1
|
Griffin MA, Worley DR, Flesner BK, Reetz J, Holt DE, Durham A, Gill N, Winget J, Mai W. A combination of pre- and intraoperative techniques identifies sentinel lymph nodes in dogs with thyroid carcinoma: A pilot study. Vet Surg 2025; 54:788-798. [PMID: 40084743 DOI: 10.1111/vsu.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE The aim of this study was to develop and describe pre- and intra-operative sentinel lymph node (SLN) mapping techniques in dogs with thyroid carcinoma. STUDY DESIGN A prospective, pilot clinical trial was performed. ANIMALS Six client-owned dogs with unilateral thyroid carcinoma and no overtly metastatic locoregional lymph nodes (LNs) were enrolled. METHODS All dogs underwent preoperative indirect computed tomography (CT)-lymphography (CTL) with peritumoral iohexol injection and intraoperative SLN mapping with peritumoral injection of a visible dye (methylene blue [MB]) and near-infrared (NIR) fluorescent dye (indocyanine green [ICG]). Subsequent LN extirpation and routine thyroidectomy were performed. All excised tissues were evaluated histologically. RESULTS Pre- and intra-operative SLN mapping identified at least one SLN in all dogs. A median of one SLN (range, 1-2) was identified on both CTL and intraoperative SLN mapping. Identified SLNs included medial retropharyngeal, cranial deep cervical, and superficial cervical LNs. Variability between pre- and intra-operative SLN findings occurred in 3/6 dogs. A median of two LNs (range, 1-3) were extirpated for each dog. Metastatic carcinoma was diagnosed in extirpated LNs in 2/6 dogs and 3/12 extirpated LNs. CONCLUSION In this pilot study, preoperative CTL and intraoperative MB and ICG/NIR allowed for identification of SLNs in dogs with thyroid carcinoma. CLINICAL SIGNIFICANCE Sentinel lymph nodes were identified and extirpated using the described techniques, with nodal metastasis identified in a subset of these dogs due to SLN mapping. Large-scale, powered studies are needed to accurately determine the incidence and prognostic significance of nodal metastasis identified by SLN mapping and extirpation in dogs with thyroid carcinoma.
Collapse
Affiliation(s)
- Maureen A Griffin
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Deanna R Worley
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Brian K Flesner
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Jennifer Reetz
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - David E Holt
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Amy Durham
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Nimar Gill
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - JoAnne Winget
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Wilfried Mai
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Bou-Samra P, Kennedy GT, Chang A, Guo E, Azari FS, Din A, Santini JT, Bensen ES, Singhal S. Phase 2 Clinical Trial of VGT-309 for Intraoperative Molecular Imaging During Pulmonary Resection. Ann Thorac Surg 2025; 119:625-633. [PMID: 38823756 PMCID: PMC11607179 DOI: 10.1016/j.athoracsur.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Advances in intraoperative molecular imaging (IMI) may improve surgical outcomes when resecting tumors in the lung. A single-center trial was conducted using VGT-309, a cathepsin-targeted near-infrared imaging agent that causes lung nodules to fluoresce during surgical resection. The end point of this phase 2 study was to evaluate the frequency that IMI with VGT-309 resulted in a clinically significant event (CSE): localization of pulmonary nodules, discovery of unsuspected additional cancers, or identification of positive margins. METHODS Patients undergoing surgical resection for known or suspected cancer in the lung received VGT-309 (0.32 mg/kg) preoperatively. During the surgical procedure, localization and resection of the nodules were performed using standard surgical techniques. Near-infrared imaging was then used to localize nodules, seek occult lesions, and assess resection margins. Efficacy was measured by the frequency of CSEs. RESULTS Of the 40 patients who underwent pulmonary resection with VGT-309, 17 (42.5%) had at least 1 CSE. Near-infrared imaging identified lesions not found by standard surgical methods in 16 patients, additional cancers not found by preoperative imaging in 1 patient, and margins within 5 mm of the closest staple line in 2 patients. VGT-309 performance was tested across a broad range of tumor types and commercial near-infrared imaging systems. VGT-309 appeared safe, well-tolerated, with no infusion reactions, and no drug-related serious adverse events. CONCLUSIONS This phase 2 study demonstrated the utility of IMI with VGT-309 in localizing pulmonary nodules, recognizing synchronous lesions, and identifying positive margins. A multi-institutional study will further evaluate the efficacy of VGT-309.
Collapse
Affiliation(s)
- Patrick Bou-Samra
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Gregory T Kennedy
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Austin Chang
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Emily Guo
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Feredun S Azari
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | - Azra Din
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania
| | | | | | - Sunil Singhal
- Department of Surgery, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania Perelman School of Medicine Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Chen X, Li Y, Su J, Zhang L, Liu H. Progression in Near-Infrared Fluorescence Imaging Technology for Lung Cancer Management. BIOSENSORS 2024; 14:501. [PMID: 39451714 PMCID: PMC11506746 DOI: 10.3390/bios14100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Lung cancer is a major threat to human health and a leading cause of death. Accurate localization of tumors in vivo is crucial for subsequent treatment. In recent years, fluorescent imaging technology has become a focal point in tumor diagnosis and treatment due to its high sensitivity, strong selectivity, non-invasiveness, and multifunctionality. Molecular probes-based fluorescent imaging not only enables real-time in vivo imaging through fluorescence signals but also integrates therapeutic functions, drug screening, and efficacy monitoring to facilitate comprehensive diagnosis and treatment. Among them, near-infrared (NIR) fluorescence imaging is particularly prominent due to its improved in vivo imaging effect. This trend toward multifunctionality is a significant aspect of the future advancement of fluorescent imaging technology. In the past years, great progress has been made in the field of NIR fluorescence imaging for lung cancer management, as well as the emergence of new problems and challenges. This paper generally summarizes the application of NIR fluorescence imaging technology in these areas in the past five years, including the design, detection principles, and clinical applications, with the aim of advancing more efficient NIR fluorescence imaging technologies to enhance the accuracy of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Xinglong Chen
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuning Li
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jialin Su
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Lemeng Zhang
- Thoracic Medicine Department 1, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha 410013, China; (X.C.); (Y.L.); (J.S.)
| | - Hongwen Liu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China;
| |
Collapse
|
4
|
Thomson C. Near-infrared-guided Thoracoscopic Surgery and Future Near-infrared Targets. Vet Clin North Am Small Anim Pract 2024; 54:685-695. [PMID: 38508966 DOI: 10.1016/j.cvsm.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Intraoperative near-infrared fluorescence imaging allows for real time, noninvasive visualization of anatomic structures (blood vessels, lymphatic vessels) or diseased states (cancer, inflammation). This technique is easily adapted to thoracoscopy and has allowed for improved detection of lung tumors and other various cancers, thoracic lymphatics, and cardiothoracic vasculature.
Collapse
Affiliation(s)
- Chris Thomson
- Surgical Oncology, Veterinary Specialty Hospital - North County, by Ethos Veterinary Health, 2055 Montiel Road. #104, San Marcos, CA 92069, USA.
| |
Collapse
|
5
|
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer. Chem Rev 2024; 124:4021-4078. [PMID: 38518254 DOI: 10.1021/acs.chemrev.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Fluorescence imaging is one of the most promising approaches to achieve intraoperative assessment of the tumor/normal tissue margins during cancer surgery. This is critical to improve the patients' prognosis, and therefore various molecular fluorescence imaging probes have been developed for the identification of cancer lesions during surgery. Among them, "activatable" fluorescence probes that react with cancer-specific biomarker enzymes to generate fluorescence signals have great potential for high-contrast cancer imaging due to their low background fluorescence and high signal amplification by enzymatic turnover. Over the past two decades, activatable fluorescence probes employing various fluorescence control mechanisms have been developed worldwide for this purpose. Furthermore, new biomarker enzymatic activities for specific types of cancers have been identified, enabling visualization of various types of cancers with high sensitivity and specificity. This Review focuses on recent advances in the design, function and characteristics of activatable fluorescence probes that target cancer-specific enzymatic activities for cancer imaging and also discusses future prospects in the field of activity-based diagnostics for cancer.
Collapse
|
6
|
Oblak ML, Lu HY, Ram AS, McKenna C. Comparative aspects of targeted sentinel lymph node mapping in veterinary and human medicine: opportunities for future research. Front Med (Lausanne) 2024; 11:1342456. [PMID: 38633313 PMCID: PMC11021648 DOI: 10.3389/fmed.2024.1342456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
There is a significant overlap in the genetic, metabolic and epigenetic alterations between human and companion animal cancers, including those of the oral cavity, breast, bladder, skin, lungs and pancreas. In many cancer types, the identification and removal of affected lymph nodes are essential for accurate cancer management, including treatment and prognosis. Historically, lymphadenectomy and subsequent radical resection based on regional anatomy, palpation and lymph node aspirates were considered sufficient; however, modern approaches with sentinel lymph node mapping (SLN) mapping have increased the accuracy of surgical decision-making. Preoperative and intraoperative SLN mapping techniques in veterinary patients parallel those used in human medicine. While many of these techniques are highly successful, the main challenges with current methodologies are their sensitivity and specificity for the presence of cancer, which can be overcome via precision medicine and targeted SLN mapping agents. Given the large population of dogs and cats with cancer, the crossover of knowledge between species can help to deepen our understanding of many of these cancers and can be useful in evaluating new drugs and/or therapies. In this review, we discuss SLN mapping techniques in veterinary medicine and the concept of precision medicine as it relates to targeted SLN mapping imaging agents. The large number of companion animals affected by cancer is an underutilized resource to bridge the translational gap and we aim to provide a reference for the use of dogs and cats as a comparative model for human SLN mapping.
Collapse
Affiliation(s)
- Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Hui Yu Lu
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Ann S. Ram
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Charly McKenna
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Zhang D, Teng KX, Zhao L, Niu LY, Yang QZ. Ultra-Small Nano-Assemblies as Tumor-Targeted and Renal Clearable Theranostic Agent for Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209789. [PMID: 36861334 DOI: 10.1002/adma.202209789] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Indexed: 05/12/2023]
Abstract
It is a challenge to design photosensitizers to balance between the tumor-targeting enrichment for precise treatment and efficient clearance within a reasonable timescale for reducing side effects. Herein, an ultra-small nano-photosensitizer 1a with excellent tumor-specific accumulation and renal clearance is reported. It is formed from the self-assembly of compound 1 bearing three triethylene glycol (TEG) arms and two pyridinium groups in water. The positively charged surface with neutral TEG coating enables 1a to efficiently target the tumor, with the signal-to-background ratio reaching as high as 11.5 after tail intravenous injection. The ultra-small size of 1a with an average diameter of 5.6 nm allows its fast clearance through kidney. Self-assembly also endows 1a with an 18.2-fold enhancement of reactive oxygygen species generation rate compared to compound 1 in organic solution. Nano-PS 1a manifests an excellent photodynamic therapy efficacy on tumor-bearing mouse models. This work provides a promising design strategy of photosensitizers with renal clearable and tumor-targeting ability.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Kun-Xu Teng
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
8
|
Sakurai N, Ishigaki K, Terai K, Heishima T, Okada K, Yoshida O, Kagawa Y, Asano K. Impact of near-infrared fluorescence imaging with indocyanine green on the surgical treatment of pulmonary masses in dogs. Front Vet Sci 2023; 10:1018263. [PMID: 36825232 PMCID: PMC9942240 DOI: 10.3389/fvets.2023.1018263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Objectives To investigate the intraoperative identification and complete resection of pulmonary masses, and to evaluate lymph node metastasis of pulmonary malignant tumors in dogs using indocyanine green (ICG) fluorescence imaging. Methods Forty dogs with pulmonary masses were included, all of which underwent surgical treatment. ICG fluorescence imaging was performed on pulmonary masses before lobectomy and the resection margins after lobectomy. In addition, ICG fluorescence of the excised masses and lymph nodes was evaluated in the shaded box. The fluorescence findings were compared with the histopathological diagnosis. Results Of 44 nodules resected from 40 dogs, 32 nodules were histopathologically diagnosed as lung adenocarcinoma, five were histiocytic sarcoma, three were undifferentiated sarcoma, two were malignant epithelial tumor metastases, one was carcinosarcoma, and one was a non-neoplastic lesion. Fluorescence was observed in all nodules. In addition to the main lesion, other fluorescent nodules were found in four dogs. Regarding the diagnostic accuracy of complete resection based on ICG fluorescence, the sensitivity was 67.7% and the specificity was 60.0%. The sensitivity and specificity of ICG fluorescence for the diagnosis of lymph node metastasis were 100 and 75.0%, respectively. Conclusions ICG fluorescence imaging might be a useful intraoperative diagnostic method to identify the location of tumors and lymph node metastasis, but not to evaluate complete tumor resection, in dogs with pulmonary malignant tumors.
Collapse
Affiliation(s)
- Naoki Sakurai
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Kumiko Ishigaki
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Kazuyuki Terai
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tatsuya Heishima
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | | | - Orie Yoshida
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | | | - Kazushi Asano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan,*Correspondence: Kazushi Asano ✉
| |
Collapse
|
9
|
Bray J, Eward W, Breen M. Defining the relevance of surgical margins. Part two: Strategies to improve prediction of recurrence risk. Vet Comp Oncol 2023; 21:145-158. [PMID: 36745110 DOI: 10.1111/vco.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Due to the complex nature of tumour biology and the integration between host tissues and molecular processes of the tumour cells, a continued reliance on the status of the microscopic cellular margin should not remain our only determinant of the success of a curative-intent surgery for patients with cancer. Based on current evidence, relying on a purely cellular focus to provide a binary indication of treatment success can provide an incomplete interpretation of potential outcome. A more holistic analysis of the cancer margin may be required. If we are to move ahead from our current situation - and allow treatment plans to be more intelligently tailored to meet the requirements of each individual tumour - we need to improve our utilisation of techniques that either improve recognition of residual tumour cells within the surgical field or enable a more comprehensive interrogation of tumour biology that identifies a risk of recurrence. In the second article in this series on defining the relevance of surgical margins, the authors discuss possible alternative strategies for margin assessment and evaluation in the canine and feline cancer patient. These strategies include considering adoption of the residual tumour classification scheme; intra-operative imaging systems including fluorescence-guided surgery, optical coherence tomography and Raman spectroscopy; molecular analysis and whole transcriptome analysis of tissues; and the development of a biologic index (nomogram). These techniques may allow evaluation of individual tumour biology and the status of the resection margin in ways that are different to our current techniques. Ultimately, these techniques seek to better define the risk of tumour recurrence following surgery and provide the surgeon and patient with more confidence in margin assessment.
Collapse
Affiliation(s)
| | - Will Eward
- Orthopedic Surgical Oncologist, Duke Cancer Center, Durham, North Carolina, USA
| | - Matthew Breen
- Oscar J. Fletcher Distinguished Professor of Comparative Oncology Genetics, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
11
|
Neijenhuis LKA, de Myunck LDAN, Bijlstra OD, Kuppen PJK, Hilling DE, Borm FJ, Cohen D, Mieog JSD, Steup WH, Braun J, Burggraaf J, Vahrmeijer AL, Hutteman M. Near-Infrared Fluorescence Tumor-Targeted Imaging in Lung Cancer: A Systematic Review. Life (Basel) 2022; 12:life12030446. [PMID: 35330197 PMCID: PMC8950608 DOI: 10.3390/life12030446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most common cancer type worldwide, with non-small cell lung cancer (NSCLC) being the most common subtype. Non-disseminated NSCLC is mainly treated with surgical resection. The intraoperative detection of lung cancer can be challenging, since small and deeply located pulmonary nodules can be invisible under white light. Due to the increasing use of minimally invasive surgical techniques, tactile information is often reduced. Therefore, several intraoperative imaging techniques have been tested to localize pulmonary nodules, of which near-infrared (NIR) fluorescence is an emerging modality. In this systematic review, the available literature on fluorescence imaging of lung cancers is presented, which shows that NIR fluorescence-guided lung surgery has the potential to identify the tumor during surgery, detect additional lesions and prevent tumor-positive resection margins.
Collapse
Affiliation(s)
- Lisanne K. A. Neijenhuis
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands;
| | - Lysanne D. A. N. de Myunck
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
- Department of Surgery, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Frank J. Borm
- Department of Pulmonology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Danielle Cohen
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - J. Sven D. Mieog
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Willem H. Steup
- Department of Surgery, HAGA Hospital, 2545 AA The Hague, The Netherlands;
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | | | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
| | - Merlijn Hutteman
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.K.A.N.); (L.D.A.N.d.M.); (O.D.B.); (P.J.K.K.); (D.E.H.); (J.S.D.M.); (A.L.V.)
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
- Correspondence: ; Tel.: +31-71-526-51-00
| |
Collapse
|
12
|
Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2022; 19:9-22. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Fluorescence-guided surgery using tumour-targeted imaging agents has emerged over the past decade as a promising and effective method of intraoperative cancer detection. An impressive number of fluorescently labelled antibodies, peptides, particles and other molecules related to cancer hallmarks have been developed for the illumination of target lesions. New approaches are being implemented to translate these imaging agents into the clinic, although only a few have made it past early-phase clinical trials. For this translational process to succeed, target selection, imaging agents and their related detection systems and clinical implementation have to operate in perfect harmony to enable real-time intraoperative visualization that can benefit patients. Herein, we review key aspects of this imaging cascade and focus on imaging approaches and methods that have helped to shed new light onto the field of intraoperative fluorescence-guided cancer surgery with the singular goal of improving patient outcomes.
Collapse
|
13
|
Turner MA, Lwin TM, Amirfakhri S, Nishino H, Hoffman RM, Yazaki PJ, Bouvet M. The Use of Fluorescent Anti-CEA Antibodies to Label, Resect and Treat Cancers: A Review. Biomolecules 2021; 11:1819. [PMID: 34944463 PMCID: PMC8699160 DOI: 10.3390/biom11121819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
A major barrier to the diagnosis and effective treatment of solid-tumor cancers is the difficulty in detection and visualization of tumor margins in primary and metastatic disease. The use of fluorescence can augment the surgeon's ability to detect cancer and aid in its resection. Several cancer types express carcinoembryonic antigen (CEA) including colorectal, pancreatic and gastric cancer. Antibodies to CEA have been developed and tagged with near-infrared fluorescent dyes. This review article surveyed the use of CEA antibodies conjugated to fluorescent probes for in vivo studies since 1990. PubMed and Google Scholar databases were queried, and 900 titles and abstracts were screened. Fifty-nine entries were identified as possibly meeting inclusion/exclusion criteria and were reviewed in full. Forty articles were included in the review and their citations were screened for additional entries. A total of 44 articles were included in the final review. The use of fluorescent anti-CEA antibodies has been shown to improve detection and resection of tumors in both murine models and clinically. The cumulative results indicate that fluorescent-conjugated anti-CEA antibodies have important potential to improve cancer diagnosis and surgery. In an emerging technology, anti-CEA fluorescent antibodies have also been successfully used for photoimmunotherapy treatment for cancer.
Collapse
Affiliation(s)
- Michael A. Turner
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | | | - Siamak Amirfakhri
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Hiroto Nishino
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert M. Hoffman
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- AntiCancer Inc., San Diego, CA 92111, USA
| | - Paul J. Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Michael Bouvet
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Gangadharan S, Sarkaria IN, Rice D, Murthy S, Braun J, Kucharczuk J, Predina J, Singhal S. Multiinstitutional Phase 2 Clinical Trial of Intraoperative Molecular Imaging of Lung Cancer. Ann Thorac Surg 2021; 112:1150-1159. [PMID: 33221195 PMCID: PMC10985531 DOI: 10.1016/j.athoracsur.2020.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Intraoperative molecular imaging (IMI) may improve surgical outcomes during pulmonary resection for lung cancer. A multiinstitutional phase 2 IMI clinical trial was conducted using a near-infrared, folate receptor-targeted contrast agent for lung adenocarcinomas, OTL38. The primary goal was to determine whether OTL38 improved surgeons' ability to identify difficult to find nodules, occult cancers, and positive margins. METHODS Patients with lung nodules received OTL38 (0.025 mg/kg) preoperatively. Patients had IMI sequentially during lung inspection, tumor resection, and margin check. Efficacy was evaluated by occurrence of clinically significant events, occurrences that caused the surgeon to modify the operation or upstage the patient's cancer. Safety was assessed for a single intravenous dose of OTL38. RESULTS Of 110 patients recruited, 92 were eligible for analysis. During lung inspection, IMI found 24 additional nodules, 9 (10%) of which were cancers that had not been known preoperatively. During tumor resection, IMI located 11 (12%) lesions that the surgeon could not find. During the margin check, IMI revealed 8 positive margins (9%) that the surgeon thought were negative. Benefits of IMI were pronounced in patients undergoing sublobar pulmonary resections and in patients with ground-glass opacities. There were no serious adverse events. All surgeons felt comfortable with the procedures by 10 cases. CONCLUSIONS In this phase 2 clinical trial, IMI improved outcomes for 26% of patients. A randomized, multiinstitutional phase 3 clinical trial is underway.
Collapse
Affiliation(s)
- Sidhu Gangadharan
- Division of Thoracic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Inderpal N Sarkaria
- Division of Thoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David Rice
- Division of Thoracic Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Sudish Murthy
- Division of Thoracic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Jerry Braun
- Division of Thoracic Surgery, University of Leiden, Leiden, the Netherlands
| | - John Kucharczuk
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jarrod Predina
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
15
|
Hernandez Vargas S, Lin C, Tran Cao HS, Ikoma N, AghaAmiri S, Ghosh SC, Uselmann AJ, Azhdarinia A. Receptor-Targeted Fluorescence-Guided Surgery With Low Molecular Weight Agents. Front Oncol 2021; 11:674083. [PMID: 34277418 PMCID: PMC8279813 DOI: 10.3389/fonc.2021.674083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer surgery remains the primary treatment option for most solid tumors and can be curative if all malignant cells are removed. Surgeons have historically relied on visual and tactile cues to maximize tumor resection, but clinical data suggest that relapse occurs partially due to incomplete cancer removal. As a result, the introduction of technologies that enhance the ability to visualize tumors in the operating room represents a pressing need. Such technologies have the potential to revolutionize the surgical standard-of-care by enabling real-time detection of surgical margins, subclinical residual disease, lymph node metastases and synchronous/metachronous tumors. Fluorescence-guided surgery (FGS) in the near-infrared (NIRF) spectrum has shown tremendous promise as an intraoperative imaging modality. An increasing number of clinical studies have demonstrated that tumor-selective FGS agents can improve the predictive value of fluorescence over non-targeted dyes. Whereas NIRF-labeled macromolecules (i.e., antibodies) spearheaded the widespread clinical translation of tumor-selective FGS drugs, peptides and small-molecules are emerging as valuable alternatives. Here, we first review the state-of-the-art of promising low molecular weight agents that are in clinical development for FGS; we then discuss the significance, application and constraints of emerging tumor-selective FGS technologies.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | | | - Hop S Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naruhiko Ikoma
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
16
|
Arshad R, Barani M, Rahdar A, Sargazi S, Cucchiarini M, Pandey S, Kang M. Multi-Functionalized Nanomaterials and Nanoparticles for Diagnosis and Treatment of Retinoblastoma. BIOSENSORS 2021; 11:97. [PMID: 33810621 PMCID: PMC8066896 DOI: 10.3390/bios11040097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Retinoblastoma is a rare type of cancer, and its treatment, as well as diagnosis, is challenging, owing to mutations in the tumor-suppressor genes and lack of targeted, efficient, cost-effective therapy, exhibiting a significant need for novel approaches to address these concerns. For this purpose, nanotechnology has revolutionized the field of medicine with versatile potential capabilities for both the diagnosis, as well as the treatment, of retinoblastoma via the targeted and controlled delivery of anticancer drugs via binding to the overexpressed retinoblastoma gene. Nanotechnology has also generated massive advancements in the treatment of retinoblastoma based on the use of surface-tailored multi-functionalized nanocarriers; overexpressed receptor-based nanocarriers ligands (folate, galactose, and hyaluronic acid); lipid-based nanocarriers; and metallic nanocarriers. These nanocarriers seem to benchmark in mitigating a plethora of malignant retinoblastoma via targeted delivery at a specified site, resulting in programmed apoptosis in cancer cells. The effectiveness of these nanoplatforms in diagnosing and treating intraocular cancers such as retinoblastoma has not been properly discussed, despite the increasing significance of nanomedicine in cancer management. This article reviewed the recent milestones and future development areas in the field of intraocular drug delivery and diagnostic platforms focused on nanotechnology.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Mahmood Barani
- Department of Chemistry, ShahidBahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
| |
Collapse
|
17
|
Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021; 13:326. [PMID: 33802531 PMCID: PMC8001342 DOI: 10.3390/pharmaceutics13030326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| |
Collapse
|
18
|
Wang Z, Meng Q, Li S. The Role of NIR Fluorescence in MDR Cancer Treatment: From Targeted Imaging to Phototherapy. Curr Med Chem 2020; 27:5510-5529. [PMID: 31244415 DOI: 10.2174/0929867326666190627123719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/25/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Multidrug Resistance (MDR) is defined as a cross-resistance of cancer cells to various chemotherapeutics and has been demonstrated to correlate with drug efflux pumps. Visualization of drug efflux pumps is useful to pre-select patients who may be insensitive to chemotherapy, thus preventing patients from unnecessary treatment. Near-Infrared (NIR) imaging is an attractive approach to monitoring MDR due to its low tissue autofluorescence and deep tissue penetration. Molecular NIR imaging of MDR cancers requires stable probes targeting biomarkers with high specificity and affinity. OBJECTIVE This article aims to provide a concise review of novel NIR probes and their applications in MDR cancer treatment. RESULTS Recently, extensive research has been performed to develop novel NIR probes and several strategies display great promise. These strategies include chemical conjugation between NIR dyes and ligands targeting MDR-associated biomarkers, native NIR dyes with inherent targeting ability, activatable NIR probes as well as NIR dyes loaded nanoparticles. Moreover, NIR probes have been widely employed for photothermal and photodynamic therapy in cancer treatment, which combine with other modalities to overcome MDR. With the rapid advancing of nanotechnology, various nanoparticles are incorporated with NIR dyes to provide multifunctional platforms for controlled drug delivery and combined therapy to combat MDR. The construction of these probes for MDR cancers targeted NIR imaging and phototherapy will be discussed. Multimodal nanoscale platform which integrates MDR monitoring and combined therapy will also be encompassed. CONCLUSION We believe these NIR probes project a promising approach for diagnosis and therapy of MDR cancers, thus holding great potential to reach clinical settings in cancer treatment.
Collapse
Affiliation(s)
- Zengtao Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qingqing Meng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaoshun Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
19
|
Wu Y, Zhang F. Exploiting molecular probes to perform near‐infrared fluorescence‐guided surgery. VIEW 2020. [DOI: 10.1002/viw.20200068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yifan Wu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem Fudan University Shanghai China
| |
Collapse
|
20
|
Newton A, Predina J, Mison M, Runge J, Bradley C, Stefanovski D, Singhal S, Holt D. Intraoperative near-infrared imaging can identify canine mammary tumors, a spontaneously occurring, large animal model of human breast cancer. PLoS One 2020; 15:e0234791. [PMID: 32555698 PMCID: PMC7299356 DOI: 10.1371/journal.pone.0234791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023] Open
Abstract
Introduction Current methods of intraoperative margin assessment in breast conserving surgery are impractical, unreliable, or time consuming. We hypothesized that intraoperative near-infrared (NIR) imaging with an FDA-approved NIR optical contrast agent could identify canine mammary tumors, a spontaneous large animal model of human breast cancer, during surgery. Methods Dogs with mammary tumors underwent a standard of care lumpectomy or mastectomy with wide surgical margins 20 hours after indocyanine green administration (3 mg/kg IV). During surgery, NIR imaging was performed on tumors and wound margins in situ and tumors and lymph nodes ex vivo. Following resection, the wound bed was examined for residual fluorescence. Fluorescence intensity was determined by signal-to-background ratio (SBR). All tumors, areas of residual fluorescence, and lymph nodes underwent histopathologic analysis. Results There were 41 mammary tumors in 16 female dogs. Twenty tumors were malignant and 21 were benign. Twenty-eight tumors were fluorescent (mean SBR 1.5±0.2). Sensitivity of fluorescence for all malignant tumors was 80% (16/20) and 93.3% (14/15) for malignant tumors > 2 cm. Specificity for malignancy was low (< 2cm = 55%; > 2cm = 30%). Tumors > 2 cm were more likely to be fluorescent (OR 6.05, 95% CI 1.50–24.44, P = 0.011) but not more likely to be malignant (OR 3.09, 95% CI 0.86–11.14, P = 0.085) than tumors ≤ 2 cm. Four out of seven inguinal lymph nodes excised in the mastectomy specimen fluoresced. All four drained malignant tumors; however only 2/4 contained metastatic disease. Conclusion Systemic ICG accumulates reliably in malignant canine mammary tumors > 2 cm. Although no tumor margins fluoresced, a wider margin of normal tissue is removed in canine mastectomy, making direct comparisons with breast conserving surgery difficult. Targeted NIR imaging agents are likely required to improve detection of smaller tumors and improve the specificity of NIR imaging for residual disease and metastatic lymph node detection.
Collapse
Affiliation(s)
- Andrew Newton
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jarrod Predina
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael Mison
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey Runge
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles Bradley
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Darko Stefanovski
- Department of Clinical Studies New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, United States of America
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David Holt
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Favril S, Brioschi C, Vanderperren K, Abma E, Stock E, Devriendt N, Polis I, De Cock H, Cordaro A, Miragoli L, Oliva P, Valbusa G, Alleaume C, Tardy I, Maiocchi A, Tedoldi F, Blasi F, de Rooster H. Preliminary safety and imaging efficacy of the near-infrared fluorescent contrast agent DA364 during fluorescence-guided surgery in dogs with spontaneous superficial tumors. Oncotarget 2020; 11:2310-2326. [PMID: 32595830 PMCID: PMC7299531 DOI: 10.18632/oncotarget.27633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/06/2023] Open
Abstract
Tumor-targeting contrast agents may facilitate resection of solid neoplasms during fluorescence-guided surgery. Preliminary safety and imaging efficacy of the near-infrared fluorescent probe DA364 were evaluated during surgical resection of spontaneous solid tumors in 24 dogs. Intra-operative imaging was performed in situ and on excised specimens to evaluate fluorescence intensities of tumor and adjacent tissues. After standard-of-care tumor resection, the wound bed was imaged again, and additional tissue was excised if residual fluorescence was detected. DA364 was well tolerated after intravenous administration. The median tumor-to-background ratio in situ for mammary tumors, mast cell tumors and sarcomas was 1.8 (range 1.2–3.9), 2.2 (range 1.0–5.6), and 4.2 (range 2.0–4.3), respectively. Qualitative intra-operative tumor identification was feasible in half of the cases. Remaining fluorescence was detected in four wound beds that contained residual disease, and in11 tumor-free wound beds, confirmed by histopathology. Overall, DA364 did not raise safety concerns and showed accumulation in different types of spontaneous tumors, showing potential to pinpoint residual disease. Larger clinical trials are necessary to select accurate dosing and imaging protocols for specific indications to evaluate the sensitivity and specificity of the agent.
Collapse
Affiliation(s)
- Sophie Favril
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Chiara Brioschi
- Bracco Imaging SpA, c/o BioIndustry Park, Colleretto Giacosa, Italy
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eline Abma
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Emmelie Stock
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nausikaa Devriendt
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ingeborgh Polis
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hilde De Cock
- Medvet/Algemeen Medisch Laboratorium, Antwerpen, Belgium
| | - Alessia Cordaro
- Bracco Imaging SpA, c/o BioIndustry Park, Colleretto Giacosa, Italy
| | - Luigi Miragoli
- Bracco Imaging SpA, c/o BioIndustry Park, Colleretto Giacosa, Italy
| | - Paolo Oliva
- Bracco Imaging SpA, c/o BioIndustry Park, Colleretto Giacosa, Italy
| | | | | | | | | | - Fabio Tedoldi
- Bracco Imaging SpA, c/o BioIndustry Park, Colleretto Giacosa, Italy
| | - Francesco Blasi
- Bracco Imaging SpA, c/o BioIndustry Park, Colleretto Giacosa, Italy
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
22
|
Kleinmanns K, Fosse V, Davidson B, de Jalón EG, Tenstad O, Bjørge L, McCormack E. CD24-targeted intraoperative fluorescence image-guided surgery leads to improved cytoreduction of ovarian cancer in a preclinical orthotopic surgical model. EBioMedicine 2020; 56:102783. [PMID: 32454402 PMCID: PMC7248677 DOI: 10.1016/j.ebiom.2020.102783] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/21/2020] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The completeness of resection is a key prognostic indicator in patients with ovarian cancer, and the application of tumour-targeted fluorescence image-guided surgery (FIGS) has led to improved detection of peritoneal metastases during cytoreductive surgery. CD24 is highly expressed in ovarian cancer and has been shown to be a suitable biomarker for tumour-targeted imaging. METHODS CD24 expression was investigated in cell lines and heterogenous patient-derived xenograft (PDX) tumour samples of high-grade serous ovarian carcinoma (HGSOC). After conjugation of the monoclonal antibody CD24 to the NIR dye Alexa Fluor 750 and the evaluation of the optimal pharmacological parameters (OV-90, n = 21), orthotopic HGSOC metastatic xenografts (OV-90, n = 16) underwent cytoreductive surgery with real-time feedback. The impact of intraoperative CD24-targeted fluorescence guidance was compared to white light and palpation alone, and the recurrence of disease was monitored post-operatively (OV-90, n = 12). CD24-AF750 was further evaluated in four clinically annotated orthotopic PDX models of metastatic HGSOC, to validate the translational potential for intraoperative guidance. FINDINGS CD24-targeted intraoperative NIR FIGS significantly (47•3%) improved tumour detection and resection, and reduced the post-operative tumour burden compared to standard white-light surgery in orthotopic HGSOC xenografts. CD24-AF750 allowed identification of minuscule tumour lesions which were undetectable with the naked eye in four HGSOC PDX. INTERPRETATION CD24-targeted FIGS has translational potential as an aid to improve debulking surgery of ovarian cancer. FUNDING This study was supported by the H2020 program MSCA-ITN [675743], Helse Vest RHF, and Helse Bergen HF [911809, 911852, 912171, 240222, 911974, HV1269], as well as by The Norwegian Cancer Society [182735], and The Research Council of Norway through its Centres of excellence funding scheme [223250, 262652].
Collapse
Affiliation(s)
- Katrin Kleinmanns
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Vibeke Fosse
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Radiology, Erasmus Medical Centre, 3000 CA Rotterdam, the Netherlands
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital, Norwegian Radium Hospital, 0310 Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Elvira García de Jalón
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Chemistry and Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Line Bjørge
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway; Department of Obstetrics and Gyneacology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Emmet McCormack
- Center for Cancer Biomarkers, CCBIO, Department of Clinical Science, University of Bergen, Jonas Lies vei 91B, 5021 Bergen, Norway.
| |
Collapse
|
23
|
Favril S, Abma E, Stock E, Devriendt N, Van Goethem B, Blasi F, Brioschi C, Polis I, De Cock H, Miragoli L, Oliva P, Valbusa G, Vanderperren K, de Rooster H. Fluorescence-guided surgery using indocyanine green in dogs with superficial solid tumours. Vet Rec 2020; 187:273. [PMID: 32345608 DOI: 10.1136/vr.105554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Near-infrared fluorescence (NIRF) imaging is a relatively novel technique that can aid surgeons during intraoperative tumour identification. METHODS Nine canine oncology patients (five mammary gland tumours, three mast cell tumours and one melanoma) received intravenous indocyanine green (ICG). After 24 hours, tumours were resected and fluorescence intensities of tumours and surroundings were evaluated. Additional wound bed tissue was resected if residual fluorescence was present after tumour resection. Ex vivo, fluorescence-guided dissection was performed to separate tumour from surrounding tissue. RESULTS Intraoperative NIRF-guided tumour delineation was feasible in four out of nine dogs. Wound bed imaging after tumour removal identified nine additional fluorescent lesions, of which four contained tumour tissue. One of these four true positive in vivo lesions was missed by standard-of-care inspection. Ex vivo fluorescence-guided tumour dissection showed a sensitivity of 72 per cent and a specificity of 80 per cent in discriminating between tumour and surrounding tissue. CONCLUSION The value of ICG for intraoperative tumour delineation seems more limited than originally thought. Although NIRF imaging using ICG did identify remaining tumour tissue in the wound bed, a high false positive rate was also observed.
Collapse
Affiliation(s)
- Sophie Favril
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium .,Cancer Research Institute Ghent (CRIG), Medical Research Building, University Hospital, Ghent, Belgium
| | - Eline Abma
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Medical Research Building, University Hospital, Ghent, Belgium
| | - Emmelie Stock
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nausikaa Devriendt
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart Van Goethem
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Ingeborgh Polis
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | - Paolo Oliva
- Bracco Imaging SpA, Colleretto Giacosa, Italy
| | | | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Medical Research Building, University Hospital, Ghent, Belgium
| |
Collapse
|
24
|
Pierce JT, Cho SS, Nag S, Zeh R, Jeon J, Holt D, Durham A, Nasrallah MP, Singhal S, Lee JYK. Folate Receptor Overexpression in Human and Canine Meningiomas-Immunohistochemistry and Case Report of Intraoperative Molecular Imaging. Neurosurgery 2020; 85:359-368. [PMID: 30113687 DOI: 10.1093/neuros/nyy356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/12/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Meningiomas are well-encapsulated benign brain tumors and surgical resection is often curative. Nevertheless, this is not always possible due to the difficulty of identifying residual disease intraoperatively. We hypothesized that meningiomas overexpress folate receptor alpha (FRα), allowing intraoperative molecular imaging by targeting FRα with a near-infrared (NIR) dye. OBJECTIVE To determine FRα expression in both human and canine meningioma cohorts to prepare for future clinical studies. Present a case study of a meningioma resection with intraoperative NIR fluorescence imaging. METHODS Tissue samples of 27 human meningioma specimens and 7 canine meningioma specimens were immunohistochemically stained for FRα along with normal dura, skeletal muscle, and kidney tissue. We then enrolled a patient with a pituitary adenoma and tuberculum sella meningioma in a clinical trial in which the patient received an infusion of folate-linked, NIR fluorescent dye prior to surgery. RESULTS In the cohort of human meningiomas, 9 WHO grade I, 12 grade II, and 6 grade III tumors were identified. Eighty-nine percent of WHO grade I, 67% of grade II, and 50% of grade III tumors overexpressed FRα. In the 7 canine meningioma samples, 100% stained positively for FRα. Both human and canine normal dura from autopsy samples demonstrated no evidence of FRα overexpression. In the case study, the meningioma demonstrated a high NIR signal-to-background-ratio of 4.0 and demonstrated strong FRα immunohistochemistry staining. CONCLUSION This study directly demonstrates FRα overexpression in both human and canine meningiomas. We also demonstrate superb intraoperative imaging of a meningioma using a FRα-targeting dye.
Collapse
Affiliation(s)
- John T Pierce
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steve S Cho
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shayoni Nag
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Zeh
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jun Jeon
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Holt
- Department of Veterinary Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Amy Durham
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Vail DM, LeBlanc AK, Jeraj R. Advanced Cancer Imaging Applied in the Comparative Setting. Front Oncol 2020; 10:84. [PMID: 32117739 PMCID: PMC7019008 DOI: 10.3389/fonc.2020.00084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
The potential for companion (pet) species with spontaneously arising tumors to act as surrogates for preclinical development of advanced cancer imaging technologies has become more apparent in the last decade. The utility of the companion model specifically centers around issues related to body size (including spatial target/normal anatomic characteristics), physical size and spatial distribution of metastasis, tumor heterogeneity, the presence of an intact syngeneic immune system and a syngeneic tumor microenvironment shaped by the natural evolution of the cancer. Companion species size allows the use of similar equipment, hardware setup, software, and scan protocols which provide the opportunity for standardization and harmonization of imaging operating procedures and quality assurance across imaging protocols, imaging hardware, and the imaged species. Murine models generally do not replicate the size and spatial distribution of human metastatic cancer and these factors strongly influence image resolution and dosimetry. The following review will discuss several aspects of comparative cancer imaging in more detail while providing several illustrative examples of investigational approaches performed or currently under exploration at our institutions. Topics addressed include a discussion on interested consortia; image quality assurance and harmonization; image-based biomarker development and validation; contrast agent and radionuclide tracer development; advanced imaging to assess and predict response to cytotoxic and immunomodulatory anticancer agents; imaging of the tumor microenvironment; development of novel theranostic approaches; cell trafficking assessment via non-invasive imaging; and intraoperative imaging to inform surgical oncology decision making. Taken in totality, these comparative opportunities predict that safety, diagnostic and efficacy data generated in companion species with naturally developing and progressing cancers would better recapitulate the human cancer condition than that of artificial models in small rodent systems and ultimately accelerate the integration of novel imaging technologies into clinical practice. It is our hope that the examples presented should serve to provide those involved in cancer investigations who are unfamiliar with available comparative methodologies an understanding of the potential utility of this approach.
Collapse
Affiliation(s)
- David M Vail
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Robert Jeraj
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
26
|
Barth CW, Gibbs SL. Fluorescence Image-Guided Surgery - a Perspective on Contrast Agent Development. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222:112220J. [PMID: 32255887 PMCID: PMC7115043 DOI: 10.1117/12.2545292] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past several decades, a number of novel fluorescence image-guided surgery (FGS) contrast agents have been under development, with many in clinical translation and undergoing clinical trials. In this review, we have identified and summarized the contrast agents currently undergoing clinical translation. In total, 39 novel FGS contrast agents are being studied in 85 clinical trials. Four FGS contrast agents are currently being studied in phase III clinical trials and are poised to reach FDA approval within the next two to three years. Among all novel FGS contrast agents, a wide variety of probe types, targeting mechanisms, and fluorescence properties exists. Clinically available FGS imaging systems have been developed for FDA approved FGS contrast agents, and thus further clinical development is required to yield FGS imaging systems tuned for the variety of contrast agents in the clinical pipeline. Additionally, study of current FGS contrast agents for additional disease types and development of anatomy specific contrast agents is required to provide surgeons FGS tools for all surgical specialties and associated comorbidities. The work reviewed here represents a significant effort from many groups and further development of this promising technology will have an enormous impact on surgical outcomes across all specialties.
Collapse
Affiliation(s)
- Connor W Barth
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, OR 97201
| |
Collapse
|
27
|
Eisenblätter M, Wildgruber M. Optical and Optoacoustic Imaging Probes. Recent Results Cancer Res 2020; 216:337-355. [PMID: 32594392 DOI: 10.1007/978-3-030-42618-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tissue has characteristic properties when it comes to light absorption and scattering. For optical (OI) and optoacoustic imaging (OAI) these properties can be utilised to visualise biological tissue characteristics, as, for example, the oxygenation state of haemoglobin alters the optical and optoacoustic properties of the molecule.
Collapse
Affiliation(s)
- Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany.
| | - Moritz Wildgruber
- Department of Radiology, Ludwig Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
28
|
Holt D, Singhal S, Selmic LE. Near-infrared imaging and optical coherence tomography for intraoperative visualization of tumors. Vet Surg 2020; 49:33-43. [PMID: 31609011 PMCID: PMC11059208 DOI: 10.1111/vsu.13332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Surgical excision is the foundation of treatment for early-stage solid tumors in man and companion animals. Complete excision with appropriate margins of surrounding tumor-free tissue is crucial to survival. Intraoperative imaging allows real-time visualization of tumors, assessment of surgical margins, and, potentially, lymph nodes and satellite metastatic lesions, allowing surgeons to perform complete tumor resections while sparing surrounding vital anatomic structures. This Review will focus on the use of near-infrared imaging and optical coherence tomography for intraoperative tumor visualization.
Collapse
Affiliation(s)
- David Holt
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Laura E Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| |
Collapse
|
29
|
Predina JD, Runge J, Newton A, Mison M, Xia L, Corbett C, Shin M, Sulyok LF, Durham A, Nie S, Singhal S, Holt D. Evaluation of Aminolevulinic Acid-Derived Tumor Fluorescence Yields Disparate Results in Murine and Spontaneous Large Animal Models of Lung Cancer. Sci Rep 2019; 9:7629. [PMID: 31113971 PMCID: PMC6529469 DOI: 10.1038/s41598-019-40334-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Fluorescence guided surgery is an emerging technology that may improve accuracy of pulmonary resection for non-small cell lung cancer (NSCLC). Herein we explore optical imaging for NSCLC surgery using the well-studied protoporphyrin IX (PPIX)/5-aminiolevulinic acid (5-ALA) system. More specifically, we evaluate fluorescent patterns observed when using (1) commonly utilized in vitro and murine NSCLC models and with (2) spontaneous canine NSCLCs, which closely mimic human disease. Using flow cytometry and fluorescent microscopy, we confirmed that NSCLC models fluoresce after exposure to 5-ALA in vitro. High levels of fluorescence were similarly observed in murine tumors within 2 hours of systemic 5-ALA delivery. When evaluating this approach in spontaneous canine NSCLC, tumor fluorescence was observed in 6 of 7 canines. Tumor fluorescence, however, was heterogenous owing to intratumoral variations in cellularity and necrosis. Margin and lymph node detection was inaccurate. These data demonstrate the importance of incorporating reliable cancer models into preclinical evaluations of optical agents. Utilization of spontaneous large animal models of cancer may further provide an important intermediate in the path to human translation of optical contrast agents.
Collapse
Affiliation(s)
- Jarrod D Predina
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
| | - Jeffrey Runge
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| | - Andrew Newton
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Michael Mison
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| | - Leilei Xia
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Christopher Corbett
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Michael Shin
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Lydia Frenzel Sulyok
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Amy Durham
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| | - Shuming Nie
- Departments of Biomedical Engineering and Chemistry, Emory University, Atlanta, Georgia
| | - Sunil Singhal
- Center for Precision Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - David Holt
- Department of Clinical Studies, University of Pennsylvania School of Veterinary Medicine, Philadelphia, USA
| |
Collapse
|
30
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
31
|
Olson MT, Ly QP, Mohs AM. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol Imaging Biol 2019; 21:200-218. [PMID: 29942988 PMCID: PMC6724738 DOI: 10.1007/s11307-018-1239-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical resection continues to function as the primary treatment option for most solid tumors. However, the detection of cancerous tissue remains predominantly subjective and reliant on the expertise of the surgeon. Surgery that is guided by fluorescence imaging has shown clinical relevance as a new approach to detecting the primary tumor, tumor margins, and metastatic lymph nodes. It is a technique to reduce recurrence and increase the possibility of a curative resection. While significant progress has been made in developing this emerging technology as a tool to assist the surgeon, further improvements are still necessary. Refining imaging agents and tumor targeting strategies to be a precise and reliable surgical strategy is essential in order to translate this technology into patient care settings. This review seeks to provide a comprehensive update on the most recent progress of fluorescence-guided surgery and its translation into the clinic. By highlighting the current status and recent developments of fluorescence image-guided surgery in the field of surgical oncology, we aim to offer insight into the challenges and opportunities that require further investigation.
Collapse
Affiliation(s)
- Madeline T Olson
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Quan P Ly
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Aaron M Mohs
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 5-12315 Scott Research Tower, Omaha, NE, 68198, USA.
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
32
|
Intraoperative Near-Infrared Fluorescence-Guided Peripheral Lung Tumor Localization in Rabbit Models. Ann Thorac Surg 2019; 107:248-256. [DOI: 10.1016/j.athoracsur.2018.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 11/20/2022]
|
33
|
Li X, An G, Wang Y, Liang D, Zhu Z, Tian L. Targeted migration of bone marrow mesenchymal stem cells inhibits silica-induced pulmonary fibrosis in rats. Stem Cell Res Ther 2018; 9:335. [PMID: 30514375 PMCID: PMC6280342 DOI: 10.1186/s13287-018-1083-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Silicosis is a common occupational disease, characterized by silicotic nodules and diffuse pulmonary fibrosis. We demonstrated an anti-fibrotic effect of bone marrow mesenchymal stem cells (BMSCs) in silica-induced lung fibrosis. In the present study, we sought to clarify the homing ability of BMSCs and the specific mechanisms for their effects. METHODS AND RESULTS The biodistribution of BMSCs was identified by near-infrared fluorescence (NIRF) imaging in vivo and in vitro. The results showed that BMSCs labeled with NIR-DiR dyes targeted silica-injured lung tissue, wherein they reached a peak at 6 h post-injection and declined dramatically by day 3. Based on these findings, a second injection of BMSCs was administered 3 days after the first injection. The injected BMSCs migrated to the injured lungs, but did not undergo transformation into specific lung cell types. Interestingly, the injection of BMSC-conditioned medium (BMSCs-CM) significantly attenuated silica-induced pulmonary fibrosis. The collagen deposition and number of nodules were decreased in lung tissues of BMSCs-CM-treated rats. In parallel with these findings, the mRNA levels of collagen I, collagen III, and fibronectin, and the content of transforming growth factor (TGF)-β1 and hydroxyproline were decreased in the BMSCs-CM-treated group compared with the silica group. In addition, alveolar epithelial markers were upregulated by BMSCs-CM treatment. CONCLUSIONS BMSCs migrated to injured areas of the lung after silica instillation and attenuated pulmonary fibrosis. The anti-fibrotic effects of BMSCs were mainly exerted in paracrine manner, rather than through their ability to undergo differentiation.
Collapse
Affiliation(s)
- Xiaoli Li
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Guoliang An
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Di Liang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, No. 10, Xi toutiao outside You anmen, Beijing, 100069, China.
| |
Collapse
|
34
|
Selmic LE, Samuelson J, Reagan JK, Mesa KJ, Driskell E, Li J, Marjanovic M, Boppart SA. Intra-operative imaging of surgical margins of canine soft tissue sarcoma using optical coherence tomography. Vet Comp Oncol 2018; 17:80-88. [PMID: 30239117 DOI: 10.1111/vco.12448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 01/15/2023]
Abstract
Optical coherence tomography (OCT) is a rapid non-invasive imaging technique that has shown high sensitivity for intra-operative surgical margin assessment in human breast cancer clinical trials. This promising technology has not been evaluated in veterinary medicine. The objective of this study was to correlate normal and abnormal histological features with OCT images for surgical margins from excised canine soft tissue sarcoma (STS) and to establish image evaluation criteria for identifying positive surgical margins. Fourteen client-owned dogs underwent surgical resection of a STS and OCT imaging of 2 to 4 areas of interest on the resected specimen were performed. Following imaging these areas were marked with surgical ink and trimmed for histopathology evaluation. Results showed that different tissue types had distinct characteristic appearances on OCT imaging. Adipose tissue exhibited a relatively low scattering and a honey-comb texture pattern. Skeletal muscle and sarcoma tissue were both dense and highly scattering. While sarcoma tissue was highly scattering, it did not have organized recognizable structure in contrast to muscle which showed clear fibre alignment patterns. In this investigation, we showed different tissue types had different and characteristic scattering and image texture appearances on OCT, which closely correlate with low-power histology images. Given the differentiation between tissue types the results support that OCT could be used to identify positive surgical margins immediately following resection of STS. Further research is needed to assess the diagnostic accuracy of this method for surgical margin assessment.
Collapse
Affiliation(s)
- Laura E Selmic
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Jonathan Samuelson
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Jennifer K Reagan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Kelly J Mesa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Elizabeth Driskell
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Joanne Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, Illinois.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois.,Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, Illinois
| |
Collapse
|
35
|
Mahalingam SM, Kularatne SA, Myers CH, Gagare P, Norshi M, Liu X, Singhal S, Low PS. Evaluation of Novel Tumor-Targeted Near-Infrared Probe for Fluorescence-Guided Surgery of Cancer. J Med Chem 2018; 61:9637-9646. [PMID: 30296376 DOI: 10.1021/acs.jmedchem.8b01115] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Sumith A. Kularatne
- On Target Laboratories, 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Carrie H. Myers
- On Target Laboratories, 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Pravin Gagare
- On Target Laboratories, 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Mohammad Norshi
- On Target Laboratories, 1281 Win Hentschel Blvd, West Lafayette, Indiana 47906, United States
| | - Xin Liu
- Purdue University Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, 3400 Spruce Street, 6 White Building, Philadelphia, Pennsylvania 19104, United States
| | - Philip S. Low
- Purdue University Institute for Drug Discovery, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
36
|
Garden OA, Volk SW, Mason NJ, Perry JA. Companion animals in comparative oncology: One Medicine in action. Vet J 2018; 240:6-13. [PMID: 30268334 DOI: 10.1016/j.tvjl.2018.08.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022]
Abstract
Comparative oncology is poised to have a far-reaching impact on both animals and human beings with cancer. The field is gaining momentum and has repeatedly proven its utility in various aspects of oncology, including study of the genetics, development, progression, immunology and therapy of cancer. Companion animals provide many advantages over both traditional rodent models and human beings for studying cancer biology and accelerating the development of novel anti-cancer therapies. In this review, several examples of the ability of companion animals with spontaneous cancers to fill a unique niche in the field of oncology are discussed. In addition, potential caveats of the use of companion animals in research are reviewed, as well as ethical considerations and efforts to standardize veterinary clinical trials.
Collapse
Affiliation(s)
- O A Garden
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - S W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N J Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J A Perry
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Newton AD, Predina JD, Nie S, Low PS, Singhal S. Intraoperative fluorescence imaging in thoracic surgery. J Surg Oncol 2018; 118:344-355. [PMID: 30098293 DOI: 10.1002/jso.25149] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Intraoperative fluorescence imaging (IFI) can improve real-time identification of cancer cells during an operation. Phase I clinical trials in thoracic surgery have demonstrated that IFI with second window indocyanine green (TumorGlow® ) can identify subcentimeter pulmonary nodules, anterior mediastinal masses, and mesothelioma, while the use of a folate receptor-targeted near-infrared agent, OTL38, can improve the specificity for diagnosing tumors with folate receptor expression. Here, we review the existing preclinical and clinical data on IFI in thoracic surgery.
Collapse
Affiliation(s)
- Andrew D Newton
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jarrod D Predina
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Sunil Singhal
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Low PS, Singhal S, Srinivasarao M. Fluorescence-guided surgery of cancer: applications, tools and perspectives. Curr Opin Chem Biol 2018; 45:64-72. [PMID: 29579618 DOI: 10.1016/j.cbpa.2018.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Thousands of patients die each year from residual cancer that remains following cytoreductive surgery. Use of tumor-targeted fluorescent dyes (TTFDs) to illuminate undetected malignant tissue and thereby facilitate its surgical resection shows promise for reducing morbidity and mortality associated with unresected malignant disease. TTFDs can also improve i) detection of recurrent malignant lesions, ii) differentiation of normal from malignant lymph nodes, iii) accurate staging of cancer patients, iv) detection of tumors during robotic/endoscopic surgery (where tumor palpation is no longer possible), and v) preservation of healthy tissue during resection of cancer tissue. Although TTFDs that passively accumulate in a tumor mass provide some tumor contrast, the most encouraging TTFDs in human clinical trials are either enzyme-activated or ligand-targeted to tumor-specific receptors.
Collapse
Affiliation(s)
- Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States.
| | - Sunil Singhal
- Center for Precision Surgery, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
39
|
Predina JD, Newton AD, Xia L, Corbett C, Connolly C, Shin M, Sulyok LF, Litzky L, Deshpande C, Nie S, Kularatne SA, Low PS, Singhal S. An open label trial of folate receptor-targeted intraoperative molecular imaging to localize pulmonary squamous cell carcinomas. Oncotarget 2018; 9:13517-13529. [PMID: 29568374 PMCID: PMC5862595 DOI: 10.18632/oncotarget.24399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Clinical applicability of folate receptor-targeted intraoperative molecular imaging (FR-IMI) has been established for surgically resectable pulmonary adenocarcinoma. A role for FR-IMI in other lung cancer histologies has not been studied. In this study, we evaluate feasibility of FR-IMI in patients undergoing pulmonary resection for squamous cell carcinomas (SCCs). METHODS In a human clinical trial (NCT02602119), twelve subjects with pulmonary SCCs underwent FR-IMI with a near-infrared contrast agent that targets the folate receptor-α (FRα), OTL38. Near-infrared signal from tumors and benign lung was quantified to calculate tumor-to-background ratios (TBR). Folate receptor-alpha expression was characterized, and histopathologic correlative analyses were performed to evaluate patterns of OTL38 accumulation. An exploratory analysis was performed to determine patient and histopathologic variables that predict tumor fluorescence. RESULTS 9 of 13 SCCs (in 9 of 12 of subjects) displayed intraoperative fluorescence upon NIR evaluation (median TBR, 3.9). OTL38 accumulated within SCCs in a FRα-dependent manner. FR-IMI was reliable in localizing nodules as small as 1.1 cm, and prevented conversion to thoracotomy for nodule localization in three subjects. Upon evaluation of patient and histopathologic variables, in situ fluorescence was associated with distance from the pleural surface, and was independent of alternative variables including tumor size and metabolic activity. CONCLUSIONS This work demonstrates that FR-IMI is potentially feasible in 70% of SCC patients, and that molecular imaging can improve localization during minimally invasive pulmonary resection. These findings complement previous data demonstrating that ∼98% of pulmonary adenocarcinomas are localized during FR-IMI and suggest broad applicability for NSCLC patients undergoing resection.
Collapse
Affiliation(s)
- Jarrod D. Predina
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D. Newton
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Leilei Xia
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Division of Urology, Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Corbett
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney Connolly
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Shin
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Lydia Frezel Sulyok
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie Litzky
- Pathology and Laboratory Medicine at The Hospital of The University of Pennsylvania, Philadelphia, PA, USA
| | - Charuhas Deshpande
- Pathology and Laboratory Medicine at The Hospital of The University of Pennsylvania, Philadelphia, PA, USA
| | - Shuming Nie
- Department Biomedical Engineering and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sumith A. Kularatne
- Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Philip S. Low
- Department of Chemistry, and Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| | - Sunil Singhal
- Center for Precision Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Predina JD, Newton AD, Keating J, Dunbar A, Connolly C, Baldassari M, Mizelle J, Xia L, Deshpande C, Kucharczuk J, Low PS, Singhal S. A Phase I Clinical Trial of Targeted Intraoperative Molecular Imaging for Pulmonary Adenocarcinomas. Ann Thorac Surg 2018; 105:901-908. [PMID: 29397932 PMCID: PMC10959252 DOI: 10.1016/j.athoracsur.2017.08.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Intraoperative identification of pulmonary nodules, particularly small lesions, can be challenging. We hypothesize that folate receptor-targeted intraoperative molecular imagining can be safe and improve localization of pulmonary nodules during resection. METHODS Twenty subjects with biopsy-proven pulmonary adenocarcinomas were enrolled in a phase I clinical trial to test the safety and feasibility of OTL38, a novel folate receptor-α (FRα) targeted optical contrast agent. During resection, tumors were imaged in situ and ex vivo and fluorescence was quantified. Resected specimens were analyzed to confirm diagnosis, and immunohistochemistry was utilized to quantify FRα expression. A multivariate analysis using clinical and tumor data was performed to determine variables impacting tumor fluorescence. RESULTS Of the 20 subjects, three grade I adverse events were observed: all transient nausea/abdominal pain. All symptoms resolved after completing the infusion. Sixteen of 20 subjects (80%) had tumors with in situ fluorescence with a mean tumor-to-background fluorescence level of 2.9 (interquartile range, 2.1 to 4.2). The remaining 4 subjects' tumors fluoresced ex vivo. In situ fluorescence was dependent on depth from the pleural surface. Four subcentimeter nodules not identified on preoperative imaging were detected with intraoperative imaging. CONCLUSIONS This phase I trial provides preliminary evidence suggesting that folate receptor-targeted molecular imaging with OTL38 is safe, with tolerable grade I toxicity. These data also suggest that OTL38 accumulates in known lung cancers and may improve identification of synchronous malignancies. Our group is initiating a five-center, phase II study to better understand the clinical implications of intraoperative molecular imaging using OTL38.
Collapse
Affiliation(s)
- Jarrod D Predina
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Andrew D Newton
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jane Keating
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ashley Dunbar
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Courtney Connolly
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michael Baldassari
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jack Mizelle
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Leilei Xia
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Charuhas Deshpande
- Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Kucharczuk
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Philip S Low
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Tringale KR, Pang J, Nguyen QT. Image-guided surgery in cancer: A strategy to reduce incidence of positive surgical margins. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1412. [PMID: 29474004 DOI: 10.1002/wsbm.1412] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/13/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022]
Abstract
Primary treatment for many solid cancers includes surgical excision or radiation therapy, with or without the use of adjuvant therapy. This can include the addition of radiation and chemotherapy after primary surgical therapy, or the addition of chemotherapy and salvage surgery to primary radiation therapy. Both primary therapies, surgery and radiation, require precise anatomic localization of tumor. If tumor is not targeted adequately with initial treatment, disease recurrence may ensue, and if targeting is too broad, unnecessary morbidity may occur to nearby structures or remaining normal tissue. Fluorescence imaging using intraoperative contrast agents is a rapidly growing field for improving visualization in cancer surgery to facilitate resection in order to obtain negative margins. There are multiple strategies for tumor visualization based on antibodies against surface markers or ligands for receptors preferentially expressed in cancer. In this article, we review the incidence and clinical implications of positive surgical margins for some of the most common solid tumors. Within this context, we present the ongoing clinical and preclinical studies focused on the use of intraoperative contrast agents to improve surgical margins. This article is categorized under: Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Kathryn R Tringale
- Division of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
| | - John Pang
- Division of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California
| | - Quyen T Nguyen
- Division of Otolaryngology, Head and Neck Surgery, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
42
|
Predina JD, Newton A, Deshpande C, Low P, Singhal S. Utilization of targeted near-infrared molecular imaging to improve pulmonary metastasectomy of osteosarcomas. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-4. [PMID: 29302953 PMCID: PMC5753425 DOI: 10.1117/1.jbo.23.1.016005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Pulmonary metastasectomy for osteosarcoma provides a select group of patients an opportunity for long-term survival and possible cure. Unfortunately, a complete metastasectomy is challenging due an inability to accurately identify lesions that lay below the threshold of preoperative imaging or intraoperative visual and tactile inspection. Growing evidence suggests that osteosarcomas express a number of unique molecular markers, including the folate receptor alpha. In this case report, we describe the application of a folate receptor-targeted, near-infrared optical contrast agent (OTL38) to improve osteosarcoma localization during minimally invasive pulmonary resection. In addition to localizing preoperatively identified lesions, this technology helped identify additional disease that was undetected on preoperative imaging or with traditional intraoperative techniques. This report marks the first successful utilization of a molecular imaging probe useful for osteosarcomas. This technology may provide a unique approach to improve pulmonary metastasectomy of osteosarcomas.
Collapse
Affiliation(s)
- Jarrod D. Predina
- The Perelman School of Medicine at the University of Pennsylvania, Center for Precision Surgery, Philadelphia, Pennsylvania, United States
- The Perelman School of Medicine at the University of Pennsylvania, Division of Thoracic Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Andrew Newton
- The Perelman School of Medicine at the University of Pennsylvania, Center for Precision Surgery, Philadelphia, Pennsylvania, United States
- The Perelman School of Medicine at the University of Pennsylvania, Department of Surgery, Philadelphia, Pennsylvania, United States
| | - Charuhas Deshpande
- The Perelman School of Medicine at the University of Pennsylvania, Department of Pathology, Philadelphia, Pennsylvania, United States
| | - Philip Low
- Purdue University, Department of Chemistry, Philadelphia, Pennsylvania, United States
| | - Sunil Singhal
- The Perelman School of Medicine at the University of Pennsylvania, Center for Precision Surgery, Philadelphia, Pennsylvania, United States
- The Perelman School of Medicine at the University of Pennsylvania, Division of Thoracic Surgery, Department of Surgery, Philadelphia, Pennsylvania, United States
| |
Collapse
|
43
|
Digesu CS, Hachey KJ, Gilmore DM, Khullar OV, Tsukada H, Whang B, Chirieac LR, Padera RF, Jaklitsch MT, Colson YL. Long-term outcomes after near-infrared sentinel lymph node mapping in non-small cell lung cancer. J Thorac Cardiovasc Surg 2017; 155:1280-1291. [PMID: 29248292 DOI: 10.1016/j.jtcvs.2017.09.150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/01/2017] [Accepted: 09/16/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To report the first analysis of long-term outcomes using near-infrared (NIR) image-guided sentinel lymph node (SLN) mapping in non-small cell lung cancer (NSCLC). METHODS Retrospective analysis of patients with NSCLC enrolled in 2 prospective phase 1 NIR-guided SLN mapping trials, including an indocyanine green (ICG) dose-escalation trial, was performed. All patients underwent NIR imaging for SLN identification followed by multistation mediastinal lymph node sampling (MLNS) and pathologic assessment. Disease-free (DFS) and overall survival (OS) were compared between patients with NIR+ SLN (SLN group) and those without (non-SLN group). RESULTS SLN detection, recurrence, DFS, and OS were assessed in 42 patients with NSCLC who underwent intraoperative peritumoral ICG injection, NIR imaging, and MLNS. NIR+ SLNs were identified in 23 patients (SLN group), whereas SLNs were not identified in 19 patients enrolled before ICG dose and camera optimization (non-SLN group). Median follow-up was 44.5 months. Pathology from NIR+ SLNs was concordant with overall nodal status in all 23 patients. Sixteen patients with SLN were deemed pN0 and no recurrences were, whereas 4 of 15 pN0 non-SLN patients developed nodal or distant recurrent disease. Comparing SLN versus non-SLN pN0 patients, the probability of 5-year OS is 100% versus 70.0% (P = .062) and 5-year DFS is statistically significantly improved at 100% versus 66.1% (P = .036), respectively. Among the 11 pN+ patients, 7 were in the SLN group, with >40% showing metastases in the SLN alone. CONCLUSIONS Patients with pN0 SLNs showed favorable disease-free and overall survival. This preliminary review of NIR SLN mapping in NSCLC suggests that pN0 SLNs may better represent true N0 status. A larger clinical trial is planned to validate these findings.
Collapse
Affiliation(s)
| | | | - Denis M Gilmore
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tenn
| | - Onkar V Khullar
- Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Hisashi Tsukada
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Mass
| | - Brian Whang
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Mass
| | | | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital, Boston, Mass
| | | | - Yolonda L Colson
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Mass.
| |
Collapse
|