1
|
Georgescu SR, Matei C, Ene CD, Capusa C, Tampa M, Mitran MI, Mitran CI, Nicolae G, Nicolae I. Disrupted Redox Regulation and Inflammatory Response in Pyoderma Gangrenosum. Life (Basel) 2025; 15:611. [PMID: 40283167 PMCID: PMC12029017 DOI: 10.3390/life15040611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION The pathophysiology of Pyoderma Gangrenosum (PG) involves altered innate and adaptive immunity, mutagenic and epigenetic changes, the autoinflammatory state, and the overexpression of cytokines. This study investigated the potential contribution of inflammation, redox signaling, and the immune system in the pathogenesis of PG. MATERIALS AND METHODS This case-control study included 36 patients with PG and 30 controls. We have determined the serum concentrations of acute phase proteins (C-reactive protein-CRP, alpha1 glycoprotein acid-AGPA, Albumin), interleukin-17A -IL-17A, β2 microglobulin-β2MG, reduced glutathione-GSH, oxidized glutathione- GSSG, the GSH/GSSG ratio, and hematological parameters (white blood cells-WBC, neutrophil-lymphocyte ratio-NLR, erythrocyte sedimentation rate-ESR) in patients with PG compared with controls. Furthermore, we have evaluated the variations in these markers before and after treatment in PG patients. RESULTS The serum concentrations of acute phase proteins (CRP, AGPA, and Albumin) and the IL-17A, β2MG, GSH, GSSG, and GSH/GSSG ratio were significantly different between the PG group and controls. Hematological parameters (WBC, NLR, and ESR), acute phase proteins (CRP, AGPA, and albumin), and IL-17A showed an exaggerated and persistent inflammatory response in patients with PG. In patients with PG associated with systemic diseases, the dysregulation of the biochemical events was more severe. CONCLUSIONS The acute phase proteins, β2MG-MHC class I complex, and the GSH-GSSG system are unbalanced in PG. Our results could improve the diagnosis and our understanding of the pathogenic basis of PG.
Collapse
Affiliation(s)
- Simona Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
| | - Corina Daniela Ene
- Departments of Nephrology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Nephrology, ‘Carol Davila’ Nephrology Hospital, 010731 Bucharest, Romania
| | - Cristina Capusa
- Departments of Nephrology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Nephrology, ‘Carol Davila’ Nephrology Hospital, 010731 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (S.R.G.); (M.T.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Madalina Irina Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Gheorghe Nicolae
- Faculty of Psychology, Babeș-Bolyai University, 400347 Cluj-Napoca, Romania;
| | - Ilinca Nicolae
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
2
|
Li K, Chai D, Ren S, Lian X, Shi X, Xu Y, Bao L, Yang S, Liang Y, Li X, Du H. β2-microglobulin induced apoptosis of tumor cells via the ERK signaling pathway by directly interacting with HFE in HER2-overexpressing breast cancer. BMC Cancer 2024; 24:991. [PMID: 39128984 PMCID: PMC11318297 DOI: 10.1186/s12885-024-12757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Our previous study demonstrated that β2-microglobulin (β2M) promoted ER+/HER2- breast cancer survival via the SGK1/Bcl-2 signaling pathway. However, the role of β2M has not been investigated in ER-/HER2+ breast cancer. Here, we aimed to determine the role of β2M in ER-/HER2+ breast cancer. METHODS The interaction between β2M and HFE was confirmed by co-immunoprecipitation, mass spectrometry, yeast two-hybrid screening, and His pull-down. The knockdown and overexpression of β2M or HFE were performed in MDA-MB-453 cells, and ERK signaling pathway was subsequently analyzed via western blotting. Apoptotic cells were detected using flow cytometer. β2M, HFE, and p-ERK1/2 were examined in tumor and paired adjacent tissues via immunohistochemistry. RESULTS HFE was found to be an interacting protein of β2M in ER-/HER2+ breast cancer cells MDA-MB-453 by co-immunoprecipitation and mass spectrometry. A yeast two-hybrid system and His-pull down experiments verified that β2M directly interacted with HFE. β2M and HFE as a complex were mainly located in the cytoplasm, with some on the cytomembrane of MDA-MB-453 cells. In addition to breast cancer cells BT474, endogenous β2M directly interacted with HFE in breast cancer cells MDA-MB-453, MDA-MB-231, and MCF-7. β2M activated the ERK signaling pathway by interacting with HFE and induced apoptosis of MDA-MB-453 cells. The expression of HFE and p-ERK1/2 showed significantly high levels in HER2-overexpressing breast cancer tumor tissue compared with adjacent normal tissue, consistent with the results obtained from the cell experiments. CONCLUSIONS β2M induced apoptosis of tumor cells via activation of the ERK signal pathway by directly interacting with HFE in HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Kesheng Li
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, 2 East Xiaoxihu Street, Lanzhou, China
| | - Dandan Chai
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, 2 East Xiaoxihu Street, Lanzhou, China
| | - Shiyang Ren
- Bioscience College, Lanzhou University, Lanzhou, China
| | - Xiaowen Lian
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, 2 East Xiaoxihu Street, Lanzhou, China
| | - Xiaoling Shi
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, 2 East Xiaoxihu Street, Lanzhou, China
| | - Yang Xu
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, 2 East Xiaoxihu Street, Lanzhou, China
| | - Lie Bao
- Bioscience College, Lanzhou University, Lanzhou, China
| | - Suisheng Yang
- Department of Breast Surgery, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Yurong Liang
- Department of Breast Surgery, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Xiaoqin Li
- Department of Pathology, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Huifen Du
- Department of Medicine Biotechnology, Gansu Provincial Academic Institute for Medical Research, 2 East Xiaoxihu Street, Lanzhou, China.
| |
Collapse
|
3
|
Koc MA, Wiles TA, Weinhold DC, Rightmyer S, Weaver AL, McDowell CT, Roder J, Asmellash S, Pestano GA, Roder H, Georgantas III RW. Molecular and translational biology of the blood-based VeriStrat® proteomic test used in cancer immunotherapy treatment guidance. J Mass Spectrom Adv Clin Lab 2023; 30:51-60. [PMID: 38074293 PMCID: PMC10709509 DOI: 10.1016/j.jmsacl.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 03/09/2024] Open
Abstract
INTRODUCTION The VeriStrat® test (VS) is a blood-based assay that predicts a patient's response to therapy by analyzing eight features in a spectrum obtained from matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) analysis of human serum and plasma. In a recent analysis of the INSIGHT clinical trial (NCT03289780), it was found that the VS labels, VS Good and VS Poor, can effectively predict the responsiveness of non-small cell lung cancer (NSCLC) patients to immune checkpoint inhibitor (ICI) therapy. However, while VS measures the intensities of spectral features using MALDI-TOF analysis, the specific proteoforms underlying these features have not been comprehensively identified. OBJECTIVES The objective of this study was to identify the proteoforms that are measured by VS. METHODS To resolve the features obtained from the low-resolution MALDI-TOF procedure used to acquire mass spectra for VS DeepMALDI® analysis of serum was employed. This technique allowed for the identification of finer peaks within these features. Additionally, a combination of reversed-phase fractionation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was then used to identify the proteoforms associated with these peaks. RESULTS The analysis revealed that the primary constituents of the spectrum measured by VS are serum amyloid A1, serum amyloid A2, serum amyloid A4, C-reactive protein, and beta-2 microglobulin. CONCLUSION Proteoforms involved in host immunity were identified as significant components of these features. This newly acquired information improves our understanding of how VS can accurately predict patient response to therapy. It opens up additional studies that can expand our understanding even further.
Collapse
Affiliation(s)
| | | | - Daniel C. Weinhold
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Steven Rightmyer
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Amanda L. Weaver
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Colin T. McDowell
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Joanna Roder
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Senait Asmellash
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Gary A. Pestano
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | - Heinrich Roder
- Biodesix Inc., 2970 Wilderness Place Suite 100, Boulder, CO 80301, United States
| | | |
Collapse
|
4
|
Wang H, Zheng H, Cao X, Meng P, Liu J, Zheng C, Zuo H, Wang Z, Zhang T. β2-microglobulin and colorectal cancer among inpatients: a case-control study. Sci Rep 2023; 13:12222. [PMID: 37500738 PMCID: PMC10374627 DOI: 10.1038/s41598-023-39162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Β2-microglobulin (β2-M) is associated with various malignancies. However, the relationship between β2-M and colorectal cancer (CRC) remains unclear. We explored the association between β2-M and CRC among inpatients who underwent colonoscopy and explored factors that may modify the association. All consecutive inpatients who underwent colonoscopy were enrolled in a tertiary hospital between April 2015 and June 2022. Inpatients with initial CRC or normal colonoscopies were considered eligible as cases or controls, respectively. Baseline characteristics and laboratory indicators of the participants were collected from electronic medical records. Logistic regression analysis, smooth curve fitting, sensitivity analysis, and subgroup analysis were conducted in the present study. After adjusting for baseline clinical characteristics and laboratory parameters, β2-M was positively associated with CRC (odds ratio [OR] 1.32; 95% confidence interval [CI] 1.11-1.58) among inpatients. When the β2-M level was assigned as tertiles, participants in the highest tertile presented with a higher risk of CRC (OR 2.33; 95% CI 1.57-3.48). A positive linear association was observed between β2-M and CRC with smooth curve fitting. In particular, it may be of great importance to monitor β2-M levels for predicting CRC patients.
Collapse
Affiliation(s)
- Huijie Wang
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Huanwei Zheng
- Department of Gastroenterology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China.
| | - Xu Cao
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Ping Meng
- Department of Gastroenterology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Jinli Liu
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Caihua Zheng
- Department of Gastroenterology, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Haiying Zuo
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Zhichao Wang
- Graduate School, Hebei North University, Zhangjiakou, China
| | - Teng Zhang
- Institute of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
5
|
Liu X, Li X, Chen L, Hsu ACY, Asquith KL, Liu C, Laurie K, Barr I, Foster PS, Yang M. Proteomic Analysis Reveals a Novel Therapeutic Strategy Using Fludarabine for Steroid-Resistant Asthma Exacerbation. Front Immunol 2022; 13:805558. [PMID: 35280986 PMCID: PMC8913936 DOI: 10.3389/fimmu.2022.805558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Virus-induced asthma exacerbation is a health burden worldwide and lacks effective treatment. To better understand the disease pathogenesis and find novel therapeutic targets, we established a mouse model of steroid (dexamethasone (DEX)) resistant asthma exacerbation using ovalbumin (OVA) and influenza virus (FLU) infection. Using liquid chromatography-tandem mass spectrometry (LC-MC/MS), we performed a shotgun proteomics assay coupled with label-free quantification to define all dysregulated proteins in the lung proteome of asthmatic mice. Compared to control, 71, 89, and 30 proteins were found significantly upregulated by at least two-fold (p-value ≤ 0.05) in OVA-, OVA/FLU-, and OVA/FLU/DEX-treated mice, respectively. We then applied a Z-score transformed hierarchical clustering analysis and Ingenuity Pathway Analysis (IPA) to highlight the key inflammation pathways underlying the disease. Within all these upregulated proteins, 64 proteins were uniquely highly expressed in OVA/FLU mice compared to OVA mice; and 11 proteins were DEX-refractory. IPA assay revealed two of the most enriched pathways associated with these over-expressed protein clusters were those associated with MHC class I (MHC-I) antigen-presentation and interferon (IFN) signaling. Within these pathways, signal-transducer-and-activator-of-transcription-1 (STAT1) protein was identified as the most significantly changed protein contributing to the pathogenesis of exacerbation and the underlying steroid resistance based on the label-free quantification; and this was further confirmed by both Parallel Reaction Monitoring (PRM) proteomics assay and western blots. Further, the pharmacological drug Fludarabine decreased STAT1 expression, restored the responsiveness of OVA/FLU mice to DEX and markedly suppressed disease severity. Taken together, this study describes the proteomic profile underpinning molecular mechanisms of FLU-induced asthma exacerbation and identifies STAT1 as a potential therapeutic target, more importantly, we provided a novel therapeutic strategy that may be clinically translated into practice.
Collapse
Affiliation(s)
- Xiaoming Liu
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Health Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Health Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Ling Chen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Health Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Health Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Kelly L. Asquith
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Health Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paul S. Foster
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Health Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
- *Correspondence: Ming Yang, ; Paul S. Foster,
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Health Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
- *Correspondence: Ming Yang, ; Paul S. Foster,
| |
Collapse
|
6
|
Lau WM, Subramaniam M, Goh HH, Lim YM. Temporal gene expression profiling of maslinic acid-treated Raji cells. Mol Omics 2021; 17:252-259. [PMID: 33346776 DOI: 10.1039/d0mo00168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maslinic acid is a novel phytochemical reported to target multiple signaling pathways. A complete gene expression profile was therefore constructed to illustrate the anti-tumourigenesis effects of maslinic acid in Raji cells across five time-points. Microarray analysis was used to identify genes that were differentially expressed in maslinic acid treated Raji cells at 0, 4, 8, 12, 24 and 48 h. Extracted RNA was hybridized using the AffymetrixGeneChip to obtain expression profiles. A total of 109 genes were found to be significantly expressed over a period of 48 hours. By 12 hours, maslinic acid regulates the majority of genes involved in the cell cycle, p53 and NF-κB signaling pathways. At the same time, XAF1, APAF1, SESN3, and TP53BP2 were evidently up-regulated, while oncogenes, FAIM, CD27, and RRM2B, were down-regulated by at least 2-fold. In conclusion, maslinic acid shows an hourly progression of gene expression in Raji cells.
Collapse
Affiliation(s)
- Wai Meng Lau
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| | - Menaga Subramaniam
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| | - Hoe Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia. and Department of Pre-Clinical Science, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
7
|
Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Front Immunol 2020; 11:605958. [PMID: 33384693 PMCID: PMC7770133 DOI: 10.3389/fimmu.2020.605958] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
Major histocompatibility complex (MHC) molecules are well-known for their role in antigen (cross-) presentation, thereby functioning as key players in the communication between immune cells, for example dendritic cells (DCs) and T cells, or immune cells and their targets, such as T cells and virus-infected or tumor cells. However, much less appreciated is the fact that MHC molecules can also act as signaling receptors. In this process, here referred to as reverse MHC class I (MHC-I) signaling, ligation of MHC molecules can lead to signal-transduction and cell regulatory effects in the antigen presenting cell. In the case of MHC-I, reverse signaling can have several outcomes, including apoptosis, migration, induced or reduced proliferation and cytotoxicity towards target cells. Here, we provide an overview of studies showing the signaling pathways and cell outcomes upon MHC-I stimulation in various immune and non-immune cells. Signaling molecules like RAC-alpha serine/threonine-protein kinase (Akt1), extracellular signal-regulated kinases 1/2 (ERK1/2), and nuclear factor-κB (NF-κB) were common signaling molecules activated upon MHC-I ligation in multiple cell types. For endothelial and smooth muscle cells, the in vivo relevance of reverse MHC-I signaling has been established, namely in the context of adverse effects after tissue transplantation. For other cell types, the role of reverse MHC-I signaling is less clear, since aspects like the in vivo relevance, natural MHC-I ligands and the extended downstream pathways are not fully known.The existing evidence, however, suggests that reverse MHC-I signaling is involved in the regulation of the defense against bacterial and viral infections and against malignancies. Thereby, reverse MHC-I signaling is a potential target for therapies against viral and bacterial infections, cancer immunotherapies and management of organ transplantation outcomes.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luca D Meesters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Microbiology and Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
8
|
Li L, Bu X, Wu B, Zhang S, Jin K, Xia L, Sun C. Combined Diagnostic Significance of Preoperative Serum β2-Microglobulin and Routine Blood Test in Patients with High-grade Glioma and Solitary Brain Metastasis. Cancer Manag Res 2020; 12:11735-11742. [PMID: 33235502 PMCID: PMC7680092 DOI: 10.2147/cmar.s268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/12/2020] [Indexed: 11/25/2022] Open
Abstract
Background High-grade glioma (HGG) and solitary brain metastasis (sBM) patients show similar symptoms in clinical practice, and accurately differential diagnosis directly affects the management and prognosis of patients. The aim of this study was to distinguish two entities by preoperative serum β2-microglobulin (β2-m) and routine blood test-associated inflammatory indexes including, white blood cell (WBC), neutrophils, lymphocytes, monocytes, and platelets count, red cell distribution width (RDW), platelet distribution width (PDW), neutrophil/lymphocyte ratio (NLR) and monocyte/lymphocyte ratio (MLR). Patients and Methods A retrospective analysis was performed in the Cancer Hospital of the University of Chinese Academy of Sciences from January 2015 to December 2019, including 127 patients of newly pathologically diagnosed with HGG and 174 patients with sBM. Clinical information including age, gender, pathological diagnosis, preoperative serum β2-m and routine blood tests were collected, and NLR and MLR were calculated. The diagnostic significance of these markers for HGG and sBM was assessed by receiver operating characteristic (ROC) curves. Results The patients with sBM had significantly higher values of preoperative age, β2-m, NLR and MLR as well as lower lymphocytes count than patients with HGG. Besides, the area under the curve (AUC) in differentiating HGG from sBM was 0.625 (95%CI: 0.561–0.689) for age, 0.655 (0.594–0.717) for β2-m, 0.634 (0.571–0.698) for NLR and 0.622 (0.559–0.686) for MLR, and the combination of Age+β2-m+NLR+MLR showed the best diagnostic performance with AUC of 0.731 (0.675–0.788) and 0.048*Age+0.001*β2-m+0.201*NLR+0.594*MLR>5.813 could indicate sBM rather than HGG. Conclusion The Age+β2-m+NLR+MLR combination was revealed as an inexpensive and noninvasive biomarker for differentiating between HGG and sBM before surgery.
Collapse
Affiliation(s)
- Liwen Li
- Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Xiaomin Bu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Bin Wu
- Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Shuyuan Zhang
- Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Kai Jin
- Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| |
Collapse
|
9
|
Promotion on NLRC5 upregulating MHC-I expression by IFN-γ in MHC-I–deficient breast cancer cells. Immunol Res 2020; 67:497-504. [DOI: 10.1007/s12026-019-09111-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
MHC Class I Molecules Exacerbate Viral Infection by Disrupting Type I Interferon Signaling. J Immunol Res 2019; 2019:5370706. [PMID: 31583257 PMCID: PMC6754968 DOI: 10.1155/2019/5370706] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/16/2019] [Indexed: 01/26/2023] Open
Abstract
MHC class I molecules are key in the presentation of antigen and initiation of adaptive CD8+ T cell responses. In addition to its classical activity, MHC I may possess nonclassical functions. We have previously identified a regulatory role of MHC I in TLR signaling and antibacterial immunity. However, its role in innate antiviral immunity remains unknown. In this study, we found a reduced viral load in MHC I-deficient macrophages that was independent of type I IFN production. Mechanically, MHC I mediated viral suppression by inhibiting the type I IFN signaling pathway, which depends on SHP2. Cross-linking MHC I at the membrane increased SHP2 activation and further suppressed STAT1 phosphorylation. Therefore, our data revealed an inhibitory role of MHC I in type I IFN response to viral infection and expanded our understanding of MHC I and antigen presentation.
Collapse
|
11
|
Sarween N, Drayson MT, Hodson J, Knox EM, Plant T, Day CJ, Lipkin GW. Humoral immunity in late-onset Pre-eclampsia and linkage with angiogenic and inflammatory markers. Am J Reprod Immunol 2018; 80:e13041. [DOI: 10.1111/aji.13041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/21/2018] [Accepted: 08/01/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Nadia Sarween
- Department of Renal Medicine; University Hospitals Birmingham NHS Foundation Trust; Birmingham UK
- Institute of Immunology and Immunotherapy; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - James Hodson
- Institute of Translational Medicine; University Hospitals Birmingham NHS Foundation Trust; Birmingham UK
| | - Ellen M. Knox
- Department of Obstetrics and Maternal Medicine; Birmingham Women's and Children's Hospital NHS Foundation Trust; Birmingham UK
| | - Timothy Plant
- Institute of Immunology and Immunotherapy; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - Clara J. Day
- Department of Renal Medicine; University Hospitals Birmingham NHS Foundation Trust; Birmingham UK
| | - Graham W. Lipkin
- Department of Renal Medicine; University Hospitals Birmingham NHS Foundation Trust; Birmingham UK
| |
Collapse
|
12
|
Lacher MD, Bauer G, Fury B, Graeve S, Fledderman EL, Petrie TD, Coleal-Bergum DP, Hackett T, Perotti NH, Kong YY, Kwok WW, Wagner JP, Wiseman CL, Williams WV. SV-BR-1-GM, a Clinically Effective GM-CSF-Secreting Breast Cancer Cell Line, Expresses an Immune Signature and Directly Activates CD4 + T Lymphocytes. Front Immunol 2018; 9:776. [PMID: 29867922 PMCID: PMC5962696 DOI: 10.3389/fimmu.2018.00776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Targeted cancer immunotherapy with irradiated, granulocyte–macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic cancer cell lines has been an effective approach to reduce tumor burden in several patients. It is generally assumed that to be effective, these cell lines need to express immunogenic antigens coexpressed in patient tumor cells, and antigen-presenting cells need to take up such antigens then present them to patient T cells. We have previously reported that, in a phase I pilot study (ClinicalTrials.gov NCT00095862), a subject with stage IV breast cancer experienced substantial regression of breast, lung, and brain lesions following inoculation with clinical formulations of SV-BR-1-GM, a GM-CSF-secreting breast tumor cell line. To identify diagnostic features permitting the prospective identification of patients likely to benefit from SV-BR-1-GM, we conducted a molecular analysis of the SV-BR-1-GM cell line and of patient-derived blood, as well as a tumor specimen. Compared to normal human breast cells, SV-BR-1-GM cells overexpress genes encoding tumor-associated antigens (TAAs) such as PRAME, a cancer/testis antigen. Curiously, despite its presumptive breast epithelial origin, the cell line expresses major histocompatibility complex (MHC) class II genes (HLA-DRA, HLA-DRB3, HLA-DMA, HLA-DMB), in addition to several other factors known to play immunostimulatory roles. These factors include MHC class I components (B2M, HLA-A, HLA-B), ADA (encoding adenosine deaminase), ADGRE5 (CD97), CD58 (LFA3), CD74 (encoding invariant chain and CLIP), CD83, CXCL8 (IL8), CXCL16, HLA-F, IL6, IL18, and KITLG. Moreover, both SV-BR-1-GM cells and the responding study subject carried an HLA-DRB3*02:02 allele, raising the question of whether SV-BR-1-GM cells can directly present endogenous antigens to T cells, thereby inducing a tumor-directed immune response. In support of this, SV-BR-1-GM cells (which also carry the HLA-DRB3*01:01 allele) treated with yellow fever virus (YFV) envelope (Env) 43–59 peptides reactivated YFV-DRB3*01:01-specific CD4+ T cells. Thus, the partial HLA allele match between SV-BR-1-GM and the clinical responder might have enabled patient T lymphocytes to directly recognize SV-BR-1-GM TAAs as presented on SV-BR-1-GM MHCs. Taken together, our findings are consistent with a potentially unique mechanism of action by which SV-BR-1-GM cells can act as APCs for previously primed CD4+ T cells.
Collapse
Affiliation(s)
| | - Gerhard Bauer
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Brian Fury
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Sanne Graeve
- BriaCell Therapeutics Corp., Berkeley, CA, United States
| | - Emily L Fledderman
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Tye D Petrie
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Dane P Coleal-Bergum
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Tia Hackett
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Nicholas H Perotti
- GMP Facility, Institute for Regenerative Cures, University of California, Davis (UCD), Sacramento, CA, United States
| | - Ying Y Kong
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | | | | | | |
Collapse
|
13
|
Li H, Chen C, Yao H, Li X, Yang N, Qiao J, Xu K, Zeng L. Identification of Suitable Reference Genes for mRNA Studies in Bone Marrow in a Mouse Model of Hematopoietic Stem Cell Transplantation. Transplant Proc 2017; 48:2826-2832. [PMID: 27788825 DOI: 10.1016/j.transproceed.2016.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/14/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bone marrow micro-environment changes during hematopoietic stem cell transplantation (HSCT) with subsequent alteration of genes expression. Quantitative polymerase chain reaction (q-PCR) is a reliable and reproducible technique for the analysis of gene expression. To obtain more accurate results, it is essential to find a reference during HSCT. However, which gene is suitable during HSCT remains unclear. This study aimed to identify suitable reference genes for mRNA studies in bone marrow after HSCT. METHODS C57BL/6 mice were treated with either total body irradiation (group T) or busulfan/cyclophosphamide (BU/CY) (group B) followed by infusion of bone marrow cells. Normal mice without treatments were served as a control. All samples (group T + group B + control) were defined as group G. On days 7, 14, and 21 after transplantation, transcription levels of 7 candidate genes, ACTB, B2M, GAPDH, HMBS, HPRT, SDHA, and YWHAZ, in bone marrow cells were measured by use of real-time quantitative PCR. The expression stability of these 7 candidate reference genes were analyzed by 2 statistical software programs, GeNorm and NormFinder. RESULTS Our results showed that ACTB displayed the highest expression in group G, with lowest expression of PSDHA in group T and HPRT in groups B and G. Analysis of expression stability by use of GeNorm or NormFinder demonstrated that expression of B2M in bone marrow were much more stable during HSCT, compared with other candidate genes including commonly used reference genes GAPDH and ACTB. CONCLUSIONS ACTB could be used as a suitable reference gene for mRNA studies in bone marrow after HSCT.
Collapse
Affiliation(s)
- H Li
- Department of Clinical Laboratory, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - C Chen
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - H Yao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - X Li
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - N Yang
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - J Qiao
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - K Xu
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| | - L Zeng
- Blood Diseases Institute, Xuzhou Medical College, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
14
|
Gupta P, Singh A, Gowda P, Ghosh S, Chatterjee A, Sen E. Lactate induced HIF-1α-PRMT1 cross talk affects MHC I expression in monocytes. Exp Cell Res 2016; 347:293-300. [DOI: 10.1016/j.yexcr.2016.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/08/2016] [Accepted: 08/07/2016] [Indexed: 11/24/2022]
|
15
|
Coppari E, Santini S, Bizzarri AR, Cannistraro S. Kinetics and binding geometries of the complex between β2-microglobulin and its antibody: An AFM and SPR study. Biophys Chem 2016; 211:19-27. [PMID: 26803406 DOI: 10.1016/j.bpc.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/30/2015] [Accepted: 01/12/2016] [Indexed: 11/18/2022]
Abstract
β2-Microglobulin (B2M) is a human protein involved in the regulation of immune response and represents a useful biomarker for several diseases. Recently, anti-B2M monoclonal antibodies have been introduced as innovative therapeutic agents. A deeper understanding of the molecular interaction between the two partners could be of utmost relevance for both designing array-based analytical devices and improving current immunotherapies. A visualization at the nanoscale performed by Atomic Force Microscopy revealed that binding of B2M to the antibody occurred according to two preferred interaction geometries. Additionally, Atomic Force Spectroscopy and Surface Plasmon Resonance provided us with detailed information on the binding kinetics and the energy landscape of the complex, both at the single molecule level and in bulk conditions. Combination of these complementary techniques contributed to highlight subtle differences in the kinetics behaviour characterizing the complexes. Collectively, the results may deserve significant interest for designing, development and optimization of novel generations of nanobiosensor platforms.
Collapse
Affiliation(s)
- Emilia Coppari
- Biophysics and Nanoscience Centre, Dipartimento DEB, Università della Tuscia, Viterbo, Italy
| | - Simona Santini
- Biophysics and Nanoscience Centre, Dipartimento DEB, Università della Tuscia, Viterbo, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, Dipartimento DEB, Università della Tuscia, Viterbo, Italy.
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, Dipartimento DEB, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
16
|
Carretero FJ, Del Campo AB, Flores-Martín JF, Mendez R, García-Lopez C, Cozar JM, Adams V, Ward S, Cabrera T, Ruiz-Cabello F, Garrido F, Aptsiauri N. Frequent HLA class I alterations in human prostate cancer: molecular mechanisms and clinical relevance. Cancer Immunol Immunother 2016; 65:47-59. [PMID: 26611618 PMCID: PMC11029306 DOI: 10.1007/s00262-015-1774-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/06/2015] [Indexed: 01/02/2023]
Abstract
Reduced expression of HLA class I is an important immune escape mechanism from cytotoxic T cells described in various types of malignancy. It often correlates with poor prognosis and resistance to therapy. However, current knowledge about the frequency, underlying molecular mechanisms, and prognostic value of HLA class I and II alterations in prostate cancer (PC) is limited. Immunohistochemical analysis demonstrated that 88 % of the 42 studied cryopreserved prostate tumors have at least one type of HLA alteration as compared to adjacent normal prostate epithelium or benign hyperplasia. Total loss of HLA-I expression found in 50 % of tumors showed an association with increased incidence of tumor relapse, perineural invasion, and high D'Amico risk. The remaining HLA-I-positive tumors demonstrated locus and allelic losses detected in 26 and 12 % of samples, respectively. Loss of heterozygosity at chromosome 6 was detected in 32 % of the studied tumors. Molecular analysis revealed a reduced expression of B2M, TAP2, tapasin and NLRC5 mRNA in microdissected HLA-I-negative tumors. Analysis of twelve previously unreported cell lines derived from neoplastic and normal epithelium of cancerous prostate revealed different types of HLA-I aberration, ranging from locus and/or allelic downregulation to a total absence of HLA-I expression. The high incidence of HLA-I loss observed in PC, caused by both regulatory and structural defects, is associated with more aggressive disease development and may pose a real threat to patient health by increasing cancer progression and resistance to T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Francisco Javier Carretero
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Ana Belen Del Campo
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
| | - Jose Francisco Flores-Martín
- UGC Urología del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Rosa Mendez
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Cesar García-Lopez
- UGC Anatomía Patológica del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Jose Manuel Cozar
- UGC Urología del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Granada, Spain
| | - Victoria Adams
- Onyvax, Ltd, St. George's Hospital, University of London, London, UK
- Cell Therapy Catapult Limited, NIHR Biomedical Research Centre, Guy's Hospital, London, UK
| | - Stephen Ward
- Onyvax, Ltd, St. George's Hospital, University of London, London, UK
- Cell Therapy Catapult Limited, NIHR Biomedical Research Centre, Guy's Hospital, London, UK
| | - Teresa Cabrera
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain
- Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico del Complejo Hospitalario Universitario de Granada, Instituto de Investigación Biosanitaria ibs. Granada, Avda Fuerzas Armadas 2, 18014, Granada, Spain.
| |
Collapse
|
17
|
Polati R, Brandi J, Dalai I, Zamò A, Cecconi D. Tissue proteomics of splenic marginal zone lymphoma. Electrophoresis 2015; 36:1612-21. [PMID: 25873066 DOI: 10.1002/elps.201400329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Splenic marginal zone lymphoma (SMZL) is a rare chronic B lymphoproliferative disease, whose molecular pathogenesis has still not been well established. For the first time, a proteomic approach was undertaken to analyse the protein profiles of SMZL tissue. 1D and 2D Western blot, immunohistochemical analysis, and functional data mining were also performed in order to validate results, investigate protein species specific regulation, classify proteins, and explore their potential relationships. We demonstrated that SMZL is characterized by modulation of protein species related to energetic metabolism and apoptosis pathways. We also reported specific protein species (such as biliverdin reductase A, manganese superoxide dismutase, beta-2 microglobulin, growth factor receptor-bound protein 2, acidic leucine-rich nuclear phosphoprotein 32 family member A, and Set nuclear oncogene) directly involved in NF-kB and BCR pathways, as well as in chromatin remodelling and cytoskeleton. Our findings shed new light on SMZL pathogenesis and provide a basis for the future development of novel biomarkers. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD001124.
Collapse
Affiliation(s)
- Rita Polati
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Jessica Brandi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Irene Dalai
- Department of Pathology and Diagnostics, Pathological Anatomy, University of Verona, Verona, Italy
| | - Alberto Zamò
- Department of Pathology and Diagnostics, Pathological Anatomy, University of Verona, Verona, Italy
| | - Daniela Cecconi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Sun J, Yang ZL, Miao X, Zou Q, Li J, Liang L, Zeng G, Chen S. ATP5b and β2-microglobulin are predictive markers for the prognosis of patients with gallbladder cancer. J Mol Histol 2014; 46:57-65. [PMID: 25311765 DOI: 10.1007/s10735-014-9597-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/30/2014] [Indexed: 02/06/2023]
Abstract
The differences in clinical, pathological, and biological characteristics between adenocarcinoma (AC) and squamous cell/adenosquamous carcinoma (SC/ASC) of the gallbladder have not been well documented. This study investigates the clinical and pathological associations of ATP5B and β2M with benign and malignant lesions of the gallbladder. In this study, ATP5B and β2M expression in 46 SC/ASCs and 80 ACs were examined using immunohistochemistry. The rate of ATP5B positive expression was significantly lower, while the rate of β2M expression was significantly higher, in AC and SC/ASC than in gallbladder adenomas, gallbladder polyps, or gallbladder epithelium with stone (P < 0.01). More SC/ASCs had larger tumor mass and good differentiation compared to ACs. Positive β2M and negative ATP5B expression were significantly associated with large tumor size, high TNM stage, lymph node metastasis, and invasion of SC/ASCs and ACs. Univariate Kaplan-Meier analysis showed that positive β2M (P < 0.05 or P < 0.001) expression and negative ATP5B (P < 0.001) expression were significantly associated with decreased overall survival in both SC/ASC and AC patients. Multivariate Cox regression analysis showed that negative ATP5B expression is an independent-prognostic factor for poor prognosis in both SC/ASC (P < 0.01) and AC (P < 0.001) patients. Positive β2M expression is an independent-prognostic factor for poor prognosis in AC (P < 0.05) patients. Our study suggested that positive β2M expression or loss of ATP5B expression in tumor tissues is closely related to the metastasis, invasion, and poor-prognosis of gallbladder cancer.
Collapse
Affiliation(s)
- Jianning Sun
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nomura T, Huang WC, Zhau HE, Josson S, Mimata H, Chung LWK. β2-Microglobulin-mediated signaling as a target for cancer therapy. Anticancer Agents Med Chem 2014; 14:343-52. [PMID: 23848204 PMCID: PMC3931390 DOI: 10.2174/18715206113139990092] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/22/2012] [Accepted: 05/19/2013] [Indexed: 01/02/2023]
Abstract
β2-microglobulin (β2-m) has become the focus of intense scrutiny since the discovery of its undesirable roles promoting
osteomimicry and cancer progression. β2-m is a well-known housekeeping protein that forms complexes with the heavy chain of major
histocompatibility complex class I molecules, which are heterodimeric cell surface proteins that present antigenic peptides to cytotoxic T
cells. On recognition of foreign peptide antigens on cell surfaces, T cells actively bind and lyse antigen-presenting cancer cells. In
addition to its roles in tumor immunity, β2-m has two different functions in cancer cells, either tumor promoting or tumor suppressing, in
cancer cell context-dependent manner. Our studies have demonstrated that β2-m is involved extensively in the functional regulation of
growth, survival, apoptosis, and even metastasis of cancer cells. We found that β2-m is a soluble growth factor and a pleiotropic signaling
molecule which interacts with its receptor, hemochromatosis protein, to modulate epithelial-to-mesenchymal transition (EMT) through
iron-responsive pathways. Specific antibodies against β2-m have remarkable tumoricidal activity in cancer, through β2-m action on iron
flux, alterations of intracellular reactive oxygen species, DNA damage and repair enzyme activities, β-catenin activation and cadherin
switching, and tumor responsiveness to hypoxia. These novel functions of β2-m and β2-m signaling may be common to several solid
tumors including human lung, breast, renal, and prostate cancers. Our experimental results could lead to the development of a novel class
of antibody-based pharmaceutical agents for cancer growth control. In this review, we briefly summarize the recent data regarding β2-m
as a promising new cancer therapeutic target and discuss antagonizing this therapeutic target with antibody therapy for the treatment of
localized and disseminated cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Leland W K Chung
- Department of Urology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan.
| |
Collapse
|
20
|
Pokrass MJ, Liu MF, Lindorfer MA, Taylor RP. Activation of complement by monoclonal antibodies that target cell-associated β₂-microglobulin: implications for cancer immunotherapy. Mol Immunol 2013; 56:549-60. [PMID: 23911412 DOI: 10.1016/j.molimm.2013.05.242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 01/14/2023]
Abstract
β₂-Microglobulin (β2M), the light chain of the class I major histocompatibilty complex (MHC-I), is a promising tumor target for monoclonal antibodies (mAbs) in cancer immunotherapy. Several reports indicate that chelation of cell-associated β2M by specific mouse mAbs promotes tumor cell destruction by inducing apoptosis or other cytotoxic signaling pathways. Human mAbs employed in cancer therapy are usually IgG1, which mediates cell-killing by effector mechanisms including complement dependent cytotoxicity (CDC). The analogous mouse IgG2a and IgG2b isotypes are similarly effective in activating complement. Therefore, we examined the complement-activating properties of anti-β2M mouse mAbs 1B749 (IgG2a) and HB28 (IgG2b) when either mAb was bound to tumor cell lines or normal cells; we compared these β2M-specific mAbs with mouse mAb W6/32 (IgG2a), specific for human leukocyte antigens in the MHC-I heavy chain. All three mAbs bind to most human cell lines and normal cells in approximately equal amounts, consistent with a 1:1 stoichiometry for the HLA heavy chain in association with β2M. The three mAbs promote rapid C3b deposition and substantial CDC of human cell lines, and mAbs 1B749 and W6/32 have robust cytotoxic activity on reaction with normal mononuclear cells and platelets. Curiously, mAb HB28 induces modest C3b deposition and little CDC of normal cells, and its weaker complement-fixing activity was confirmed by ELISA. Based on these findings, we suggest that human IgG mAbs that target β2M for cancer immunotherapy be selected or engineered so as not to activate complement, thus eliminating the potential adverse effects of complement-mediated lysis of normal cells.
Collapse
Affiliation(s)
- Michael J Pokrass
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE Serum β-2 microglobulin (B2M) level predicts mortality in chronic kidney disease. Glycation of B2M is cytotoxic and may contribute to the risk of mortality in diabetic patients. Our objective was to evaluate the relationship between B2M and mortality in diabetic patients. METHODS In this prospective study, 896 participants of the Third National Health and Nutrition Examination Survey with diabetes were included in the analysis. Serum B2M level was used in multivariate Cox regression analysis to predict all-cause and diabetes-related mortality. RESULTS During a median follow-up of 11.8 years (range 0.1-18.2 years) and 9220.5 person/years, 541 (42.4%) and 207 (16.8%) participants died from all causes and diabetes-related causes respectively. One natural-log unit of B2M was significantly associated with all-cause (hazard ratio (HR)=6.53, 95% CI 2.07-20.6) and diabetes mortality (HR=7.35, 95% CI 1.01-53.38) after multivariable adjustment. Similar results were obtained when B2M was analyzed as tertiles or in the threshold model (T1+T2 vs. T3). Examination of regression splines suggests a linear increase in hazard for mortality with increasing B2M levels. CONCLUSIONS Serum B2M level is a novel predictor of all-cause and diabetes-related mortality in people with diabetes regardless of renal function.
Collapse
Affiliation(s)
- Ching-Lung Cheung
- Division of Clinical Pharmacology and Therapeutics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
22
|
Tumor necrosis factor α-induced hypoxia-inducible factor 1α-β-catenin axis regulates major histocompatibility complex class I gene activation through chromatin remodeling. Mol Cell Biol 2013; 33:2718-31. [PMID: 23671189 DOI: 10.1128/mcb.01254-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) plays a crucial role in the progression of glioblastoma multiforme tumors, which are characterized by their effective immune escape mechanisms. As major histocompatibility complex class I (MHC-I) is involved in glioma immune evasion and since HIF-1α is a pivotal link between inflammation and glioma progression, the role of tumor necrosis factor alpha (TNF-α)-induced inflammation in MHC-I gene regulation was investigated. A TNF-α-induced increase in MHC-I expression and transcriptional activation was concurrent with increased HIF-1α, ΝF-κΒ, and β-catenin activities. While knockdown of HIF-1α and β-catenin abrogated TNF-α-induced MHC-I activation, NF-κB had no effect. β-Catenin inhibition abrogated HIF-1α activation and vice versa, and this HIF-1α-β-catenin axis positively regulated CREB phosphorylation. Increased CREB activation was accompanied by its increased association with β-catenin and CBP. Chromatin immunoprecipitation revealed increased CREB enrichment at CRE/site α on the MHC-I promoter in a β-catenin-dependent manner. β-Catenin replaced human Brahma (hBrm) with Brg1 as the binding partner for CREB at the CRE site. The hBrm-to-Brg1 switch is crucial for MHC-I regulation, as ATPase-deficient Brg1 abolished TNF-α-induced MHC-I expression. β-Catenin also increased the association of MHC-I enhanceosome components RFX5 and NF-YB at the SXY module. CREB acts as a platform for assembling coactivators and chromatin remodelers required for MHC-I activation in a HIF-1α/β-catenin-dependent manner.
Collapse
|
23
|
Ikegame A, Ozaki S, Tsuji D, Harada T, Fujii S, Nakamura S, Miki H, Nakano A, Kagawa K, Takeuchi K, Abe M, Watanabe K, Hiasa M, Kimura N, Kikuchi Y, Sakamoto A, Habu K, Endo M, Itoh K, Yamada-Okabe H, Matsumoto T. Small molecule antibody targeting HLA class I inhibits myeloma cancer stem cells by repressing pluripotency-associated transcription factors. Leukemia 2012; 26:2124-34. [PMID: 22430632 DOI: 10.1038/leu.2012.78] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/16/2012] [Accepted: 02/28/2012] [Indexed: 02/01/2023]
Abstract
Cancer stem cells have been proposed to be responsible for tumorigenesis and recurrence in various neoplastic diseases, including multiple myeloma (MM). We have previously reported that MM cells specifically express HLA class I at high levels and that single-chain Fv diabody against this molecule markedly induces MM cell death. Here we investigated the effect of a new diabody (C3B3) on cancer stem cell-like side population (SP) cells. SP fraction of MM cells highly expressed ABCG2 and exhibited resistance to chemotherapeutic agents; however, C3B3 induced cytotoxicity in both SP cells and main population (MP) cells to a similar extent. Moreover, C3B3 suppressed colony formation and tumorigenesis of SP cells in vitro and in vivo. Crosslinking of HLA class I by C3B3 mediated disruption of lipid rafts and actin aggregation, which led to inhibition of gene expression of β-catenin and pluripotency-associated transcription factors such as Sox2, Oct3/4 and Nanog. Conversely, knockdown of Sox2 and Oct3/4 mRNA reduced the proportion of SP cells, suggesting that these factors are essential in maintenance of SP fraction in MM cells. Thus, our findings reveal that immunotherapeutic approach by engineered antibodies can overcome drug resistance, and provide a new basis for development of cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- A Ikegame
- Department of Medicine and Bioregulatory Sciences, University of Tokushima Graduate School of Medical Sciences, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Many immunotherapeutic agents in phase II cancer studies have given optimistic results, which were not confirmed in larger randomized studies. Here we explore the evidence that, contrary to previous opinion, many chemotherapeutic agents and other classes of drugs may enhance the response to therapeutic vaccines by reducing inflammation and/or by inhibiting regulatory T lymphocytes or myeloid-derived suppressor cells. In addition, some of these agents, such as the immunomodulatory drugs, may produce marked costimulatory activities as in the case of lenalidomide, which also has marked anti-inflammatory properties. With the first approval for a vaccine-based therapy for prostate cancer, we propose that many more vaccines will be able to achieve approval, especially when combined with the optimal chemotherapy and/or immunomodulatory drug schedule.
Collapse
Affiliation(s)
- Wai M Liu
- Department of Oncology, Division of Clinical Sciences, St George's, University of London, London, UK
| | | |
Collapse
|
25
|
Ortner D, Grabher D, Hermann M, Kremmer E, Hofer S, Heufler C. The adaptor protein Bam32 in human dendritic cells participates in the regulation of MHC class I-induced CD8+ T cell activation. THE JOURNAL OF IMMUNOLOGY 2011; 187:3972-8. [PMID: 21930970 DOI: 10.4049/jimmunol.1003072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is strongly induced during the maturation of dendritic cells (DC). Most known functions of Bam32 are related to the signaling of the B cell receptor for Ag. Because DC do not express receptors specific for Ags, we aim at characterizing the role of Bam32 in human monocyte-derived DC in this study. Our results show that binding of allogeneic T cells to mature DC causes accumulation of Bam32 on the contact sites and that this translocation is mimicked by Ab-mediated engagement of MHC class I. Silencing of Bam32 in mature monocyte-derived DC results in an enhanced proliferation of CD8(+) T cells in an Ag-specific T cell proliferation assay. Further studies identify galectin-1 as an intracellular binding partner of Bam32. Regulating immune responses via regulatory T cell (Treg) modulation is one of the many immunological activities attributed to galectin-1. Therefore, we assayed mixed leukocyte reactions for Treg expansion and found fewer Treg in reactions stimulated with DC silenced for Bam32 compared to reactions stimulated with DC treated with a nontarget control. Based on our findings, we propose a role for Bam32 in the signaling of MHC class I molecules in professional Ag-presenting DC for the regulation of CD8(+) T cell activation. It is distinct from that of MHC class I recognized by CD8(+) T cells leading to target [corrected] cell death. Thus, our data pinpoint a novel level of T cell regulation that may be of biological relevance.
Collapse
Affiliation(s)
- Daniela Ortner
- Department of Dermatology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
26
|
Liu WM, Fowler DW, Gravett AM, Smith P, Dalgleish AG. Supernatants from lymphocytes stimulated with Bacillus Calmette-Guerin can modify the antigenicity of tumours and stimulate allogeneic T-cell responses. Br J Cancer 2011; 105:687-93. [PMID: 21829193 PMCID: PMC3188926 DOI: 10.1038/bjc.2011.306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Reduced expression of class 1 human leucocyte antigens (HLA1) is often a mechanism by which tumours evade surveillance by the host immune system. This is often associated with an immune function that is unable to mount appropriate responses against disease, which can result in a state that favours carcinogenesis. METHODS In the current study, we have explored the effects of Bacillus Calmette-Guerin (BCG) on the cytokine output of leucocytes, which is a key determinant in generating antitumour action, and have also assessed the effect of these cytokine cocktails on HLA1 expression in solid tumour cell lines. RESULTS BCG potently activated a broad range of leucocytes, and also enhanced the production of cytokines that were Th(1)-predominant. Supernatants from BCG-treated leucocytes significantly increased the expression of HLA1 on the surface of cancer cell lines, which correlated with increased cytolytic T-cell activity. We also showed that the increased HLA1 expression was associated with activation of intracellular signalling pathways, which was triggered by the increases in the Th(1)-cytokines interferon-γ and tumour necrosis factor-α, as counteracting their effects negated the enhancement. CONCLUSION These studies reaffirm the role of BCG as a putative immunotherapy through their cytokine-modifying effects on leucocytes and their capacity to enhance tumour visibility.
Collapse
Affiliation(s)
- W M Liu
- Department of Oncology, Division of Clinical Sciences, St George's, University of London, 2nd floor, Jenner Wing, London SW17 0RE, UK.
| | | | | | | | | |
Collapse
|
27
|
Verma B, Jain R, Caseltine S, Rennels A, Bhattacharya R, Markiewski MM, Rawat A, Neethling F, Bickel U, Weidanz JA. TCR Mimic Monoclonal Antibodies Induce Apoptosis of Tumor Cells via Immune Effector-Independent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2011; 186:3265-76. [DOI: 10.4049/jimmunol.1002376] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|