing and predicting the course of these tumors has historically proven challenging, translational research regarding Grade II gliomas continues in the hopes of identifying novel molecular features that can better inform diagnostic, prognostic, and therapeutic strategies. Unfortunately, the basic and translational literature regarding the molecular biology of WHO Grade II gliomas remains nebulous. The authors' goal for this review was to present a comprehensive discussion of current knowledge regarding the molecular characteristics of these 5 WHO Grade II tumors on the chromosomal, genomic, and epigenomic levels. Additionally, they discuss the emerging evidence suggesting molecular differences between adult and pediatric Grade II gliomas. Finally, they present an overview of current strategies for using molecular data to classify low-grade gliomas into clinically relevant categories based on tumor biology.
Collapse
Affiliation(s)
- Nicholas F Marko
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
26
|
Zhang P, Wu SK, Wang Y, Fan ZX, Li CR, Feng M, Xu P, Wang WD, Lang JY. p53, MDM2, eIF4E and EGFR expression in nasopharyngeal carcinoma and their correlation with clinicopathological characteristics and prognosis: A retrospective study. Oncol Lett 2014; 9:113-118. [PMID: 25435943 PMCID: PMC4246848 DOI: 10.3892/ol.2014.2631] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
In the present study, the expression of p53, mouse double minute 2 homolog (MDM2), eukaryotic translation initiation factor 4E (eIF4E), and epidermal growth factor receptor (EGFR) were investigated in nasopharyngeal carcinoma (NPC), and the correlation between their expression and clinicopathological characteristics and prognosis was analyzed. The medical records of 96 NPC patients who had undergone biopsy prior to radical radiotherapy and chemotherapy between 2005 and 2009 were reviewed, retrospectively. All patients received intensity-modulated radiotherapy with concurrent platinum-based chemotherapy. Patients were followed-up for three years. Streptavidin-peroxidase immunohistochemistry was used to evaluate the expression of p53, MDM2, eIF4E and EGFR in NPC biopsy specimens, and the association between their expression and clinical parameters and survival was analyzed. The p53, MDM2, eIF4E and EGFR expression rates were 65.6% (63/96), 79.16% (76/96), 77.08% (74/96) and 89.5% (86/96), respectively. p53 (χ2,20.322; P=0.001) and EGFR (χ2,8.337; P=0.005) expression were found to correlate with T stage, whereas MDM2 (χ2,16.361; P=0.001) expression was found to correlate with lymph node metastasis. p53 expression was found to inversely correlate with MDM2 expression (r, −3.24; P<0.05). Three-year survival rates were lower in p53-positive (76.2%) patients when compared with p53-negative (93.9%) patients. In addition, three-year survival rates were lower in EGFR-positive (75.8%) patients than in EGFR-negative patients (91.2%). The Cox proportional-hazards regression model revealed that p53 (β,−0.455; χ2,5.491; P=0.019) and EGFR (β, 3.93; χ2, 11.95; P=0.001) expression were independent prognostic factors. Thus, it was hypothesized that p53 and EGFR expression present potential unfavorable prognostic markers for patients with NPC.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Song-Ke Wu
- Department of Oncology, Cangxi People's Hospital, Guangyuan, Sichuan, 618400, P.R. China
| | - Ying Wang
- Department of Pathology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Zi-Xuan Fan
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Chu-Rong Li
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Mei Feng
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Peng Xu
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| | - Jin-Yi Lang
- Department of Radiation Oncology, Sichuan Provincial Cancer Hospital, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
27
|
Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, Villano JL. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 2014; 23:1985-96. [PMID: 25053711 DOI: 10.1158/1055-9965.epi-14-0275] [Citation(s) in RCA: 908] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system malignancy with a median survival of 15 months. The average incidence rate of GBM is 3.19/100,000 population, and the median age of diagnosis is 64 years. Incidence is higher in men and individuals of white race and non-Hispanic ethnicity. Many genetic and environmental factors have been studied in GBM, but the majority are sporadic, and no risk factor accounting for a large proportion of GBMs has been identified. However, several favorable clinical prognostic factors are identified, including younger age at diagnosis, cerebellar location, high performance status, and maximal tumor resection. GBMs comprise of primary and secondary subtypes, which evolve through different genetic pathways, affect patients at different ages, and have differences in outcomes. We report the current epidemiology of GBM with new data from the Central Brain Tumor Registry of the United States 2006 to 2010 as well as demonstrate and discuss trends in incidence and survival. We also provide a concise review on molecular markers in GBM that have helped distinguish biologically similar subtypes of GBM and have prognostic and predictive value.
Collapse
Affiliation(s)
- Jigisha P Thakkar
- Department of Medicine, University of Kentucky, Lexington, Kentucky. Department of Neurology, University of Kentucky, Lexington, Kentucky
| | - Therese A Dolecek
- Division of Epidemiology and Biostatistics and Institute for Health Research and Policy, School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Craig Horbinski
- Department of Pathology, University of Kentucky, Lexington, Kentucky
| | - Quinn T Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Donita D Lightner
- Department of Neurology and Pediatrics, University of Kentucky, Lexington, Kentucky
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - John L Villano
- Department of Medicine, University of Kentucky, Lexington, Kentucky. Department of Neurology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
28
|
Piccolo SR, Frey LJ. Clinical and molecular models of glioblastoma multiforme survival. INT J DATA MIN BIOIN 2014; 7:245-65. [PMID: 23819258 DOI: 10.1504/ijdmb.2013.053310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glioblastoma multiforme (GBM), a highly aggressive form of brain cancer, results in a median survival of 12-15 months. For decades, researchers have explored the effects of clinical and molecular factors on this disease and have identified several candidate prognostic markers. In this study, we evaluated the use of multivariate classification models for differentiating between subsets of patients who survive a relatively long or short time. Data for this study came from The Cancer Genome Atlas (TCGA), a public repository containing clinical, treatment, histological and biomolecular variables for hundreds of patients. We applied variable-selection and classification algorithms in a cross-validated design and observed that predictive performance of the resulting models varied substantially across the algorithms and categories of data. The best-performing models were based on age, treatments and global DNA methylation. In this paper, we summarise our findings, discuss lessons learned in analysing TCGA data and offer recommendations for performing such analyses.
Collapse
Affiliation(s)
- Stephen R Piccolo
- Department of Pharmacology and Toxicology, University of Utah, 201 Presidents Circle, Salt Lake City, 84112 UT, USA.
| | | |
Collapse
|
29
|
Romeike BFM, Mawrin C. Gliomatosis cerebri: growing evidence for diffuse gliomas with wide invasion. Expert Rev Neurother 2014; 8:587-97. [DOI: 10.1586/14737175.8.4.587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Karsy M, Albert L, Murali R, Jhanwar-Uniyal M. The impact of arsenic trioxide and all-trans retinoic acid on p53 R273H-codon mutant glioblastoma. Tumour Biol 2014; 35:4567-80. [PMID: 24399651 DOI: 10.1007/s13277-013-1601-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults and demonstrates a 1-year median survival time. Codon-specific hotspot mutations of p53 result in constitutively active mutant p53, which promotes aberrant proliferation, anti-apoptosis, and cell cycle checkpoint failure in GBM. Recently identified CD133(+) cancer stem cell populations (CSC) within GBM also confer therapeutic resistance. We studied targeted therapy in a codon-specific p53 mutant (R273H) created by site-directed mutagenesis in U87MG. The effects of arsenic trioxide (ATO, 1 μM) and all-trans retinoic acid (ATRA, 10 μM), possible targeted treatments of CSCs, were investigated in U87MG neurospheres. The results showed that U87-p53(R273H) cells generated more rapid neurosphere growth than U87-p53(wt) but inhibition of neurosphere proliferation was seen with both ATO and ATRA. U87-p53(R273H) neurospheres showed resistance to differentiation into glial cells and neuronal cells with ATO and ATRA exposure. ATO was able to generate apoptosis at high doses and proliferation of U87-p53(wt) and U87-p53(R273H) cells was reduced with ATO and ATRA in a dose-dependent manner. Elevated pERK1/2 and p53 expression was seen in U87-p53(R273H) neurospheres, which could be reduced with ATO and ATRA treatment. Additionally, differential responses in pERK1/2 were seen with ATO treatment in neurospheres and non-neurosphere cells. In conclusion, codon-specific mutant p53 conferred a more aggressive phenotype to our CSC model. However, ATO and ATRA could potently suppress CSC properties in vitro and may support further clinical investigation of these agents.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA,
| | | | | | | |
Collapse
|
31
|
Olar A, Aldape KD. Using the molecular classification of glioblastoma to inform personalized treatment. J Pathol 2014; 232:165-77. [PMID: 24114756 PMCID: PMC4138801 DOI: 10.1002/path.4282] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 08/23/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most common and most aggressive diffuse glioma, associated with short survival and uniformly fatal outcome, irrespective of treatment. It is characterized by morphological, genetic and gene-expression heterogeneity. The current standard of treatment is maximal surgical resection, followed by radiation, with concurrent and adjuvant chemotherapy. Due to the heterogeneity, most tumours develop resistance to treatment and shortly recur. Following recurrence, glioblastoma is quickly fatal in the majority of cases. Recent genetic molecular advances have contributed to a better understanding of glioblastoma pathophysiology and disease stratification. In this paper we review basic glioblastoma pathophysiology, with emphasis on clinically relevant genetic molecular alterations and potential targets for further drug development.
Collapse
Affiliation(s)
- Adriana Olar
- Department of Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | | |
Collapse
|
32
|
Ma H, Rao L, Wang HL, Mao ZW, Lei RH, Yang ZY, Qing H, Deng YL. Transcriptome analysis of glioma cells for the dynamic response to γ-irradiation and dual regulation of apoptosis genes: a new insight into radiotherapy for glioblastomas. Cell Death Dis 2013; 4:e895. [PMID: 24176853 PMCID: PMC3920930 DOI: 10.1038/cddis.2013.412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 11/11/2022]
Abstract
Ionizing radiation (IR) is of clinical importance for glioblastoma therapy; however, the recurrence of glioma characterized by radiation resistance remains a therapeutic challenge. Research on irradiation-induced transcription in glioblastomas can contribute to the understanding of radioresistance mechanisms. In this study, by using the total mRNA sequencing (RNA-seq) analysis, we assayed the global gene expression in a human glioma cell line U251 MG at various time points after exposure to a growth arrest dose of γ-rays. We identified 1656 genes with obvious changes at the transcriptional level in response to irradiation, and these genes were dynamically enriched in various biological processes or pathways, including cell cycle arrest, DNA replication, DNA repair and apoptosis. Interestingly, the results showed that cell death was not induced even many proapoptotic molecules, including death receptor 5 (DR5) and caspases were activated after radiation. The RNA-seq data analysis further revealed that both proapoptosis and antiapoptosis genes were affected by irradiation. Namely, most proapoptosis genes were early continually responsive, whereas antiapoptosis genes were responsive at later stages. Moreover, HMGB1, HMGB2 and TOP2A involved in the positive regulation of DNA fragmentation during apoptosis showed early continual downregulation due to irradiation. Furthermore, targeting of the TRAIL/DR5 pathway after irradiation led to significant apoptotic cell death, accompanied by the recovered gene expression of HMGB1, HMGB2 and TOP2A. Taken together, these results revealed that inactivation of proapoptotic signaling molecules in the nucleus and late activation of antiapoptotic genes may contribute to the radioresistance of gliomas. Overall, this study provided novel insights into not only the underlying mechanisms of radioresistance in glioblastomas but also the screening of multiple targets for radiotherapy.
Collapse
Affiliation(s)
- H Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Laxton RC, Popov S, Doey L, Jury A, Bhangoo R, Gullan R, Chandler C, Brazil L, Sadler G, Beaney R, Sibtain N, King A, Bodi I, Jones C, Ashkan K, Al-Sarraj S. Primary glioblastoma with oligodendroglial differentiation has better clinical outcome but no difference in common biological markers compared with other types of glioblastoma. Neuro Oncol 2013; 15:1635-43. [PMID: 24158110 DOI: 10.1093/neuonc/not125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme with an oligodendroglial component (GBMO) has been recognized in the World Health Organization classification-however, the diagnostic criteria, molecular biology, and clinical outcome of primary GBMO remain unclear. Our aim was to investigate whether primary GBMO is a distinct clinicopathological subgroup of GBM and to determine the relative frequency of prognostic markers such as loss of heterozygosity (LOH) on 1p and/or 19q, O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and isocitrate dehydrogenase 1 (IDH1) mutation. METHODS We examined 288 cases of primary GBM and assessed the molecular markers in 57 GBMO and 50 cases of other primary GBM, correlating the data with clinical parameters and outcome. RESULTS GBMO comprised 21.5% of our GBM specimens and showed significantly longer survival compared with our other GBM (12 mo vs 5.8 mo, P = .006); there was also a strong correlation with younger age at diagnosis (56.4 y vs 60.6 y, P = .005). Singular LOH of 19q (P = .04) conferred a 1.9-fold increased hazard of shorter survival. There was no difference in the frequencies of 1p or 19q deletion, MGMT promoter methylation, or IDH1 mutation (P = .8, P = 1.0, P = 1.0, respectively). CONCLUSIONS Primary GBMO is a subgroup of GBM associated with longer survival and a younger age group but shows no difference in the frequency of LOH of 1p/19q, MGMT, and IDH1 mutation compared with other primary GBM.
Collapse
Affiliation(s)
- Ross C Laxton
- Corresponding Author: Ross Laxton, PhD, Department of Clinical Neuropathology, King's College Hospital, Denmark Hill, London SE5 9RS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Clark KH, Villano JL, Nikiforova MN, Hamilton RL, Horbinski C. 1p/19q testing has no significance in the workup of glioblastomas. Neuropathol Appl Neurobiol 2013; 39:706-17. [PMID: 23363074 PMCID: PMC4095883 DOI: 10.1111/nan.12031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/28/2013] [Indexed: 01/09/2023]
Abstract
AIMS To determine whether testing for isolated 1p or 19q losses, or as a codeletion, has any significance in the workup of glioblastomas (GBMs). METHODS Upfront 1p/19q testing by fluorescence in situ hybridization (FISH) and/or polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) was done in 491 gliomas that were histologically diagnosed as GBMs. Outcomes were determined and measured against 1p/19q results. RESULTS Twenty-eight showed apparent 1p/19q codeletion by either FISH and/or PCR-based LOH, but only 1/26 showed codeletion by both tests. Over 90% of tumours with apparent codeletion by either FISH or LOH also had 10q LOH and/or EGFR amplification, features inversely related to true whole-arm 1p/19q codeletion. Furthermore, only 1/28 tumours demonstrated an R132H IDH1 mutation. Neither 1p/19q codeletion by FISH nor LOH had an impact on GBM survival. Isolated losses of 1p or 19q also had no impact on survival. CONCLUSIONS These data suggest that (i) 1p/19q testing is not useful on gliomas that are histologically GBMs; (ii) codeletion testing should be reserved only for cases with compatible morphology; and (iii) EGFR, 10q, and IDH1 testing can help act as safeguards against a false-positive 1p/19q result.
Collapse
Affiliation(s)
- K H Clark
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
35
|
Wallace GC, Dixon-Mah YN, Vandergrift WA, Ray SK, Haar CP, Mittendorf AM, Patel SJ, Banik NL, Giglio P, Das A. Targeting oncogenic ALK and MET: a promising therapeutic strategy for glioblastoma. Metab Brain Dis 2013; 28:355-66. [PMID: 23543207 PMCID: PMC4314306 DOI: 10.1007/s11011-013-9401-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/10/2013] [Indexed: 11/26/2022]
Abstract
Glioblastoma is the most common aggressive, highly glycolytic, and lethal brain tumor. In fact, it is among the most commonly diagnosed lethal malignancies, with thousands of new cases reported in the United States each year. Glioblastoma's lethality is derived from a number of factors including highly active pro-mitotic and pro-metastatic pathways. Two factors increasingly associated with the intracellular signaling and transcriptional machinery required for such changes are anaplastic lymphoma kinase (ALK) and the hepatocyte growth factor receptor (HGFR or, more commonly MET). Both receptors are members of the receptor tyrosine kinase (RTK) family, which has itself gained much attention for its role in modulating mitosis, migration, and survival in cancer cells. ALK was first described as a vital oncogene in lymphoma studies, but it has since been connected to many carcinomas, including non-small cell lung cancer and glioblastoma. As the receptor for HGF, MET has also been highly characterized and regulates numerous developmental and wound healing events which, when upregulated in cancer, can promote tumor progression. The wealth of information gathered over the last 30 years regarding these RTKs suggests three downstream cascades that depend upon activation of STAT3, Ras, and AKT. This review outlines the significance of ALK and MET as they relate to glioblastoma, explores the significance of STAT3, Ras, and AKT downstream of ALK/MET, and touches on the potential for new chemotherapeutics targeting ALK and MET to improve glioblastoma patient prognosis.
Collapse
Affiliation(s)
- Gerald C Wallace
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yaenette N Dixon-Mah
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - W Alex Vandergrift
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Catherine P Haar
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Amber M Mittendorf
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sunil J Patel
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pierre Giglio
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
| | - Arabinda Das
- Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program Medical University of South Carolina, Charleston, SC 29425, USA
- Correspondence should be direction to Arabinda Das, Department of Neurosciences (Divisions of Neurology and Neurosurgery) & MUSC Brain & Spine Tumor Program, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425; Arabinda Das ()
| |
Collapse
|
36
|
Bieńkowski M, Piaskowski S, Stoczyńska-Fidelus E, Szybka M, Banaszczyk M, Witusik-Perkowska M, Jesień-Lewandowicz E, Jaskólski DJ, Radomiak-Załuska A, Jesionek-Kupnicka D, Sikorska B, Papierz W, Rieske P, Liberski PP. Screening for EGFR amplifications with a novel method and their significance for the outcome of glioblastoma patients. PLoS One 2013; 8:e65444. [PMID: 23762372 PMCID: PMC3675194 DOI: 10.1371/journal.pone.0065444] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/24/2013] [Indexed: 01/18/2023] Open
Abstract
Glioblastoma is a highly aggressive tumour of the central nervous system, characterised by poor prognosis irrespective of the applied treatment. The aim of our study was to analyse whether the molecular markers of glioblastoma (i.e. TP53 and IDH1 mutations, CDKN2A deletion, EGFR amplification, chromosome 7 polysomy and EGFRvIII expression) could be associated with distinct prognosis and/or response to the therapy. Moreover, we describe a method which allows for a reliable, as well as time- and cost-effective, screening for EGFR amplification and chromosome 7 polysomy with quantitative Real-Time PCR at DNA level. In the clinical data, only the patient’s age had prognostic significance (continuous: HR = 1.04; p<0.01). At the molecular level, EGFRvIII expression was associated with a better prognosis (HR = 0.37; p = 0.04). Intriguingly, EGFR amplification was associated with a worse outcome in younger patients (HR = 3.75; p<0.01) and in patients treated with radiotherapy (HR = 2.71; p = 0.03). We did not observe any difference between the patients with the amplification treated with radiotherapy and the patients without such a treatment. Next, EGFR amplification was related to a better prognosis in combination with the homozygous CDKN2A deletion (HR = 0.12; p = 0.01), but to a poorer prognosis in combination with chromosome 7 polysomy (HR = 14.88; p = 0.01). Importantly, the results emphasise the necessity to distinguish both mechanisms of the increased EGFR gene copy number (amplification and polysomy). To conclude, although the data presented here require validation in different groups of patients, they strongly advocate the consideration of the patient’s tumour molecular characteristics in the selection of the therapy.
Collapse
Affiliation(s)
- Michał Bieńkowski
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol 2013; 34:2063-74. [PMID: 23737287 DOI: 10.1007/s13277-013-0871-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/15/2013] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignancy in the brain and confers a uniformly poor prognosis. Despite decades of research on the topic, limited progress has been made to improve the poor survival associated with this disease. GBM arises de novo (primary GBM) or via dedifferentiation of lower grade glioma (secondary GBM). While distinct mutations are predominant in each subtype, alterations of tumor suppressor p53 are the most common, seen in 25-30 % of primary GBM and 60-70 % of secondary GBM. Various roles of p53 that protect against neoplastic transformation include modulation of cell cycle, DNA repair, apoptosis, senescence, angiogenesis, and metabolism, resulting in an extremely complex signaling network. Mutations of p53 in GBM are most common in the DNA-binding domain, namely within six hotspot mutation sites (codons 175, 245, 248, 249, 273, and 282). These alterations generally result in loss-of-function, gain-of-function, and dominant-negative mutational effects for p53, however, the distinct effect of these mutation types in GBM pathogenesis remain unclear. Signaling alterations downstream from p53 (e.g., MDM2, MDM4, INK4/ARF), p53 isoforms (e.g., p63, p73), and microRNAs (e.g., miR-34) also play critical roles in modulating the p53 pathway. Despite novel mouse models of GBM showing that p53 combined with other mutation generate tumors de novo, the role of p53 as a molecular marker of GBM remains controversial with most studies failing to show an association with prognosis. Regarding treatment in GBM, p53 targeted-gene therapy and vaccinations have reached phase I clinical trials while therapeutic drugs are still in preclinical development. This review aims to discuss the most recent findings regarding the impact of p53 mutations on GBM pathogenesis, prognosis, and treatment.
Collapse
Affiliation(s)
- Bryant England
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
38
|
Chaudhry NS, Shah AH, Ferraro N, Snelling BM, Bregy A, Madhavan K, Komotar RJ. Predictors of long-term survival in patients with glioblastoma multiforme: advancements from the last quarter century. Cancer Invest 2013; 31:287-308. [PMID: 23614654 DOI: 10.3109/07357907.2013.789899] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the last quarter century there has been significant progress toward identifying certain characteristics and patterns in GBM patients to predict survival times and outcomes. We sought to identify clinical predictors of survival in GBM patients from the past 24 years. We examined patient survival related to tumor locations, surgical treatment, postoperative course, radiotherapy, chemotherapy, patient age, GBM recurrence, imaging characteristics, serum, and molecular markers. We present predictors that may increase, decrease, or play no significant role in determining a GBM patient's long-term survival or affect the quality of life.
Collapse
Affiliation(s)
- Nauman S Chaudhry
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Clark K, Voronovich Z, Horbinski C. How molecular testing can help (and hurt) in the workup of gliomas. Am J Clin Pathol 2013; 139:275-88. [PMID: 23429363 DOI: 10.1309/ajcpfo8iidnbij8y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Advances in genetics research have greatly expanded our ability to accurately diagnose gliomas and provide more useful prognostic information. Herein specific examples are used to show how high-yield targets such as EGFR, 1p/19q, IDH1/2, MGMT, and BRAF can expand the power of the surgical neuropathologist. To avoid errors, however, the significance and controversies associated with each test must be thoroughly understood.
Collapse
Affiliation(s)
- Kenneth Clark
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Zoya Voronovich
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | |
Collapse
|
40
|
Chen DQ, Yao DX, Zhao HY, Yang SJ. DNA repair gene ERCC1 and XPD polymorphisms predict glioma susceptibility and prognosis. Asian Pac J Cancer Prev 2013; 13:2791-4. [PMID: 22938460 DOI: 10.7314/apjcp.2012.13.6.2791] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIMS We conducted a case-control study in a Chinese population to clarify the association between polymorphisms in ERCC1 and XPD and susceptibility and survival of glioma. METHODS A total of 393 cases and 410 controls were selected from March 2007 to December 2011. Genotyping of ERCC1 and XPD was conducted by TaqMan assays using the ABI Prism 7911HT Sequence Detection System. All analyses were performed using the STATA statistical package. RESULTS Polymorphisms in ERCC1 118C/T, ERCC1 8092C/A and XPD Asp312Asn showed no statistically significant difference between glioma cases and controls. However, individuals with the XPD 751Gln/Gln genotype had an increased risk of developing glioma compared with those with the Lys/Lys genotype (adjusted OR=1.64, 95% CI: 1.06-2.89). The ERCC1 118T/T genotype was associated with significantly higher median survival than the ERCC1 C/C genotype (HR=0.67, 95%CI=0.35-0.96). In addition, individuals with XPD 751Gln/Gln had a lower median survival time than XPD Lys/Lys carriers (HR=0.54, 95%CI=0.37- 0.93). CONCLUSION In conclusion, we observed that the XPD 751Gln/Gln genotype is associated with glioma susceptibility, and ERCC1 118 T/T and XPD 751Gln/Gln genotypes confer a significantly better prognosis.
Collapse
Affiliation(s)
- Da-Qing Chen
- The Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | |
Collapse
|
41
|
Abstract
Progress in our understanding of the molecular biology of neoplasms has been driven by remarkable improvements in molecular biology techniques. This has created a rapidly moving field in which even subspecialists struggle to keep abreast of the current literature. Nowhere is this more clearly demonstrated than in neuro-oncology, wherein molecular diagnostics can now wring more clinically useful information out of very small biopsies than ever before. Herein the biologic and practical aspects of four key molecular biomarkers in gliomas are discussed, including two that have been known for some time (1p/19q codeletion and EGFR amplification) as well as two whose relevance was discovered via advanced whole-genome assays (IDH1/2 mutations and BRAF alterations).
Collapse
|
42
|
Amplified and homozygously deleted genes in glioblastoma: impact on gene expression levels. PLoS One 2012; 7:e46088. [PMID: 23029397 PMCID: PMC3460955 DOI: 10.1371/journal.pone.0046088] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/27/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) displays multiple amplicons and homozygous deletions that involve relevant pathogenic genes and other genes whose role remains unknown. METHODOLOGY Single-nucleotide polymorphism (SNP)-arrays were used to determine the frequency of recurrent amplicons and homozygous deletions in GBM (n = 46), and to evaluate the impact of copy number alterations (CNA) on mRNA levels of the genes involved. PRINCIPAL FINDINGS Recurrent amplicons were detected for chromosomes 7 (50%), 12 (22%), 1 (11%), 4 (9%), 11 (4%), and 17 (4%), whereas homozygous deletions involved chromosomes 9p21 (52%) and 10q (22%). Most genes that displayed a high correlation between DNA CNA and mRNA levels were coded in the amplified chromosomes. For some amplicons the impact of DNA CNA on mRNA expression was restricted to a single gene (e.g., EGFR at 7p11.2), while for others it involved multiple genes (e.g., 11 and 5 genes at 12q14.1-q15 and 4q12, respectively). Despite homozygous del(9p21) and del(10q23.31) included multiple genes, association between these DNA CNA and RNA expression was restricted to the MTAP gene. CONCLUSIONS Overall, our results showed a high frequency of amplicons and homozygous deletions in GBM with variable impact on the expression of the genes involved, and they contributed to the identification of other potentially relevant genes.
Collapse
|
43
|
El-Jawahri A, Patel D, Zhang M, Mladkova N, Chakravarti A. Biomarkers of Clinical Responsiveness in Brain Tumor Patients. Mol Diagn Ther 2012; 12:199-208. [DOI: 10.1007/bf03256285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Hobbs J, Nikiforova MN, Fardo DW, Bortoluzzi S, Cieply K, Hamilton RL, Horbinski C. Paradoxical relationship between the degree of EGFR amplification and outcome in glioblastomas. Am J Surg Pathol 2012; 36:1186-93. [PMID: 22472960 PMCID: PMC3393818 DOI: 10.1097/pas.0b013e3182518e12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults and often has amplification of the epidermal growth factor receptor (EGFR) gene. The value of EGFR as a prognostic marker in GBMs is unclear; some studies have shown an adverse correlation, whereas others have indicated a neutral or even favorable association with longer survival. Furthermore, EGFR-amplified GBMs are usually regarded as a single subgroup of tumors, although the range of EGFR copy number varies greatly. In this study, 532 GBMs were analyzed for EGFR amplification via fluorescence in situ hybridization at the time of initial diagnosis. Although there was no difference in survival by EGFR amplification (P = 0.33), stratification by the amount of EGFR amplification showed that, surprisingly, median survival was 39% longer in the high-amplifier group (EGFR:chromosome 7 ratio >20) compared to nonamplified GBMs (P = 0.03) and was 43% longer compared to GBMs with low to moderate EGFR amplification (EGFR:chromosome 7 ratio = 2 to 20; P = 0.0007). Stratifying by postsurgical treatment regimens, this difference was seen only when temozolomide (TMZ) was used; tumors without amplification and with high EGFR amplification both responded better to TMZ than those with low to moderate amplification (P = 0.01), whereas GBMs that had not been treated with adjuvant therapy nor with adjuvant therapy lacking TMZ showed no survival differences (P = 0.63 and 0.91, respectively). These results suggest that GBMs with EGFR amplification are a heterogenous group of tumors and that behavior might differ according to the degree of amplification, although not in a straightforward dose-response manner.
Collapse
Affiliation(s)
- Jonathan Hobbs
- Department of Pathology, University of Kentucky, 800 Rose Street, Lexington, KY 40536
| | - Marina N. Nikiforova
- Department of Pathology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213
| | - David W. Fardo
- Department of Biostatistics, University of Kentucky, 800 Rose Street, Lexington, KY 40536
| | - Stephanie Bortoluzzi
- Department of Pathology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213
| | - Kathleen Cieply
- Department of Pathology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213
| | - Ronald L. Hamilton
- Department of Pathology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213
| | - Craig Horbinski
- Department of Pathology, University of Kentucky, 800 Rose Street, Lexington, KY 40536
| |
Collapse
|
45
|
Milinkovic V, Bankovic J, Rakic M, Milosevic N, Stankovic T, Jokovic M, Milosevic Z, Skender-Gazibara M, Podolski-Renic A, Pesic M, Ruzdijic S, Tanic N. Genomic instability and p53 alterations in patients with malignant glioma. Exp Mol Pathol 2012; 93:200-6. [PMID: 22664273 DOI: 10.1016/j.yexmp.2012.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/11/2012] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to detect the level of genomic instability and p53 alterations in anaplastic astrocytoma and primary glioblastoma patients, and to evaluate their impact on glioma pathogenesis and patients outcome. AP-PCR DNA profiling revealed two types of genetic differences between tumor and normal tissue: qualitative changes which represent accumulation of changes in DNA sequence and are the manifestation of microsatellite and point mutation instability (MIN-PIN) and quantitative changes which represent amplifications or deletions of existing chromosomal material and are the manifestation of chromosomal instability (CIN). Both types of alterations were present in all analyzed samples contributing almost equally to the total level of genomic instability, and showing no differences between histological subtypes. p53 alterations were detected in 40% of samples, predominantly in anaplastic astrocytoma. The higher level of genomic instability was observed in elderly patients (>50 years) and patents with primary glioblastoma. Level of genomic instability had no impact on patients' survival, while presence of p53 alterations seemed to be a favorable prognostic factor in this case. Our results indicate that extensive genomic instability is one of the main features of malignant gliomas.
Collapse
Affiliation(s)
- Vedrana Milinkovic
- Institute for Biological Research, Sinisa Stankovic, Department of Neurobiology, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Takeuchi H, Hosoda T, Kitai R, Kodera T, Arishima H, Tsunetoshi K, Neishi H, Yamauchi T, Sato K, Imamura Y, Itoh H, Kubota T, Kikuta KI. Glioblastoma with oligodendroglial components: glioblastoma or anaplastic oligodendroglial tumors. Brain Tumor Pathol 2012; 29:154-9. [PMID: 22527749 DOI: 10.1007/s10014-012-0100-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
Abstract
There have been some recent reports about glioblastoma with oligodendroglial (OG) components and malignant glioma with primitive neuroectodermal tumor (PNET)-like components. We investigated whether the presence and extent of OG components and PNET-like components influenced the prognosis in patients with glioblastoma. Eighty-six patients with glioblastoma were divided into an OG group (28 %), which revealed areas with a honeycomb appearance, and a non-OG group (72 %) without a honeycomb appearance. Patients with glioblastoma were also divided into a PNET group (27 %), which revealed areas with PNET-like features defined as neoplastic cells with high N/C ratios and hyperchromatic oval-carrot-shaped nuclei, and lacked the typical honeycomb appearance, and a non-PNET group (73 %) without PNET features. There were no significant differences in overall survival among the OG, the non-OG, the PNET, and the non-PNET groups. Two patients who survived longer than 36 months had both OG and PNET components with 1p or 19q loss of heterozygosity. Perinuclear halo, which is a characteristic feature of oligodendrogliomas, is an artifact of tissue fixation. Therefore, we should not readily use the term glioblastoma with OG components. PNET-like components, which are considered rare in malignant gliomas, may be frequently identified in glioblastomas.
Collapse
Affiliation(s)
- Hiroaki Takeuchi
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee SH, Nam SW, Hong YG, Kang CS, Lee YS. O6-methylguanine DNA methyltransferase gene promoter methylation status in glioblastoma and its correlation with other prognostic markers. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-011-0053-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Winje Hagen K, Helge Torp S. Prognostic Significance of EGFR Gene Amplification and Overexpression in Diffuse Astrocytomas—A Literature Study. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojpathology.2012.23014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Semmler A, Moskau S, Lutz H, Meyer P, Linnebank M. Haplotype analysis of the 5,10-methylenetetrahydrofolate reductase (MTHFR) c.1298A>C (E429A) polymorphism. BMC Res Notes 2011; 4:439. [PMID: 22023786 PMCID: PMC3212962 DOI: 10.1186/1756-0500-4-439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background The polymorphism 5,10-methylenetetrahydrofolate reductase (MTHFR) c.1298A>C is associated with various diseases. 45 DNA samples homozygous for the A allele and 40 DNA probes homozygous for the C allele were taken from healthy German subjects of white Caucasian origin to analyze the haplotype of the two MTHFR c.1298A>C alleles. Samples were genotyped for the polymorphism MTHFR c.677C>T and for the silent polymorphisms MTHFR c.129C>T, IVS2 533 G>A, c.1068C>T and IVS10 262C>G. Findings Haplotype construction revealed that the C-allele of MTHFR c.1298A>C was more frequently observed in cis with c.129T, IVS2 533A, c.677C, c.1068T, and IVS10 262 G than expected from normal distribution. Estimation of the most recent common ancestor with the DMLE + 2.3 program resulted in an estimated age of approximately 36,660 years of the MTHFR c.1298C allele. Conclusion Given that the era from 30,000 to 40,000 years ago is characterised by the spread of modern humans in Europe and that the prevalence of the MTHFR c.1298C allele is significantly higher in Central Europe in comparison to African populations, a selective advantage of MTHFR c.1298C could be assumed, e. g. by adaption to changes in the nutritional environment. The known founder ancestry of the T allele of MTHFR c.677C>T allele, together with the present data suggests that the MTHFR mutant alleles c.677T and 1298C arose from two independent ancestral alleles, that both confer a selective advantage.
Collapse
Affiliation(s)
- Alexander Semmler
- Department of Neurology, University Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
50
|
Crespo I, Vital AL, Nieto AB, Rebelo O, Tão H, Lopes MC, Oliveira CR, French PJ, Orfao A, Tabernero MD. Detailed characterization of alterations of chromosomes 7, 9, and 10 in glioblastomas as assessed by single-nucleotide polymorphism arrays. J Mol Diagn 2011; 13:634-47. [PMID: 21884817 DOI: 10.1016/j.jmoldx.2011.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 01/06/2023] Open
Abstract
Glioblastomas are cytogenetically heterogeneous tumors that frequently display alterations of chromosomes 7, 9p, and 10q. We used high-density (500K) single-nucleotide polymorphism arrays to investigate genome-wide copy number alterations and loss of heterozygosity in 35 primary glioblastomas. We focused on the identification and detailed characterization of alterations involving the most frequently altered chromosomes (chromosomes 7, 9, and 10), the identification of distinct prognostic subgroups of glioblastomas based on the cytogenetic patterns of alteration for these chromosomes, and validation of their prognostic impact in a larger series of tumors from public databases. Gains of chromosome 7 (97%), with or without epidermal growth factor receptor (EGFR) amplification, and losses of chromosomes 9p (83%) and 10 (91%) were the most frequent alterations. Such alterations defined five different cytogenetic groups with a significant effect on patient survival; notably, EGFR amplification (29%) was associated with a better survival among older patients, as confirmed by multivariate analysis of a larger series of glioblastomas from the literature. In addition, our results provide further evidence about the relevance of other genes (eg, EGFR, CDKN2A/B, MTAP) in the pathogenesis of glioblastomas. Altogether, our results confirm the cytogenetic heterogeneity of glioblastomas and suggest that their stratification based on combined assessment of cytogenetic alterations involving chromosomes 7, 9, and 10 may contribute to the prognostic evaluation of glioblastomas.
Collapse
Affiliation(s)
- Inês Crespo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|