1
|
Hou C, Bhosale S, Yasuda K, Yetirajam R, Leggas M, Rohr J, Tsodikov OV. The Position of Indole Methylation Controls the Structure, DNA Binding, and Cellular Functions of Mithramycin SA-Trp Analogues. Chembiochem 2025:e2401084. [PMID: 40246689 DOI: 10.1002/cbic.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/19/2025]
Abstract
Mithramycin (MTM) is a polyketide anticancer natural product, which functions by noncovalent binding to DNA in the minor groove without intercalation, resulting in inhibiting transcription at G/C-rich promoters. MTM is a potent inhibitor of cancer cells, such as Ewing sarcoma, driven by abnormal fusions involving E26 transformation-specific (ETS) family transcription factors friend leukemia integration 1 (FLI1) and ETS-related gene (ERG). However, MTM is rather toxic and nonselective; therefore, safer, selective analogues of MTM are required for use in the clinic as anticancer drugs. Herein, by using a combination of X-ray crystallographic, biophysical, and cell and molecular biological techniques, the structural and functional consequences of 3-side chain methylation at positions 5, 6, and 7 of the indole ring of the potent analogue MTM SA-Trp are explored. The conformation of the analogues in complexes with DNA, their DNA binding function, cytotoxicity, selectivity, and potency as transcription antagonists depended on the position of the methylation. MTM SA-5-methyl-Trp emerged as the most selective analogue, presumably due to the right balance of the DNA binding and the solvent exposure of the 3-side chain. This study demonstrates that minor chemical changes can have strong effects in analogue development and paves the way to further development of next-generation MTM analogues.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Suhas Bhosale
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Kazuto Yasuda
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rajesh Yetirajam
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Markos Leggas
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
2
|
Gao J, Liu M, Lu M, Zheng Y, Wang Y, Yang J, Xue X, Liu Y, Tang F, Wang S, Song L, Wen L, Wang J. Integrative analysis of transcriptome, DNA methylome, and chromatin accessibility reveals candidate therapeutic targets in hypertrophic cardiomyopathy. Protein Cell 2024; 15:796-817. [PMID: 38780967 PMCID: PMC11528543 DOI: 10.1093/procel/pwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease and is characterized by primary left ventricular hypertrophy usually caused by mutations in sarcomere genes. The mechanism underlying cardiac remodeling in HCM remains incompletely understood. An investigation of HCM through integrative analysis at multi-omics levels will be helpful for treating HCM. DNA methylation and chromatin accessibility, as well as gene expression, were assessed by nucleosome occupancy and methylome sequencing (NOMe-seq) and RNA-seq, respectively, using the cardiac tissues of HCM patients. Compared with those of the controls, the transcriptome, DNA methylome, and chromatin accessibility of the HCM myocardium showed multifaceted differences. At the transcriptome level, HCM hearts returned to the fetal gene program through decreased sarcomeric and metabolic gene expression and increased extracellular matrix gene expression. In the DNA methylome, hypermethylated and hypomethylated differentially methylated regions were identified in HCM. At the chromatin accessibility level, HCM hearts showed changes in different genome elements. Several transcription factors, including SP1 and EGR1, exhibited a fetal-like pattern of binding motifs in nucleosome-depleted regions in HCM. In particular, the inhibition of SP1 or EGR1 in an HCM mouse model harboring sarcomere mutations markedly alleviated the HCM phenotype of the mutant mice and reversed fetal gene reprogramming. Overall, this study not only provides a high-precision multi-omics map of HCM heart tissue but also sheds light on the therapeutic strategy by intervening in the fetal gene reprogramming in HCM.
Collapse
Affiliation(s)
- Junpeng Gao
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Mengya Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| | - Yuxuan Zheng
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yan Wang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jingwei Yang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xiaohui Xue
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Yun Liu
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuiyun Wang
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
- Cardiomyopathy Ward, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lu Wen
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Jizheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
3
|
Williquett J, Allamargot C, Sun H. AMPK-SP1-Guided Dynein Expression Represents a New Energy-Responsive Mechanism and Therapeutic Target for Diabetic Nephropathy. KIDNEY360 2024; 5:538-549. [PMID: 38467599 PMCID: PMC11093544 DOI: 10.34067/kid.0000000000000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
Key Points AMP kinase senses diabetic stresses in podocytes, subsequently upregulates specificity protein 1–mediated dynein expression and promotes podocyte injury. Pharmaceutical restoration of dynein expression by targeting specificity protein 1 represents an innovative therapeutic strategy for diabetic nephropathy. Background Diabetic nephropathy (DN) is a major complication of diabetes. Injury to podocytes, epithelial cells that form the molecular sieve of a kidney, is a preclinical feature of DN. Protein trafficking mediated by dynein, a motor protein complex, is a newly recognized pathophysiology of diabetic podocytopathy and is believed to be derived from the hyperglycemia-induced expression of subunits crucial for the transportation activity of the dynein complex. However, the mechanism underlying this transcriptional signature remains unknown. Methods Through promoter analysis, we identified binding sites for transcription factor specificity protein 1 (SP1) as the most shared motif among hyperglycemia-responsive dynein genes. We demonstrated the essential role of AMP-activated protein kinase (AMPK)–regulated SP1 in the transcription of dynein subunits and dynein-mediated trafficking in diabetic podocytopathy using chromatin immunoprecipitation quantitative PCR and live cell imaging. SP1-dependent dynein-driven pathogenesis of diabetic podocytopathy was demonstrated by pharmaceutical intervention with SP1 in a mouse model of streptozotocin-induced diabetes. Results Hyperglycemic conditions enhance SP1 binding to dynein promoters, promoted dynein expression, and enhanced dynein-mediated mistrafficking in cultured podocytes. These changes can be rescued by chemical inhibition or genetic silencing of SP1. The direct repression of AMPK, an energy sensor, replicates hyperglycemia-induced dynein expression by activating SP1. Mithramycin inhibition of SP1-directed dynein expression in streptozotocin-induced diabetic mice protected them from developing podocytopathy and prevented DN progression. Conclusions Our work implicates AMPK-SP1–regulated dynein expression as an early mechanism that translates energy disturbances in diabetes into podocyte dysfunction. Pharmaceutical restoration of dynein expression by targeting SP1 offers a new therapeutic strategy to prevent DN.
Collapse
Affiliation(s)
- Jillian Williquett
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | - Chantal Allamargot
- Central Microscopy Research Facility, The University of Iowa, Iowa City, Iowa
| | - Hua Sun
- Division of Nephrology, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
- Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
4
|
Wen F, Zhao F, Huang W, Liang Y, Sun R, Lin Y, Zhang W. A novel ferroptosis-related gene signature for overall survival prediction in patients with gastric cancer. Sci Rep 2024; 14:4422. [PMID: 38388534 PMCID: PMC10883968 DOI: 10.1038/s41598-024-53515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
The global diagnosis rate and mortality of gastric cancer (GC) are among the highest. Ferroptosis and iron-metabolism have a profound impact on tumor development and are closely linked to cancer treatment and patient's prognosis. In this study, we identified six PRDEGs (prognostic ferroptosis- and iron metabolism-related differentially expressed genes) using LASSO-penalized Cox regression analysis. The TCGA cohort was used to establish a prognostic risk model, which allowed us to categorize GC patients into the high- and the low-risk groups based on the median value of the risk scores. Our study demonstrated that patients in the low-risk group had a higher probability of survival compared to those in the high-risk group. Furthermore, the low-risk group exhibited a higher tumor mutation burden (TMB) and a longer 5-year survival period when compared to the high-risk group. In summary, the prognostic risk model, based on the six genes associated with ferroptosis and iron-metabolism, performs well in predicting the prognosis of GC patients.
Collapse
Affiliation(s)
- Fang Wen
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Fan Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yan Liang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ruolan Sun
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yize Lin
- Clinical Laboratory Department, Hospital of the Office of the People's Government of the Tibet Autonomous Region in Chengdu, Chengdu, 850015, Sichuan, China
| | - Weihua Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- College of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
5
|
Szegvari G, Dora D, Lohinai Z. Effective Reversal of Macrophage Polarization by Inhibitory Combinations Predicted by a Boolean Protein–Protein Interaction Model. BIOLOGY 2023; 12:biology12030376. [PMID: 36979068 PMCID: PMC10045914 DOI: 10.3390/biology12030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Background: The function and polarization of macrophages has a significant impact on the outcome of many diseases. Targeting tumor-associated macrophages (TAMs) is among the greatest challenges to solve because of the low in vitro reproducibility of the heterogeneous tumor microenvironment (TME). To create a more comprehensive model and to understand the inner workings of the macrophage and its dependence on extracellular signals driving polarization, we propose an in silico approach. Methods: A Boolean control network was built based on systematic manual curation of the scientific literature to model the early response events of macrophages by connecting extracellular signals (input) with gene transcription (output). The network consists of 106 nodes, classified as 9 input, 75 inner and 22 output nodes, that are connected by 217 edges. The direction and polarity of edges were manually verified and only included in the model if the literature plainly supported these parameters. Single or combinatory inhibitions were simulated mimicking therapeutic interventions, and output patterns were analyzed to interpret changes in polarization and cell function. Results: We show that inhibiting a single target is inadequate to modify an established polarization, and that in combination therapy, inhibiting numerous targets with individually small effects is frequently required. Our findings show the importance of JAK1, JAK3 and STAT6, and to a lesser extent STK4, Sp1 and Tyk2, in establishing an M1-like pro-inflammatory polarization, and NFAT5 in creating an anti-inflammatory M2-like phenotype. Conclusions: Here, we demonstrate a protein–protein interaction (PPI) network modeling the intracellular signalization driving macrophage polarization, offering the possibility of therapeutic repolarization and demonstrating evidence for multi-target methods.
Collapse
Affiliation(s)
- Gabor Szegvari
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- Pulmonary Hospital Torokbalint, 2045 Torokbalint, Hungary
- Correspondence: (D.D.); (Z.L.); Tel.: +36-1-2156920 (D.D.)
| |
Collapse
|
6
|
The addition of arginine deiminase potentiates Mithramycin A-induced cell death in patient-derived glioblastoma cells via ATF4 and cytochrome C. Cancer Cell Int 2023; 23:38. [PMID: 36843002 PMCID: PMC9969664 DOI: 10.1186/s12935-023-02873-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/14/2023] [Indexed: 02/28/2023] Open
Abstract
BACKGROUND Arginine auxotrophy constitutes a shortcoming for ~ 30% of glioblastoma multiforme (GBM). Indeed, arginine-depleting therapy using arginine deiminase from Streptococcus pyogenes (SpyADI) has proven activity against GBM in preclinical studies. The good safety profile of SpyADI renders this agent an ideal combination partner for cytostatic therapy. METHODS In this study, we combined the antineoplastic antibiotic Mithramycin A (MitA) with SpyADI to boost single-agent activity and analyzed underlying response mechanisms in-depth. RESULTS MitA monotherapy induced a time- and dose-dependent cytotoxicity in eight patient-derived GBM cell lines and had a radiosensitizing effect in all but one cell line. Combination treatment boosted the effects of the monotherapy in 2D- and 3D models. The simultaneous approach was superior to the sequential application and significantly impaired colony formation after repetitive treatment. MitA monotherapy significantly inhibited GBM invasiveness. However, this effect was not enhanced in the combination. Functional analysis identified SpyADI-triggered senescence induction accompanied by increased mitochondrial membrane polarization upon mono- and combination therapy. In HROG63, induction of lysosomes was seen after both monotherapies, indicative of autophagy. These cells seemed swollen and had a more pronounced cortically formed cytoskeleton. Also, cytochrome C and endoplasmatic reticulum-stress-associated proteins ATF4 and Calnexin were enhanced in the combination, contributing to apoptosis. Notably, no significant increases in glioma-stemness marker were seen. CONCLUSIONS Therapeutic utilization of a metabolic defect in GBM along with cytostatic therapy provides a novel combination approach. Whether this SpyADI/MitA regimen will provide a safe alternative to combat GBM, will have to be addressed in subsequent (pre-)clinical trials.
Collapse
|
7
|
Yang J, Wang J, Zhang H, Li C, Chen C, Zhu T. Transcription factor Sp1 is upregulated by PKCι to drive the expression of YAP1 during pancreatic carcinogenesis. Carcinogenesis 2021; 42:344-356. [PMID: 33146712 DOI: 10.1093/carcin/bgaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, we identified that the atypical protein kinase C isoform ι (PKCι) enhances the expression of Yes-associated protein 1 (YAP1) to promote the tumorigenesis of pancreatic adenocarcinoma harboring mutant KRAS (mu-KRAS). To advance our understanding about underlying mechanisms, we analyze the transcription of YAP1 in pancreatic cancer cells and reveal that transcription factor specificity protein 1 (Sp1) is upregulated by PKCι and subsequently binds to multiple sites in YAP1 promoter to drive the transactivation of YAP1 in pancreatic cancer cells carrying mu-KRAS. The bioinformatics analysis further substantiates that the expression of PKCι, Sp1 and YAP1 is correlated and associated with the stages and prognosis of pancreatic tumors. Moreover, our apoptotic detection data demonstrate that combination of PKCι and Sp1 inhibitors at subtoxic doses displays synergistic effects on inducing apoptosis and reversing the immunosuppression of pancreatic cancer cells, establishing the combination of PKCι and Sp1 inhibitors as a promising novel therapeutic approach, or an adjuvant strategy to potentiate the antitumor effects of other immunotherapeutic agents in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jinhe Yang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junli Wang
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Hongmei Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Changlong Li
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA, USA
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
8
|
Peng F, Zhou Y, Wang J, Guo B, Wei Y, Deng H, Wu Z, Zhang C, Shi K, Li Y, Wang X, Shore P, Zhao S, Deng W. The transcription factor Sp1 modulates RNA polymerase III gene transcription by controlling BRF1 and GTF3C2 expression in human cells. J Biol Chem 2020; 295:4617-4630. [PMID: 32115405 DOI: 10.1074/jbc.ra119.011555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/16/2020] [Indexed: 01/10/2023] Open
Abstract
Specificity protein 1 (Sp1) is an important transcription factor implicated in numerous cellular processes. However, whether Sp1 is involved in the regulation of RNA polymerase III (Pol III)-directed gene transcription in human cells remains unknown. Here, we first show that filamin A (FLNA) represses Sp1 expression as well as expression of TFIIB-related factor 1 (BRF1) and general transcription factor III C subunit 2 (GTF3C2) in HeLa, 293T, and SaOS2 cell lines stably expressing FLNA-silencing shRNAs. Both BRF1 promoter 4 (BRF1P4) and GTF3C2 promoter 2 (GTF3C2P2) contain putative Sp1-binding sites, suggesting that Sp1 affects Pol III gene transcription by regulating BRF1 and GTF3C2 expression. We demonstrate that Sp1 knockdown inhibits Pol III gene transcription, BRF1 and GTF3C2 expression, and the proliferation of 293T and HeLa cells, whereas Sp1 overexpression enhances these activities. We obtained a comparable result in a cell line in which both FLNA and Sp1 were depleted. These results indicate that Sp1 is involved in the regulation of Pol III gene transcription independently of FLNA expression. Reporter gene assays showed that alteration of Sp1 expression affects BRF1P4 and GTF3C2P2 activation, suggesting that Sp1 modulates Pol III-mediated gene transcription by controlling BRF1 and GTF3C2 gene expression. Further analysis revealed that Sp1 interacts with and thereby promotes the occupancies of TATA box-binding protein, TFIIAα, and p300 at both BRF1P4 and GTF3C2P2. These findings indicate that Sp1 controls Pol III-directed transcription and shed light on how Sp1 regulates cancer cell proliferation.
Collapse
Affiliation(s)
- Feixia Peng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ying Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Juan Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Baoqiang Guo
- Centre for Bioscience, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
| | - Yun Wei
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zihui Wu
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Cheng Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Paul Shore
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
9
|
Karki K, Wright GA, Mohankumar K, Jin UH, Zhang XH, Safe S. A Bis-Indole-Derived NR4A1 Antagonist Induces PD-L1 Degradation and Enhances Antitumor Immunity. Cancer Res 2020; 80:1011-1023. [PMID: 31911554 PMCID: PMC7056589 DOI: 10.1158/0008-5472.can-19-2314] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
Abstract
PD-L1 is expressed in tumor cells and its interaction with PD-1 plays an important role in evading immune surveillance; this can be overcome using PD-L1 or PD-1 immunotherapy antibodies. This study reports a novel approach for targeting PD-L1. In human breast cancer cell lines and 4T1 mouse mammary tumor cells, PD-L1 expression was regulated by the nuclear receptor NR4A1/Sp1 complex bound to the proximal germinal center (GC)-rich region of the PD-L1 gene promoter. Treatment of breast cancer cells with bis-indole-derived NR4A1 antagonists including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (Cl-OCH3) decreased expression of PD-L1 mRNA, promoter-dependent luciferase activity, and protein. In in vivo studies using a syngeneic mouse model bearing orthotopically injected 4T1 cells, Cl-OCH3 decreased tumor growth and weight and inhibited lung metastasis. Cl-OCH3 also decreased expression of CD3+/CD4+/CD25+/FoxP3+ regulatory T cells and increased the Teff/Treg ratio. Therefore, the potent anticancer activities of NR4A1 antagonists are also accompanied by enhanced antitumor immunity in PD-L1-expressing triple-negative breast cancer and thus represent a novel class of drugs that mimic immunotherapy. SIGNIFICANCE: These findings show that the orphan nuclear receptor NR4A1 controls PD-L1 expression and identify a chemical probe capable of disrupting this regulatory axis.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- Cell Line, Tumor/transplantation
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Indoles/pharmacology
- Indoles/therapeutic use
- Lung Neoplasms/immunology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Mice
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Proteolysis/drug effects
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Gus A Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Xing-Han Zhang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
10
|
Yuan S, Chen S, Wu H, Jiang H, Zheng S, Zhang Q, Liu Y. NAMI-A preferentially reacts with the Sp1 protein: understanding the anti-metastasis effect of the drug. Chem Commun (Camb) 2020; 56:1397-1400. [DOI: 10.1039/c9cc08775c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The anti-metastasis drug NAMI-A selectively reacts with Sp1, a protein associated with cancer metastasis.
Collapse
Affiliation(s)
- Siming Yuan
- Shenzhen Key Laboratory for Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Siming Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Han Wu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Huan Jiang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Shihui Zheng
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| | - Qianling Zhang
- Shenzhen Key Laboratory for Functional Polymer
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
11
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2019; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Liu YS, Hsu JW, Lin HY, Lai SW, Huang BR, Tsai CF, Lu DY. Bradykinin B1 receptor contributes to interleukin-8 production and glioblastoma migration through interaction of STAT3 and SP-1. Neuropharmacology 2019; 144:143-154. [PMID: 30366000 DOI: 10.1016/j.neuropharm.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM), the most aggressive brain tumor, has a poor prognosis due to the ease of migration to surrounding healthy brain tissue. Recent studies have shown that bradykinin receptors are involved in the progression of various cancers. However, the molecular mechanism and pathological role of bradykinin receptors remains unclear. We observed the expressions of two major bradykinin receptors, B1R and B2R, in two different human GBM cell lines, U87 and GBM8901. Cytokine array analysis showed that bradykinin increases the production of interleukin (IL)-8 in GBM via B1R. Higher B1R levels correlate with IL-8 expression in U87 and GBM8901. We observed increased levels of phosphorylated STAT3 and SP-1 in the nucleus as well. Using chromatin immunoprecipitation assay, we found that STAT3 and SP-1 mediate IL-8 expression, which gets abrogated by the inhibition of FAK and STAT3. We further demonstrated that IL-8 expression and cell migration are also regulated by the SP-1. In addition, expression levels of STAT3 and SP-1 positively correlate with clinicopathological grades of gliomas. Interestingly, our results found that inhibition of HDAC increases IL-8 expression. Moreover, stimulation with bradykinin caused increases in acetylated SP-1 and p300 complex formation, which are abrogated by inhibition of FAK and STAT3. Meanwhile, knockdown of SP-1 and p300 decreased the augmentation of bradykinin-induced IL-8 expression. These results indicate that bradykinin-induced IL-8 expression is dependent on B1R which causes phosphorylated STAT3 and acetylated SP-1 to translocate to the nucleus, hence resulting in GBM migration.
Collapse
Affiliation(s)
- Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Jhih-Wen Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Bor-Ren Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Photonics and Communication Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
13
|
Asor E, Ben-Shachar D. Gene expression dynamics following mithramycin treatment: A possible model for post-chemotherapy cognitive impairment. Clin Exp Pharmacol Physiol 2018; 45:1028-1037. [PMID: 29851136 DOI: 10.1111/1440-1681.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy-induced cognitive changes is a major burden on a substantial number of cancer survivors. The mechanism of this sequel is unknown. In this study, we followed long-term effects of early in life mithramycin (MTR) treatment on behaviour and on the normal course of alterations of gene expression in brain. Between post-natal days (PND) 7 and 10, male rats were divided into 2 groups, 1 receiving MTR (0.1 mg/kg s.c. per day) and the other receiving saline. At PND11, frontal cortex tissue samples were dissected from 4 rats from each group. At PND 65 the remaining rats underwent behavioural tests after which all the rats were decapitated and their prefrontal cortex incised. Rats treated transiently with MTR early in life, showed impairments in spatial working memory and anxious-like behaviour in adulthood. The immediate molecular effect of MTR was expressed in a limited number of altered genes of different unconnected trajectories, which were simultaneously distorted by the drug. In contrast, 3 months later we observed a change in the expression of more than 1000 genes that converged into specific cellular processes. Time-dependent gene expression dynamics of several genes was significantly different between treated and untreated rats. The differences in the total number of altered genes and in gene expression trends, immediately and long after MTR treatment cessation, suggest the evolution of a new cellular homeostatic set point, which can lead to behavioural abnormalities following chemotherapy treatment.
Collapse
Affiliation(s)
- Eyal Asor
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Haifa, Israel.,B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Medical Center, Haifa, Israel.,B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.,The Rappaport Family Institute for Research in Medical Sciences, Technion-IIT, Haifa, Israel
| |
Collapse
|
14
|
Ying J, Yu X, Ma C, Zhang Y, Dong J. MicroRNA-363-3p is downregulated in hepatocellular carcinoma and inhibits tumorigenesis by directly targeting specificity protein 1. Mol Med Rep 2017; 16:1603-1611. [PMID: 28627662 DOI: 10.3892/mmr.2017.6759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 03/23/2017] [Indexed: 11/05/2022] Open
Abstract
microRNAs exhibit important regulatory roles in tumorigenesis and tumor development, such as in hepatocellular carcinoma (HCC). The present study aimed to investigate the expression and functional roles of microRNA (miR)‑363‑3p in HCC. miR-363-3p expression levels in a number of HCC tissues and cell lines were measured by reverse transcription-quantitative PCR (RT‑qPCR). The effects of miR‑363‑3p expression on HCC cell proliferation, migration and invasion were exa-mined by MTT assay, Transwell migration and invasion assay, respectively. The effects of miR‑363‑3p on its downstream target gene, specificity protein 1 (SP1), were examined by bioinformatics analysis, luciferase reporter assay, RT‑qPCR and western blotting. An SP1 overexpression vector was subsequently transfected into HCC cells to assess any selective effects on miR‑363‑3p in modulating HCC. The results revealed that miR‑363‑3p expression levels were downregulated in both HCC tissues and cell lines, and this low expression level was correlated with tumor size, tumor‑node‑metastasis stage and venous infiltration in patients with HCC. Upregulation of miR‑363‑3p inhibited cell proliferation, migration and invasion in HCC cell cultures. In HCC cells transfected with an SP1 expression vector the miR‑363‑3p‑induced tumor suppressive roles on cell proliferation, migration and invasion were reversed. In conclusion, results from the present study indicated that miR‑363‑3p is a tumor suppressor in HCC and functions through a mechanism involving SP1, suggesting that miR‑363‑3p may be a potential new therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jie Ying
- Department of Gastroenterology, People's Hospital of Xuyi, Xuyi, Jiangsu 211700, P.R. China
| | - Xuechun Yu
- Department of Gastroenterology, People's Hospital of Xuyi, Xuyi, Jiangsu 211700, P.R. China
| | - Chaojian Ma
- Department of Gastroenterology, People's Hospital of Xuyi, Xuyi, Jiangsu 211700, P.R. China
| | - Yongqi Zhang
- Department of Gastroenterology, People's Hospital of Xuyi, Xuyi, Jiangsu 211700, P.R. China
| | - Jingwu Dong
- Department of Gastroenterology, People's Hospital of Xuyi, Xuyi, Jiangsu 211700, P.R. China
| |
Collapse
|
15
|
Dietary restriction protects against diethylnitrosamine-induced hepatocellular tumorigenesis by restoring the disturbed gene expression profile. Sci Rep 2017; 7:43745. [PMID: 28262799 PMCID: PMC5338348 DOI: 10.1038/srep43745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/30/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent malignancies, worse still, there are very limited therapeutic measures with poor clinical outcomes. Dietary restriction (DR) has been known to inhibit spontaneous and induced tumors in several species, but the mechanisms are little known. In the current study, by using a diethylnitrosamine (DEN)-induced HCC mice model, we found that DR significantly reduced the hepatic tumor number and size, delayed tumor development, suppressed proliferation and promoted apoptosis. Further transcriptome sequencing of liver tissues from the DEN and the DEN accompanied with DR (DEN+DR) mice showed that DEN induced profound changes in the gene expression profile, especially in cancer-related pathways while DR treatment reversed most of the disturbed gene expression induced by DEN. Finally, transcription factor enrichment analysis uncovered the transcription factor specificity protein 1 (SP1) probably functioned as the main regulator of gene changes, orchestrating the protective effects of DR on DEN induced HCC. Taken together, by the first comprehensive transcriptome analysis, we elucidate that DR protects aginst DEN-induced HCC by restoring the disturbed gene expression profile, which holds the promise to provide effective molecular targets for cancer therapies.
Collapse
|
16
|
Saxena S, Jha S. Role of NOD- like Receptors in Glioma Angiogenesis: Insights into future therapeutic interventions. Cytokine Growth Factor Rev 2017; 34:15-26. [PMID: 28233643 DOI: 10.1016/j.cytogfr.2017.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Gliomas are the most common solid tumors among central nervous system tumors. Most glioma patients succumb to their disease within two years of the initial diagnosis. The median survival of gliomas is only 14.6 months, even after aggressive therapy with surgery, radiation, and chemotherapy. Gliomas are heavily infiltrated with myeloid- derived cells and endothelial cells. Increasing evidence suggests that these myeloid- derived cells interact with tumor cells promoting their growth and migration. NLRs (nucleotide-binding oligomerization domain (NOD)-containing protein like receptors) are a class of pattern recognition receptors that are critical to sensing pathogen and danger associated molecular patterns. Mutations in some NLRs lead to autoinflammatory diseases in humans. Moreover, dysregulated NLR signaling is central to the pathogenesis of several cancers, autoimmune and neurodegenerative diseases. Our review explores the role of angiogenic factors that contribute to upstream or downstream signaling pathways leading to NLRs. Angiogenesis plays a significant role in the pathogenesis of variety of tumors including gliomas. Though NLRs have been detected in several cancers including gliomas and NLR signaling contributes to angiogenesis, the exact role and mechanism of involvement of NLRs in glioma angiogenesis remain largely unexplored. We discuss cellular, molecular and genetic studies of NLR signaling and convergence of NLR signaling pathways with angiogenesis signaling in gliomas. This may lead to re-appropriation of existing anti-angiogenic therapies or development of future strategies for targeted therapeutics in gliomas.
Collapse
Affiliation(s)
- Shivanjali Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, 342011, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Old Residency Road, Jodhpur, Rajasthan, 342011, India.
| |
Collapse
|
17
|
Rauf A, Ali S, Khan MT, Asad-ur-Rahman, Ahmad S. The Expanding Role of Sp1 in Pancreatic Cancer: Tumorigenic and Clinical Perspectives. ROLE OF TRANSCRIPTION FACTORS IN GASTROINTESTINAL MALIGNANCIES 2017:391-402. [DOI: 10.1007/978-981-10-6728-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Zhang X, Hu J, Chen Y. Betulinic acid and the pharmacological effects of tumor suppression (Review). Mol Med Rep 2016; 14:4489-4495. [PMID: 27748864 DOI: 10.3892/mmr.2016.5792] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
Abstract
Betulinic acid (BA), a lupane-type pentacyclic triterpenoid saponin from tree bark, has the potential to induce the apoptosis of cancer cells without toxicity towards normal cells in vitro and in vivo. The antitumor pharmacological effects of BA consist of triggering apoptosis via the mitochondrial pathway, regulating the cell cycle and the angiogenic pathway via factors, including specificity protein transcription factors, cyclin D1 and epidermal growth factor receptor, inhibiting the signal transducer and activator of transcription 3 and nuclear factor‑κB signaling pathways, preventing the invasion and metastasis of tumor cells, and affecting the expression of topoisomerase I, p53 and lamin B1. In previous years, several studies have shown its antitumor effect, initially applied to malignant melanoma, however, it also has broad efficacies against most solid types of tumor from different regions of the body. There have been few investigations in hematological malignancies, however, this direction may offer potential in such a novel field of research. In this review, the primary pharmacological effects of BA in tumors, particularly in hematological malignancies are discussed.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yan Chen
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
19
|
Yu S, Yerges-Armstrong LM, Chu Y, Zmuda JM, Zhang Y. Transcriptional Regulation of Frizzled-1 in Human Osteoblasts by Sp1. PLoS One 2016; 11:e0163277. [PMID: 27695039 PMCID: PMC5047477 DOI: 10.1371/journal.pone.0163277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/05/2016] [Indexed: 02/03/2023] Open
Abstract
The wingless pathway has a powerful influence on bone metabolism and is a therapeutic target in skeletal disorders. Wingless signaling is mediated in part through the Frizzled (FZD) receptor family. FZD transcriptional regulation is poorly understood. Herein we tested the hypothesis that Sp1 plays an important role in the transcriptional regulation of FZD1 expression in osteoblasts and osteoblast mineralization. To test this hypothesis, we conducted FZD1 promoter assays in Saos2 cells with and without Sp1 overexpression. We found that Sp1 significantly up-regulates FZD1 promoter activity in Saos2 cells. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift (EMSA) assays identified a novel and functional Sp1 binding site at -44 to -40 from the translation start site in the FZD1 promoter. The Sp1-dependent activation of the FZD1 promoter was abolished by mithramycin A (MMA), an antibiotic affecting both Sp1 binding and Sp1 protein levels in Saos2 cells. Similarly, down-regulation of Sp1 in hFOB cells resulted in less FZD1 expression and lower alkaline phosphatase activity. Moreover, over-expression of Sp1 increased FZD1 expression and Saos2 cell mineralization while MMA decreased Sp1 and FZD1 expression and Saos2 cell mineralization. Knockdown of FZD1 prior to Sp1 overexpression partially abolished Sp1 stimulation of osteoblast differentiation markers. Taken together, our results suggest that Sp1 plays a role in human osteoblast differentiation and mineralization, which is at least partially mediated by Sp1-dependent transactivation of FZD1.
Collapse
Affiliation(s)
- Shibing Yu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
| | - Laura M. Yerges-Armstrong
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Program in Personalized and Genomic Medicine and Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, School of Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Yanxia Chu
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
| | - Joseph M. Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
5-aza-2'-deoxycytidine (DAC) treatment downregulates the HPV E6 and E7 oncogene expression and blocks neoplastic growth of HPV-associated cancer cells. Oncotarget 2016; 8:52104-52117. [PMID: 28881717 PMCID: PMC5581016 DOI: 10.18632/oncotarget.10631] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
High-risk human papillomaviruses (hr HPVs) may cause various human cancers and associated premalignant lesions. Transformation of the host cells is triggered by overexpression of the viral oncogenes E6 and E7 that deregulate the cell cycle and induce chromosomal instability. This process is accompanied by hypermethylation of distinct CpG sites resulting in silencing of tumor suppressor genes, inhibition of the viral E2 mediated control of E6 and E7 transcription as well as deregulated expression of host cell microRNAs. Therefore, we hypothesized that treatment with demethylating agents might restore those regulatory mechanisms. Here we show that treatment with 5-aza-2′-deoxycytidine (DAC) strongly decreases the expression of E6 and E7 in a panel of HPV-transformed cervical cancer and head and neck squamous cell carcinoma cell lines. Reduction of E6 and E7 further resulted in increased target protein levels including p53 and p21 reducing the proliferation rates and colony formation abilities of the treated cell lines. Moreover, DAC treatment led to enhanced expression of tumor the suppressive miRNA-375 that targets and degrades E6 and E7 transcripts. Therefore, we suggest that DAC treatment of HPV-associated cancers and respective precursor lesions may constitute a targeted approach to subvert HPV oncogene functions that deserves testing in clinical trials.
Collapse
|
21
|
LIU LIANG, JI PING, QU NING, PU WEILIN, JIANG DAOWEN, LIU WEIYAN, LI YAQI, SHI RONGLIANG. The impact of high co-expression of Sp1 and HIF1α on prognosis of patients with hepatocellular cancer. Oncol Lett 2016; 12:504-512. [PMID: 27347172 PMCID: PMC4906840 DOI: 10.3892/ol.2016.4634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factor specificity protein 1 (Sp1) and hypoxia-inducible factor 1α (HIF1α) serve vital roles in tumor growth and metastasis. The present study aimed to evaluate the impact of co-expression of Sp1 and HIF1α on the prognosis of patients with hepatocellular cancer (HCC) using The Cancer Genome Atlas (TCGA) database and to validate the association between the expression levels of Sp1/HIF1α in HCC specimens and patient survival using immunohistochemical analysis. A total of 214 eligible patients with HCC from TCGA database were collected for the study. The expression profile of Sp1 and HIF1α were obtained from the TCGA RNAseq database. Clinicopathological characteristics, including age, height, weight, gender, race, ethnicity, family cancer history, serum α-fetoprotein (AFP), surgical procedures and TNM stage were collected. The Cox proportional hazards regression model and Kaplan-Meier curves were used to assess the relative factors. Receiver operating characteristic (ROC) curves for cancer-specific survival (CSS) prediction were plotted to compare the prediction ability of expression of Sp1 and HIF1α and their co-expression. The location and expression of Sp1 and HIF1α in the HCC tissues were detected by immunohistochemistry (IHC) to verify the association between these two genes and CSS. The results demonstrated that the expressions of Sp1 and HIF1α were significantly increased in the succumbed group (P=0.001), compared with the surviving group. The CSS rates were 60.1% at 3 years (1,067 days), 35.8% at 5 years (1,823 days) and 9.5% at 10 years (3,528 days). Multivariate Cox regression analysis demonstrated that only the high expression levels of Sp1 and HIF1α (≥2×103) were independent predictors for cancer mortality, with P=0.001 and P=0.029, respectively. The area under the curve for the ROC was found to be higher using the combination testing for two genes (0.751) in predicting cancer mortality, compared to a single gene (0.632 for Sp1 and 0.717 for HIF1α). Based on the cutoff points for gene expression, patients were divided into 3 groups: G1 (both genes <2×103), G2 (either gene ≥2×103) and G3 (both genes ≥2×103). The risk of cancer mortality increased with high expression of genes, and G3 exhibited a greater risk than G2 when compared with the G1 group (HR=5.420, 95% CI 2.767-10.616, P=0.001; HR=3.270, 95% CI 1.843-5.803, P=0.001). The IHC staining results indicated that patients who died of cancer presented with significantly higher expression levels of these genes compared with those that did not (P=0.001). In summary, high expression levels of Sp1 and HIF1α in HCC tissues were associated with poor prognosis; in particular, the co-expression of these two genes increased the risk of cancer mortality.
Collapse
Affiliation(s)
- LIANG LIU
- Department of Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - PING JI
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai 201508, P.R. China
| | - NING QU
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - WEI-LIN PU
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, P.R. China
| | - DAO-WEN JIANG
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - WEI-YAN LIU
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - YA-QI LI
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
| | - RONG-LIANG SHI
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, P.R. China
- Department of General Surgery, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
22
|
Kong LM, Yao L, Lu N, Dong YL, Zhang J, Wang YQ, Liu L, Zhang HL, Huang JG, Liao CG. Interaction of KLF6 and Sp1 regulates basigin-2 expression mediated proliferation, invasion and metastasis in hepatocellular carcinoma. Oncotarget 2016; 7:27975-87. [PMID: 27057625 PMCID: PMC5053703 DOI: 10.18632/oncotarget.8564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/26/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence suggests that the tumor suppressor gene Krüppel-like factor 6 (KLF6) plays important roles in both development and progression of cancer. However, the role of KLF6 in hepatocellular carcinoma (HCC) remains unclear. Cancer-related molecule basigin-2 plays an important role in HCC progression and metastasis. Sp1, one of Sp/KLFs family members, regulates basigin-2 expression in HCC. The involvement of KLFs in basigin-2 regulation and HCC progression and metastasis has not been investigated. We first measured KLF6 expression levels in 50 pairs of HCC and adjacent normal tissues (ANTs) by immunohistochemistry. Specifically, low KLF6 expression but high Sp1 and basigin-2 expression were found in HCC tissues. By contrast, the ANTs showed high KLF6 expression but low Sp1 and basigin-2 expression. Kaplan-Meier analysis showed that higher expression of KLF6 was associated with better overall survival. The survival rate of KLF6-negative patients was lower than that of KLF6-positive patients (P = 0.015). We also found that KLF6 binds to the basigin-2 and Sp1 promoters and decreases their expression. Thus, we identified a microcircuitry mechanism in which KLF6 can repress basigin-2 expression directly by binding to its promoter or indirectly by inhibiting the expression of the transcription factor Sp1 to block gene expression. Additionally, overexpression of KLF6 suppressed the invasion, metastasis and proliferation of HCC cells in vitro and in vivo by targeting basigin-2. Our study provides new evidence that interaction of KLF6 and Sp1 regulates basigin-2 expression in HCC and that KLF6 represses the invasive and metastatic capacities of HCC through basigin-2.
Collapse
Affiliation(s)
- Ling-Min Kong
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Li Yao
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, P. R. China
| | - Ning Lu
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of PLA, Urumqi, 830000, P. R. China
| | - Ya-Lu Dong
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of PLA, Urumqi, 830000, P. R. China
| | - Jing Zhang
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of PLA, Urumqi, 830000, P. R. China
| | - Yong-Qiang Wang
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of PLA, Urumqi, 830000, P. R. China
| | - Lili Liu
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, P. R. China
- Cancer Institute, Fourth Military Medical University, Xi'an, 710038, P. R. China
| | - He-Long Zhang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, P. R. China
- Cancer Institute, Fourth Military Medical University, Xi'an, 710038, P. R. China
| | - Jian-Guo Huang
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of PLA, Urumqi, 830000, P. R. China
| | - Cheng-Gong Liao
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of PLA, Urumqi, 830000, P. R. China
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, P. R. China
- Cancer Institute, Fourth Military Medical University, Xi'an, 710038, P. R. China
| |
Collapse
|
23
|
Wei C, Zhang W, Zhou Q, Zhao C, Du Y, Yan Q, Li Z, Miao J. Mithramycin A Alleviates Cognitive Deficits and Reduces Neuropathology in a Transgenic Mouse Model of Alzheimer's Disease. Neurochem Res 2016; 41:1924-38. [PMID: 27072684 DOI: 10.1007/s11064-016-1903-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/24/2016] [Accepted: 03/24/2016] [Indexed: 01/13/2023]
Abstract
Increasing evidence has shown that specificity protein 1 (Sp1) is abnormally increased in the brains of subjects with Alzheimer's disease (AD) and transgenic AD models. However, whether the Sp1 activation plays a critical role in the AD pathogenesis and selective inhibition of Sp1 activation may have a disease-modifying effect on the AD-like phenotypes remain elusive. In this study, we reported that Sp1 mRNA and protein expression were markedly increased in the brain of APPswe/PS1dE9 transgenic mice, whereas chronic administration of mithramycin A (MTM), a selective Sp1 inhibitor, potently inhibited Sp1 activation in the APPswe/PS1dE9 mice down to the levels of wild-type mice. Specifically, we found that MTM treatment resulted in a significant improvement of learning and memory deficits, a dramatic reduction in cerebral Aβ levels and plaque burden, a profound reduction in tau hyperphosphorylation, and a marked increase in synaptic marker in the APPswe/PS1dE9 mice. In addition, MTM treatment was powerfully effective in inhibiting amyloid precursor protein (APP) processing via suppressing APP, beta-site APP cleaving enzyme 1 (BACE1), and presenilin-1 (PS1) mRNA and protein expression to preclude Aβ production in the APPswe/PS1dE9 mice. Furthermore, MTM treatment strongly inhibited phosphorylated CDK5 and GSK3β signal pathways to reduce tau hyperphosphorylation in the APPswe/PS1dE9 mice. Collectively, our findings provide evidence that Sp1 activation may contribute to the AD pathogenesis and may serve as a novel therapeutic target in the treatment of AD. The present study highlights that selective Sp1 inhibitors may be considered as disease-modifying therapeutic agents for AD.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Qiong Zhou
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Chao Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Ying Du
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Qi Yan
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China. .,Institute of Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.
| | - Jianting Miao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an City, 710038, Shaanxi Province, China.
| |
Collapse
|
24
|
Weidenbach S, Hou C, Chen JM, Tsodikov OV, Rohr J. Dimerization and DNA recognition rules of mithramycin and its analogues. J Inorg Biochem 2015; 156:40-7. [PMID: 26760230 DOI: 10.1016/j.jinorgbio.2015.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Abstract
The antineoplastic and antibiotic natural product mithramycin (MTM) is used against cancer-related hypercalcemia and, experimentally, against Ewing sarcoma and lung cancers. MTM exerts its cytotoxic effect by binding DNA as a divalent metal ion (Me(2+))-coordinated dimer and disrupting the function of transcription factors. A precise molecular mechanism of action of MTM, needed to develop MTM analogues selective against desired transcription factors, is lacking. Although it is known that MTM binds G/C-rich DNA, the exact DNA recognition rules that would allow one to map MTM binding sites remain incompletely understood. Towards this goal, we quantitatively investigated dimerization of MTM and several of its analogues, MTM SDK (for Short side chain, DiKeto), MTM SA-Trp (for Short side chain and Acid), MTM SA-Ala, and a biosynthetic precursor premithramycin B (PreMTM B), and measured the binding affinities of these molecules to DNA oligomers of different sequences and structural forms at physiological salt concentrations. We show that MTM and its analogues form stable dimers even in the absence of DNA. All molecules, except for PreMTM B, can bind DNA with the following rank order of affinities (strong to weak): MTM=MTM SDK>MTM SA-Trp>MTM SA-Ala. An X(G/C)(G/C)X motif, where X is any base, is necessary and sufficient for MTM binding to DNA, without a strong dependence on DNA conformation. These recognition rules will aid in mapping MTM sites across different promoters towards development of MTM analogues as useful anticancer agents.
Collapse
Affiliation(s)
- Stevi Weidenbach
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Jhong-Min Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
25
|
Fernández-Guizán A, López-Soto A, Acebes-Huerta A, Huergo-Zapico L, Villa-Álvarez M, Núñez LE, Morís F, Gonzalez S. Pleiotropic Anti-Angiogenic and Anti-Oncogenic Activities of the Novel Mithralog Demycarosyl-3D-ß-D-Digitoxosyl-Mithramycin SK (EC-8042). PLoS One 2015; 10:e0140786. [PMID: 26536461 PMCID: PMC4633274 DOI: 10.1371/journal.pone.0140786] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/30/2015] [Indexed: 12/27/2022] Open
Abstract
Demycarosyl-3D-ß-D-digitoxosyl-mithramycin SK (DIG-MSK) is a recently isolated analogue of mithramycin A (MTA) that showed differences with MTA in the DNA binding strength and selectivity. These differences correlated with a better therapeutic index and less toxicity in animal studies. Herein, we show that DIG-MSK displays a potent anti-tumor activity against different types of cancer cell lines, ovarian tumor cells being particularly sensitive to this drug. Of relevance, DIG-MSK exerts low toxicity on fibroblasts and peripheral blood mononuclear cells, this toxicity being significantly lower than that of MTA. In correlation with its antitumor activity, DIG-MSK strongly inhibited Sp1-mediated transcription and endogenous Sp1 mRNA expression, which correlated with the inhibition of the expression of key Sp1-regulated genes involved in tumorigenesis, including VEGFA, BCL2L1 (Bcl-XL), hTERT, BRCA2, MYC and SRC in several ovarian cells. Significantly, DIG-MSK was a stronger inhibitor of VEGFA expression than MTA. Accordingly, DIG-MSK also exhibited potent anti-angiogenic activity on microvascular endothelial cells. Likewise, it significantly inhibited the gene expression of VEGFR1, VEGFR2, FGFR, PDGFB and PDGFRA and, additionally, it induced the expression of the anti-angiogenic factors angiostatin and tunstatin. These effects correlated with a pro-apoptotic effect on proliferating microvascular endothelial cells and the inhibition of the formation of endothelial capillary structures. Overall, the pleiotropic activity of DIG-MSK in inhibiting key oncogenic and angiogenic pathways, together with its low toxicity profile, highlight the therapeutic potential of this new drug.
Collapse
Affiliation(s)
| | - Alejandro López-Soto
- Department of Functional Biology, IUOPA, Universidad de Oviedo, Oviedo, Spain
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | | | | | | | - Segundo Gonzalez
- Department of Functional Biology, IUOPA, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
26
|
Huang Z, Huang L, Shen S, Li J, Lu H, Mo W, Dang Y, Luo D, Chen G, Feng Z. Sp1 cooperates with Sp3 to upregulate MALAT1 expression in human hepatocellular carcinoma. Oncol Rep 2015; 34:2403-12. [PMID: 26352013 DOI: 10.3892/or.2015.4259] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/03/2015] [Indexed: 01/14/2023] Open
Abstract
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), also known as nuclear-enriched transcript 2 (NEAT2), is highly conserved among mammals and highly expressed in the nucleus. It was first identified in lung cancer as a prognostic marker for metastasis but is also associated with several other solid tumors. In hepatocellular carcinoma (HCC), MALAT1 is a novel biomarker for predicting tumor recurrence after liver transplantation. The mechanism of overexpression in tumor progression remains unclear. In the present study, we investigated the role of specificity protein 1/3 (Sp1/3) in regulation of MALAT1 transcription in HCC cells. The results showed a high expression of Sp1, Sp3 and MALAT1 in HCC vs. paired non-tumor liver tissues, which was associated with the AFP level (Sp1, r=7.44, P=0.0064; MALAT1, r=12.37, P=0.0004). Co-silencing of Sp1 and Sp3 synergistically repressed MALAT1 expression. Sp1 binding inhibitor, mithramycin A (MIT), also inhibited MALAT1 expression in HCC cells. In conclusion, the upstream of MALAT1 contains five Sp1/3 binding sites, which may be responsible for MALAT1 transcription. Inhibitors, such as MIT, provide a potential therapeutic strategy for HCC patients with MALAT1 overexpression.
Collapse
Affiliation(s)
- Ziling Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lanshan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Siqiao Shen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jia Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Huiping Lu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Weijia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dianzhong Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
27
|
Vizcaíno C, Mansilla S, Portugal J. Sp1 transcription factor: A long-standing target in cancer chemotherapy. Pharmacol Ther 2015; 152:111-24. [PMID: 25960131 DOI: 10.1016/j.pharmthera.2015.05.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/25/2022]
Abstract
Sp1 (specificity protein 1) is a well-known member of a family of transcription factors that also includes Sp2, Sp3 and Sp4, which are implicated in an ample variety of essential biological processes and have been proven important in cell growth, differentiation, apoptosis and carcinogenesis. Sp1 activates the transcription of many cellular genes that contain putative CG-rich Sp-binding sites in their promoters. Sp1 and Sp3 proteins bind to similar, if not the same, DNA tracts and compete for binding, thus they can enhance or repress gene expression. Evidences exist that the Sp-family of proteins regulates the expression of genes that play pivotal roles in cell proliferation and metastasis of various tumors. In patients with a variety of cancers, high levels of Sp1 protein are considered a negative prognostic factor. A plethora of compounds can interfere with the trans-activating activities of Sp1 and other Sp proteins on gene expression. Several pathways are involved in the down-regulation of Sp proteins by compounds with different mechanisms of action, which include not only the direct interference with the binding of Sp proteins to their putative DNA binding sites, but also promoting the degradation of Sp protein factors. Down-regulation of Sp transcription factors and Sp1-regulated genes is drug-dependent and it is determined by the cell context. The acknowledgment that several of those compounds are safe enough might accelerate their introduction into clinical usage in patients with tumors that over-express Sp1.
Collapse
Affiliation(s)
- Carolina Vizcaíno
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - Sylvia Mansilla
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain
| | - José Portugal
- Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, E-08028 Barcelona, Spain.
| |
Collapse
|
28
|
Shin SW, Yun SH, Park ES, Jeong JS, Kwak JY, Park JI. Overexpression of PGC‑1α enhances cell proliferation and tumorigenesis of HEK293 cells through the upregulation of Sp1 and Acyl-CoA binding protein. Int J Oncol 2015; 46:1328-42. [PMID: 25585584 DOI: 10.3892/ijo.2015.2834] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ coactivator-1α (PGC‑1α), a coactivator interacting with multiple transcription factors, regulates several metabolic processes. Although recent studies have focused on the role of PGC‑1α in cancer, the underlying molecular mechanism has not been clarified. Therefore, we evaluated the role of PGC‑1α in cell proliferation and tumorigenesis using human embryonic kidney (HEK)293 cells and colorectal cancer cells. We established stable HEK293 cell lines expressing PGC‑1α and examined cell proliferation, anchorage-independent growth, and oncogenic potential compared to parental HEK293 cells. To identify the molecular PGC‑1α targets for increased cell proliferation and tumorigenesis, the GeneFishing™ DEG (differentially expressed genes) screening system was used. Western blot analysis and immunofluorescence staining were performed for a regulated gene product to confirm the results. Forced expression of PGC‑1α in HEK293 cells promoted cell proliferation and anchorage-independent growth in soft agar. In addition, HEK293 cells that highly expressed PGC‑1α showed enhanced tumor formation when subcutaneously injected into the bilateral flanks of immunodeficient mice. The results of the GeneFishing DEG screening system identified one upregulated gene (Acyl-CoA binding protein; ACBP). Real-time RT-PCR, western blot analysis, and immunofluorescence staining showed that ACBP was markedly increased in HEK293 cells stably overexpressing PGC‑1α (PGC‑1α-HEK293 cells) compared to those expressing an empty vector. In PGC‑1α, ACBP, and specificity protein 1 (Sp1) siRNA knockdown experiments in PGC‑1α-HEK293 and SNU-C4 cells, we also observed inhibition of cell proliferation, reduced expression of antioxidant enzymes, and increased H2O2-induced reactive oxygen species production and apoptosis. These findings suggest that PGC‑1α may promote cell proliferation and tumorigenesis through upregulation of ACBP. We provide evidence that increased Sp1 expression might contribute to enhanced ACBP expression by PGC‑1α. The current results also suggest that PGC‑1α, whose expression is related to enhanced cell proliferation and tumorigenesis, may be a good candidate molecular target for cancer therapy.
Collapse
Affiliation(s)
- Sung-Won Shin
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Eun-Seon Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jin-Sook Jeong
- Department of Pathology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
29
|
Roth J, Peer CJ, Widemann B, Cole DE, Ershler R, Helman L, Schrump D, Figg WD. Quantitative determination of mithramycin in human plasma by a novel, sensitive ultra-HPLC-MS/MS method for clinical pharmacokinetic application. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 970:95-101. [PMID: 25247492 PMCID: PMC4188709 DOI: 10.1016/j.jchromb.2014.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 12/17/2022]
Abstract
Mithramycin is a neoplastic antibiotic synthesized by various Streptomyces bacteria. It is under investigation as a chemotherapeutic treatment for a wide variety of cancers. Ongoing and forthcoming clinical trials will require pharmacokinetic analysis of mithramycin in humans, both to see if target concentrations are achieved and to optimize dosing and correlate outcomes (response/toxicity) with pharmacokinetics. Two published methods for mithramycin quantitation exist, but both are immunoassays that lack current bioanalytical standards of selectivity and sensitivity. To provide an upgraded and more widely applicable assay, a UPLC-MS/MS method for quantitation of mithramycin in human plasma was developed. Solid-phase extraction allowed for excellent recoveries (>90%) necessary for high throughput analyses on sensitive instrumentation. However, a ∼55% reduction in analyte signal was observed as a result of plasma matrix effects. Mithramycin and the internal standard chromomycin were separated on a Waters Acquity BEH C18 column (2.1×50 mm, 1.7 μm) and detected using electrospray ionization operated in the negative mode at mass transitions m/z 1083.5→268.9 and 1181.5→269.0, respectively, on an AB Sciex QTrap 5500. The assay range was 0.5-500 ng/mL and proved to be linear (r(2)>0.996), accurate (≤10% deviation), and precise (CV<15%). Mithramycin was stable in plasma at room temperature for 24 h, as well as through three freeze-thaw cycles. This method was subsequently used to quantitate mithramycin plasma concentrations from patients enrolled on two clinical trials at the NCI.
Collapse
Affiliation(s)
- Jeffrey Roth
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, United States
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, United States
| | - Brigitte Widemann
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Diane E Cole
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rachel Ershler
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - Lee Helman
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - David Schrump
- Thoracic Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
30
|
Banerjee A, Sanyal S, Kulkarni KK, Jana K, Roy S, Das C, Dasgupta D. Anticancer drug mithramycin interacts with core histones: An additional mode of action of the DNA groove binder. FEBS Open Bio 2014; 4:987-95. [PMID: 25473595 PMCID: PMC4247356 DOI: 10.1016/j.fob.2014.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/23/2014] [Accepted: 10/12/2014] [Indexed: 01/13/2023] Open
Abstract
Mithramycin (MTR) is a clinically approved DNA-binding antitumor antibiotic currently in Phase 2 clinical trials at National Institutes of Health for treatment of osteosarcoma. In view of the resurgence in the studies of this generic antibiotic as a human medicine, we have examined the binding properties of MTR with the integral component of chromatin - histone proteins - as a part of our broad objective to classify DNA-binding molecules in terms of their ability to bind chromosomal DNA alone (single binding mode) or both histones and chromosomal DNA (dual binding mode). The present report shows that besides DNA, MTR also binds to core histones present in chromatin and thus possesses the property of dual binding in the chromatin context. In contrast to the MTR-DNA interaction, association of MTR with histones does not require obligatory presence of bivalent metal ion like Mg(2+). As a consequence of its ability to interact with core histones, MTR inhibits histone H3 acetylation at lysine 18, an important signature of active chromatin, in vitro and ex vivo. Reanalysis of microarray data of Ewing sarcoma cell lines shows that upon MTR treatment there is a significant down regulation of genes, possibly implicating a repression of H3K18Ac-enriched genes apart from DNA-binding transcription factors. Association of MTR with core histones and its ability to alter post-translational modification of histone H3 clearly indicates an additional mode of action of this anticancer drug that could be implicated in novel therapeutic strategies.
Collapse
Key Words
- BAC, benzalkonium chloride
- BSA, bovine serum albumin
- CBP, CREB-binding protein
- CD, circular dichroism
- Core histones
- Dual binding mode
- EM, electron microscopy
- EWS-FLI1, transcription factor with a DNA binding domain FLI1 and a transcription enhancer domain EWS
- Epigenetic modulator
- FACS, fluorescence activated cell sorting
- H3K18 acetylation
- H3K18Ac, histone H3 lysine 18 acetylation
- HAT, histone acetyltransferase
- HD, Huntington’s disease
- ITC, isothermal titration calorimetry
- M2+, bivalent metal ion such as Mg2+
- MTR, mithramycin
- MTT, 3-(4-5 dimethylthiazol-2-yl) 2-5diphenyl-tetrazolium bromide
- Mithramycin
- NIH, National Institutes of Health
- PBS, phosphate-buffered saline
- PTM, post-translational modification
- SGR, sanguinarine
- TBST, Tris-buffered saline Tween-20
- TCA, trichloroacetic acid
Collapse
Affiliation(s)
- Amrita Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Sulagna Sanyal
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Kirti K Kulkarni
- Bionivid Technology Pvt Ltd, Kasturi Nagar, Bangalore 560043, India
| | - Kuladip Jana
- Division of Molecular Medicine, Centre for Translational Animal Research, Bose Institute, P-1/12 C.I.T. Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Chandrima Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| | - Dipak Dasgupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhan Nagar, Kolkata 700064, West Bengal, India
| |
Collapse
|
31
|
Zhang JP, Zhang H, Wang HB, Li YX, Liu GH, Xing S, Li MZ, Zeng MS. Down-regulation of Sp1 suppresses cell proliferation, clonogenicity and the expressions of stem cell markers in nasopharyngeal carcinoma. J Transl Med 2014; 12:222. [PMID: 25099028 PMCID: PMC4132216 DOI: 10.1186/s12967-014-0222-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factor Sp1 is multifaceted, with the ability to function as an oncogene or a tumor suppressor, depending on the cellular context. We previously reported that Sp1 is required for the transcriptional activation of the key oncogenes in nasopharyngeal carcinoma (NPC), including B-lymphoma mouse Moloney leukemia virus insertion region 1 (Bmi1) and centromere protein H (CENPH), but the role of Sp1 and its underlying mechanisms in NPC remained largely unexplored. The objective of this study was to investigate the cellular function of Sp1 and to verify the clinical significance of Sp1 as a potential therapeutic target in NPC. METHODS The levels of Sp1 in the normal primary nasopharyngeal epithelial cells (NPECs) and NPC cell lines were analyzed by Quantitative Real-time RT-PCR (qRT-PCR) and Western blot. The location and expression of Sp1 in the NPC tissues were detected by immunohistochemistry staining (IHC). The effect of Sp1 knockdown on the cell proliferation, clonogenicity, anchorage-independent growth and the stem-cell like phenotype in NPC cells were evaluated by MTT, flow cytometry, clonogenicity analysis and sphere formation assay. RESULTS The mRNA and protein levels of Sp1 were elevated in NPC cell lines than in the normal primary NPECs. Higher expression of Sp1 was found in NPC tissues with advanced clinical stage (P=0.00036). Either inhibition of Sp1 activity by mithramycin A, the FDA-approved chemotherapeutic anticancer drug or Sp1 silencing by two distinct siRNA against Sp1 suppressed the growth of NPC cells. Mechanism analysis revealed that Sp1 silencing may suppress cell proliferation, clonogenicity, anchorage-independent growth and the stem-cell like phenotype through inducing the expression of p27 and p21, and impairing the expressions of the critical stem cell transcription factors (SCTFs), including Bmi1, c-Myc and KLF4 in NPC cells. CONCLUSIONS Sp1 was enriched in advanced NPC tissues and silencing of Sp1 significantly inhibited cell proliferation, clonogenicity, anchorage-independent growth and the stem-cell like phenotype of NPC cells, suggesting Sp1 may serve as an appealing drug target for NPC.
Collapse
|
32
|
Safe S, Imanirad P, Sreevalsan S, Nair V, Jutooru I. Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert Opin Ther Targets 2014; 18:759-769. [PMID: 24793594 DOI: 10.1517/14728222.2014.914173] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Specificity protein (Sp) transcription factors (TFs) are members of the Sp/Kruppel-like factor family, and Sp proteins play an important role in embryonic and early postnatal development. Sp1 has been the most extensively investigated member of this family, and expression of this protein decreases with age, whereas Sp1 and other family members (Sp3 and Sp4) are highly expressed in tumors and cancer cell lines. AREA COVERED The prognostic significance of Sp1 in cancer patients and the functional pro-oncogenic activities of Sp1, Sp3 and Sp4 in cancer cell lines are summarized. Several different approaches have been used to target downregulation of Sp TFs and Sp-regulated genes, and this includes identification of different structural classes of antineoplastic agents including NSAIDs, natural products and their synthetic analogs and several well-characterized drugs including arsenic trioxide, aspirin and metformin. The multiple pathways involved in drug-induced Sp downregulation are also discussed. EXPERT OPINION The recognition by the scientific and clinical community that experimental and clinically used antineoplastic agents downregulate Sp1, Sp3 and Sp4, and pro-oncogenic Sp-regulated genes will facilitate future clinical applications for individual drug and drug combination therapies that take advantage of their unusual effects.
Collapse
Affiliation(s)
- Stephen Safe
- Texas A&M University, Veterinary Physiology and Pharmacology , 4466 TAMU, College Station, TX 77843-4466 , USA
| | | | | | | | | |
Collapse
|
33
|
Kong LM, Liao CG, Zhang Y, Xu J, Li Y, Huang W, Zhang Y, Bian H, Chen ZN. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res 2014; 74:3764-78. [PMID: 24906624 DOI: 10.1158/0008-5472.can-13-3555] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Breast cancer is the most common cancer in women for which the metastatic process is still poorly understood. CD147 is upregulated in breast cancer and has been associated with tumor progression, but little is known about its regulatory mechanisms. In this study, we demonstrated that CD147 was overexpressed in breast cancer tissues and cell lines, and the high expression correlated with tumor invasion and metastasis. We also found that the transcription factors Sp1 and c-Myc could bind to the CD147 promoter and enhance its expression. The CD147 mRNA has a 748-bp 3'-untranslated region (UTR) with many miRNA target sites, suggesting possible regulation by miRNAs. We discovered that miR-22 repressed CD147 expression by directly targeting the CD147 3'UTR. We also determined that miR-22 could indirectly participate in CD147 modulation by downregulating Sp1 expression. miR-22 could form an autoregulatory loop with Sp1, which repressed miR-22 transcription by binding to the miR-22 promoter. Together with the c-Myc-mediated inhibition of miR-22 expression, our investigation identified a miR-22/Sp1/c-Myc network that regulates CD147 gene transcription. In addition, miR-22 overexpression suppressed breast cancer cell invasion, metastasis, and proliferation by targeting CD147 in vitro and in vivo. Furthermore, we found that miR-22 was significantly downregulated in breast cancer tissues and that its expression was inversely correlated with the tumor-node-metastasis stage and lymphatic metastasis in patients. Our study provides the first evidence that an miR-22/Sp1/c-Myc network regulates CD147 upregulation in breast cancer and that miR-22 represses breast cancer invasive and metastatic capacities.
Collapse
Affiliation(s)
- Ling-Min Kong
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an
| | - Cheng-Gong Liao
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of PLA, Urumqi; and Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Zhang
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an
| | - Jing Xu
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an
| | - Yu Li
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an
| | - Wan Huang
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an
| | - Yi Zhang
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an
| | - Huijie Bian
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an;
| | - Zhi-Nan Chen
- Authors' Affiliations: Cell Engineering Research Center and Department of Cell Biology, Fourth Military Medical University, Xi'an;
| |
Collapse
|
34
|
Zavala K, Lee J, Chong J, Sharma M, Eilers H, Schumacher MA. The anticancer antibiotic mithramycin-A inhibits TRPV1 expression in dorsal root ganglion neurons. Neurosci Lett 2014; 578:211-6. [PMID: 24468003 DOI: 10.1016/j.neulet.2014.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
Abstract
Activation of peripheral nociceptors by products of inflammation has been shown to be dependent on specific sensory transducing elements such as the capsaicin receptor, TRPV1. The development of high-affinity antagonists to TRPV1 as well as to other receptors capable of detecting noxious stimuli has now become a major focus in analgesic development. Another critical feature of nociception is the relative abundance of a particular pain transducing receptor under normal or pathophysiologic conditions. Increases in expression and/or changes in distribution of nociceptive receptors such as TRPV1 have been correlated with progression of tissue injury and persistence of pain behaviors. Although some details are emerging as to what regulates nociceptor-specific gene expression, compounds that could potentially be used to block or reverse over-expression of nociceptive gene expression are essentially absent. In our efforts to better understand the transcriptional regulation of TRPV1 in sensory neurons, we identified an anticancer agent, mithramycin-A, that decreased TRPV1 expression in primary rat dorsal root ganglion (DRG) neurons. Mithramycin-A dose-dependently (10-50 nM) decreased endogenous TRPV1 mRNA content and appeared to decrease TRPV1-like protein expression in DRG neurons. We also observed that mithramycin-A directed a decrease in the number of capsaicin-responsive DRG neurons without a significant change in the capsaicin-response magnitudes. Interestingly, mithramycin-A also reduced the mRNA encoding Sp1 and Sp4 in DRG neurons, transcription factors previously found to positively regulate TRPV1 expression in sensory neurons. Taken together, we propose that mithramycin-A directs an inhibitory effect on a subpopulation of capsaicin-responsive DRG neurons that utilize Sp1-like factors for TRPV1 expression. Given the therapeutic correlate of mithramycin-A effectiveness in the treatment of certain cancers, small molecule transcriptional inhibitors such as mithramycin-A may serve as useful tools of discovery in pain transduction and possibly future analgesic development.
Collapse
Affiliation(s)
- K Zavala
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - J Lee
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - J Chong
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - M Sharma
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - H Eilers
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States
| | - M A Schumacher
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco 94143-0427, United States.
| |
Collapse
|
35
|
Lee BH, Ryu PD, Lee SY. Serum starvation-induced voltage-gated potassium channel Kv7.5 expression and its regulation by Sp1 in canine osteosarcoma cells. Int J Mol Sci 2014; 15:977-93. [PMID: 24434641 PMCID: PMC3907850 DOI: 10.3390/ijms15010977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 01/03/2023] Open
Abstract
The KCNQ gene family, whose members encode Kv7 channels, belongs to the voltage-gated potassium (Kv) channel group. The roles of this gene family have been widely investigated in nerve and muscle cells. In the present study, we investigated several characteristics of Kv7.5, which is strongly expressed in the canine osteosarcoma cell line, CCL-183. Serum starvation upregulated Kv7.5 expression, and the Kv7 channel opener, flupirtine, attenuated cell proliferation by arresting cells in the G0/G1 phase. We also showed that Kv7.5 knockdown helps CCL-183 cells to proliferate. In an effort to find an endogenous regulator of Kv7.5, we used mithramycin A to reduce the level of the transcription factor Sp1, and it strongly inhibited the induction of Kv7.5 in CCL-183 cells. These results suggest that the activation of Kv7.5 by flupirtine may exert an anti-proliferative effect in canine osteosarcoma. Therefore, Kv7.5 is a possible molecular target for canine osteosarcoma therapy.
Collapse
Affiliation(s)
- Bo Hyung Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
36
|
Kim JY, Cheong HS, Park BL, Kim LH, Namgoong S, Kim JO, Kim HD, Kim YH, Chung MW, Han SY, Shin HD. Comprehensive variant screening of the UGT gene family. Yonsei Med J 2014; 55:232-9. [PMID: 24339312 PMCID: PMC3874916 DOI: 10.3349/ymj.2014.55.1.232] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE UGT1A1, UGT2B7, and UGT2B15 are well-known pharmacogenes that belong to the uridine diphosphate glucuronyltransferase gene family. For personalized drug treatment, it is important to study differences in the frequency of core markers across various ethnic groups. Accordingly, we screened single nucleotide polymorphisms (SNPs) of these three genes and analyzed differences in their frequency among five ethnic groups, as well as attempted to predict the function of novel SNPs. MATERIALS AND METHODS We directly sequenced 288 subjects consisting of 96 Korean, 48 Japanese, 48 Han Chinese, 48 African American, and 48 European American subjects. Subsequently, we analyzed genetic variability, linkage disequilibrium (LD) structures and ethnic differences for each gene. We also conducted in silico analysis to predict the function of novel SNPs. RESULTS A total of 87 SNPs were detected, with seven pharmacogenetic core SNPs and 31 novel SNPs. We observed that the frequencies of UGT1A1 *6 (rs4148323), UGT1A1 *60 (rs4124874), UGT1A1 *93 (rs10929302), UGT2B7 *2 (rs7439366), a part of UGT2B7 *3 (rs12233719), and UGT2B15 *2 (rs1902023) were different between Asian and other ethnic groups. Additional in silico analysis results showed that two novel promoter SNPs of UGT1A1 -690G>A and -689A>C were found to potentially change transcription factor binding sites. Moreover, 673G>A (UGT2B7), 2552T>C, and 23269C>T (both SNPs from UGT2B15) changed amino acid properties, which could cause structural deformation. CONCLUSION Findings from the present study would be valuable for further studies on pharmacogenetic studies of personalized medicine and drug response.
Collapse
Affiliation(s)
- Jason Yongha Kim
- Department of Life Science, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 121-742, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li L, Du Y, Kong X, Li Z, Jia Z, Cui J, Gao J, Wang G, Xie K. Lamin B1 is a novel therapeutic target of betulinic acid in pancreatic cancer. Clin Cancer Res 2013; 19:4651-61. [PMID: 23857605 PMCID: PMC3800003 DOI: 10.1158/1078-0432.ccr-12-3630] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Betulinic acid, a naturally occurring pentacyclic triterpenoid, exhibits potent antitumor activities, whereas the underlying mechanisms remain unclear. In the current study, we sought to determine the role and regulation of lamin B1 expression in human pancreatic cancer pathogenesis and betulinic acid-based therapy. EXPERIMENTAL DESIGN We used cDNA microarray to identify betulinic acid target genes and used tissue microarray to determine the expression levels of lamin B1 in pancreatic cancer tissues and to define their relationship with the clinicopathologic characteristics of pancreatic cancer. We also used in vitro and in vivo models to determine the biologic impacts of altered lamin B1 expression on and mechanisms underlying lamin B1 overexpression in human pancreatic cancer. RESULTS We found that lamin B1 was significantly downregulated by betulinic acid treatment in pancreatic cancer in both in vitro culture and xenograft models. Overexpression of lamin B1 was pronounced in human pancreatic cancer, and increased lamin B1 expression was directly associated with low-grade differentiation, increased incidence of distant metastasis, and poor prognosis of patients with pancreatic cancer. Furthermore, knockdown of lamin B1 significantly attenuated the proliferation, invasion, and tumorigenicity of pancreatic cancer cells. CONCLUSIONS Lamin B1 plays an important role in pancreatic cancer pathogenesis and is a novel therapeutic target of betulinic acid treatment.
Collapse
Affiliation(s)
- Lei Li
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Yiqi Du
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Xiangyu Kong
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaoshen Li
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Zhiliang Jia
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiujie Cui
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, The People's Republic of China
| | - Jun Gao
- Departments of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Guokun Wang
- Departments of Cardiology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, The People's Republic of China
| | - Keping Xie
- Department of Gastroenterology and Hepatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
38
|
Wang BS, Liu Z, Sun SL, Zhao Y. Identification of genes and candidate agents associated with pancreatic cancer. Tumour Biol 2013; 35:81-8. [PMID: 23934415 DOI: 10.1007/s13277-013-1009-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022] Open
Abstract
Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. A major challenge in current cancer research is biological interpretation of complexity of cancer somatic mutation profiles. It has been suggested that several molecular alterations may play important roles in pancreatic carcinogenesis. In this study, by using the GSE28735 affymetrix microarray data accessible from Gene Expression Omnibus (GEO) database, we identified differentially expressed genes (DEGs) between paired pancreatic cancer tissues and adjacent nontumor tissues, followed the protein-protein interaction of the DEGs. Our study identified thousands of DEGs involved in regulation of cell cycle and apoptosis in progression of pancreatic cancer. Sp1 was predicted to be the major regulator by transcription factors analysis. From the protein-protein interaction networks, we found that Tk1 might play an important role in the progression of pancreatic cancer. Finally, we predicted candidate agents, including tomatidine and nialamide, which may be used as drugs to treat pancreatic cancer. In conclusion, our data provide a comprehensive bioinformatics analysis of genes and pathways which may be involved in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Bao-sheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China,
| | | | | | | |
Collapse
|
39
|
Otjacques E, Binsfeld M, Rocks N, Blacher S, Vanderkerken K, Noel A, Beguin Y, Cataldo D, Caers J. Mithramycin exerts an anti-myeloma effect and displays anti-angiogenic effects through up-regulation of anti-angiogenic factors. PLoS One 2013; 8:e62818. [PMID: 23667526 PMCID: PMC3646989 DOI: 10.1371/journal.pone.0062818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 03/26/2013] [Indexed: 01/03/2023] Open
Abstract
Mithramycin (MTM), a cytotoxic compound, is currently being investigated for its anti-angiogenic activity that seems to be mediated through an inhibition of the transcription factor SP1. In this study we evaluated its anti-myeloma effects in the syngenic 5TGM1 model in vitro as well as in vivo. In vitro, MTM inhibited DNA synthesis of 5TGM1 cells with an IC50 of 400 nM and induced an arrest in cell cycle progression at the G1/S transition point. Western-blot revealed an up-regulation of p53, p21 and p27 and an inhibition of c-Myc, while SP1 remained unaffected. In rat aortic ring assays, a strong anti-angiogenic effect was seen, which could be explained by a decrease of VEGF production and an up-regulation of anti-angiogenic proteins such as IP10 after MTM treatment. The administration of MTM to mice injected with 5TGM1 decreased 5TGM1 cell invasion into bone marrow and myeloma neovascularisation. These data suggest that MTM displays anti-myeloma and anti-angiogenic effects that are not mediated by an inhibition of SP1 but rather through c-Myc inhibition and p53 activation.
Collapse
Affiliation(s)
- Eléonore Otjacques
- Laboratory of Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
- Laboratory of Tumour and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
| | - Marilène Binsfeld
- Laboratory of Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
| | - Natacha Rocks
- Laboratory of Tumour and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumour and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Agnès Noel
- Laboratory of Tumour and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumour and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Research), University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
40
|
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of death worldwide. HCC is a highly vascular tumor, and proangiogenic cytokines such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and fibroblast growth factor may play crucial roles in this disease. Sorafenib, a multikinase inhibitor that blocks VEGF and PDGF signaling, was the first systemic therapy to demonstrate improved survival in patients with advanced HCC. Several other drugs targeting VEGF are in development. Because of the anticipation of eventual resistance to anti-VEGF therapies, drugs that also target alternative proangiogenic pathways are being investigated. Recent clinical and preclinical data along with ongoing studies are reviewed.
Collapse
Affiliation(s)
- Keeran R Sampat
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
41
|
Guo MM, Hu LH, Wang YQ, Chen P, Huang JG, Lu N, He JH, Liao CG. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med Oncol 2013; 30:542. [PMID: 23529765 DOI: 10.1007/s12032-013-0542-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/13/2013] [Indexed: 12/21/2022]
Abstract
Accumulating evidence has shown that microRNAs are involved in multiple processes in cancer development and progression. Recently, miR-22 has been identified as a tumor-suppressing microRNA in many human cancers. However, the specific function of miR-22 in gastric cancer is unclear at this point. In this study, we first measured miR-22 expression level in 30 pairs of gastric cancer and matched normal tissues, two normal and six gastric cancer cell lines by real-time quantitative RT-PCR. We found that the expression of miR-22 in gastric cancer tissues and cell lines was much lower than that in normal control, respectively. Transfection of miR-22 expression plasmid could significantly inhibit the cell migration and invasion in SGC-7901 and NCL-N87 gastric cancer cell lines. Moreover, we also showed that Sp1 was negatively regulated by miR-22 at the posttranscriptional level, via a specific target site within the 3'UTR by luciferase reporter assay. The expression of Sp1 was inversely correlated with miR-22 expression in gastric cancer tissues, and knockdown of Sp1 by siRNA inhibited cell malignant behaviors. Thus, our findings suggest that miR-22 acts as tumor suppressor by targeting the Sp1 gene and inhibiting gastric cancer cell migration and invasion. The findings of this study contribute to current understanding of the functions of miR-22 in gastric cancer.
Collapse
Affiliation(s)
- Mei-Mei Guo
- Department of Gastroenterology, Shenzhen Sixth People's Hospital (Nanshan Hospital), Shenzhen 518052, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Shin JA, Jung JY, Ryu MH, Safe S, Cho SD. Mithramycin A inhibits myeloid cell leukemia-1 to induce apoptosis in oral squamous cell carcinomas and tumor xenograft through activation of Bax and oligomerization. Mol Pharmacol 2013; 83:33-41. [PMID: 23019217 DOI: 10.1124/mol.112.081364] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In several human malignancies, overexpression of myeloid cell leukemia-1 (Mcl-1) confers resistance to induction of apoptosis; however, Mcl-1-mediated inhibition of apoptosis in oral squamous cell carcinoma (OSCC) is not fully understood and has been investigated in this study. The Mcl-1 promoter activators (TPA) and epidermal growth factor (EGF) enhanced neoplastic transformation of JB6 cells and this response was accompanied by enhanced expression of Mcl-1, and knockdown of Mcl-1 by RNA interference (RNAi) decreased JB6 cell transformation. In the same cell line, we also demonstrated that mithramycin A (Mith) decreased TPA-induced JB6 cell transformation and Mcl-1 expression. Mcl-1 was overexpressed in human oral tumors compared with normal oral mucosa and also in several OSCC cell lines including HN22 and HSC-4 cells. Treatment of these cells with Mith also decreased Mcl-1 expression and neoplastic cell transformation, and this was accompanied by induction of several markers of apoptosis. Knockdown of Mcl-1 by RNAi also induced apoptotic cell death. The downregulation of Mcl-1 by Mith and RNAi increased pro-apoptotic protein Bax, resulting in the Bax translocation into mitochondria and its oligomerization. Mith also suppressed tumor growth in vivo and induced apoptosis in tumor by also regulating expression of Mcl-1 and Bax proteins. These indicate a critical role for Mcl-1 in the growth and survival of OSCC and demonstrate that Mith may be a potential anticancer drug candidate for clinical treatment of OSCC.
Collapse
Affiliation(s)
- Ji-Ae Shin
- Assistant Professor, Department of Oral Pathology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
43
|
Lee YJ, Lee YJ, Im JH, Won SY, Kim YB, Cho MK, Nam HS, Choi YJ, Lee SH. Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells. Food Chem Toxicol 2012; 52:61-8. [PMID: 23146690 DOI: 10.1016/j.fct.2012.10.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/31/2012] [Indexed: 12/11/2022]
Abstract
Dietary phytochemicals as adjuvants have been suggested to play important roles in enhancing chemotherapeutic potential owing to multitargeted chemopreventive properties and lack of substantial toxicity. Here, we investigated the efficacy of the combined treatment of various phytochemicals with the anticancer drug clofarabine in malignant mesothelioma MSTO-211H cells and normal mesothelial MeT-5A cells. The combined treatment of resveratrol and clofarabine produced a synergistic antiproliferative effect in MSTO-211H cells, but not in MeT-5A cells. In MSTO-211H cells, the nuclear accumulation of Sp1 and the levels of p-Akt, Sp1, c-Met, cyclin D1, and p21 were effectively decreased by the combined treatment of them. In combination with clofarabine, the ability of resveratrol to reduce the contents of Sp1 and its target gene products was also evident in a time- and dose-dependent experiment. The inhibition of phosphoinositide 3-kinase using Ly294002 augmented a decrease in the p21 level induced by their combination, but it showed no significant effects on expression of Sp1 and cyclin D1. Taken together, the data provide evidence that the synergistic antiproliferative effect of resveratrol and clofarabine is linked to the inhibition of Akt and Sp1 activities, and suggest that this combination may have therapeutic value in treatment of malignant mesothelioma.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 330-090, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model. Cancer Lett 2012; 328:65-72. [PMID: 23000424 DOI: 10.1016/j.canlet.2012.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/21/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022]
Abstract
Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer.
Collapse
|
45
|
Núñez LE, Nybo SE, González-Sabín J, Pérez M, Menéndez N, Braña AF, Shaaban KA, He M, Morís F, Salas JA, Rohr J, Méndez C. A novel mithramycin analogue with high antitumor activity and less toxicity generated by combinatorial biosynthesis. J Med Chem 2012; 55:5813-25. [PMID: 22578073 DOI: 10.1021/jm300234t] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mithramycin is an antitumor compound produced by Streptomyces argillaceus that has been used for the treatment of several types of tumors and hypercalcaemia processes. However, its use in humans has been limited because of its side effects. Using combinatorial biosynthesis approaches, we have generated seven new mithramycin derivatives, which differ from the parental compound in the sugar profile or in both the sugar profile and the 3-side chain. From these studies three novel derivatives were identified, demycarosyl-3D-β-d-digitoxosylmithramycin SK, demycarosylmithramycin SDK, and demycarosyl-3D-β-d-digitoxosylmithramycin SDK, which show high antitumor activity. The first one, which combines two structural features previously found to improve pharmacological behavior, was generated following two different strategies, and it showed less toxicity than mithramycin. Preliminary in vivo evaluation of its antitumor activity through hollow fiber assays, and in subcutaneous colon and melanoma cancers xenografts models, suggests that demycarosyl-3D-β-d-digitoxosylmithramycin SK could be a promising antitumor agent worthy of further investigation.
Collapse
Affiliation(s)
- Luz E Núñez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Crosstalk of Sp1 and Stat3 signaling in pancreatic cancer pathogenesis. Cytokine Growth Factor Rev 2012; 23:25-35. [PMID: 22342309 DOI: 10.1016/j.cytogfr.2012.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer progression is attributed to genetic and epigenetic alterations and a chaotic tumor microenvironment. Those diverse "upstream signal" factors appear to converge on specific sets of central nuclear regulators, namely, transcription factors. Specificity Protein 1 (Sp1) and signal transducer and activator of transcription 3 (Stat3) are central transcription factors that regulate a number of pathways important to tumorigenesis, including tumor cell-cycle progression, apoptosis, angiogenesis, metastasis, and evasion of the immune system. Recently, researchers demonstrated many types of crosstalk of Sp1 and Stat3 in tumor signal transduction and that these factors function cooperatively to activate targeted genes and promote tumorigenesis in pancreatic cancer. Therefore, targeting both Sp1 and Stat3 is a potential preventive and therapeutic strategy for pancreatic cancer.
Collapse
|
47
|
Capretto L, Mazzitelli S, Brognara E, Lampronti I, Carugo D, Hill M, Zhang X, Gambari R, Nastruzzi C. Mithramycin encapsulated in polymeric micelles by microfluidic technology as novel therapeutic protocol for beta-thalassemia. Int J Nanomedicine 2012; 7:307-24. [PMID: 22287841 PMCID: PMC3265999 DOI: 10.2147/ijn.s25657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This report shows that the DNA-binding drug, mithramycin, can be efficiently encapsulated in polymeric micelles (PM-MTH), based on Pluronic® block copolymers, by a new microfluidic approach. The effect of different production parameters has been investigated for their effect on PM-MTH characteristics. The compared analysis of PM-MTH produced by microfluidic and conventional bulk mixing procedures revealed that microfluidics provides a useful platform for the production of PM-MTH with improved controllability, reproducibility, smaller size, and polydispersity. Finally, an investigation of the effects of PM-MTH, produced by microfluidic and conventional bulk mixing procedures, on the erythroid differentiation of both human erythroleukemia and human erythroid precursor cells is reported. It is demonstrated that PM-MTH exhibited a slightly lower toxicity and more pronounced differentiative activity when compared to the free drug. In addition, PM-MTH were able to upregulate preferentially γ-globin messenger ribonucleic acid production and to increase fetal hemoglobin (HbF) accumulation, the percentage of HbF-containing cells, and their HbF content without stimulating α-globin gene expression, which is responsible for the clinical symptoms of β-thalassemia. These results represent an important first step toward a potential clinical application, since an increase in HbF could alleviate the symptoms underlying β-thalassemia and sickle cell anemia. In conclusion, this report suggests that PM-MTH produced by microfluidic approach warrants further evaluation as a potential therapeutic protocol for β-thalassemia.
Collapse
Affiliation(s)
- Lorenzo Capretto
- Engineering Sciences, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Florczyk U, Czauderna S, Stachurska A, Tertil M, Nowak W, Kozakowska M, Poellinger L, Jozkowicz A, Loboda A, Dulak J. Opposite effects of HIF-1α and HIF-2α on the regulation of IL-8 expression in endothelial cells. Free Radic Biol Med 2011; 51:1882-92. [PMID: 21925595 PMCID: PMC3202637 DOI: 10.1016/j.freeradbiomed.2011.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 08/22/2011] [Accepted: 08/22/2011] [Indexed: 01/16/2023]
Abstract
Recently we have shown that hypoxia as well as overexpression of the stable form of hypoxia-inducible factor-1α (HIF-1α) diminished the expression of interleukin-8 (IL-8) by inhibition of the Nrf2 transcription factor in HMEC-1 cells. Because HIF isoforms may exert different effects, we aimed to examine the influence of HIF-2α on IL-8 expression in endothelial cells. In contrast to HIF-1α, overexpression of HIF-2α obtained by adenoviral transduction resulted in increased expression of IL-8 in an Nrf2-independent way. Importantly, HIF-2α augmented the activity of SP-1, a transcription factor involved in IL-8 regulation and known coactivator of c-Myc. Additionally, HIF-1 decreased, whereas HIF-2 increased, c-Myc expression, and silencing of Mxi-1, a c-Myc antagonist, restored IL-8 expression downregulated by HIF-1α or hypoxia. Accordingly, binding of c-Myc to the IL-8 promoter was abolished in hypoxia. Importantly, both severe (0.5% O(2)) and mild (5% O(2)) hypoxia diminished IL-8 expression despite the stabilization of both HIF-1 and HIF-2. This study reveals the opposite roles of HIF-1α and HIF-2α in the regulation of IL-8 expression in endothelial cells. However, despite stabilization of both isoforms in hypoxia the effect of HIF-1 is predominant, and downregulation of IL-8 expression in hypoxia is caused by attenuation of Nrf2 and c-Myc.
Collapse
Key Words
- adhif-1α/adhif-2α, adenoviral vectors containing hif-1α or hif-2α cdna, respectively
- are, antioxidant-response element
- arnt, aryl hydrocarbon receptor nuclear translocator
- gfp, green fluorescent protein
- hif, hypoxia-inducible factor
- ho-1, heme oxygenase-1
- il-8, interleukin-8
- nqo1, nad(p)h:quinone oxidoreductase
- seap, secreted alkaline phosphatase
- sirna, small interfering rna
- tp, thymidine phosphorylase
- vegf, vascular endothelial growth factor
- angiogenesis
- sp-1
- c-myc
- transcription factor
- free radicals
Collapse
Affiliation(s)
- Urszula Florczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Szymon Czauderna
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Anna Stachurska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Magdalena Tertil
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Witold Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Lorenz Poellinger
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
| | - Agnieszka Loboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
- Corresponding authors. Fax: + 48 12 664 69 18.
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, 30–387 Krakow, Poland
- Corresponding authors. Fax: + 48 12 664 69 18.
| |
Collapse
|
49
|
Domingues I, Rino J, Demmers JAA, de Lanerolle P, Santos SCR. VEGFR2 translocates to the nucleus to regulate its own transcription. PLoS One 2011; 6:e25668. [PMID: 21980525 PMCID: PMC3182252 DOI: 10.1371/journal.pone.0025668] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
Vascular Endothelial Growth Factor Receptor-2 (VEGFR2) is the major mediator of the angiogenic effects of VEGF. In addition to its well known role as a membrane receptor that activates multiple signaling pathways, VEGFR2 also has a nuclear localization. However, what VEGFR2 does in the nucleus is still unknown. In the present report we show that, in endothelial cells, nuclear VEGFR2 interacts with several nuclear proteins, including the Sp1, a transcription factor that has been implicated in the regulation of genes needed for angiogenesis. By in vivo chromatin immunoprecipitation (ChIP) assays, we found that VEGFR2 binds to the Sp1-responsive region of the VEGFR2 proximal promoter. These results were confirmed by EMSA assays, using the same region of the VEGFR2 promoter. Importantly, we show that the VEGFR2 DNA binding is directly linked to the transcriptional activation of the VEGFR2 promoter. By reporter assays, we found that the region between -300/-116 relative to the transcription start site is essential to confer VEGFR2-dependent transcriptional activity. It was previously described that nuclear translocation of the VEGFR2 is dependent on its activation by VEGF. In agreement, we observed that the binding of VEGFR2 to DNA requires VEGF activation, being blocked by Bevacizumab and Sunitinib, two anti-angiogenic agents that inhibit VEGFR2 activation. Our findings demonstrate a new mechanism by which VEGFR2 activates its own promoter that could be involved in amplifying the angiogenic response.
Collapse
Affiliation(s)
- Inês Domingues
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Jeroen A. A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | | |
Collapse
|
50
|
Wang F, Li Y, Zhou J, Xu J, Peng C, Ye F, Shen Y, Lu W, Wan X, Xie X. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2580-8. [PMID: 21945323 DOI: 10.1016/j.ajpath.2011.07.037] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/05/2011] [Accepted: 07/19/2011] [Indexed: 12/26/2022]
Abstract
Pelvic lymph node metastases are regarded as the most important risk factor and a predictor of poor prognosis for patients with cervical cancer. Exploration of metastasis-related molecules is helpful toward improving the prognosis in cervical cancer. To identify the role of miR-375 in metastasis and progression of cervical cancer, we examined the expression of miR-375 in 170 cervical cancer tissues and 68 normal cervical tissues, using stem-loop quantitative PCR, and found that the expression of miR-375 in cervical cancer tissues was significantly decreased by 4.45-fold, compared with 68 normal tissues. A significant correlation existed between miR-375 expression and clinicopathologic parameters, including lymph node metastasis of cervical cancer. Overexpressed miR-375 suppressed cell proliferation, blocked G1-to-S cell-cycle transition, and inhibited cell migration and invasion in human cervical SiHa and CaSki cells. SP1, a potential target gene of miR-375, was inversely correlated with miR-375 expression in cervical cancer tissues. Moreover, SP1 was negatively regulated by miR-375, and knockdown of SP1 by siRNA inhibited cell malignant behaviors. Thus, our findings suggest that down-regulated miR-375 promotes cell malignant behaviors via the target gene SP1 and may consequently contribute to the progression of cervical cancer.
Collapse
Affiliation(s)
- Fenfen Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|