1
|
Engels MML, Berger CK, Mahoney DW, Hoogenboom SA, Sarwal D, Klatte DCF, De La Fuente J, Gandhi S, Taylor WR, Foote PH, Doering KA, Delgado AM, Burger KN, Abu Dayyeh BK, Bofill-Garcia A, Brahmbhatt B, Chandrasekhara V, Gleeson FC, Gomez V, Kumbhari V, Law RJ, Lukens FJ, Raimondo M, Rajan E, Storm AC, Vargas Valls EJ, van Hooft JE, Wallace MB, Kisiel JB, Majumder S. Multimodal Pancreatic Cancer Detection Using Methylated DNA Biomarkers in Pancreatic Juice and Plasma CA 19-9: A Prospective Multicenter Study. Clin Gastroenterol Hepatol 2025; 23:766-775. [PMID: 39477082 PMCID: PMC11930620 DOI: 10.1016/j.cgh.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND AND AIMS In previous studies, methylated DNA markers (MDMs) have been identified in pancreatic juice (PJ) for detecting pancreatic ductal adenocarcinoma (PDAC). In this prospective multicenter study, the sensitivity and specificity characteristics of this panel of PJ-MDMs was evaluated standalone and in combination with plasma carbohydrate antigen 19-9 (CA 19-9). METHODS Paired PJ and plasma were assayed from 88 biopsy-proven treatment-naïve PDAC cases and 134 controls (53 with normal pancreas, 23 with chronic pancreatitis [CP], 58 with intraductal papillary mucinous neoplasm). Bisulfite-converted DNA from buffered PJ was analyzed using long-probe quantitative amplified signal assay targeting 14 MDMs (NDRG4, BMP3, TBX15, C13orf18, PRKCB, CLEC11A, CD1D, ELMO1, IGF2BP1, RYR2, ADCY1, FER1L4, EMX1, and LRRC4) and a reference gene (methylated B3GALT6). Logistic regression was used to fit the previously identified 3-MDM PJ panel (FER1L4, C13orf18, and BMP3). Discrimination accuracy was summarized using area under the receiver-operating characteristic curve (AUROC) with corresponding 95% confidence interval (CI). RESULTS Methylated FER1L4 had the highest individual AUROC of 0.83 (95% CI, 0.78-0.89). The AUROC for the 3-MDM PJ + plasma CA 19-9 model (0.95; 95% CI, 0.92-0.98) was higher than both the 3-MDM PJ panel (0.87; 95% CI, 0.82-0.92)) and plasma CA 19-9 alone (0.91; 95% CI, 0.87-0.96) (P = .0002 and .0135, respectively). At a specificity of 88% (95% CI, 81%-93%), the sensitivity of this model was 89% (95% CI, 80%-94%) for all PDAC stages and 83% (95% CI, 64%-94%) for stage I/II PDAC. CONCLUSIONS A panel combining PJ-MDMs and plasma CA 19-9 discriminates PDAC from both healthy and disease control groups with high accuracy. This provides support for combining PJ and blood-based biomarkers for enhancing diagnostic sensitivity and successful early PDAC detection.
Collapse
Affiliation(s)
- Megan M L Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; Division of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Calise K Berger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Douglas W Mahoney
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - Sanne A Hoogenboom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; Division of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dhruv Sarwal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Derk C F Klatte
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; Division of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jaime De La Fuente
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sonal Gandhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick H Foote
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Karen A Doering
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Adriana M Delgado
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kelli N Burger
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota
| | - Barham K Abu Dayyeh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Bhaumik Brahmbhatt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | | | - Ferga C Gleeson
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Victoria Gomez
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Vivek Kumbhari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Ryan J Law
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Frank J Lukens
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Massimo Raimondo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Elizabeth Rajan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Andrew C Storm
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Eric J Vargas Valls
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jeanin E van Hooft
- Division of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida; Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
2
|
Cooley MA, Schneider AR, Fritcher EGB, Milosevic D, Levy MJ, Bridgeman AR, Martin JA, Petersen BT, Dayyeh BKA, Storm AC, Law RJ, Vargas EJ, Garimella V, Zemla T, Jenkins SM, Yin J, Gores GJ, Roberts LR, Kipp BR, Chandrasekhara V. Utility of methylated DNA markers for the diagnosis of malignant biliary strictures. Hepatology 2025; 81:453-464. [PMID: 38905442 PMCID: PMC11827039 DOI: 10.1097/hep.0000000000000970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND AND AIMS Early identification of malignant biliary strictures (MBSs) is challenging, with up to 20% classified as indeterminants after preliminary testing and tissue sampling with endoscopic retrograde cholangiopancreatography. We aimed to evaluate the use of methylated DNA markers (MDMs) from biliary brushings to enhance MBS detection in a prospective cohort. APPROACH Candidate MDMs were evaluated for their utility in MBS diagnosis through a series of discovery and validation phases. DNA was extracted from biliary brushing samples, quantified, bisulfite-converted, and then subjected to methylation-specific droplet digital polymerase chain reaction. Patients were considered to have no malignancy if the sampling was negative and there was no evidence of malignancy after 1 year or definitive negative surgical histopathology. RESULTS Fourteen candidate MDMs were evaluated in the discovery phase, with top-performing and new markers evaluated in the technical validation phase. The top 4 MDMs were TWIST1, HOXA1, VSTM2B, and CLEC11A, which individually achieved AUC values of 0.82, 0.81, 0.83, and 0.78, respectively, with sensitivities of 59.4%, 53.1%, 62.5%, and 50.0%, respectively, at high specificities for malignancy of 95.2%-95.3% for the final biologic validation phase. When combined as a panel, the AUC was 0.86, achieving 73.4% sensitivity and 92.9% specificity, which outperformed cytology and fluorescence in situ hybridization (FISH). CONCLUSIONS The selected MDMs demonstrated improved performance characteristics for the detection of MBS compared to cytology and FISH. Therefore, MDMs should be considered viable candidates for inclusion in diagnostic testing algorithms.
Collapse
Affiliation(s)
- Matthew A. Cooley
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Amber R. Schneider
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Dragana Milosevic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Levy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Amber R. Bridgeman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - John A. Martin
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Bret T. Petersen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Andrew C. Storm
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Ryan J. Law
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Eric J. Vargas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vishal Garimella
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tyler Zemla
- Health Science Research Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Sarah M. Jenkins
- Health Science Research Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Jun Yin
- Health Science Research Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Benjamin R. Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
3
|
Ma D, Liu S, Liu K, Kong L, Xiao L, Xin Q, Jiang C, Wu J. MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells by binding ITGB4/LAMB3 to activate the AKT signaling pathway. Cancer Biol Ther 2024; 25:2314324. [PMID: 38375821 PMCID: PMC10880501 DOI: 10.1080/15384047.2024.2314324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers. Single-cell RNA sequencing (scRNA-seq) and protein-protein interactions (PPIs) have enabled the systematic study of CRC. In our research, the activation of the AKT pathway in CRC was analyzed by KEGG using single-cell sequencing data from the GSE144735 dataset. The correlation and PPIs of MDFI and ITGB4/LAMB3 were examined. The results were verified in the TCGA and CCLE and further tested by coimmunoprecipitation experiments. The effect of MDFI on the AKT pathway via ITGB4/LAMB3 was validated by knockdown and lentiviral overexpression experiments. The effect of MDFI on oxaliplatin/fluorouracil sensitivity was probed by colony formation assay and CCK8 assay. We discovered that MDFI was positively associated with ITGB4/LAMB3. In addition, MDFI was negatively associated with oxaliplatin/fluorouracil sensitivity. MDFI upregulated the AKT pathway by directly interacting with LAMB3 and ITGB4 in CRC cells, and enhanced the proliferation of CRC cells via the AKT pathway. Finally, MDFI reduced the sensitivity of CRC cells to oxaliplatin and fluorouracil. In conclusion, MDFI promotes the proliferation and tolerance to chemotherapy of colorectal cancer cells, partially through the activation of the AKT signaling pathway by the binding to ITGB4/LAMB3. Our findings provide a possible molecular target for CRC therapy.
Collapse
Affiliation(s)
- Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Jinan City, Shandong Province, China
| |
Collapse
|
4
|
Pancreatic Cancer in Chronic Pancreatitis: Pathogenesis and Diagnostic Approach. Cancers (Basel) 2023; 15:cancers15030761. [PMID: 36765725 PMCID: PMC9913572 DOI: 10.3390/cancers15030761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic pancreatitis is one of the main risk factors for pancreatic cancer, but it is a rare event. Inflammation and oncogenes work hand in hand as key promoters of this disease. Tobacco is another co-factor. During alcoholic chronic pancreatitis, the cumulative risk of cancer is estimated at 4% after 15 to 20 years. This cumulative risk is higher in hereditary pancreatitis: 19 and 12% in the case of PRSS1 and SPINK1 mutations, respectively, at an age of 60 years. The diagnosis is difficult due to: (i) clinical symptoms of cancer shared with those of chronic pancreatitis; (ii) the parenchymal and ductal remodeling of chronic pancreatitis rendering imaging analysis difficult; and (iii) differential diagnoses, such as pseudo-tumorous chronic pancreatitis and paraduodenal pancreatitis. Nevertheless, the occurrence of cancer during chronic pancreatitis must be suspected in the case of back pain, weight loss, unbalanced diabetes, and jaundice, despite alcohol withdrawal. Imaging must be systematically reviewed. Endoscopic ultrasound-guided fine-needle biopsy can contribute by targeting suspicious tissue areas with the help of molecular biology (search for KRAS, TP53, CDKN2A, DPC4 mutations). Short-term follow-up of patients is necessary at the clinical and paraclinical levels to try to diagnose cancer at a surgically curable stage. Pancreatic surgery is sometimes necessary if there is any doubt.
Collapse
|
5
|
Mazer BL, Lee JW, Roberts NJ, Chu LC, Lennon AM, Klein AP, Eshleman JR, Fishman EK, Canto MI, Goggins MG, Hruban RH. Screening for pancreatic cancer has the potential to save lives, but is it practical? Expert Rev Gastroenterol Hepatol 2023; 17:555-574. [PMID: 37212770 PMCID: PMC10424088 DOI: 10.1080/17474124.2023.2217354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Most patients with pancreatic cancer present with advanced stage, incurable disease. However, patients with high-grade precancerous lesions and many patients with low-stage disease can be cured with surgery, suggesting that early detection has the potential to improve survival. While serum CA19.9 has been a long-standing biomarker used for pancreatic cancer disease monitoring, its low sensitivity and poor specificity have driven investigators to hunt for better diagnostic markers. AREAS COVERED This review will cover recent advances in genetics, proteomics, imaging, and artificial intelligence, which offer opportunities for the early detection of curable pancreatic neoplasms. EXPERT OPINION From exosomes, to circulating tumor DNA, to subtle changes on imaging, we know much more now about the biology and clinical manifestations of early pancreatic neoplasia than we did just five years ago. The overriding challenge, however, remains the development of a practical approach to screen for a relatively rare, but deadly, disease that is often treated with complex surgery. It is our hope that future advances will bring us closer to an effective and financially sound approach for the early detection of pancreatic cancer and its precursors.
Collapse
Affiliation(s)
- Benjamin L. Mazer
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jae W. Lee
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nicholas J. Roberts
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda C. Chu
- Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Marie Lennon
- Department of Medicine, Division of Gastroenterology and Hepatology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P. Klein
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R. Eshleman
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elliot K. Fishman
- Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcia Irene Canto
- Department of Medicine, Division of Gastroenterology and Hepatology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G. Goggins
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H. Hruban
- The Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Elrakaybi A, Ruess DA, Lübbert M, Quante M, Becker H. Epigenetics in Pancreatic Ductal Adenocarcinoma: Impact on Biology and Utilization in Diagnostics and Treatment. Cancers (Basel) 2022; 14:cancers14235926. [PMID: 36497404 PMCID: PMC9738647 DOI: 10.3390/cancers14235926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies with high potential of metastases and therapeutic resistance. Although genetic mutations drive PDAC initiation, they alone do not explain its aggressive nature. Epigenetic mechanisms, including aberrant DNA methylation and histone modifications, significantly contribute to inter- and intratumoral heterogeneity, disease progression and metastasis. Thus, increased understanding of the epigenetic landscape in PDAC could offer new potential biomarkers and tailored therapeutic approaches. In this review, we shed light on the role of epigenetic modifications in PDAC biology and on the potential clinical applications of epigenetic biomarkers in liquid biopsy. In addition, we provide an overview of clinical trials assessing epigenetically targeted treatments alone or in combination with other anticancer therapies to improve outcomes of patients with PDAC.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Clinical Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Dietrich A. Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Michael Quante
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Department of Gastroenterology and Hepatology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Heiko Becker
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-270-36000
| |
Collapse
|
7
|
Labiner AJ, Aronson A, Lucas AL. Screening and Surveillance for Pancreatic Adenocarcinoma in High-Risk Individuals. Hematol Oncol Clin North Am 2022; 36:929-942. [DOI: 10.1016/j.hoc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Tivey A, Church M, Rothwell D, Dive C, Cook N. Circulating tumour DNA - looking beyond the blood. Nat Rev Clin Oncol 2022; 19:600-612. [PMID: 35915225 PMCID: PMC9341152 DOI: 10.1038/s41571-022-00660-y] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 02/06/2023]
Abstract
Over the past decade, various liquid biopsy techniques have emerged as viable alternatives to the analysis of traditional tissue biopsy samples. Such surrogate 'biopsies' offer numerous advantages, including the relative ease of obtaining serial samples and overcoming the issues of interpreting one or more small tissue samples that might not reflect the entire tumour burden. To date, the majority of research in the area of liquid biopsies has focused on blood-based biomarkers, predominantly using plasma-derived circulating tumour DNA (ctDNA). However, ctDNA can also be obtained from various non-blood sources and these might offer unique advantages over plasma ctDNA. In this Review, we discuss advances in the analysis of ctDNA from non-blood sources, focusing on urine, cerebrospinal fluid, and pleural or peritoneal fluid, but also consider other sources of ctDNA. We discuss how these alternative sources can have a distinct yet complementary role to that of blood ctDNA analysis and consider various technical aspects of non-blood ctDNA assay development. We also reflect on the settings in which non-blood ctDNA can offer distinct advantages over plasma ctDNA and explore some of the challenges associated with translating these alternative assays from academia into clinical use.
Collapse
Affiliation(s)
- Ann Tivey
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Matt Church
- The Christie NHS Foundation Trust, Manchester, UK
| | - Dominic Rothwell
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Caroline Dive
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Manchester, UK
| | - Natalie Cook
- Division of Cancer Sciences, The University of Manchester, Manchester, UK.
- The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
9
|
Sammallahti H, Sarhadi VK, Kokkola A, Ghanbari R, Rezasoltani S, Asadzadeh Aghdaei H, Puolakkainen P, Knuutila S. Oncogenomic Changes in Pancreatic Cancer and Their Detection in Stool. Biomolecules 2022; 12:652. [PMID: 35625579 PMCID: PMC9171580 DOI: 10.3390/biom12050652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with a dismal prognosis. To improve patient survival, the development of screening methods for early diagnosis is pivotal. Oncogenomic alterations present in tumor tissue are a suitable target for non-invasive screening efforts, as they can be detected in tumor-derived cells, cell-free nucleic acids, and extracellular vesicles, which are present in several body fluids. Since stool is an easily accessible source, which enables convenient and cost-effective sampling, it could be utilized for the screening of these traces. Herein, we explore the various oncogenomic changes that have been detected in PC tissue, such as chromosomal aberrations, mutations in driver genes, epigenetic alterations, and differentially expressed non-coding RNA. In addition, we briefly look into the role of altered gut microbiota in PC and their possible associations with oncogenomic changes. We also review the findings of genomic alterations in stool of PC patients, and the potentials and challenges of their future use for the development of stool screening tools, including the possible combination of genomic and microbiota markers.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Arto Kokkola
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Reza Ghanbari
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1411713135, Iran;
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran P.O. Box 1985717411, Iran;
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; (A.K.); (P.P.)
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
10
|
Vimentin: Regulation and pathogenesis. Biochimie 2022; 197:96-112. [DOI: 10.1016/j.biochi.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
|
11
|
Chiba K, Hata T, Mizuma M, Masuda K, Aoki S, Takadate T, Kawaguchi K, Nakagawa K, Morikawa T, Motoi F, Furukawa T, Unno M. Impact of Tumor-Derived DNA Testing in Peritoneal Lavage of Pancreatic Cancer Patients with and Without Occult Intra-Abdominal Metastases. Ann Surg Oncol 2021; 29:2685-2697. [PMID: 34739641 DOI: 10.1245/s10434-021-10997-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The fractional abundance of tumor-derived DNA in body fluids depends on the metastatic sites and the degree of expansion. We aimed to assess the clinical significance of tumor-derived DNA testing in the peritoneal lavage of patients with pancreatic cancer. METHODS The prevalence and abundance of tumor-derived DNA was assessed in 204 subjects with ascites by peritoneal lavage (AS) and the evaluable paired plasma (PL) from 149 pancreatic cancer patients undergoing abdominal exploration. Genetic profiles were evaluated by next-generation sequencing, and prognostic impact was assessed using Cox proportional hazard models. RESULTS Of 204 subjects, AS samples from patients with peritoneal dissemination (PER+) and positive cytology (CY+) showed significantly higher prevalence and abundance of tumor-derived DNA than those with negative counterparts. Tumor-derived DNA prevalence and abundance in AS were more likely to be higher than in paired PL in a subgroup of patients with PER+ and CY+, respectively. Next-generation sequencing revealed concordant or discrepant mutational patterns between the AS and PL samples. Multivariate analysis showed that both tumor-derived DNA in AS (hazard ratio [HR] 3.940, p = 0.009) and PL (HR 2.936, p = 0.026) were independently associated with poor survival in treatment-naïve patients. In patients who underwent resection, tumor-derived DNA positivity in the AS was more predictive of early recurrence than in PL. CONCLUSIONS Tumor-derived DNA in AS can serve as characterizing the genetic profiles of tumor cells attributable to the development of PER+ and predicting the minimal residual disease and early recurrence in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Kazuharu Chiba
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuo Hata
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kunihiro Masuda
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichi Aoki
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuyuki Takadate
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Kawaguchi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Morikawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fuyuhiko Motoi
- Department of Surgery I, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Xiao W, Zhou Q, Wen X, Wang R, Liu R, Wang T, Shi J, Hu Y, Hou J. Small-Molecule Inhibitors Overcome Epigenetic Reprogramming for Cancer Therapy. Front Pharmacol 2021; 12:702360. [PMID: 34603017 PMCID: PMC8484527 DOI: 10.3389/fphar.2021.702360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer treatment is a significant challenge for the global health system, although various pharmacological and therapeutic discoveries have been made. It has been widely established that cancer is associated with epigenetic modification, which is reversible and becomes an attractive target for drug development. Adding chemical groups to the DNA backbone and modifying histone proteins impart distinct characteristics on chromatin architecture. This process is mediated by various enzymes modifying chromatin structures to achieve the diversity of epigenetic space and the intricacy in gene expression files. After decades of effort, epigenetic modification has represented the hallmarks of different cancer types, and the enzymes involved in this process have provided novel targets for antitumor therapy development. Epigenetic drugs show significant effects on both preclinical and clinical studies in which the target development and research offer a promising direction for cancer therapy. Here, we summarize the different types of epigenetic enzymes which target corresponding protein domains, emphasize DNA methylation, histone modifications, and microRNA-mediated cooperation with epigenetic modification, and highlight recent achievements in developing targets for epigenetic inhibitor therapy. This article reviews current anticancer small-molecule inhibitors targeting epigenetic modified enzymes and displays their performances in different stages of clinical trials. Future studies are further needed to address their off-target effects and cytotoxicity to improve their clinical translation.
Collapse
Affiliation(s)
- Wenjing Xiao
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, China
| | - Rui Wang
- Information Department of Medical Security Center, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Ruijie Liu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Tingting Wang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghe Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Jun Hou
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| |
Collapse
|
13
|
Ying L, Sharma A, Chhoda A, Ruzgar N, Hasan N, Kwak R, Wolfgang CL, Wang TH, Kunstman JW, Salem RR, Wood LD, Iacobuzio-Donahue C, Schneider EB, Farrell JJ, Ahuja N. Methylation-based Cell-free DNA Signature for Early Detection of Pancreatic Cancer. Pancreas 2021; 50:1267-1273. [PMID: 34860810 DOI: 10.1097/mpa.0000000000001919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The potential of DNA methylation alterations in early pancreatic cancer (PC) detection among pancreatic tissue cell-free DNA seems promising. This study investigates the diagnostic capacity of the 4-gene methylation biomarker panel, which included ADAMTS1, BNC1, LRFN5, and PXDN genes, in a case-control study. METHODS A genome-wide pharmacoepigenetic approach identified ADAMTS1, BNC1, LRFN5, and PXDN genes as putative targets. Tissue samples including stage I-IV PC (n = 44), pancreatic intraepithelial neoplasia (n = 15), intraductal papillary mucinous neoplasms (n = 24), and normal pancreas (n = 8), and cell-free DNA, which was acquired through methylation on beads technology from PC (n = 22) and control patients (n = 10), were included. The 2-∆ct was the outcome of interest and underwent receiver operating characteristic analysis to determine the diagnostic accuracy of the panel. RESULTS Receiver operating characteristic analysis revealed an area under the curve of 0.93 among ADAMTS1, 0.76 among BNC1, 0.75 among PXDN, and 0.69 among LRFN5 gene. The combination gene methylation panel (ADAMTS1, BNC1, LRFN5, and PXDN) had an area under the curve of 0.94, with a sensitivity of 100% and specificity of 90%. CONCLUSIONS This methylation-based biomarker panel had promising accuracy for PC detection and warranted further validation in prospective PC surveillance trials.
Collapse
Affiliation(s)
| | | | - Ankit Chhoda
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | | | | | | | | - Tza Huei Wang
- Department of Biomedical Engineering and Department of Mechanical Engineering and Institute for NanoBioTechnology, Johns Hopkins University
| | | | | | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD
| | - Christine Iacobuzio-Donahue
- Human Oncology and Pathogenesis Program, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - James J Farrell
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
14
|
Yang JD, Ghoz H, Aboelsoud MM, Taylor WR, Yab TC, Berger CK, Cao X, Foote PH, Giama NH, Barr Fritcher EG, Mahoney DW, Moser CD, Smyrk TC, Kipp BR, Gores GJ, Roberts LR, Kisiel JB. DNA Methylation Markers for Detection of Cholangiocarcinoma: Discovery, Validation, and Clinical Testing in Biliary Brushings and Plasma. Hepatol Commun 2021; 5:1448-1459. [PMID: 34430788 PMCID: PMC8369938 DOI: 10.1002/hep4.1730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
Cholangiocarcinoma (CCA) has poor prognosis due to late-stage, symptomatic presentation. Altered DNA methylation markers may improve diagnosis of CCA. Reduced-representation bisulfite sequencing was performed on DNA extracted from frozen CCA tissues and matched to adjacent benign biliary epithelia or liver parenchyma. Methylated DNA markers (MDMs) identified from sequenced differentially methylated regions were selected for biological validation on DNA from independent formalin-fixed, paraffin-embedded CCA tumors and adjacent hepatobiliary control tissues using methylation-specific polymerase chain reaction. Selected MDMs were then blindly assayed on DNA extracted from independent archival biliary brushing specimens, including 12 perihilar cholangiocarcinoma, 4 distal cholangiocarcinoma cases, and 18 controls. Next, MDMs were blindly assayed on plasma DNA from patients with extrahepatic CCA (eCCA), including 54 perihilar CCA and 5 distal CCA cases and 95 healthy and 22 primary sclerosing cholangitis controls, balanced for age and sex. From more than 3,600 MDMs discovered in frozen tissues, 39 were tested in independent samples. In the clinical pilot of 16 MDMs on cytology brushings, methylated EMX1 (empty spiracles homeobox 1) had an area under the curve (AUC) of 0.98 (95% confidence interval [CI], 0.95-1.0). In the clinical pilot on plasma, a cross-validated recursive partitioning tree prediction model from nine MDMs was accurate for de novo eCCA (AUC, 0.88 [0.81-0.95]) but not for primary sclerosing cholangitis-associated eCCA (AUC, 0.54 [0.35-0.73]). Conclusion: Next-generation DNA sequencing yielded highly discriminant methylation markers for CCA. Confirmation of these findings in independent tissues, cytology brushings, and plasma supports further development of DNA methylation to augment diagnosis of CCA.
Collapse
Affiliation(s)
- Ju Dong Yang
- Division of Gastroenterology and HepatologyCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Hassan Ghoz
- Division of Gastroenterology and HepatologyMayo ClinicJacksonvilleFLUSA
| | | | - William R. Taylor
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Tracy C. Yab
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Calise K. Berger
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Xiaoming Cao
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Patrick H. Foote
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Nasra H. Giama
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | | | - Douglas W. Mahoney
- Department of Biomedical Statistics and InformaticsMayo ClinicRochesterMNUSA
| | - Catherine D. Moser
- Department of Pathology and Laboratory MedicineChildren’s Healthcare of AtlantaAtlantaGAUSA
| | | | | | - Gregory J. Gores
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Lewis R. Roberts
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - John B. Kisiel
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| |
Collapse
|
15
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
16
|
Kenner B, Chari ST, Kelsen D, Klimstra DS, Pandol SJ, Rosenthal M, Rustgi AK, Taylor JA, Yala A, Abul-Husn N, Andersen DK, Bernstein D, Brunak S, Canto MI, Eldar YC, Fishman EK, Fleshman J, Go VLW, Holt JM, Field B, Goldberg A, Hoos W, Iacobuzio-Donahue C, Li D, Lidgard G, Maitra A, Matrisian LM, Poblete S, Rothschild L, Sander C, Schwartz LH, Shalit U, Srivastava S, Wolpin B. Artificial Intelligence and Early Detection of Pancreatic Cancer: 2020 Summative Review. Pancreas 2021; 50:251-279. [PMID: 33835956 PMCID: PMC8041569 DOI: 10.1097/mpa.0000000000001762] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite considerable research efforts, pancreatic cancer is associated with a dire prognosis and a 5-year survival rate of only 10%. Early symptoms of the disease are mostly nonspecific. The premise of improved survival through early detection is that more individuals will benefit from potentially curative treatment. Artificial intelligence (AI) methodology has emerged as a successful tool for risk stratification and identification in general health care. In response to the maturity of AI, Kenner Family Research Fund conducted the 2020 AI and Early Detection of Pancreatic Cancer Virtual Summit (www.pdac-virtualsummit.org) in conjunction with the American Pancreatic Association, with a focus on the potential of AI to advance early detection efforts in this disease. This comprehensive presummit article was prepared based on information provided by each of the interdisciplinary participants on one of the 5 following topics: Progress, Problems, and Prospects for Early Detection; AI and Machine Learning; AI and Pancreatic Cancer-Current Efforts; Collaborative Opportunities; and Moving Forward-Reflections from Government, Industry, and Advocacy. The outcome from the robust Summit conversations, to be presented in a future white paper, indicate that significant progress must be the result of strategic collaboration among investigators and institutions from multidisciplinary backgrounds, supported by committed funders.
Collapse
Affiliation(s)
| | - Suresh T. Chari
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - David S. Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Stephen J. Pandol
- Basic and Translational Pancreas Research Program, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, NewYork-Presbyterian/Columbia University Irving Medical Center, New York, NY
| | | | - Adam Yala
- Department of Electrical Engineering and Computer Science
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA
| | - Noura Abul-Husn
- Division of Genomic Medicine, Department of Medicine, Icahn School of Medicine, Mount Sinai, New York, NY
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | | | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Marcia Irene Canto
- Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yonina C. Eldar
- Department of Math and Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Elliot K. Fishman
- Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD
| | | | - Vay Liang W. Go
- UCLA Center for Excellence in Pancreatic Diseases, University of California, Los Angeles, Los Angeles, CA
| | | | - Bruce Field
- From the Kenner Family Research Fund, New York, NY
| | - Ann Goldberg
- From the Kenner Family Research Fund, New York, NY
| | | | - Christine Iacobuzio-Donahue
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Debiao Li
- Biomedical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | - Lawrence H. Schwartz
- Department of Radiology, NewYork-Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Uri Shalit
- Faculty of Industrial Engineering and Management, Technion—Israel Institute of Technology, Haifa, Israel
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| | - Brian Wolpin
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
17
|
Zhu J, Hu LB, Zhao YP, Zhang YQ. Prognostic Role of EYA4 in Lower Grade Glioma with IDH1 Mutation and 1p19q Co-Deletion. World Neurosurg 2021; 149:e1174-e1179. [PMID: 33631386 DOI: 10.1016/j.wneu.2020.07.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eyes absent 4 (EYA4) participates in an important role in various cancers. Patients with low EYA4 expression have significantly favorable prognosis compared with those with high EYA4 expression. However, the expression and role of EYA4 in lower grade glioma (LGG) has not been fully elucidated. METHODS The R2 and UCSC Xena browser based on data from 284 cases in GSE16011 from Gene Expression Omnibus datasets and 530 cases of patients with LGG in The Cancer Genome Atlas database were extracted for bioinformatic analyses. The EYA4 expression in different subtypes of LGG was detected. Kaplan-Meier survival curves were generated to explore the association between EYA4 expression and overall survival (OS) in both datasets. RESULTS Patients with LGG with lower EYA4 expression had significantly longer 5- and 10-year OS in 2 datasets (P < 0.001). By matching histological subtypes and gene expression profiles of patients with LGG, oligoastrocytoma and oligodendroglioma groups had lower EYA4 expression and longer OS compared with the astrocytoma group (P < 0.05). Patients with IDH1 mutations and 1p19q co-deletion had longer 5- and 10-year OS (P < 0.001), and EYA4 expression was significantly downregulated in these patients (P < 0.001). CONCLUSIONS This study suggests that EYA4 can be used as a prognostic marker and provide a potential therapeutic target in patients with LGG with IDH1 mutation and 1p19q co-deletion.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li-Bo Hu
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ya-Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Qi Zhang
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Huang W, Weng W, Wu B, Ye T, Lin Z, Zhang Z, Shi K. Development and validation of the trans-omics model for pancreatic adenocarcinoma. Epigenomics 2021; 13:15-30. [PMID: 33356543 DOI: 10.2217/epi-2020-0184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To develop a trans-omics-based molecular clinicopathological algorithm for predicting pancreatic adenocarcinoma prognosis, we performed a comprehensive analysis of the expression levels of mRNA, DNA methylation and DNA copy number in The Cancer Genome Atlas dataset. Materials & methods: Based on the least absolute shrinkage and selection operator method - COX regression analysis, a trans-omics-based classifier was established to predict overall survival. Nomogram was constructed by combining the classifier band clinical pathological characterization. Results: Based on trans-omics, we developed a 10-gene-based classifier and a molecular-clinicopathologic nomogram for predicting overall survival with satisfactory accuracy. Conclusion: Trans-omics-based classifier and molecule-clinicopathological nomogram based on the classifier can accurately predict the prognosis of pancreatic adenocarcinoma patients.
Collapse
Affiliation(s)
- Weiguo Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Wanqing Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Boda Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Tingbo Ye
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Zhuo Lin
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, PR China
| | - Zhongjing Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang Province, PR China
| |
Collapse
|
19
|
Wang DY, He KX, Huang Y, Lou QQ, He T, Xu X. A New Method for the Detection of Colorectal Cancer and the Precancerous Lesions: Occult Blood Testing Combination with Promoter Methylation in the Fecal Sample. J Cancer 2021; 12:335-342. [PMID: 33391430 PMCID: PMC7738999 DOI: 10.7150/jca.50525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Noninvasive stool-based DNA methylation testing emerges as a new approach for detecting colorectal cancer (CRC). However, its feasibility for early detection of CRC and precancerous lesions in the Chinese population remains inconclusive. Methods: In this study, we establish a possibilities screening method (sDNA-FOBT) for detecting CRC and precancerous lesions (hyperplastic polyps [HP] and adenomas [AD]) and evaluate its detection performance in the Chinese population. This method combined a molecular assay of DNA methylation markers (BMP3, NDRG4, and SDC2) with the human hemoglobin test (FOBT) in stool samples. Results: The sensitivity of sDNA-FOBT was 85.42% for CRC, 85.71% for AD, and 28.21% for HP, respectively, at the specificity of 92%. The diagnostic efficacy of sDNA-FOBT for detecting CRC and precancerous lesions was significantly higher than FOBT alone (sensitivity: 61.70% vs. 51.06%, P<0.01; AUC: 0.78 vs. 0.72, P<0.001), especially for CRC (AUC: 0.91 vs. 0.86, P<0.001) and AD (AUC: 0.91 vs. 0.75, P<0.05). No significant difference was observed between the detection sensitivity of sDNA-FOBT and the clinical variables. Notably, compared with FOBT, sDNA-FOBT was more effective in the detection of CRC and precancerous lesions in the patients aged >50 y (62.34% vs 54.55%, P<0.05). Conclusion: Our results demonstrate that sDNA-FOBT is a promising method for screening CRC and precancerous lesions in the Chinese population. Further studies are required to validate the results in a larger sample capacity.
Collapse
Affiliation(s)
- Dan-Yang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kang-Xin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qin-Qin Lou
- Hangzhou Youke Biomedical Inc., Hangzhou, China
| | - Ti He
- Shanghai Genechem Clinical Laboratory Inc., Shanghai, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Amelio I, Bertolo R, Bove P, Buonomo OC, Candi E, Chiocchi M, Cipriani C, Di Daniele N, Ganini C, Juhl H, Mauriello A, Marani C, Marshall J, Montanaro M, Palmieri G, Piacentini M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Liquid biopsies and cancer omics. Cell Death Discov 2020; 6:131. [PMID: 33298891 PMCID: PMC7691330 DOI: 10.1038/s41420-020-00373-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
The development of the sequencing technologies allowed the generation of huge amounts of molecular data from a single cancer specimen, allowing the clinical oncology to enter the era of the precision medicine. This massive amount of data is highlighting new details on cancer pathogenesis but still relies on tissue biopsies, which are unable to capture the dynamic nature of cancer through its evolution. This assumption led to the exploration of non-tissue sources of tumoral material opening the field of liquid biopsies. Blood, together with body fluids such as urines, or stool, from cancer patients, are analyzed applying the techniques used for the generation of omics data. With blood, this approach would allow to take into account tumor heterogeneity (since the circulating components such as CTCs, ctDNA, or ECVs derive from each cancer clone) in a time dependent manner, resulting in a somehow "real-time" understanding of cancer evolution. Liquid biopsies are beginning nowdays to be applied in many cancer contexts and are at the basis of many clinical trials in oncology.
Collapse
Affiliation(s)
- Ivano Amelio
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
- School of Life Sciences, University of Nottingham, Nottingham, UK.
| | - Riccardo Bertolo
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Pierluigi Bove
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Oreste Claudio Buonomo
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Eleonora Candi
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Marcello Chiocchi
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Chiara Cipriani
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - Nicola Di Daniele
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carlo Ganini
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Alessandro Mauriello
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carla Marani
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
- San Carlo di Nancy Hospital, Rome, Italy
| | - John Marshall
- Medstar Georgetown University Hospital, Georgetown University, Washington, DC, USA
| | - Manuela Montanaro
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giampiero Palmieri
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Piacentini
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giuseppe Sica
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manfredi Tesauro
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Valentina Rovella
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giuseppe Tisone
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, 215123, Suzhou, Jiangsu, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | - Gerry Melino
- Torvergata Oncoscience Research Centre of Excellence, TOR, Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
21
|
Wang J, Liu S, Wang H, Zheng L, Zhou C, Li G, Huang R, Wang H, Li C, Fan X, Fu X, Wang X, Guo H, Guan J, Sun Y, Song X, Li Z, Mu D, Sun J, Liu X, Qi Y, Niu F, Chen C, Wu X, Wang X, Song X, Zou H. Robust performance of a novel stool DNA test of methylated SDC2 for colorectal cancer detection: a multicenter clinical study. Clin Epigenetics 2020; 12:162. [PMID: 33126908 PMCID: PMC7602331 DOI: 10.1186/s13148-020-00954-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS Stool DNA testing is an emerging and attractive option for colorectal cancer (CRC) screening. We previously evaluated the feasibility of a stool DNA (sDNA) test of methylated SDC2 for CRC detection. The aim of this study was to assess its performance in a multicenter clinical trial setting. METHODS Each participant was required to undergo a sDNA test and a reference colonoscopy. The sDNA test consists of quantitative assessment of methylation status of SDC2 promoter. Results of real-time quantitative methylation-specific PCR were dichotomized as positive and negative, and the main evaluation indexes were sensitivity, specificity, and kappa value. All sDNA tests were performed and analyzed independently of colonoscopy. RESULTS Among the 1110 participants from three clinical sites analyzed, 359 and 38 were diagnosed, respectively, with CRC and advanced adenomas by colonoscopy. The sensitivity of the sDNA test was 301/359 (83.8%) for CRC, 16/38 (42.1%) for advanced adenomas, and 134/154 (87.0%) for early stage CRC (stage I-II). Detection rate did not vary significantly according to age, tumor location, differentiation, and TNM stage, except for gender. The follow-up testing of 40 postoperative patients with CRC returned negative results as their tumors had been surgically removed. The specificity of the sDNA test was 699/713 (98.0%), and unrelated cancers and diseases did not seem to interfere with the testing. The kappa value was 0.84, implying an excellent diagnostic consistency between the sDNA test and colonoscopy. CONCLUSION Noninvasive sDNA test using methylated SDC2 as the exclusive biomarker is a clinically viable and accurate CRC detection method. CHINESE CLINICAL TRIAL REGISTRY Chi-CTR-TRC-1900026409, retrospectively registered on October 8, 2019; http://www.chictr.org.cn/edit.aspx?pid=43888&htm=4 .
Collapse
Affiliation(s)
- Jianping Wang
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, , Sun Yat-Sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, Guangdong, China.
| | - Hui Wang
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, , Sun Yat-Sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
| | - Lei Zheng
- Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changchun Zhou
- Clinical Laboratory, Shandong Provincial Key Laboratory of Cancer Radiation, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, 440 Jiyan Road, Jinan, Shandong, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongkang Huang
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, , Sun Yat-Sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
| | - Huaiming Wang
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, , Sun Yat-Sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
| | - Chujun Li
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinhui Fu
- Laboratory of Molecular Diagnostics, Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xinying Wang
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongliang Guo
- Department of Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, Jinan, Shandong, China
| | - Jie Guan
- Department of Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, Jinan, Shandong, China
| | - Yanlai Sun
- Department of Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, Jinan, Shandong, China
| | - Xilin Song
- Department of Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, Jinan, Shandong, China
| | - Zengjun Li
- Department of Endoscopy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, Jinan, Shandong, China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, Jinan, Shandong, China
| | - Xianglin Liu
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Yan Qi
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Feng Niu
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Chunhua Chen
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Xiaolin Wu
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China
| | - Xianrang Song
- Clinical Laboratory, Shandong Provincial Key Laboratory of Cancer Radiation, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Sciences, 440 Jiyan Road, Jinan, Shandong, China.
| | - Hongzhi Zou
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, , Sun Yat-Sen University, Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.
- Creative Biosciences (Guangzhou) CO., Ltd., Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Gheorghe G, Bungau S, Ilie M, Behl T, Vesa CM, Brisc C, Bacalbasa N, Turi V, Costache RS, Diaconu CC. Early Diagnosis of Pancreatic Cancer: The Key for Survival. Diagnostics (Basel) 2020; 10:869. [PMID: 33114412 PMCID: PMC7694042 DOI: 10.3390/diagnostics10110869] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive forms of cancer. Negative prognosis is mainly due to the late diagnosis in advanced stages, when the disease is already therapeutically overcome. Studies in recent years have focused on identifying biomarkers that could play a role in early diagnosis, leading to the improvement of morbidity and mortality. Currently, the only biomarker widely used in the diagnosis of PC is carbohydrate antigen 19-9 (CA19.9), which has, however, more of a prognostic role in the follow-up of postoperative recurrence than a diagnostic role. Other biomarkers, recently identified as the methylation status of ADAMTS1 (A disintegrin and metalloproteinase with thrombospondin motifs 1) and BNC1 (zinc finger protein basonuclin-1) in cell-free deoxyribonucleic acid (DNA), may play a role in the early detection of PC. This review focuses on the diagnosis of PC in its early stages.
Collapse
Affiliation(s)
- Gina Gheorghe
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Madalina Ilie
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania;
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410041 Oradea, Romania;
| | - Nicolae Bacalbasa
- Department of Surgery, “Ion Cantacuzino” Clinical Hospital, 030167 Bucharest, Romania;
- Department 13, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Vladiana Turi
- Department of Cardiology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Raluca Simona Costache
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Gastroenterology, “Carol Davila” University Emergency Central Military Hospital, 010825 Bucharest, Romania
| | - Camelia Cristina Diaconu
- Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (G.G.); (M.I.); (R.S.C.)
- Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
23
|
Xie H, Mahoney DW, Foote PH, Burger KN, Doering KA, Taylor WR, Then SS, Cao X, McGlinch M, Berger CK, Wu TT, Hubbard JM, Allawi HT, Kaiser MW, Lidgard GP, Ahlquist DA, Kisiel JB. Novel Methylated DNA Markers in the Surveillance of Colorectal Cancer Recurrence. Clin Cancer Res 2020; 27:141-149. [PMID: 33028593 DOI: 10.1158/1078-0432.ccr-20-2589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to assess the concordance of colorectal cancer-associated methylated DNA markers (MDM) in primary and metastatic colorectal cancer for feasibility in detection of distantly recurrent/metastatic colorectal cancer in plasma. EXPERIMENTAL DESIGN A panel of previously discovered colorectal cancer-associated MDMs was selected. MDMs from primary and paired metastatic colorectal cancer tissue were assayed with quantitative methylation-specific PCR. Plasma MDMs were measured blindly by target enrichment long-probe quantitative-amplified signal assays. Random forest modeling was used to derive a prediction algorithm of MDMs in archival plasma samples from primary colorectal cancer cases. This algorithm was validated in prospectively collected plasma samples from recurrent colorectal cancer cases. The accuracy of the algorithm was summarized as sensitivity, specificity, and area under the curve (AUC). RESULTS Of the 14 selected MDMs, the concordance between primary and metastatic tissue was considered moderate or higher for 12 MDMs (86%). At a preset specificity of 95% (91%-98%), a panel of 13 MDMs, in plasma from 97 colorectal cancer cases and 200 controls, detected stage IV colorectal cancer with 100% (80%-100%) sensitivity and all stages of colorectal cancer with an AUC of 0.91 (0.87-0.95), significantly higher than carcinoembryonic antigen [AUC, 0.72 (0.65-0.79)]. This panel, in plasma from 40 cases and 60 healthy controls, detected recurrent/metastatic colorectal cancer with 90% (76%-97%) sensitivity, 90% (79%-96%) specificity, and an AUC of 0.96 (0.92-1.00). The panel was positive in 0.30 (0.19-0.43) of 60 patients with no evidence of disease in post-operative patients with colorectal cancer. CONCLUSIONS Plasma assay of novel colorectal cancer-associated MDMs can reliably detect both primary colorectal cancer and distantly recurrent colorectal cancer with promising accuracy.
Collapse
Affiliation(s)
- Hao Xie
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Douglas W Mahoney
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Patrick H Foote
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kelli N Burger
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Karen A Doering
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - William R Taylor
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Sara S Then
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xiaoming Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Maria McGlinch
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Calise K Berger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tsung-Teh Wu
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | - David A Ahlquist
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
24
|
Qin Y, Taylor W, Bamlet WR, Ravindran A, Buglioni A, Cao X, Foote PH, Slettedahl SW, Mahoney DW, Albert PS, Kim S, Hu N, Taylor PR, Etemadi A, Sotoudeh M, Malekzadeh R, Abnet CC, Smyrk TC, Katzka D, Topazian MD, Dawsey SM, Ahlquist D, Kisiel JB, Iyer PG. Methylated DNA Markers of Esophageal Squamous Cancer and Dysplasia: An International Study. Cancer Epidemiol Biomarkers Prev 2020; 29:2642-2650. [PMID: 32948633 DOI: 10.1158/1055-9965.epi-20-0616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/22/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Discovery of methylated DNA markers (MDM) of esophageal squamous cell carcinoma (ESCC) has sparked interest in assessing these markers in tissue. We evaluated MDMs in ESCC from three geographically and ethnically distinct populations, and explored the feasibility of assaying MDMs from DNA obtained by swallowed balloon devices. METHODS MDMs were assayed in ESCC and normal tissues obtained from the populations of United States, Iran, and China, and from exfoliative cytology specimens obtained by balloons in a Chinese population. Areas under the receiver operating curve (AUC) of MDMs discriminating ESCC from normal tissues were calculated. Random forest prediction models were built, trained on U.S. cases and controls, and calibrated to U.S.-only controls (model 1) and three-country controls (model 2). Statistical tests were used to assess the relationship between dysplasia and MDM levels in balloons. RESULTS Extracted DNA from 333 ESCC and 322 normal tissues was analyzed, in addition to archival DNA from 98 balloons. For ESCC, model 1 validated in Iranian and Chinese tissues with AUCs of 0.90 and 0.87, and model 2 yielded AUCs of 0.99, 0.96, and 0.94 in tissues from the United States, Iran, and China, respectively. In Chinese balloons, MDMs showed a statistically significant trend of increasing levels with increasing grades of dysplasia (P < 0.004). CONCLUSIONS MDMs accurately discriminate ESCC from normal esophagus in tissues obtained from high- and low-incidence countries. Preliminary data suggest that levels of MDMs assayed in DNA from swallowed balloon devices increase with dysplasia grade. Larger studies are needed to validate these results. IMPACT MDMs coupled with minimally invasive collection methods have the potential for worldwide application in ESCC screening.
Collapse
Affiliation(s)
- Yi Qin
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - William Taylor
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - William R Bamlet
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Adharsh Ravindran
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Alessia Buglioni
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xiaoming Cao
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Patrick H Foote
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Seth W Slettedahl
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Douglas W Mahoney
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | - Sungduk Kim
- Biostatistics Branch, NCI, Rockville, Maryland
| | - Nan Hu
- Metabolic Epidemiology Branch, NCI, Rockville, Maryland
| | | | - Arash Etemadi
- Metabolic Epidemiology Branch, NCI, Rockville, Maryland.,Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Sotoudeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Thomas C Smyrk
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David Katzka
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mark D Topazian
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - David Ahlquist
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John B Kisiel
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Prasad G Iyer
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
25
|
The Diagnostic Accuracy of Mutant KRAS Detection from Pancreatic Secretions for the Diagnosis of Pancreatic Cancer: A Meta-Analysis. Cancers (Basel) 2020; 12:cancers12092353. [PMID: 32825312 PMCID: PMC7564395 DOI: 10.3390/cancers12092353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This meta-analysis aims to identify the diagnostic accuracy of mutations in the Kirsten Rat Sarcoma (KRAS) oncogene in the diagnosis of pancreatic ductal adenocarcinoma (PDAC). The survival of PDAC remains poor often due to the fact that disease is advanced at diagnosis. We analysed 22 studies, with a total of 2156 patients, to identify if the detection of KRAS mutations from pancreatic exocrine secretions yields sufficient specificity and sensitivity to detect patients with PDAC amongst healthy individuals. The majority of the studies were retrospective, samples were obtained endoscopically or surgically, and included comparator populations of patients with chronic pancreatitis and pre-malignant pancreatic lesions (PanIN) as well as healthy controls. We performed several analyses to identify the diagnostic accuracy for PDAC among these patient populations. Our results highlighted that the diagnostic accuracy of KRAS mutation for PDAC was of variable sensitivity and specificity when compared with PanINs and chronic pancreatitis, but had a higher specificity among healthy individuals. The sensitivity of this test must be improved to prevent missing early PDAC or PanINs. This could be achieved with rigorous prospective cohort studies, in which high-risk patients with normal cross-sectional imaging undergo surveillance following KRAS mutation testing.
Collapse
|
26
|
Bararia A, Dey S, Gulati S, Ghatak S, Ghosh S, Banerjee S, Sikdar N. Differential methylation landscape of pancreatic ductal adenocarcinoma and its precancerous lesions. Hepatobiliary Pancreat Dis Int 2020; 19:205-217. [PMID: 32312637 DOI: 10.1016/j.hbpd.2020.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/18/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal diseases with an incidence almost equal to the mortality. In addition to having genetic causes, cancer can also be considered an epigenetic disease. DNA methylation is the premier epigenetic modification and patterns of aberrant DNA methylation are recognized to be a common hallmark of human tumor. In the multistage carcinogenesis of pancreas starting from precancerous lesions to pancreatic ductal adenocarcinoma (PDAC), the epigenetic changes play a significant role. DATA SOURCES Relevant studies for this review were derived via an extensive literature search in PubMed via using various keywords such as pancreatic ductal adenocarcinoma, precancerous lesions, methylation profile, epigenetic biomarkers that are relevant directly or closely associated with the concerned area of our interest. The literature search was intensively done considering a time frame of 20 years (1998-2018). RESULT In this review we have highlighted the hypermethylation and hypomethylation of the precancerous PDAC lesions (pancreatic intra-epithelial neoplasia, intraductal papillary mucinous neoplasm, mucinous cystic neoplasm and chronic pancreatitis) and PDAC along with the potential biomarkers. We have also achieved the early epigenetic driver that leads to progression from precancerous lesions to PDAC. A bunch of epigenetic driver genes leads to progression of precancerous lesions to PDAC (ppENK, APC, p14/5/16/17, hMLH1 and MGMT) are also documented. We summarized the importance of these observations in therapeutics and diagnosis of PDAC hence identifying the potential use of epigenetic biomarkers in epigenetic targeted therapy. Epigenetic inactivation occurs by hypermethylation of CpG islands in the promoter regions of tumor suppressor genes. We listed all hyper- and hypomethylation of CpG islands of several genes in PDAC including its precancerous lesions. CONCLUSIONS The concept of the review would help to understand their biological effects, and to determine whether they may be successfully combined with other epigenetic drugs. However, we need to continue our research to develop more specific DNA-demethylating agents, which are the targets for hypermethylated CpG methylation sites.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Subhankar Dey
- Department of Zoology, New Alipore College, University of Calcutta, Kolkata, India
| | - Sumit Gulati
- Department of Gastroenterological Surgery, Calcutta Medical Research Institute, Kolkata, India
| | - Supriyo Ghatak
- Department of Gastroenterological Surgery, Calcutta Medical Research Institute, Kolkata, India
| | - Shibajyoti Ghosh
- Department of General Surgery, Medical College and Hospital, Kolkata, India
| | - Sudeep Banerjee
- Department of Gastrointestinal Surgery, Tata Medical Center, Rajarhat, Kolkata, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
27
|
Kim TO, Han YK, Yi JM. Hypermethylated promoters of tumor suppressor genes were identified in Crohn's disease patients. Intest Res 2020; 18:297-305. [PMID: 32019290 PMCID: PMC7385571 DOI: 10.5217/ir.2019.00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND/AIMS Overwhelming evidence suggests that inflammatory bowel disease (IBD) is caused by a complicated interplay between the multiple genes and abnormal epigenetic regulation in response to environmental factors. It is becoming apparent that epigenetic factors are significantly associated with the development of the disease. DNA methylation remains the most studied epigenetic modification, and hypermethylation of gene promoters is associated with gene silencing. METHODS DNA methylation alterations may contribute to the many complex diseases development by regulating the interplay between external and internal environmental factors and gene transcriptional expression. In this study, we used 15 tumor suppressor genes (TSGs), originally identified in colon cancer, to detect promoter methylation in patients with Crohn's disease (CD). Methylation specific polymerase chain reaction and bisulfite sequencing analyses were performed to assess methylation level of TSGs in CD patients. RESULTS We found 6 TSGs (sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4) are robustly hypermethylated in CD patient samples. Bisulfite sequencing analysis confirmed the methylation levels of the sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4 promoters in the representative CD patient samples. CONCLUSIONS In this study, the promoter hypermethylation of the TSGs observed indicates that CD exhibits specific DNA methylation signatures with potential clinical applications for the noninvasive diagnosis of IBD and the prognosis for patients with IBD.
Collapse
Affiliation(s)
- Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Korea
| | - Joo Mi Yi
- Department of Microbiology and Immunology, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
28
|
Llach J, Carballal S, Moreira L. Familial Pancreatic Cancer: Current Perspectives. Cancer Manag Res 2020; 12:743-758. [PMID: 32099470 PMCID: PMC6999545 DOI: 10.2147/cmar.s172421] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease, mostly incurable when detected. Thus, despite advances in PC treatments, only around 7% of patients survive 5-years after diagnosis. This morbid outcome is secondary to multifactorial reasons, such as late-stage diagnosis, rapid progression and minimal response to chemotherapy. Based on these factors, it is of special relevance to identify PC high-risk individuals in order to establish preventive and early detection measures. Although most PC are sporadic, approximately 10% cases have a familial basis. No main causative gene of PC has been identified but several known germline pathogenic mutations are related with an increased risk of this tumor. These inherited cancer syndromes represent 3% of all PC. On the other hand, in 7% of cases of PC, there is a strong family history without a causative germline mutation, a situation known as familial pancreatic cancer (FPC). In recent years, there is increasing evidence supporting the benefit of genetic germline analysis in PC patients, and periodic pancreatic screening in PC high-risk patients (mainly those with a lifetime risk greater than 5%), although there is no general agreement in the group of patients and individuals to study and screen. In the present review, we expose an update in the field of hereditary and FPC, with the aim of describing the current strategies and implications in genetic counseling, surveillance and therapeutic interventions.
Collapse
Affiliation(s)
- Joan Llach
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Sabela Carballal
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Departmento de Gastroenterología, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d' Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Qin Y, Wu CW, Taylor WR, Sawas T, Burger KN, Mahoney DW, Sun Z, Yab TC, Lidgard GP, Allawi HT, Buttar NS, Smyrk TC, Iyer PG, Katzka DA, Ahlquist DA, Kisiel JB. Discovery, Validation, and Application of Novel Methylated DNA Markers for Detection of Esophageal Cancer in Plasma. Clin Cancer Res 2019; 25:7396-7404. [PMID: 31527170 PMCID: PMC6911634 DOI: 10.1158/1078-0432.ccr-19-0740] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/20/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE The burden of esophageal cancer continues to rise, and noninvasive screening tools are needed. Methylated DNA markers (MDM) assayed from plasma show promise in detection of other cancers. For esophageal cancer detection, we aimed to discover and validate MDMs in tissue, and determine their feasibility when assayed from plasma. EXPERIMENTAL DESIGN Whole-methylome sequencing was performed on DNA extracted from 37 tissues (28 EC; 9 normal esophagus) and 8 buffy coat samples. Top MDMs were validated by methylation specific PCR on tissue from 76 EC (41 adeno, 35 squamous cell) and 17 normal esophagus. Quantitative allele-specific real-time target and signal amplification was used to assay MDMs in plasma from 183 patients (85 EC, 98 controls). Recursive partitioning (rPART) identified MDM combinations predictive of esophageal cancer. Validation was performed in silico by bootstrapping. RESULTS From discovery, 23 candidate MDMs were selected for independent tissue validation; median area under the receiver operating curve (AUC) for individual MDMs was 0.93. Among 12 MDMs advanced to plasma testing, rPART modeling selected a 5 MDM panel (FER1L4, ZNF671, ST8SIA1, TBX15, ARHGEF4) which achieved an AUC of 0.93 (95% CI, 0.89-0.96) on best-fit and 0.81 (95% CI, 0.75-0.88) on cross-validation. At 91% specificity, the panel detected 74% of esophageal cancer overall, and 43%, 64%, 77%, and 92% of stages I, II, III, and IV, respectively. Discrimination was not affected by age, sex, smoking, or body mass index. CONCLUSIONS Novel MDMs assayed from plasma detect esophageal cancer with moderate accuracy. Further optimization and clinical testing are warranted.
Collapse
Affiliation(s)
- Yi Qin
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Chung W Wu
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - William R Taylor
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tarek Sawas
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Kelli N Burger
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Douglas W Mahoney
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Zhifu Sun
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Tracy C Yab
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Navtej S Buttar
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Thomas C Smyrk
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Prasad G Iyer
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David A Katzka
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David A Ahlquist
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - John B Kisiel
- Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
30
|
Zhou H, Zhu Y, Wei F, Shao Y, Pan J, Wang G, Xu K, Cheng Y. Significance of MUC2 gene methylation detection in pancreatic cancer diagnosis. Pancreatology 2019; 19:1049-1053. [PMID: 31590960 DOI: 10.1016/j.pan.2019.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/15/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE This study was conducted to explore the diagnostic value of MUC2 gene methylation in pancreatic cancer. METHODS Methylation restriction enzyme digestion (Msp I/Hap II) and polymerase chain reaction (PCR) were performed to detect methylation of the MUC2 gene in fecal and blood specimens from seven study subjects with pancreatic cancer (PC), chronic pancreatitis (CP), or normal controls (CON). Simultaneously, blood CA 19-9 levels were detected as a positive indicator of PC. RESULTS MUC2 methylation was detected in 50% of PC cell lines. In fecal samples, the MUC2 methylation rate in PC (n = 30) was 43.3%, which was significantly higher than those in CP (n = 8, 0%, P < 0.05) and CON (n = 20, 5.0%, P < 0.05). In blood samples, the MUC2 methylation rate in PC (n = 40) was 52.5%, which was significantly higher than those in CP (n = 15, 0%, P < 0.01) and CON (n = 25, 4.0%, P < 0.01). For PC diagnosis, MUC2 gene methylation in blood samples showed higher specificity and positive predictive value than CA 19-9. The combined detection in the feces and blood showed a 60% MUC2 methylation rate in PC (n = 10), which was higher than those in the CP (n = 5, 0%, P < 0.01) and CON (n = 12, 0%, P < 0.01). CONCLUSIONS The study can clearly indicate that combined detection of MUC2 gene methylation in the peripheral blood and feces could be used as a new screening and early diagnosis method for pancreatic cancer.
Collapse
Affiliation(s)
- Hanyu Zhou
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Yingwei Zhu
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Feifei Wei
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Yueting Shao
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Jinjin Pan
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Ge Wang
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Kequn Xu
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China.
| | - Yuqing Cheng
- Department of Oncology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China.
| |
Collapse
|
31
|
Zandvakili I, Lazaridis KN. Cell-free DNA testing: future applications in gastroenterology and hepatology. Therap Adv Gastroenterol 2019; 12:1756284819841896. [PMID: 31019553 PMCID: PMC6466469 DOI: 10.1177/1756284819841896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 03/04/2019] [Indexed: 02/04/2023] Open
Abstract
The application of next-generation sequencing in clinical practice is increasing as accuracy and interpretation have improved and the cost continues to decline rapidly. Cell-free DNA is a unique source for next-generation sequencing that could change routine clinical practice in gastroenterology and hepatology. Testing of cell-free DNA in blood and fecal samples is an easy, rapid, and noninvasive method to assess for premalignant, malignant, metabolic, infectious, inflammatory, and autoimmune gastrointestinal and liver diseases. In this review, we describe cell-free DNA technologies, current applications of cell-free DNA testing, and proposed cell-free DNA targets for gastrointestinal and hepatic diseases, with a specific focus on malignancy. In addition, we provide commentary on how cell-free DNA can be integrated into clinical practice and help guide diagnosis, prognosis, disease management, and therapeutic response.
Collapse
Affiliation(s)
- Inuk Zandvakili
- Division of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
32
|
Jandrey EHF, Moura RP, Andrade LNS, Machado CL, Campesato LF, Leite KRM, Inoue LT, Asprino PF, da Silva APM, de Barros ACSD, Carvalho A, de Lima VC, Carraro DM, Brentani HP, da Cunha IW, Soares FA, Parmigiani RB, Chammas R, Camargo AA, Costa ÉT. NDRG4 promoter hypermethylation is a mechanistic biomarker associated with metastatic progression in breast cancer patients. NPJ Breast Cancer 2019; 5:11. [PMID: 30963110 PMCID: PMC6450950 DOI: 10.1038/s41523-019-0106-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/11/2019] [Indexed: 01/27/2023] Open
Abstract
The risk of developing metastatic disease in breast cancer patients is traditionally predictable based on the number of positive axillary lymph nodes, complemented with additional clinicopathological factors. However, since lymph node-negative patients have a 20-30% probability of developing metastatic disease, lymph node information alone is insufficient to accurately assess individual risk. Molecular approaches, such as multigene expression panels, analyze a set of cancer-related genes that more accurately predict the early risk of metastasis and the treatment response. Here, we present N-Myc downstream-regulated gene 4 (NDRG4) epigenetic silencing as a mechanistic biomarker of metastasis in ductal invasive breast tumors. While aberrant NDRG4 DNA hypermethylation is significantly associated with the development of metastatic disease, downregulation of NDRG4 transcription and protein expression is functionally associated with enhanced lymph node adhesion and cell mobility. Here, we show that epigenetic silencing of NDRG4 modulates integrin signaling by assembling β1-integrins into large punctate clusters at the leading edge of tumor cells to promote an "adhesive switch," decreasing cell adhesion to fibronectin and increasing cell adhesion and migration towards vitronectin, an important component of human lymph nodes. Taken together, our functional and clinical observations suggest that NDRG4 is a potential mechanistic biomarker in breast cancer that is functionally associated with metastatic disease.
Collapse
Affiliation(s)
| | | | - Luciana N. S. Andrade
- Laboratório de Oncologia Experimental, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP Brazil
| | - Camila L. Machado
- Laboratório de Oncologia Experimental, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP Brazil
| | | | | | - Lilian T. Inoue
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
| | - Paula F. Asprino
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
| | | | | | | | - Vladmir C. de Lima
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Fundação Antônio Prudente, São Paulo, SP Brazil
| | - Dirce M. Carraro
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, Fundação Antônio Prudente, São Paulo, SP Brazil
| | - Helena P. Brentani
- LIM23-Instituto de Psiquiatria, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | | | | - Roger Chammas
- Laboratório de Oncologia Experimental, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP Brazil
| | - Anamaria A. Camargo
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
- Ludwig Institute for Cancer Research (LICR), São Paulo, Brazil
| | - Érico T. Costa
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, SP Brazil
- Ludwig Institute for Cancer Research (LICR), São Paulo, Brazil
| |
Collapse
|
33
|
Zhao Y, Cai LL, Wang HL, Shi XJ, Ye HM, Song P, Huang BQ, Tzeng CM. 1,25-Dihydroxyvitamin D 3 affects gastric cancer progression by repressing BMP3 promoter methylation. Onco Targets Ther 2019; 12:2343-2353. [PMID: 30992671 PMCID: PMC6445188 DOI: 10.2147/ott.s195642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Vitamin D3 has been known to have an anticancer effect, but the mechanisms underlying this is poorly explored. The present study aimed to investigate the antitumor role of vitamin D3 on gastric cancer and mechanisms. Methods The Roche Elecsys platform was applied in retrospective studies to detect the role of 25-hydroxylvitamin D3 in adenocarcinoma and colony formation assay was conducted to verify the effect of 1, 25-dihydroxyvitamin D3 on the proliferation of gastric cancer cells. After the identification of hypermethylation of BMP3 CpG islands by bisulfite genomic sequencing (BGS), we further investigated the relationship of BMP3 expression and gastric carcinogenesis by Western blot analysis and gel electrophoresis mobility shift assay (EMSA). Results Here we show that low concentration of 1, 25-dihydroxyvitamin D3 links to can-cerization and significantly inhibits proliferation of undifferentiated gastric cancer cell lines SGC-7901 and BGC-823. BMP3 promoter hypermethylation was highly correlated with gastric tumor. Moreover, BMP3 expression was regulated by its promoter methylation in gastric cells. The further exploration of the relationship between 1, 25-dihydroxyvitamin D3 and BMP3 by EMSA results that 1, 25-dihydroxyvitamin D3 stimulates BMP3 expression by the inhibition of BMP3 promoter methylation in gastric tumor cells. Conclusion In combination with the data from clinical research, bioinformatics analysis and experimental verification, we propose that 1, 25-hydroxylvitamin D3 affects gastric cancer progression by repressing BMP3 promoter methylation.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China, .,Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hui-Ling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China,
| | - Xiao-Juan Shi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China,
| | - Hui-Ming Ye
- Department of Clinical Laboratory, Zhongshan Hospital Xiamen University, Xiamen 361004, People's Republic of China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Bao-Qi Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Chi-Meng Tzeng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, People's Republic of China,
| |
Collapse
|
34
|
Kisiel JB, Dukek BA, Kanipakam RVSR, Ghoz HM, Yab TC, Berger CK, Taylor WR, Foote PH, Giama NH, Onyirioha K, Abdallah MA, Burger KN, Slettedahl SW, Mahoney DW, Smyrk TC, Lewis JT, Giakoumopoulos M, Allawi HT, Lidgard G, Roberts LR, Ahlquist DA. Hepatocellular Carcinoma Detection by Plasma Methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation. Hepatology 2019; 69:1180-1192. [PMID: 30168613 PMCID: PMC6429916 DOI: 10.1002/hep.30244] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Early detection improves hepatocellular carcinoma (HCC) outcomes, but better noninvasive surveillance tools are needed. We aimed to identify and validate methylated DNA markers (MDMs) for HCC detection. Reduced representation bisulfite sequencing was performed on DNA extracted from 18 HCC and 35 control tissues. Candidate MDMs were confirmed by quantitative methylation-specific PCR in DNA from independent tissues (74 HCC, 29 controls). A phase I plasma pilot incorporated quantitative allele-specific real-time target and signal amplification assays on independent plasma-extracted DNA from 21 HCC cases and 30 controls with cirrhosis. A phase II plasma study was then performed in 95 HCC cases, 51 controls with cirrhosis, and 98 healthy controls using target enrichment long-probe quantitative amplified signal (TELQAS) assays. Recursive partitioning identified best MDM combinations. The entire MDM panel was statistically cross-validated by randomly splitting the data 2:1 for training and testing. Random forest (rForest) regression models performed on the training set predicted disease status in the testing set; median areas under the receiver operating characteristics curve (AUCs; and 95% confidence interval [CI]) were reported after 500 iterations. In phase II, a six-marker MDM panel (homeobox A1 [HOXA1], empty spiracles homeobox 1 [EMX1], AK055957, endothelin-converting enzyme 1 [ECE1], phosphofructokinase [PFKP], and C-type lectin domain containing 11A [CLEC11A]) normalized by beta-1,3-galactosyltransferase 6 (B3GALT6) level yielded a best-fit AUC of 0.96 (95% CI, 0.93-0.99) with HCC sensitivity of 95% (88%-98%) at specificity of 92% (86%-96%). The panel detected 3 of 4 (75%) stage 0, 39 of 42 (93%) stage A, 13 of 14 (93%) stage B, 28 of 28 (100%) stage C, and 7 of 7 (100%) stage D HCCs. The AUC value for alpha-fetoprotein (AFP) was 0.80 (0.74-0.87) compared to 0.94 (0.9-0.97) for the cross-validated MDM panel (P < 0.0001). Conclusion: MDMs identified in this study proved to accurately detect HCC by plasma testing. Further optimization and clinical testing of this promising approach are indicated.
Collapse
Affiliation(s)
| | | | | | | | - Tracy C. Yab
- Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | | | | | | | | | | | | | | | | | | | | | | | | | - Hatim T. Allawi
- Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, WI 53719
| | - Graham Lidgard
- Exact Sciences Development Company, LLC, 441 Charmany Drive, Madison, WI 53719
| | | | | |
Collapse
|
35
|
Liu R, Su X, Long Y, Zhou D, Zhang X, Ye Z, Ma J, Tang T, Wang F, He C. A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:45-57. [PMID: 31097151 DOI: 10.1016/j.mrrev.2019.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) arises from accumulated genetic and epigenetic alterations, which provide the possibility to identify tumor-specific biomarkers by analyzing fecal DNA. Methylation status in human genes from tumor tissue is highlighted as promising biomarker in the early detection of CRC. A number of studies have documented altered methylation levels in DNA extracted from stool samples, but generated heterogeneous results. We performed a systematic review and quantitative assessment of existing studies to compare levels of DNA methylation in most frequently studied genes and their diagnostic value in CRC and its precursor, colorectal adenoma, with their counterparts in healthy subjects. Robust searches of the literature were performed in our study with explicit strategies and definite inclusion/exclusion criteria. Pooled data revealed that methylation levels of SFRP2, SFRP1, TFPI2, BMP3, NDRG4, SPG20, and BMP3 plus NDRG4 genes exceeded a sensitivity of 70% and a specificity of 80% for CRC detection. The DOR of the seven candidate biomarkers ranged from 19.80 to 334.33, indicating a good diagnostic power in discriminating cancer from normal tissues. The AUC range was from 0.88 to 0.95, indicating a good or very good discriminatory performance. When test results for BMP3 and NDRG4 were combined, the DOR of CRC detection was 98.36, which was higher than that for BMP3 and NDRG4 separately. As for adenoma detection, the DOR of methylated NDRG4 is higher than that for CRC (CRC vs. adenoma: 54.86 vs. 57.22). Both the sensitivity and specificity of NDRG4 for adenoma detection exceeded 70%. These findings demonstrate the eligibility and feasibility of DNA methylation as a minimally invasive biomarker in feces in the diagnosis of CRC and adenoma. The use of DNA from human stools has the potential to be readily applicable to detect aberrant DNA methylation levels among many subjects for CRC early screening.
Collapse
Affiliation(s)
- Rongbin Liu
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuan Su
- Department of Head and Neck, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, China
| | - Yakang Long
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dalei Zhou
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xiao Zhang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zulu Ye
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiangjun Ma
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fang Wang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Caiyun He
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
36
|
Characteristics, properties, and potential applications of circulating cell-free dna in clinical diagnostics: a focus on transplantation. J Immunol Methods 2018; 463:27-38. [DOI: 10.1016/j.jim.2018.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022]
|
37
|
Dong L, Wang S, Fu B, Wang J. Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection. Sci Rep 2018; 8:9650. [PMID: 30504843 PMCID: PMC6269532 DOI: 10.1038/s41598-018-27368-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
KRAS gene mutations are predictive markers of non-response to anti-epidermal growth factor receptor. An increasing number of techniques are being developed to detect KRAS mutations. To obtain consistent and comparable results, a traceable reference material (RM) is necessary for validation the routinely used method. However, a lack of reference methods is a main impediment for deriving traceability and measurement comparability. In this study, droplet digital PCR (ddPCR) and next generation sequencing (NGS) were evaluated. No cross- reactivity was detected with any of the probe by ddPCR. The measured fraction of KRAS mutant allele by ddPCR and NGS agreed with the prepared value by gravimetrical dilution (concordance (k) >0.95 and >0.93 for ddPCR and NGS, respectively). The reliable limit of quantification (LOQ) was 0.1% and 1% for ddPCR and NGS, respectively. In conclusion, the validated ddPCR and NGS are suitable to characterize the KRAS RM due to the high specificity and accuracy. Verification of the LOD of three commercial kits by using the NIM-KRAS-8 RM showed that the LOD was inconsistent with the claimed LOD of the kits (1%) for some assays. This indicates a traceable RM was important for setting up the criteria regarding the LOD for the commercial kit.
Collapse
Affiliation(s)
- Lianhua Dong
- National Institute of Metrology, Beijing, 100013, P. R. China.
| | - Shangjun Wang
- Nanjing Institute of Measurement and Testing Technology, Nanjing, 210049, P. R. China
| | - Boqiang Fu
- National Institute of Metrology, Beijing, 100013, P. R. China
| | - Jing Wang
- National Institute of Metrology, Beijing, 100013, P. R. China
| |
Collapse
|
38
|
Harada H, Miyamaoto K, Kimura M, Ishigami T, Taniyama K, Okada M. Lung cancer risk stratification using methylation profile in the oral epithelium. Asian Cardiovasc Thorac Ann 2018; 27:87-92. [PMID: 30417685 DOI: 10.1177/0218492318813443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Assuming that the entire airway is affected by the same inhaled carcinogen, similar molecular alterations may occur in the lung and oral cavity. Thus, we hypothesized that DNA methylation profiles in the oral epithelium may be a promising biomarker for lung cancer risk stratification. METHODS A methylation-specific polymerase chain reaction was performed on oral epithelium from 16 patients with lung cancer and 32 controls without lung cancer. Genes showing aberrant methylation profiles in the oral epithelium were compared between patients and controls. RESULTS The analysis revealed that HOXD11 and PCDHGB6 were methylated more frequently in patients than in controls ( p = 0.0055 and p = 0.0247, respectively). Combined analyses indicated that 8 of 16 (50%) patients and 3 of 32 (9.4%) controls showed DNA methylation in both genes ( p = 0.0016). Among the population limited to current and former smokers, 6 of 11 (54.5%) patients showed methylation in both genes, compared to 1 of 17 (5.9%) controls ( p = 0.0037). In a subgroup analysis limited to the population above 50-years old, 8 of 16 (50%) patients and 2 of 16 (12.5%) controls showed methylation in both genes ( p = 0.0221). CONCLUSIONS The results of this study indicate that specific gene methylation in the oral epithelium might be a promising biomarker for lung cancer risk assessment, especially among smokers. Risk stratification through the analysis of DNA methylation profiles in the oral epithelium may be a useful and less invasive first-step approach in an efficient two-step lung cancer screening strategy.
Collapse
Affiliation(s)
- Hiroaki Harada
- 1 National Hospital Organization Higashihiroshima Medical Center, Higashihiroshima, Japan.,2 NHO Kure Medical Center/Chugoku Cancer Center, Kure, Japan
| | - Kazuaki Miyamaoto
- 1 National Hospital Organization Higashihiroshima Medical Center, Higashihiroshima, Japan
| | | | | | - Kiyomi Taniyama
- 2 NHO Kure Medical Center/Chugoku Cancer Center, Kure, Japan
| | - Morihito Okada
- 4 Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
39
|
Samandari M, Julia MG, Rice A, Chronopoulos A, Del Rio Hernandez AE. Liquid biopsies for management of pancreatic cancer. Transl Res 2018; 201:98-127. [PMID: 30118658 DOI: 10.1016/j.trsl.2018.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/17/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is one of the main causes of cancer-related deaths worldwide. It is asymptomatic at an early stage, and most diagnosis occurs when the disease is already at a late stage, by which time the tumor is nonresectable. In order to increase the overall survival of patients with pancreatic cancer, as well as to decrease the cancer burden, it is necessary to perform early diagnosis, prognosis stratifications and cancer monitoring using accurate, minimally invasive, and cost-effective methods. Liquid biopsies seek to detect tumor-associated biomarkers in a variety of extractable body fluids and can help to monitor treatment response and disease progression, and even predict patient outcome. In patients with pancreatic cancer, tumor-derived materials, primarily circulating tumor DNA, circulating tumor cells and exosomes, are being studied for inclusion in the management of the disease. This review focuses on describing the biology of these biomarkers, methods for their enrichment and detection, as well as their potential for clinical application. Moreover, we discuss the future direction of liquid biopsies and introduce how they can be exploited toward point of care personalized medicine for the management of pancreatic cancer.
Collapse
Affiliation(s)
- Mohamadmahdi Samandari
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - María Gil Julia
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Antonios Chronopoulos
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Armando E Del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
40
|
Kaplan JH, Gonda TA. The Use of Biomarkers in the Risk Stratification of Cystic Neoplasms. Gastrointest Endosc Clin N Am 2018; 28:549-568. [PMID: 30241643 DOI: 10.1016/j.giec.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cyst fluid biomarkers may be used to identify pancreatic cyst subtypes. Biomarkers are selected based on their ability to accurately distinguish mucinous from nonmucinous cysts and to risk stratify cysts based on malignant potential. Biomarkers of interest include but are not limited to amylase, oncogenes, DNA analysis, and epigenetic markers. The introduction of next-generation sequencing and molecular panels has aided in improved diagnostic accuracy and risk stratification. This review presents the diagnostic performance of currently available biomarkers and proposes an algorithm to incorporate their use in the diagnosis of pancreatic cysts.
Collapse
Affiliation(s)
- Jeremy H Kaplan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, 161 Fort Washington Avenue, New York, NY 10032, USA
| | - Tamas A Gonda
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, 161 Fort Washington Avenue, New York, NY 10032, USA.
| |
Collapse
|
41
|
Circulating tumor DNA – Current state of play and future perspectives. Pharmacol Res 2018; 136:35-44. [DOI: 10.1016/j.phrs.2018.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
|
42
|
Welinsky S, Lucas AL. Familial Pancreatic Cancer and the Future of Directed Screening. Gut Liver 2018; 11:761-770. [PMID: 28609837 PMCID: PMC5669591 DOI: 10.5009/gnl16414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is the third most common cause of cancer-related death in the United States and the 12th most common worldwide. Mortality is high, largely due to late stage of presentation and suboptimal treatment regimens. Approximately 10% of PC cases have a familial basis. The major genetic defect has yet to be identified but may be inherited by an autosomal dominant pattern with reduced penetrance. Several known hereditary syndromes or genes are associated with an increased risk of developing PC and account for approximately 2% of PCs. These syndromes include the hereditary breast-ovarian cancer syndrome, Peutz-Jeghers syndrome, familial atypical multiple mole melanoma, Lynch syndrome, familial polyposis, ataxia-telangiectasia, and hereditary pancreatitis. Appropriate screening using methods such as biomarkers or imaging, with endoscopic ultrasound and magnetic resonance imaging, may assist in the early detection of neoplastic lesions in the high-risk population. If these lesions are detected and treated before the development of invasive carcinoma, PC disease morbidity and mortality may be improved. This review will focus on familial PC and other hereditary syndromes implicated in the increased risk of PC; it will also highlight current screening methods and the future of new screening modalities.
Collapse
Affiliation(s)
- Sara Welinsky
- Samuel F. Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aimee L Lucas
- Samuel F. Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Cooper GS, Markowitz SD, Chen Z, Tuck M, Willis JE, Berger BM, Brenner DE, Li L. Evaluation of Patients with an Apparent False Positive Stool DNA Test: The Role of Repeat Stool DNA Testing. Dig Dis Sci 2018; 63. [PMID: 29516325 PMCID: PMC5960589 DOI: 10.1007/s10620-018-5001-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND There is uncertainty as to the appropriate follow-up of patients who test positive on multimarker stool DNA (sDNA) testing and have a colonoscopy without neoplasia. AIMS To determine the prevalence of missed colonic or occult upper gastrointestinal neoplasia in patients with an apparent false positive sDNA. METHODS We prospectively identified 30 patients who tested positive with a commercially available sDNA followed by colonoscopy without neoplastic lesions. Patients were invited to undergo repeat sDNA at 11-29 months after the initial test followed by repeat colonoscopy and upper endoscopy. We determined the presence of neoplastic lesions on repeat evaluation stratified by results of repeat sDNA. RESULTS Twelve patients were restudied. Seven patients had a negative second sDNA test and a normal second colonoscopy and upper endoscopy. In contrast, 5 of 12 subjects had a persistently positive second sDNA test, and 3 had positive findings, including a 3-cm sessile transverse colon adenoma with high-grade dysplasia, a 2-cm right colon sessile serrated adenoma with dysplasia, and a nonadvanced colon adenoma (p = 0.045). These corresponded to a positive predictive value of 0.60 (95% CI 0.17-1.00) and a negative predictive value of 1.00 (95% CI 1.00-1.00) for the second sDNA test. In addition, the medical records of all 30 subjects with apparent false positive testing were reviewed and no documented cases of malignant tumors were recorded. CONCLUSIONS Repeat positive sDNA testing may identify a subset of patients with missed or occult colorectal neoplasia after negative colonoscopy for an initially positive sDNA. High-quality colonoscopy with careful attention to the right colon in patients with positive sDNA is critically important and may avoid false negative colonoscopy.
Collapse
|
44
|
Hypermethylation of MDFI promoter with NSCLC is specific for females, non-smokers and people younger than 65. Oncol Lett 2018; 15:9017-9024. [PMID: 29805634 PMCID: PMC5958687 DOI: 10.3892/ol.2018.8535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 01/25/2018] [Indexed: 01/03/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is a major subtype of lung cancer. Aberrant DNA methylation has been frequently observed in NSCLC. The aim of the present study was to investigate the role of MyoD family inhibitor (MDFI) methylation in NSCLC. Formalin-fixed paraffin-embedded tumor tissues and adjacent non-cancerous tissues were collected from a total of 111 patients with NSCLC. A methylation assay was performed using the quantitative methylation-specific polymerase chain reaction method. The percentage of methylated reference was used to represent the methylation level of the MDFI promoter. Data mining of a dataset from The Cancer Genome Atlas (TCGA) demonstrated that MDFI promoter methylation levels were significantly increased in 830 tumor tissues compared with 75 non-tumor tissues (P=0.012). However, the results on tissues obtained in the present study indicated that the MDFI promoter methylation levels in tumor tissues were not significantly different compared with those in the adjacent non-tumor tissues (P=0.159). Subsequent breakdown analysis identified that higher MDFI promoter methylation levels were significantly associated with NSCLC in females (P=0.031), but not in males (P=0.832). Age-based subgroup analysis demonstrated that higher MDFI promoter methylation levels were significantly associated with NSCLC in younger patients (≤65 years; P=0.003), but not in older patients (P=0.327). In addition, the association of MDFI methylation with NSCLC was significant in non-smokers (P=0.014), but not in smokers (P=0.832). Similar results also have been determined from subgroup analysis of the TCGA datasets. The Gene Expression Omnibus database indicated MDFI expression restoration in partial lung cancer cell lines (H1299 and Hotz) following demethylation treatment. However, it was identified that MDFI promoter hypermethylation was not significantly associated with prognosis of NSCLC (P>0.05). In conclusion, the present study indicated that the association of higher methylation of the MDFI promoter with NSCLC may be specific to females, non-smokers and people aged ≤65.
Collapse
|
45
|
Chen X, Yang Y, Liu J, Li B, Xu Y, Li C, Xu Q, Liu G, Chen Y, Ying J, Duan S. NDRG4 hypermethylation is a potential biomarker for diagnosis and prognosis of gastric cancer in Chinese population. Oncotarget 2018; 8:8105-8119. [PMID: 28042954 PMCID: PMC5352386 DOI: 10.18632/oncotarget.14099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022] Open
Abstract
In order to assess whether N-Myc downstream regulated gene 4 (NDRG4) methylation was associated with the diagnosis and prognosis of gastric cancer, we measured the methylation of NDRG4 promoter and gene body regions among 110 gastric cancer patients using quantitative methods (MethyLight and pyrosequencing). Both NDRG4 promoter and gene body methylation levels were increased in tumor tissues than paired adjacent normal tissues (P < 0.001). NDRG4 gene body methylation was found to be significantly associated with age and tumor differentiation. NDRG4 promoter hypermethylation was proved to be a predictor of poor overall survival. However, opposite result was observed among The Cancer Genome Atlas (TCGA) cohort. The findings from gastric cell lines and public databases have suggested that NDRG4 methylation level was inversely associated with NDRG4 transcription level. Subsequent luciferase reporter gene assay showed that promoter CpG island but not gene body CpG island was able to upregulate gene expression. Collectively, NDRG4 promoter hypermethylation contributed to the risk of gastric cancer and predicted a poor prognosis in Chinese gastric cancer patients. Moreover, the combined methylation levels of NDRG4 promoter and gene body served as diagnostic biomarkers in gastric cancer.
Collapse
Affiliation(s)
- Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jing Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yan Xu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cong Li
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Qi Xu
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Guili Liu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yingmin Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
46
|
Shim J, Banerjee S, Qiu H, Smithe KKH, Estrada D, Bello J, Pop E, Schulten K, Bashir R. Detection of methylation on dsDNA using nanopores in a MoS 2 membrane. NANOSCALE 2017; 9:14836-14845. [PMID: 28795735 PMCID: PMC5890527 DOI: 10.1039/c7nr03092d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Methylation at the 5-carbon position of the cytosine nucleotide base in DNA has been shown to be a reliable diagnostic biomarker for carcinogenesis. Early detection of methylation and intervention could drastically increase the effectiveness of therapy and reduce the cancer mortality rate. Current methods for detecting methylation involve bisulfite genomic sequencing, which are cumbersome and demand a large sample size of bodily fluids to yield accurate results. Hence, more efficient and cost effective methods are desired. Based on our previous work, we present a novel nanopore-based assay using a nanopore in a MoS2 membrane, and the methyl-binding protein (MBP), MBD1x, to detect methylation on dsDNA. We show that the dsDNA translocation was effectively slowed down using an asymmetric concentration of buffer and explore the possibility of profiling the position of methylcytosines on the DNA strands as they translocate through the 2D membrane. Our findings advance us one step closer towards the possible use of nanopore sensing technology in medical applications such as cancer detection.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028
- Corresponding Authors: Jiwook Shim, Ph.D., Department of Biomedical Engineering, Henry M. Rowan College of Engineering, owan University, 201 Mullica Hill Road, Glassboro, NJ 08028, U.S.A., , Phone: 856-256-5393, Rashid Bashir, Ph.D., Department of Bioengineering, University of Illinois at Urbana – Champaign, 1270 Digital Computer Laboratory, Urbana, IL 61801, , Phone: 217-333-1867
| | - Shouvik Banerjee
- Department of Material Science and Engineering, University of Illinois at Urbana – Champaign, Urbana, IL 61801
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kirby K. H. Smithe
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - David Estrada
- Department of Material Science and Engineering, Boise State University, Boise, ID 83725
| | - Julian Bello
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana – Champaign, Urbana, IL 61801
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana – Champaign, Urbana, IL 61801
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana – Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana – Champaign, Urbana, IL 61801
- Corresponding Authors: Jiwook Shim, Ph.D., Department of Biomedical Engineering, Henry M. Rowan College of Engineering, owan University, 201 Mullica Hill Road, Glassboro, NJ 08028, U.S.A., , Phone: 856-256-5393, Rashid Bashir, Ph.D., Department of Bioengineering, University of Illinois at Urbana – Champaign, 1270 Digital Computer Laboratory, Urbana, IL 61801, , Phone: 217-333-1867
| |
Collapse
|
47
|
Weisenberger DJ, Liang G, Lenz HJ. DNA methylation aberrancies delineate clinically distinct subsets of colorectal cancer and provide novel targets for epigenetic therapies. Oncogene 2017; 37:566-577. [PMID: 28991233 DOI: 10.1038/onc.2017.374] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a worldwide health concern with respect to both incidence and mortality, and as a result, CRC tumorigenesis, progression and metastasis have been heavily studied, especially with respect to identifying genetic, epigenetic, transcriptomic and proteomic profiles of disease. DNA methylation alterations are hallmarks of CRC, and epigenetic driver genes have been identified that are thought to be involved in early stages of tumorigenesis. Moreover, distinct CRC patient subgroups are organized based on DNA methylation profiles. CRC tumors displaying CpG island methylator phenotypes (CIMPs), defined as DNA hypermethylation at specific CpG islands in subsets of tumors, show high concordance with specific genetic alterations, disease risk factors and patient outcome. This review details the DNA methylation alterations in CRC, the significance of CIMP status, the development of treatments based on specific molecular profiles and the application of epigenetic therapies for CRC patient treatment.
Collapse
Affiliation(s)
- D J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA USA
| | - G Liang
- Department of Urology, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - H-J Lenz
- Department of Medicine, University of Southern California, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
48
|
Henriksen SD, Madsen PH, Larsen AC, Johansen MB, Pedersen IS, Krarup H, Thorlacius-Ussing O. Cell-free DNA promoter hypermethylation in plasma as a predictive marker for survival of patients with pancreatic adenocarcinoma. Oncotarget 2017; 8:93942-93956. [PMID: 29212200 PMCID: PMC5706846 DOI: 10.18632/oncotarget.21397] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
Introduction Few prognostic biomarkers are available for pancreatic cancer. The aim of this study is to examine the correlation between the survival of pancreatic adenocarcinoma patients and hypermethylated genes in plasma-derived cell-free DNA. Methods Consecutive patients with pancreatic adenocarcinoma were prospectively included and staged according to the TNM classification. Methylation-specific PCR of 28 genes was conducted. A survival prediction model independent of cancer stage and stage-specific survival prediction models were developed by multivariable Cox regression analysis using backward stepwise selection. Results Ninety-five patients with pancreatic adenocarcinoma were included. Patients with more than 10 hypermethylated genes had a HR of 2.03 (95% CI; 1.15-3.57) compared to patients with fewer hypermethylated genes. Three survival prediction models were developed: Total group; (American Society of Anesthesiologists score (ASA)=3, GSTP1, SFRP2, BNC1, SFRP1, TFPI2, and WNT5A) Risk groups 2, 3 and 4 had a HR of 2.65 (95% CI; 1.24-5.66), 4.34 (95% CI; 1.98-9.51) and 21.19 (95% CI; 8.61-52.15), respectively, compared to risk group 1. Stage I-II; (ASA=3, SFRP2, and MESTv2) Risk groups 2, 3 and 4 had a HR of 4.83 (95% CI; 2.01-11.57), 9.12 (95% CI; 2.18-38.25) and 70.90 (95% CI; 12.63-397.96), respectively, compared to risk group 1. Stage IV; (BMP3, NPTX2, SFRP1, and MGMT) Risk group 2 had a HR of 5.23 (95% CI; 2.13-12.82) compared to risk group 1. Conclusion Prediction models based on cell-free DNA hypermethylation stratified pancreatic adenocarcinoma patients into risk groups according to survival. The models have the potential to work as prognostic biomarkers. However, further validation of the results is required to substantiate the findings.
Collapse
Affiliation(s)
- Stine Dam Henriksen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark.,Department of General Surgery, Hospital of Vendsyssel, Hjørring, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Poul Henning Madsen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | | | - Martin Berg Johansen
- Unit of Clinical Biostatistics and Bioinformatics, Aalborg University Hospital, Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Krarup
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Section of Molecular Diagnostics, Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
49
|
Hu H, Chen X, Wang C, Jiang Y, Li J, Ying X, Yang Y, Li B, Zhou C, Zhong J, Wu D, Ying J, Duan S. The role of TFPI2 hypermethylation in the detection of gastric and colorectal cancer. Oncotarget 2017; 8:84054-84065. [PMID: 29137404 PMCID: PMC5663576 DOI: 10.18632/oncotarget.21097] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/28/2017] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer is a prevalent disease with high morbidity and mortality. Tissue factor pathway inhibitor 2 (TFPI2) gene could protect the extracellular matrix of cancer cells from degradation and tumor invasion. The goal of our study was to estimate the diagnostic value of TFPI2 hypermethylation in gastric cancer (GC) and colorectal cancer (CRC). TFPI2 methylation was measured by quantitative methylation-specific polymerase chain reaction (qMSP) method in 114 GC and 80 CRC tissues and their paired non-tumor tissues. Our results showed that TFPI2 methylation was significantly higher in tumor tissues (GC: 29.940% vs. 12.785%, P < 0.001; CRC: 26.930% vs. 5.420%, P < 0.001). The methylation level of TFPI2 in colorectal tumor tissues was significantly higher than that in colorectal normal tissues (26.930% versus 0.002%, P < 0.00001). In GC, TFPI2 hypermethylation yielded an area under the curve (AUC) of 0.762 (95% CI: 0.696–0.828) with a sensitivity of 68% and a specificity of 83%. In CRC, TFPI2 hypermethylation yielded an AUC of 0.759 (95% CI: 0.685–0.834) with a sensitivity of 61% and a specificity of 84%. Similarly, TCGA data also supported TFPI2 hypermethylation was a promising diagnostic marker for GC and CRC. Moreover, the dual-luciferase reporter assay showed TFPI2 fragment could upregulate gene expression (fold change = 5, P = 0.005). Data mining further indicated that TFPI2 expression in CRC cell lines was significantly increased after 5’-AZA-deoxycytidine treatment (fold change > 1.37). In conclusion, TFPI2 hypermethylation might be a promising diagnostic biomarker for GC and CRC.
Collapse
Affiliation(s)
- Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiaoying Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cheng Wang
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000, China
| | - Yuting Jiang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jingjing Li
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong Yang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jie Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dongping Wu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Zhejiang 312000, China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
50
|
DNA Methylation as a Noninvasive Epigenetic Biomarker for the Detection of Cancer. DISEASE MARKERS 2017; 2017:3726595. [PMID: 29038612 PMCID: PMC5605861 DOI: 10.1155/2017/3726595] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/10/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022]
Abstract
In light of the high incidence and mortality rates of cancer, early and accurate diagnosis is an important priority for assigning optimal treatment for each individual with suspected illness. Biomarkers are crucial in the screening of patients with a high risk of developing cancer, diagnosing patients with suspicious tumours at the earliest possible stage, establishing an accurate prognosis, and predicting and monitoring the response to specific therapies. Epigenetic alterations are innovative biomarkers for cancer, due to their stability, frequency, and noninvasive accessibility in bodily fluids. Epigenetic modifications are also reversible and potentially useful as therapeutic targets. Despite this, there is still a lack of accurate biomarkers for the conclusive diagnosis of most cancer types; thus, there is a strong need for continued investigation to expand this area of research. In this review, we summarise current knowledge on methylated DNA and its implications in cancer to explore its potential as an epigenetic biomarker to be translated for clinical application. We propose that the identification of biomarkers with higher accuracy and more effective detection methods will enable improved clinical management of patients and the intervention at early-stage disease.
Collapse
|