1
|
Liao K, Xiang Y, Lin Y, Liao P, Xu W, Wang Z, Zhuang Z. Single-nucleus profiling decoding the subcortical visual pathway evolution of vertebrates. iScience 2025; 28:112128. [PMID: 40151640 PMCID: PMC11937672 DOI: 10.1016/j.isci.2025.112128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/11/2024] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
During the evolution of vertebrates, significant transformations have occurred in the visual transmission and processing pathways. However, our understanding of the differences between two primary visual pathways in vertebrates and their evolutionary changes remains limited. The emerging technologies and comparative analysis have provided us with a more comprehensive way to decipher this process. Here, we applied single-nucleus RNA sequencing (snRNA-seq) onto the avian optic tectum, one of the key visual subcortical hubs in birds, to construct its cellular landscape. By integrating these data with mammalian snRNA-seq datasets, we revealed differences in the density of two types of thalamic-projecting excitatory neurons within the retinotectal pathway of birds and mammals. Additionally, a series of shared molecules were identified between two types of dominant visual pathways in vertebrates. Overall, this work provides a novel focus on the evolution of visual pathways and establishes a framework for their comparative analysis.
Collapse
Affiliation(s)
- Kuo Liao
- BGI Research, Hangzhou 310030, China
- Department of Clinical Neuroscience, Karolinska Institute, 17164 Stockholm, Sweden
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Pingfang Liao
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
2
|
Liao K, Xiang Y, Huang F, Huang M, Xu W, Lin Y, Liao P, Wang Z, Yang L, Tian X, Chen D, Wang Z, Liu S, Zhuang Z. Spatial and single-nucleus transcriptomics decoding the molecular landscape and cellular organization of avian optic tectum. iScience 2024; 27:109009. [PMID: 38333704 PMCID: PMC10850779 DOI: 10.1016/j.isci.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
The avian optic tectum (OT) has been studied for its diverse functions, yet a comprehensive molecular landscape at the cellular level has been lacking. In this study, we applied spatial transcriptome sequencing and single-nucleus RNA sequencing (snRNA-seq) to explore the cellular organization and molecular characteristics of the avian OT from two species: Columba livia and Taeniopygia guttata. We identified precise layer structures and provided comprehensive layer-specific signatures of avian OT. Furthermore, we elucidated diverse functions in different layers, with the stratum griseum periventriculare (SGP) potentially playing a key role in advanced functions of OT, like fear response and associative learning. We characterized detailed neuronal subtypes and identified a population of FOXG1+ excitatory neurons, resembling those found in the mouse neocortex, potentially involved in neocortex-related functions and expansion of avian OT. These findings could contribute to our understanding of the architecture of OT, shedding light on visual perception and multifunctional association.
Collapse
Affiliation(s)
- Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Fubaoqian Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Pingfang Liao
- BGI Research, Hangzhou 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zishi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinmao Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Duoyuan Chen
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
3
|
Straight PJ, Gignac PM, Kuenzel WJ. Mapping the avian visual tectofugal pathway using 3D reconstruction. J Comp Neurol 2024; 532:e25558. [PMID: 38047431 DOI: 10.1002/cne.25558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior. Here, the brains of chicks, Gallus gallus, were used to produce serial brain sections in either coronal, sagittal, or horizontal planes and stained with either Nissl and Gallyas silver myelin or Luxol fast blue stain and cresyl echt violet (CEV). The emerging techniques of diffusible iodine-based contrast-enhanced computed tomography (diceCT) coupled with serial histochemistry in three planes were used to generate a comprehensive three-dimensional (3D) model of the avian tectofugal visual system. This enabled the 3D reconstruction of tectofugal circuits, including the three primary neuronal projections. Specifically, major components of the system included four regions of the retina, layers of the optic tectum, subdivisions of the nucleus rotundus in the thalamus, the entopallium in the forebrain, and supplementary components connecting into or out of this major avian visual sensory system. The resulting 3D model enabled a better understanding of the structural components and connectivity of this complex system by providing a complete spatial organization that occupied several distinct brain regions. We demonstrate how pairing diceCT with traditional histochemistry is an effective means to improve the understanding of, and thereby should generate insights into, anatomical and functional properties of complicated neural pathways, and we recommend this approach to clarify enigmatic properties of these pathways.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, Arizona, USA
- Anatomy and Cell Biology Department, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
4
|
Clark WJ, Colombo M. The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog Neurobiol 2020; 195:101781. [DOI: 10.1016/j.pneurobio.2020.101781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
|
5
|
Knudsen EI. Neural Circuits That Mediate Selective Attention: A Comparative Perspective. Trends Neurosci 2018; 41:789-805. [PMID: 30075867 DOI: 10.1016/j.tins.2018.06.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/31/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Selective attention is central to cognition. Dramatic advances have been made in understanding the neural circuits that mediate selective attention. Forebrain networks, most elaborated in primates, control all forms of attention based on task demands and the physical salience of stimuli. These networks contain circuits that distribute top-down signals to sensory processing areas and enhance information processing in those areas. A midbrain network, most elaborated in birds, controls spatial attention. It contains circuits that continuously compute the highest priority stimulus location and route sensory information from the selected location to forebrain networks that make cognitive decisions. The identification of these circuits, their functions and mechanisms represent a major advance in our understanding of how the vertebrate brain mediates selective attention.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University, School of Medicine, Stanford, CA 94305-5125, USA.
| |
Collapse
|
6
|
"Shepherd's crook" neurons drive and synchronize the enhancing and suppressive mechanisms of the midbrain stimulus selection network. Proc Natl Acad Sci U S A 2018; 115:E7615-E7623. [PMID: 30026198 DOI: 10.1073/pnas.1804517115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The optic tectum (TeO), or superior colliculus, is a multisensory midbrain center that organizes spatially orienting responses to relevant stimuli. To define the stimulus with the highest priority at each moment, a network of reciprocal connections between the TeO and the isthmi promotes competition between concurrent tectal inputs. In the avian midbrain, the neurons mediating enhancement and suppression of tectal inputs are located in separate isthmic nuclei, facilitating the analysis of the neural processes that mediate competition. A specific subset of radial neurons in the intermediate tectal layers relay retinal inputs to the isthmi, but at present it is unclear whether separate neurons innervate individual nuclei or a single neural type sends a common input to several of them. In this study, we used in vitro neural tracing and cell-filling experiments in chickens to show that single neurons innervate, via axon collaterals, the three nuclei that comprise the isthmotectal network. This demonstrates that the input signals representing the strength of the incoming stimuli are simultaneously relayed to the mechanisms promoting both enhancement and suppression of the input signals. By performing in vivo recordings in anesthetized chicks, we also show that this common input generates synchrony between both antagonistic mechanisms, demonstrating that activity enhancement and suppression are closely coordinated. From a computational point of view, these results suggest that these tectal neurons constitute integrative nodes that combine inputs from different sources to drive in parallel several concurrent neural processes, each performing complementary functions within the network through different firing patterns and connectivity.
Collapse
|
7
|
Knudsen EI, Schwarz JS, Knudsen PF, Sridharan D. Space-Specific Deficits in Visual Orientation Discrimination Caused by Lesions in the Midbrain Stimulus Selection Network. Curr Biol 2017; 27:2053-2064.e5. [PMID: 28669762 DOI: 10.1016/j.cub.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 06/05/2017] [Indexed: 11/15/2022]
Abstract
Perceptual decisions require both analysis of sensory information and selective routing of relevant information to decision networks. This study explores the contribution of a midbrain network to visual perception in chickens. Analysis of visual orientation information in birds takes place in the forebrain sensory area called the Wulst, as it does in the primary visual cortex (V1) of mammals. In contrast, the midbrain, which receives parallel retinal input, encodes orientation poorly, if at all. We discovered, however, that small electrolytic lesions in the midbrain severely impair a chicken's ability to discriminate orientations. Focal lesions were placed in the optic tectum (OT) and in the nucleus isthmi pars parvocellularis (Ipc)-key nodes in the midbrain stimulus selection network-in chickens trained to perform an orientation discrimination task. A lesion in the OT caused a severe impairment in orientation discrimination specifically for targets at the location in space represented by the lesioned location. Distracting stimuli increased the deficit. A lesion in the Ipc produced similar but more transient effects. We discuss the possibilities that performance deficits were caused by interference with orientation information processing (sensory deficit) versus with the routing of information in the forebrain (agnosia). The data support the proposal that the OT transmits a space-specific signal that is required to gate orientation information from the Wulst into networks that mediate behavioral decisions, analogous to the role of ascending signals from the superior colliculus (SC) in monkeys. Furthermore, our results indicate a critical role for the cholinergic Ipc in this gating process.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jason S Schwarz
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Phyllis F Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
8
|
Stacho M, Letzner S, Theiss C, Manns M, Güntürkün O. A GABAergic tecto-tegmento-tectal pathway in pigeons. J Comp Neurol 2016; 524:2886-913. [DOI: 10.1002/cne.23999] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Martin Stacho
- Department of Biopsychology, Faculty of Psychology, Institute of Cogntive Neuroscience; Ruhr-University Bochum; 44801 Bochum Germany
| | - Sara Letzner
- Department of Biopsychology, Faculty of Psychology, Institute of Cogntive Neuroscience; Ruhr-University Bochum; 44801 Bochum Germany
| | - Carsten Theiss
- Department of Cytology, Faculty of Medicine; Ruhr-University Bochum; 44801 Bochum Germany
| | - Martina Manns
- Department of Biopsychology, Faculty of Psychology, Institute of Cogntive Neuroscience; Ruhr-University Bochum; 44801 Bochum Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cogntive Neuroscience; Ruhr-University Bochum; 44801 Bochum Germany
| |
Collapse
|
9
|
Atoji Y. Gene expression of ionotropic glutamate receptor subunits in the tectofugal pathway of the pigeon. Neuroscience 2016; 316:367-77. [DOI: 10.1016/j.neuroscience.2015.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022]
|
10
|
Belekhova MG, Chudinova TV, Rio JP, Tostivint H, Vesselkin NP, Kenigfest NB. Distribution of calcium-binding proteins in the pigeon visual thalamic centers and related pretectal and mesencephalic nuclei. Phylogenetic and functional determinants. Brain Res 2016; 1631:165-93. [PMID: 26638835 DOI: 10.1016/j.brainres.2015.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022]
Abstract
Multichannel processing of environmental information constitutes a fundamental basis of functioning of sensory systems in the vertebrate brain. Two distinct parallel visual systems - the tectofugal and thalamofugal exist in all amniotes. The vertebrate central nervous system contains high concentrations of intracellular calcium-binding proteins (CaBPrs) and each of them has a restricted expression pattern in different brain regions and specific neuronal subpopulations. This study aimed at describing the patterns of distribution of parvalbumin (PV) and calbindin (CB) in the visual thalamic and mesencephalic centers of the pigeon (Columba livia). We used a combination of immunohistochemistry and double labeling immunofluorescent technique. Structures studied included the thalamic relay centers involved in the tectofugal (nucleus rotundus, Rot) and thalamofugal (nucleus geniculatus lateralis, pars dorsalis, GLd) visual pathways as well as pretectal, mesencephalic, isthmic and thalamic structures inducing the driver and/or modulatory action to the visual processing. We showed that neither of these proteins was unique to the Rot or GLd. The Rot contained i) numerous PV-immunoreactive (ir) neurons and a dense neuropil, and ii) a few CB-ir neurons mostly located in the anterior dorsal part and associated with a light neuropil. These latter neurons partially overlapped with the former and some of them colocalized both proteins. The distinct subnuclei of the GLd were also characterized by different patterns of distribution of CaBPrs. Some (nucleus dorsolateralis anterior, pars magnocellularis, DLAmc; pars lateralis, DLL; pars rostrolateralis, DLAlr; nucleus lateralis anterior thalami, LA) contained both CB- and PV-ir neurons in different proportions with a predominance of the former in the DLAmc and DLL. The nucleus lateralis dorsalis of nuclei optici principalis thalami only contained PV-ir neurons and a neuropil similar to the interstitial pretectal/thalamic nuclei of the tectothalamic tract, nucleus pretectalis and thalamic reticular nucleus. The overlapping distribution of PV and CB immunoreactivity was typical for the pretectal nucleus lentiformis mesencephali and the nucleus ectomamillaris as well as for the visual isthmic nuclei. The findings are discussed in the light of the contributive role of the phylogenetic and functional factors determining the circuits׳ specificity of the different CaBPr types.
Collapse
Affiliation(s)
- Margarita G Belekhova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia.
| | - Tatiana V Chudinova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia.
| | - Jean-Paul Rio
- CRICM UPMC/INSERM UMR_S975/CNRS UMR 7225, Hôpital de la Salpêtrière, 47, Bd de l׳Hôpital, 75651 Paris Cedex 13, France.
| | - Hérve Tostivint
- CNRS UMR 7221, MNHN USM 0501, Département Régulations, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, 7, rue Cuvier, 75005 Paris, France.
| | - Nikolai P Vesselkin
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia; Department of Medicine, The State University of Saint-Petersburg, 7-9, Universitetskaya nab., 199034 St. Petersburg, Russia.
| | - Natalia B Kenigfest
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia; CNRS UMR 7221, MNHN USM 0501, Département Régulations, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, 7, rue Cuvier, 75005 Paris, France.
| |
Collapse
|
11
|
Belekhova MG, Kenigfest NB. Turtle isthmic complex of visual nuclei: Immunohistochemistry of gamma-aminobutyric acid, choline acetyltransferase, calcium-binding proteins and histochemistry of cytochrome oxidase activity. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014050081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Gutiérrez-Ibáñez C, Iwaniuk AN, Moore BA, Fernández-Juricic E, Corfield JR, Krilow JM, Kolominsky J, Wylie DR. Mosaic and concerted evolution in the visual system of birds. PLoS One 2014; 9:e90102. [PMID: 24621573 PMCID: PMC3951201 DOI: 10.1371/journal.pone.0090102] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Two main models have been proposed to explain how the relative size of neural structures varies through evolution. In the mosaic evolution model, individual brain structures vary in size independently of each other, whereas in the concerted evolution model developmental constraints result in different parts of the brain varying in size in a coordinated manner. Several studies have shown variation of the relative size of individual nuclei in the vertebrate brain, but it is currently not known if nuclei belonging to the same functional pathway vary independently of each other or in a concerted manner. The visual system of birds offers an ideal opportunity to specifically test which of the two models apply to an entire sensory pathway. Here, we examine the relative size of 9 different visual nuclei across 98 species of birds. This includes data on interspecific variation in the cytoarchitecture and relative size of the isthmal nuclei, which has not been previously reported. We also use a combination of statistical analyses, phylogenetically corrected principal component analysis and evolutionary rates of change on the absolute and relative size of the nine nuclei, to test if visual nuclei evolved in a concerted or mosaic manner. Our results strongly indicate a combination of mosaic and concerted evolution (in the relative size of nine nuclei) within the avian visual system. Specifically, the relative size of the isthmal nuclei and parts of the tectofugal pathway covary across species in a concerted fashion, whereas the relative volume of the other visual nuclei measured vary independently of one another, such as that predicted by the mosaic model. Our results suggest the covariation of different neural structures depends not only on the functional connectivity of each nucleus, but also on the diversity of afferents and efferents of each nucleus.
Collapse
Affiliation(s)
| | - Andrew N. Iwaniuk
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - Bret A. Moore
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Esteban Fernández-Juricic
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jeremy R. Corfield
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Justin M. Krilow
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | | | - Douglas R. Wylie
- Centre for Neuroscience, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
13
|
Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJT. Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 2014; 141:389-98. [PMID: 24381197 PMCID: PMC3879817 DOI: 10.1242/dev.099119] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rhombic lip gives rise to neuronal populations that contribute to cerebellar, proprioceptive and interoceptive networks. Cell production depends on the expression of the basic helix-loop-helix (bHLH) transcription factor Atoh1. In rhombomere 1, Atoh1-positive cells give rise to both cerebellar neurons and extra-cerebellar nuclei in ventral hindbrain. The origin of this cellular diversity has previously been attributed to temporal signals rather than spatial patterning. Here, we show that in both chick and mouse the cerebellar Atoh1 precursor pool is partitioned into initially cryptic spatial domains that reflect the activity of two different organisers: an isthmic Atoh1 domain, which gives rise to isthmic nuclei, and the rhombic lip, which generates deep cerebellar nuclei and granule cells. We use a combination of in vitro explant culture, genetic fate mapping and gene overexpression and knockdown to explore the role of isthmic signalling in patterning these domains. We show that an FGF-dependent isthmic Atoh1 domain is the origin of distinct populations of Lhx9-positive neurons in the extra-cerebellar isthmic nuclei. In the cerebellum, ectopic FGF induces proliferation while blockade reduces the length of the cerebellar rhombic lip. FGF signalling is not required for the specification of cerebellar cell types from the rhombic lip and its upregulation inhibits their production. This suggests that although the isthmus regulates the size of the cerebellar anlage, the downregulation of isthmic FGF signals is required for induction of rhombic lip-derived cerebellar neurons.
Collapse
Affiliation(s)
- Mary J Green
- MRC Centre for Developmental Neurobiology, King's College London, 4th floor New Hunt's House, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
14
|
Hu M, Takayanagi M, Naito J. Morphological properties of tectal neurons that project to the nucleus geniculatus lateralis, pars ventralis (GLv) and the surrounding ventral thalamus in chicks. Tissue Cell 2014; 46:103-11. [PMID: 24411713 DOI: 10.1016/j.tice.2013.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
Layer 10 neurons of the chick tectum were morphologically investigated. The layer 10 neurons displayed heterogeneous immunoreactivities to calcium-binding proteins (CaBPs). Calbindin (CB)-immunoreactive (ir) neurons had pyramidal or round somata, primarily found in layers 5, 9, and 13. Parvalbumin (PV)-ir neurons were of various shapes with small to large somata (109.7±48.6μm(2)) that were located mainly in layers 4 and 10. Calretinin (CR)-ir neurons had small to middle-sized somata (79.3±9.7μm(2)) located primarily in layers 10 and 13, and most of them were similar to typical radial cells in size and shape. Two distinct types of neurons that projected to the nucleus geniculatus lateralis, pars ventralis (GLv) and ventral thalamus were demonstrated in layer 10. Type 1 cells had small to middle-sized somata (74.3±33μm(2)), and each cell had a single apical dendrite that ramified into bush-like branches in layer 7. These cells corresponded to CR-ir neurons and radial cells in size and shape. Type 2 cells had larger somata (124.7±52.6μm(2)), and their shapes were pyramidal, polygonal, or oval. They had multiple obliquely ascending dendrites that ramified into bush-like branches in layer 7. These cells often appeared similar to PV-ir neurons.
Collapse
Affiliation(s)
- M Hu
- Department of Animal Sciences, Faculty of Life and Environmental Sciences, Teikyo University of Science, Uenohara 2525, Yamanashi 409-0193, Japan; College of Animal Medicine, Agricultural University of Hebei, Baoding 071001, China.
| | - M Takayanagi
- Department of Anatomy, School of Medicine, Faculty of Medicine, Toho University, Ohmori-Nishi 5-21-16, Ohta-ku, Tokyo 143-8540, Japan.
| | - J Naito
- Department of Animal Sciences, Faculty of Life and Environmental Sciences, Teikyo University of Science, Uenohara 2525, Yamanashi 409-0193, Japan.
| |
Collapse
|
15
|
Abstract
Spatial attention enables the brain to analyse and evaluate information selectively from a specific location in space, a capacity essential for any animal to behave adaptively in a complex world. We usually think of spatial attention as being controlled by a frontoparietal network in the forebrain. However, emerging evidence shows that a midbrain network also plays a critical role in controlling spatial attention. Moreover, the highly differentiated, retinotopic organization of the midbrain network, especially in birds, makes it amenable to detailed analysis with modern techniques that can elucidate circuit, cellular and synaptic mechanisms of attention. The following review discusses the role of the midbrain network in controlling attention, the neural circuits that support this role and current knowledge about the computations performed by these circuits.
Collapse
Affiliation(s)
- Eric I Knudsen
- Department of Neurobiology, 299 Campus Dr., Stanford University School of Medicine, Stanford, CA 94305-5125, USA.
| |
Collapse
|
16
|
Reiner A, Yang M, Cagle MC, Honig MG. Localization of cerebellin-2 in late embryonic chicken brain: implications for a role in synapse formation and for brain evolution. J Comp Neurol 2011; 519:2225-51. [PMID: 21456003 PMCID: PMC3392029 DOI: 10.1002/cne.22626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cerebellin-1 (Cbln1), the most studied member of the cerebellin family of secreted proteins, is necessary for the formation and maintenance of parallel fiber-Purkinje cell synapses. However, the roles of the other Cblns have received little attention. We previously identified the chicken homolog of Cbln2 and examined its expression in dorsal root ganglia and spinal cord (Yang et al. [2010] J Comp Neurol 518:2818-2840). Interestingly, Cbln2 is expressed by mechanoreceptive and proprioceptive neurons and in regions of the spinal cord where those afferents terminate, as well as by preganglionic sympathetic neurons and their sympathetic ganglia targets. These findings suggest that Cbln2 may demonstrate a tendency to be expressed by synaptically connected neuronal populations. To further assess this possibility, we examined Cbln2 expression in chick brain. We indeed found that Cbln2 is frequently expressed by synaptically connected neurons, although there are exceptions, and we discuss the implications of these findings for Cbln2 function. Cbln2 expression tends to be more common in primary sensory neurons and in second-order sensory regions than it is in motor areas of the brain. Moreover, we found that the level of Cbln2 expression for many regions of the chicken brain is very similar to that of the mammalian homologs, consistent with the view that the expression patterns of molecules playing fundamental roles in processes such as neuronal communication are evolutionarily conserved. There are, however, large differences in the pattern of Cbln2 expression in avian as compared to mammalian telencephalon and in other regions that show the most divergence between the two lineages.
Collapse
Affiliation(s)
- Anton Reiner
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology, Memphis, Tennessee 38163
| | - Mao Yang
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology, Memphis, Tennessee 38163
| | - Michael C. Cagle
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology, Memphis, Tennessee 38163
| | - Marcia G. Honig
- University of Tennessee Health Science Center, Department of Anatomy & Neurobiology, Memphis, Tennessee 38163
| |
Collapse
|
17
|
Abstract
Karten's neocortex hypothesis holds that many component cell populations of the sauropsid dorsal ventricular ridge (DVR) are homologous to particular cell populations in layers of auditory and visual tectofugal-recipient neocortex of mammals (i.e., temporal neocortex), as well as to some amygdaloid populations. The claustroamygdalar hypothesis, based on gene expression domains, proposes that mammalian homologues of DVR are found in the claustrum, endopiriform nuclei, and/or pallial amygdala. Because hypotheses of homology need to account for the totality of the evidence, the available data on multiple forebrain features of sauropsids and mammals are reviewed here. While some genetic data are compatible with the claustroamygdalar hypothesis, and developmental (epigenetic) data are indecisive, hodological, morphological, and topographical data favor the neocortex hypothesis and are inconsistent with the claustroamygdalar hypothesis. Detailed studies of gene signaling cascades that establish neuronal cell-type identity in DVR, tectofugal-recipient neocortex, and claustroamygdala will be needed to resolve this debate about the evolution of neocortex.
Collapse
Affiliation(s)
- Ann B Butler
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, USA.
| | | | | |
Collapse
|
18
|
Belekhova MG, Kenigfest NB, Chudinova TV. Activity of cytochrome oxidase in centers of tectofugal and thalamofugal tracts of the visual system of pigeon Columbia livia. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Shao J, Lai D, Meyer U, Luksch H, Wessel R. Generating oscillatory bursts from a network of regular spiking neurons without inhibition. J Comput Neurosci 2009; 27:591-606. [PMID: 19572191 DOI: 10.1007/s10827-009-0171-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/31/2009] [Accepted: 06/18/2009] [Indexed: 12/25/2022]
Abstract
Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with the layer 10 (L10) neurons in the optic tectum and respond with oscillatory bursts to visual stimulation. Our in vitro experiments show that both neuron types respond with regular spiking to somatic current injection and that the feedforward and feedback synaptic connections are excitatory, but of different strength and time course. To elucidate mechanisms of oscillatory bursting in this network of regularly spiking neurons, we investigated an experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response to simulated visual stimulation. A scan through the model parameter volume reveals that Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic conductance changes. The mechanism is sensitive to the parameter values of spike-rate adaptation. In conclusion, we show that a network of regular-spiking neurons with feedforward excitation and spike-rate adaptation can generate oscillatory bursting in response to a constant input.
Collapse
Affiliation(s)
- Jing Shao
- Department of Physics, Washington University, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
20
|
Islam MR, Atoji Y. Distribution of vesicular glutamate transporter 2 and glutamate receptor 1 mRNA in the central nervous system of the pigeon (Columba livia). J Comp Neurol 2008; 511:658-77. [DOI: 10.1002/cne.21871] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Meyer U, Shao J, Chakrabarty S, Brandt SF, Luksch H, Wessel R. Distributed delays stabilize neural feedback systems. BIOLOGICAL CYBERNETICS 2008; 99:79-87. [PMID: 18523798 DOI: 10.1007/s00422-008-0239-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
We consider the effect of distributed delays in neural feedback systems. The avian optic tectum is reciprocally connected with the isthmic nuclei. Extracellular stimulation combined with intracellular recordings reveal a range of signal delays from 3 to 9 ms between isthmotectal elements. This observation together with prior mathematical analysis concerning the influence of a delay distribution on system dynamics raises the question whether a broad delay distribution can impact the dynamics of neural feedback loops. For a system of reciprocally connected model neurons, we found that distributed delays enhance system stability in the following sense. With increased distribution of delays, the system converges faster to a fixed point and converges slower toward a limit cycle. Further, the introduction of distributed delays leads to an increased range of the average delay value for which the system's equilibrium point is stable. The system dynamics are determined almost exclusively by the mean and the variance of the delay distribution and show only little dependence on the particular shape of the distribution.
Collapse
|
22
|
Dudkin EA, Sheffield JB, Gruberg ER. Combining visual information from the two eyes: the relationship between isthmotectal cells that project to ipsilateral and to contralateral optic tectum using fluorescent retrograde labels in the frog, Rana pipiens. J Comp Neurol 2007; 502:38-54. [PMID: 17335048 DOI: 10.1002/cne.21308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The frog nucleus isthmi (homolog of the mammalian parabigeminal nucleus) is a visually responsive tegmental structure that is reciprocally connected with the ipsilateral optic tectum; cells in nucleus isthmi also project to the contralateral optic tectum. We investigated the location of the isthmotectal cells that project ipsilaterally and contralaterally using three retrograde fluorescent label solutions: Alexa Fluor 488 10,000 mw dextran conjugate; Rhodamine B isothiocyanate; and Nuclear Yellow. Dye solutions were pressure-injected into separate sites in the superficial optic tectum. Following a 6-day survival, brains were fixed, sectioned, and then photographed. Injection of the different labels at separate, discrete locations in the optic tectum result in retrograde filling of singly labeled clusters of cells in both the ipsilateral and contralateral nucleus isthmi. Generally, ipsilaterally projecting cells are dorsal to the contralaterally projecting cells, but there is a slight overlap between the two sets of cells. Nonetheless, when different retrograde labels are injected into opposite tecta, there is no indication that individual cells project to both tecta. The set of cells that project to the ipsilateral tectum and the set of cells that project to the contralateral tectum form a visuotopic map in a roughly vertical, transverse slab. Our results suggest that nucleus isthmi can be separated into two regions with cells in the dorsolateral portion projecting primarily to the ipsilateral optic tectum and cells in the ventrolateral nucleus isthmi projecting primarily to the contralateral optic tectum.
Collapse
Affiliation(s)
- Elizabeth A Dudkin
- Division of Science, Pennsylvania State University, Media, Pennsylvania 19063, USA.
| | | | | |
Collapse
|
23
|
Manns M, Freund N, Patzke N, Güntürkün O. Organization of telencephalotectal projections in pigeons: Impact for lateralized top-down control. Neuroscience 2007; 144:645-53. [PMID: 17084536 DOI: 10.1016/j.neuroscience.2006.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/26/2006] [Accepted: 09/26/2006] [Indexed: 11/27/2022]
Abstract
Birds display hemispheric specific modes of visual processing with a dominance of the right eye/left hemisphere for detailed visual object analysis. In pigeons, this behavioral lateralization is accompanied by morphological left-right differences in the ascending tectofugal pathway. This system is also asymmetrically modulated by descending telencephalotectal input whereby the left forebrain displays a much more pronounced physiological control over ipsilateral left and contralateral right visual thalamic processes. In the present study we aimed to answer the question if this top-down asymmetry that up to now had been demonstrated in single cell recording studies is due to anatomical asymmetries in the size of the fiber systems descending from the telencephalon to the tectum. We approached this question by means of a quantitative retrograde tracing study. Cholera toxin subunit B (CtB) was injected unilaterally into either the left or right optic tectum of adult pigeons. After immunohistochemical detection of CtB-positive cells, the number of ipsi- and contralaterally projecting neurons was estimated. Retrogradely labeled cells were located within the arcopallium, the hyperpallium apicale (HA) and the temporo-parieto-occipital area (TPO). Descending projections from HA, arcopallium, and TPO were mainly or exclusively ipsilateral with the contralateral projection being extremely small. Moreover, there was no difference between left and right hemispheric projections. These anatomical data sharply contrast with behavioral and electrophysiological ones which reveal an asymmetric and bilateral top down control. Therefore, contralateral and lateralized forebrain influences onto tectofugal processing are possibly not the direct result of asymmetrical descending axon numbers. Those influences emerge by a lateralized intra- and/or interhemispheric integration of ascending and descending input onto the rotundus.
Collapse
Affiliation(s)
- M Manns
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Universitätstr 150, 44780 Bochum, Germany.
| | | | | | | |
Collapse
|
24
|
Wang Y, Luksch H, Brecha NC, Karten HJ. Columnar projections from the cholinergic nucleus isthmi to the optic tectum in chicks (Gallus gallus): a possible substrate for synchronizing tectal channels. J Comp Neurol 2006; 494:7-35. [PMID: 16304683 DOI: 10.1002/cne.20821] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cholinergic division of the avian nucleus isthmi, the homolog of the mammalian nucleus parabigeminalis, is composed of the pars parvocellularis (Ipc) and pars semilunaris (SLu). Ipc and SLu were studied with in vivo and in vitro tracing and intracellular filling methods. 1) Both nuclei have reciprocal homotopic connections with the ipsilateral optic tectum. The SLu connection is more diffuse than that of Ipc. 2) Tectal inputs to Ipc and SLu are Brn3a-immunoreactive neurons in the inner sublayer of layer 10. Tectal neurons projecting on Ipc possess "shepherd's crook" axons and radial dendritic fields in layers 2-13. 3) Neurons in the mid-portion of Ipc possess a columnar spiny dendritic field. SLu neurons have a large, nonoriented spiny dendritic field. 4) Ipc terminals form a cylindrical brush-like arborization (35-50 microm wide) in layers 2-10, with extremely dense boutons in layers 3-6, and a diffuse arborization in layers 11-13. SLu neurons terminate in a wider column (120-180 microm wide) lacking the dust-like boutonal features of Ipc and extend in layers 4c-13 with dense arborizations in layers 4c, 6, and 9-13. 5) Ipc and SLu contain specialized fast potassium ion channels. We propose that dense arborizations of Ipc axons may be directed to the distal dendritic bottlebrushes of motion detecting tectal ganglion cells (TGCs). They may provide synchronous activation of a group of adjacent bottlebrushes of different TGCs of the same type via their intralaminar processes, and cross channel activation of different types of TGCs within the same column of visual space.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, 92093-0608, USA
| | | | | | | |
Collapse
|
25
|
Schulte M, Diekamp B, Manns M, Schwarz A, Valencia-Alfonso C, Kirsch JA, Güntürkün O, Folta K. Visual responses and afferent connections of the n. ventrolateralis thalami (VLT) in the pigeon (Columba livia). Brain Res Bull 2006; 68:285-92. [PMID: 16377434 DOI: 10.1016/j.brainresbull.2005.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
The nucleus ventrolateralis thalami (VLT) in pigeons receives direct retinal and forebrain projections and has reciprocal connections with the optic tectum. Although VLT is a component of the avian visual system, no study directly examined its connections or its cellular response characteristics. We, therefore, recorded from single units in the pigeon's VLT while visually stimulating the ipsi- and/or contralateral eye. In addition, tracing experiments were conducted to investigate its afferent connections. Electrophysiologically, we discovered three types of neurons, two of which were probably activated via a top-down telencephalotectal system (latencies > 100 ms). Type I neurons responded to uni- and bilateral and type II neurons exclusively to bilateral stimulation. Type III neurons were probably activated by retinal or retinotectal input (latencies < 27 ms) and responded to contra- and bilateral stimulation. Retrograde tracer injections into the VLT revealed an ipsilateral forebrain input from the visual Wulst, from subregions of the arcopallium, and bilateral afferents from the optic tectum. Most intriguing was the direct connection between the VLTs of both hemispheres. We suggest that the avian VLT is part of a system that integrates visuomotor processes which are controlled by both forebrain hemispheres and that VLT contributes to descending tectomotor mechanisms.
Collapse
Affiliation(s)
- Martin Schulte
- Fakultät für Psychologie, Biopsychologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hellmann B, Güntürkün O, Manns M. Tectal mosaic: Organization of the descending tectal projections in comparison to the ascending tectofugal pathway in the pigeon. J Comp Neurol 2004; 472:395-410. [PMID: 15065115 DOI: 10.1002/cne.20056] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The optic tectum of vertebrates is an essential relay station for visuomotor behavior and is characterized by a set of connections that comprises topographically ordered input from the eyes and an output that reaches premotor hindbrain regions. In the avian tectofugal system, different ascending cell classes have recently been identified based on their dendritic and axonal projection patterns, although comparable information about the descending cells is missing. By means of retrograde tracing, the present study describes the detailed morphology of tectal output neurons that constitute the descending tectobulbar and tectopontine pathways in pigeons. Descending cells were more numerous in the dorsal tectum and differed in terms of 1) their relative amount of ipsi- vs. contralateral projections, 2) the location of the efferent cell bodies within different tectal layers, and 3) their differential access to visual input via dendritic ramifications within the outer retinorecipient laminae. Thus, the descending tectal system is constituted by different cell classes presumably processing diverse aspects of the visual environment in a visual field-dependent manner. We demonstrate, based on a careful morphological analysis and on double-labeling experiments, that the descending pathways are largely separated from the ascending projections even when they arise from the same layers. These data support the concept that the tectum is arranged as a mosaic of multiple cell types with diverse input functions at the same location of the tectal map. Such an arrangement would enable the tectal projections onto diverse areas to be both retinotopically organized and functionally specific.
Collapse
Affiliation(s)
- Burkhard Hellmann
- Abteilung Biopsychologie, Institut für Kognitive Neurowissenschaft, Fakultät für Psychologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | |
Collapse
|
27
|
Wang Y, Major DE, Karten HJ. Morphology and connections of nucleus isthmi pars magnocellularis in chicks (Gallus gallus). J Comp Neurol 2004; 469:275-97. [PMID: 14694539 DOI: 10.1002/cne.11007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nucleus isthmi pars magnocellularis (Imc) and pars parvocellularis (Ipc) influence the receptive field structure of neurons in the optic tectum (TeO). To understand better the anatomical substrate of isthmotectal interactions, neuronal morphology and connections of Imc were examined in chicks (Gallus gallus). Cholera toxin B injection into TeO demonstrated a coarse topographical projection from TeO upon Imc. Retrogradely labeled neurons were scattered throughout Imc and in low density within the zone of anterogradely labeled terminals, suggesting a heterotopic projection from Imc upon TeO. This organization differed from the precise homotopic reciprocal connections of Ipc and the nucleus isthmi pars semilunaris (SLu) with TeO. By using slice preparations, extracellular biotinylated dextran amine injections demonstrated a dense projection from most neurons in Imc upon both Ipc and SLu. Intracellular filling of Imc neurons with biocytin revealed two cell types. The most common, Imc-Is, formed a widely ramifying axonal field in both Ipc and SLu, without obvious topography. A less frequently observed cell type, Imc-Te, formed a widely ramifying terminal field in layers 10-12 of TeO. No neurons were found to project upon both Ipc/SLu and TeO. Both types possessed local axon collaterals and flat dendritic fields oriented parallel to the long axis of Imc. Imc neurons contain glutamic acid decarboxylase, which is consistent with Imc participating in center-surround or other wide-field inhibitory isthmotectal interactions. The laminar and columnar pattern of isthmotectal terminals also suggests a means of interacting with multiple tectofugal pathways, including the stratified subpopulations of tectorotundal neurons participating in motion detection.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
28
|
Wang SR. The nucleus isthmi and dual modulation of the receptive field of tectal neurons in non-mammals. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:13-25. [PMID: 12505645 DOI: 10.1016/s0165-0173(02)00217-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The nucleus isthmi in the dorsolateral tegmentum had been one of the most obscure structures in the nonmammalian midbrain for eight decades. Recent studies have shown that this nucleus and its mammalian homologue, the parabigeminal nucleus, are all visual centers, which receive information from the ipsilateral tectum and project back either ipsilaterally or bilaterally depending on species, but not an auditory center as suggested before. On the other hand, the isthmotectal pathways exert dual, both excitatory and inhibitory, actions on tectal cells in amphibians and reptiles. In birds, the magnocellular and parvocellular subdivisions of this nucleus produce excitatory and inhibitory effects on tectal cells, respectively. The excitatory pathway is mediated by glutamatergic synapses with AMPA and NMDA receptors and/or cholinergic synapses with muscarinic receptors, whereas the inhibitory pathway is mediated by GABAergic synapses via GABA(A) receptors. Further studies have shown that the magnocellular and parvocellular subdivisions can differentially modulate the excitatory and inhibitory regions of the receptive field of tectal neurons, respectively. Both the positive and the negative feedback pathways may work together in a winner-take-all manner, so that the animal could attend to only one of several competing visual targets simultaneously present in the visual field. Some behavioral tests seem to be consistent with this hypothesis. The present review indicates that the tecto-isthmic system in birds is an excellent model for further studying tectal modulation and possibly winner-take-all mechanisms.
Collapse
Affiliation(s)
- Shu-Rong Wang
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
29
|
Yang J, Li X, Wang SR. Receptive field organization and response properties of visual neurons in the pigeon nucleus semilunaris. Neurosci Lett 2002; 331:179-82. [PMID: 12383926 DOI: 10.1016/s0304-3940(02)00882-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study provides the first electrophysiological evidence that the nucleus semilunaris is a visual center in the pigeon midbrain. The receptive field of E-type cells is either an excitatory field alone or an excitatory center with an inhibitory periphery, which in most cases is surrounded by a disinhibitory region. Cells of I-type possess only an inhibitory receptive field. Semilunar cells are selective for fast (80-160 degrees /s), intermediate (40 degrees /s) and slow (10-20 degrees /s) velocities of motion, with directional cells mainly preferring forward and downward motion. About 40% of cells prefer a white stimulus moving against a black background, and 60% of cells prefer a black stimulus against a white background. The physiological significance of these properties is discussed.
Collapse
Affiliation(s)
- Jin Yang
- Laboratory for Visual Information Processing, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | |
Collapse
|