1
|
Ramírez-Sánchez E, Mondragón-García A, Garduño J, Hernández-Vázquez F, Ortega-Tinoco S, Hernández-López S. Opposing effects of nicotine on hypothalamic arcuate nucleus POMC and NPY neurons. Prog Neurobiol 2024; 242:102682. [PMID: 39490889 DOI: 10.1016/j.pneurobio.2024.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The hypothalamic arcuate nucleus (ARC) contains two main populations of neurons essential for energy homeostasis: neuropeptide Y (NPY) neurons, which are orexigenic and stimulate food intake, and proopiomelanocortin (POMC) neurons, which have an anorexigenic effect. Located near the blood-brain barrier, ARC neurons sense blood-borne signals such as leptin, insulin, and glucose. Exogenous substances, such as nicotine, can also alter ARC neuron activity and energy balance. Nicotine, an addictive drug used worldwide, inhibits appetite, and reduces body weight, although its mechanisms in regulating ARC neurons are not well understood. Using electrophysiological techniques in brain slices, we investigated the effects of nicotine on POMC and NPY neurons at physiological glucose concentrations. We found that nicotine increased the firing rate of POMC and inhibited NPY neurons. Additionally, nicotine-enhanced glutamatergic inputs to POMC cells and GABAergic inputs to NPY neurons, mediated by α7 and α4β2 nicotinic acetylcholine receptors (nAChRs), respectively. These findings can contribute to the understanding of the anorexigenic effects of nicotine in smokers.
Collapse
Affiliation(s)
- E Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - A Mondragón-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - F Hernández-Vázquez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Ortega-Tinoco
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Papke RL. Functions and pharmacology of α2β2 nicotinic acetylcholine receptors; in and out of the shadow of α4β2 nicotinic acetylcholine receptors. Biochem Pharmacol 2024; 225:116263. [PMID: 38735444 PMCID: PMC11335000 DOI: 10.1016/j.bcp.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Although α2 was the first neuronal nicotinic acetylcholine receptor (nAChR) receptor subunit to be cloned, due to its low level of expression in rodent brain, its study has largely been neglected. This study provides a comparison of the α2 and α4 structures and their functional similarities, especially in regard to the existence of low and high sensitivity forms based on subunit stoichiometry. We show that the pharmacological profiles of the low and high sensitivity forms of α2β2 and α4β2 receptors are very similar in their responses to nicotine, with high sensitivity receptors showing protracted responses. Sazetidine A, an agonist that is selective for the high sensitivity α4 receptors also selectively activates high sensitivity α2 receptors. Likewise, α2 receptors have similar responses as α4 receptors to the positive allosteric modulators (PAMs) desformylflustrabromine (dFBr) and NS9283. We show that the partial agonists for α4β2 receptors, cytisine and varenicline are also partial agonists for α2β2 receptors. Studies have shown that levels of α2 expression may be much higher in the brains of primates than those of rodents, suggesting a potential importance for human therapeutics. High-affinity nAChR have been studied in humans with PET ligands such as flubatine. We show that flubatine has similar activity with α2β2 and α4β2 receptors so that α2 receptors will also be detected in PET studies that have previously presumed to selectively detect α4β2 receptors. Therefore, α2 receptors need more consideration in the development of therapeutics to manage nicotine addiction and declining cholinergic function in age and disease.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610 USA.
| |
Collapse
|
3
|
Papke RL. The many enigmas of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:327-354. [PMID: 38467485 PMCID: PMC11318566 DOI: 10.1016/bs.apha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This review discusses the diverse effects of nicotine on the various nicotinic acetylcholine receptors of the central and peripheral nervous system and how those effects may promote the usage and addiction to tobacco products.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Becchetti A, Grandi LC, Cerina M, Amadeo A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol Res 2023; 189:106698. [PMID: 36796465 DOI: 10.1016/j.phrs.2023.106698] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Despite recent advances in understanding the causes of epilepsy, especially the genetic, comprehending the biological mechanisms that lead to the epileptic phenotype remains difficult. A paradigmatic case is constituted by the epilepsies caused by altered neuronal nicotinic acetylcholine receptors (nAChRs), which exert complex physiological functions in mature as well as developing brain. The ascending cholinergic projections exert potent control of forebrain excitability, and wide evidence implicates nAChR dysregulation as both cause and effect of epileptiform activity. First, tonic-clonic seizures are triggered by administration of high doses of nicotinic agonists, whereas non-convulsive doses have kindling effects. Second, sleep-related epilepsy can be caused by mutations on genes encoding nAChR subunits widely expressed in the forebrain (CHRNA4, CHRNB2, CHRNA2). Third, in animal models of acquired epilepsy, complex time-dependent alterations in cholinergic innervation are observed following repeated seizures. Heteromeric nAChRs are central players in epileptogenesis. Evidence is wide for autosomal dominant sleep-related hypermotor epilepsy (ADSHE). Studies of ADSHE-linked nAChR subunits in expression systems suggest that the epileptogenic process is promoted by overactive receptors. Investigation in animal models of ADSHE indicates that expression of mutant nAChRs can lead to lifelong hyperexcitability by altering i) the function of GABAergic populations in the mature neocortex and thalamus, ii) synaptic architecture during synaptogenesis. Understanding the balance of the epileptogenic effects in adult and developing networks is essential to plan rational therapy at different ages. Combining this knowledge with a deeper understanding of the functional and pharmacological properties of individual mutations will advance precision and personalized medicine in nAChR-dependent epilepsy.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Laura Clara Grandi
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Marta Cerina
- Department of Biotechnology and Biosciences, and NeuroMI (Milan Center of Neuroscience), University of Milano-Bicocca, Piazza della Scienza 2, Milano 20126, Italy.
| | - Alida Amadeo
- Department of Biosciences, University of Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
5
|
Jin XT, Drenan RM. Functional α7 nicotinic acetylcholine receptors in GABAergic neurons of the interpeduncular nucleus. Neuropharmacology 2022; 208:108987. [PMID: 35167902 PMCID: PMC8885883 DOI: 10.1016/j.neuropharm.2022.108987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
The interpeduncular nucleus (IPN) plays a key role in nicotine dependence and is involved in regulation of fear responses, affective states, and novelty processing. IPN neurons express nicotinic acetylcholine receptors (nAChR) and receive strong cholinergic innervation from the ventral medial habenula. Dorsal medial habenula neurons are primarily peptidergic, releasing substance P (SP) mainly onto IPN neurons in the lateral subnucleus (IPL). IPL neurons are sensitive to SP, but it is not known if they are involved in cholinergic transmission like other IPN neurons. We examined nAChR subunit gene expression in IPL neurons, revealing that Chrna7 (α7 nAChR subunit) is expressed in a subset of GABAergic IPL neurons. In patch-clamp recordings from IPL neurons, ACh-evoked inward currents were attenuated by methyllycaconitine (α7 nAChR antagonist) and potentiated by NS1738 (α7 Type I positive allosteric modulator). We confirmed α7 functional expression in IPL neurons by also showing that ACh-evoked currents were potentiated by PNU-120596 (Type II positive allosteric modulator). Additional pharmacological experiments show that IPN neurons expressing α7 nAChRs also express α3β4 nAChRs. Finally, we used 2-photon laser scanning microscopy and nicotine uncaging to directly examine the morphology of IPL neurons that express α7 nAChRs. These results highlight a novel aspect of α7 nAChR neurobiology, adding to the complexity of cholinergic modulation by nAChRs in the IPN.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ryan M Drenan
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
6
|
Wong KLL, Nair A, Augustine GJ. Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Front Neural Circuits 2021; 15:658228. [PMID: 34054437 PMCID: PMC8155375 DOI: 10.3389/fncir.2021.658228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The claustrum is a thin sheet of neurons that is densely connected to many cortical regions and has been implicated in numerous high-order brain functions. Such brain functions arise from brain states that are influenced by neuromodulatory pathways from the cholinergic basal forebrain, dopaminergic substantia nigra and ventral tegmental area, and serotonergic raphe. Recent revelations that the claustrum receives dense input from these structures have inspired investigation of state-dependent control of the claustrum. Here, we review neuromodulation in the claustrum-from anatomical connectivity to behavioral manipulations-to inform future analyses of claustral function.
Collapse
Affiliation(s)
- Kelly L. L. Wong
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aditya Nair
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, United States
| | - George J. Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
7
|
Almeida NL, Rodrigues SJ, Gonçalves LM, Silverstein SM, Sousa IC, Gomes GH, Butler PD, Fernandes TP, Santos NA. Opposite effects of smoking and nicotine intake on cognition. Psychiatry Res 2020; 293:113357. [PMID: 32823200 DOI: 10.1016/j.psychres.2020.113357] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/22/2020] [Accepted: 08/01/2020] [Indexed: 01/06/2023]
Abstract
Our main purpose was to investigate how smoking and nicotine interacted with specific aspects of cognitive functioning. The research was conducted in two parts: (i) an investigation of cognition in heavy smokers and healthy nonsmokers, and (ii) an investigation of cognition in healthy nonsmokers enrolled in a clinical trial involving administration of nicotine gum. Results indicated that the relationship between smoking and nicotine was characterized by an inverted U-shaped effect. On the one hand, cognitive test performance of the heavy smokers group was reduced on all of the cognitive tasks used here. On the other hand, healthy nonsmokers who used 2-mg of nicotine gum performed better, whilst the 4-mg group performed worse than the 2-mg and the placebo group. Demographic data were not related to the cognitive tasks. These data suggest that small doses of nicotine can have an activating function that leads to improved cognition, while heavy smoking on a chronic (and possibly acute) basis leads to cognitive impairment.
Collapse
Affiliation(s)
- Natalia L Almeida
- Federal University of Paraiba, Department of Psychology, Joao Pessoa, Brazil; Perception, Neuroscience, and Behaviour Laboratory, Joao Pessoa, Brazil.
| | - Stephanye J Rodrigues
- Federal University of Paraiba, Department of Psychology, Joao Pessoa, Brazil; Perception, Neuroscience, and Behaviour Laboratory, Joao Pessoa, Brazil
| | - Letícia M Gonçalves
- Federal University of Paraiba, Department of Psychology, Joao Pessoa, Brazil; Perception, Neuroscience, and Behaviour Laboratory, Joao Pessoa, Brazil
| | | | - Isadora C Sousa
- Federal University of Paraiba, Department of Psychology, Joao Pessoa, Brazil; Perception, Neuroscience, and Behaviour Laboratory, Joao Pessoa, Brazil
| | | | | | - Thiago P Fernandes
- Federal University of Paraiba, Department of Psychology, Joao Pessoa, Brazil; Perception, Neuroscience, and Behaviour Laboratory, Joao Pessoa, Brazil.
| | - Natanael A Santos
- Federal University of Paraiba, Department of Psychology, Joao Pessoa, Brazil; Perception, Neuroscience, and Behaviour Laboratory, Joao Pessoa, Brazil
| |
Collapse
|
8
|
Corrie LW, Stokes C, Wilkerson JL, Carroll FI, McMahon LR, Papke RL. Nicotinic Acetylcholine Receptor Accessory Subunits Determine the Activity Profile of Epibatidine Derivatives. Mol Pharmacol 2020; 98:328-342. [PMID: 32690626 PMCID: PMC7485586 DOI: 10.1124/molpharm.120.000037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
Epibatidine is a potent analgetic agent with very high affinity for brain nicotinic acetylcholine receptors (nAChR). We determined the activity profiles of three epibatidine derivatives, RTI-36, RTI-76, and RTI-102, which have affinity for brain nAChR equivalent to that of epibatidine but reduced analgetic activity. RNAs coding for nAChR monomeric subunits and/or concatamers were injected into Xenopus oocytes to obtain receptors of defined subunit composition and stoichiometry. The epibatidine analogs produced protracted activation of high sensitivity (HS) α4- and α2-containing receptors with the stoichiometry of 2alpha:3beta subunits but not low sensitivity (LS) receptors with the reverse ratio of alpha and beta subunits. Although not strongly activated by the epibatidine analogs, LS α4- and α2-containing receptors were potently desensitized by the epibatidine analogs. In general, the responses of α4(2)β2(2)α5 and β3α4β2α6β2 receptors were similar to those of the HS α4β2 receptors. RTI-36, the analog closest in structure to epibatidine, was the most efficacious of the three compounds, also effectively activating α7 and α3β4 receptors, albeit with lower potency and less desensitizing effect. Although not the most efficacious agonist, RTI-76 was the most potent desensitizer of α4- and α2-containing receptors. RTI-102, a strong partial agonist for HS α4β2 receptors, was effectively an antagonist for LS α4β2 receptors. Our results highlight the importance of subunit stoichiometry and the presence or absence of specific accessory subunits for determining the activity of these drugs on brain nAChR, affecting the interpretation of in vivo studies since in most cases these structural details are not known. SIGNIFICANCE STATEMENT: Epibatidine and related compounds are potent ligands for the high-affinity nicotine receptors of the brain, which are therapeutic targets and mediators of nicotine addiction. Far from being a homogeneous population, these receptors are diverse in subunit composition and vary in subunit stoichiometry. We show the importance of these structural details for drug activity profiles, which present a challenge for the interpretation of in vivo experiments since conventional methods, such as in situ hybridization and immunohistochemistry, cannot illuminate these details.
Collapse
Affiliation(s)
- Lu Wenchi Corrie
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Jenny L Wilkerson
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - F Ivy Carroll
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Lance R McMahon
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, College of Medicine (L.W.C., C.S., R.L.P.) and Department of Pharmacodynamics, College of Pharmacy, (J.L.W., L.R.M.), University of Florida, Gainesville, Florida; and Center for Drug Discovery, Research Triangle Institute, Durham, North Carolina (F.I.C.)
| |
Collapse
|
9
|
Nicotinic Receptor Subunit Distribution in Auditory Cortex: Impact of Aging on Receptor Number and Function. J Neurosci 2020; 40:5724-5739. [PMID: 32541068 DOI: 10.1523/jneurosci.0093-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
The presence of novel or degraded communication sounds likely results in activation of basal forebrain cholinergic neurons increasing release of ACh onto presynaptic and postsynaptic nAChRs in primary auditory cortex (A1). nAChR subtypes include high-affinity heteromeric nAChRs commonly composed of α4 and β2 subunits and low-affinity homomeric nAChRs composed of α7 subunits. In young male FBN rats, we detail the following: (1) the distribution/expression of nAChR subunit transcripts in excitatory (VGluT1) and inhibitory (VGAT) neurons across A1 layers; (2) heteromeric nAChR binding across A1 layers; and (3) nAChR excitability in A1 layer (L) 5 cells. In aged rats, we detailed the impact of aging on A1 nAChR subunit expression across layers, heteromeric nAChR receptor binding, and nAChR excitability of A1 L5 cells. A majority of A1 cells coexpressed transcripts for β2 and α4 with or without α7, while dispersed subpopulations expressed β2 and α7 or α7 alone. nAChR subunit transcripts were expressed in young excitatory and inhibitory neurons across L2-L6. Transcript abundance varied across layers, and was highest for β2 and α4. Significant age-related decreases in nAChR subunit transcript expression (message) and receptor binding (protein) were observed in L2-6, most pronounced in infragranular layers. In vitro patch-clamp recordings from L5B pyramidal output neurons showed age-related nAChR subunit-selective reductions in postsynaptic responses to ACh. Age-related losses of nAChR subunits likely impact ways in which A1 neurons respond to ACh release. While the elderly require additional resources to disambiguate degraded speech codes, resources mediated by nAChRs may be compromised with aging.SIGNIFICANCE STATEMENT When attention is required, cholinergic basal forebrain neurons may trigger increased release of ACh onto auditory neurons in primary auditory cortex (A1). Laminar and phenotypic differences in neuronal nAChR expression determine ways in which A1 neurons respond to release of ACh in challenging acoustic environments. This study detailed the distribution and expression of nAChR subunit transcript and protein across A1 layers in young and aged rats. Results showed a differential distribution of nAChR subunits across A1 layers. Age-related decreases in transcript/protein expression were reflected in age-related subunit specific functional loss of nAChR signaling to ACh application in A1 layer 5. Together, these findings could reflect the age-related decline in selective attention observed in the elderly.
Collapse
|
10
|
Wang X, Daley C, Gakhar V, Lange HS, Vardigan JD, Pearson M, Zhou X, Warren L, Miller CO, Belden M, Harvey AJ, Grishin AA, Coles CJ, O'Connor SM, Thomson F, Duffy JL, Bell IM, Uslaner JM. Pharmacological Characterization of the Novel and Selective α7 Nicotinic Acetylcholine Receptor-Positive Allosteric Modulator BNC375. J Pharmacol Exp Ther 2020; 373:311-324. [PMID: 32094294 DOI: 10.1124/jpet.119.263483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/28/2022] Open
Abstract
Treatments for cognitive deficits associated with central nervous system (CNS) disorders such as Alzheimer disease and schizophrenia remain significant unmet medical needs that incur substantial pressure on the health care system. The α7 nicotinic acetylcholine receptor (nAChR) has garnered substantial attention as a target for cognitive deficits based on receptor localization, robust preclinical effects, genetics implicating its involvement in cognitive disorders, and encouraging, albeit mixed, clinical data with α7 nAChR orthosteric agonists. Importantly, previous orthosteric agonists at this receptor suffered from off-target activity, receptor desensitization, and an inverted U-shaped dose-effect curve in preclinical assays that limit their clinical utility. To overcome the challenges with orthosteric agonists, we have identified a novel selective α7 positive allosteric modulator (PAM), BNC375. This compound is selective over related receptors and potentiates acetylcholine-evoked α7 currents with only marginal effect on the receptor desensitization kinetics. In addition, BNC375 enhances long-term potentiation of electrically evoked synaptic responses in rat hippocampal slices and in vivo. Systemic administration of BNC375 reverses scopolamine-induced cognitive deficits in rat novel object recognition and rhesus monkey object retrieval detour (ORD) task over a wide range of exposures, showing no evidence of an inverted U-shaped dose-effect curve. The compound also improves performance in the ORD task in aged African green monkeys. Moreover, ex vivo 13C-NMR analysis indicates that BNC375 treatment can enhance neurotransmitter release in rat medial prefrontal cortex. These findings suggest that α7 nAChR PAMs have multiple advantages over orthosteric α7 nAChR agonists for the treatment of cognitive dysfunction associated with CNS diseases. SIGNIFICANCE STATEMENT: BNC375 is a novel and selective α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator (PAM) that potentiates acetylcholine-evoked α7 currents in in vitro assays with little to no effect on the desensitization kinetics. In vivo, BNC375 demonstrated robust procognitive effects in multiple preclinical models across a wide exposure range. These results suggest that α7 nAChR PAMs have therapeutic potential in central nervous system diseases with cognitive impairments.
Collapse
Affiliation(s)
- Xiaohai Wang
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Christopher Daley
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Vanita Gakhar
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Henry S Lange
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joshua D Vardigan
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Pearson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Xiaoping Zhou
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Lee Warren
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Corin O Miller
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Michelle Belden
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Andrew J Harvey
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Anton A Grishin
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Carolyn J Coles
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Susan M O'Connor
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Fiona Thomson
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Joseph L Duffy
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Ian M Bell
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| | - Jason M Uslaner
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey (X.W., C.D., V.G., H.S.L., J.D.V., M.P., X.Z., L.W., C.O.M., M.B., F.T., J.L.D., I.M.B., J.M.U.) and Bionomics Limited, Thebarton, Australia (A.J.H., A.A.G., C.J.C., S.M.O.)
| |
Collapse
|
11
|
Coughlin JM, Rubin LH, Du Y, Rowe SP, Crawford JL, Rosenthal HB, Frey SM, Marshall ES, Shinehouse LK, Chen A, Speck CL, Wang Y, Lesniak WG, Minn I, Bakker A, Kamath V, Smith GS, Albert MS, Azad BB, Dannals RF, Horti A, Wong DF, Pomper MG. High Availability of the α7-Nicotinic Acetylcholine Receptor in Brains of Individuals with Mild Cognitive Impairment: A Pilot Study Using 18F-ASEM PET. J Nucl Med 2020; 61:423-426. [PMID: 31420499 PMCID: PMC9374031 DOI: 10.2967/jnumed.119.230979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023] Open
Abstract
Emerging evidence supports a hypothesized role for the α7-nicotinic acetylcholine receptor (α7-nAChR) in the pathophysiology of Alzheimer's disease. 18F-ASEM (3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-18F-fluorodibenzo[b,d]thiophene 5,5-dioxide) is a radioligand for estimating the availability of α7-nAChR in the brain in vivo with PET. Methods: In this cross-sectional study, 14 patients with mild cognitive impairment (MCI), a prodromal stage to dementia, and 17 cognitively intact, elderly controls completed 18F-ASEM PET. For each participant, binding in each region of interest was estimated using Logan graphical analysis with a metabolite-corrected arterial input function. Results: Higher 18F-ASEM binding was observed in MCI patients than in controls across all regions, supporting higher availability of α7-nAChR in MCI. 18F-ASEM binding was not associated with verbal memory in this small MCI sample. Conclusion: These data support use of 18F-ASEM PET to examine further the relationship between α7-nAChR availability and MCI.
Collapse
Affiliation(s)
- Jennifer M Coughlin
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Leah H Rubin
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Epidemiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Yong Du
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven P Rowe
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jeffrey L Crawford
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Hailey B Rosenthal
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sarah M Frey
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Erica S Marshall
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura K Shinehouse
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Allen Chen
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Caroline L Speck
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yuchuan Wang
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Wojciech G Lesniak
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Il Minn
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Arnold Bakker
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Vidyulata Kamath
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gwenn S Smith
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Babak Behnam Azad
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Robert F Dannals
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Andrew Horti
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Dean F Wong
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin G Pomper
- Department of Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
12
|
Wang X, Bell IM, Uslaner JM. Activators of α7 nAChR as Potential Therapeutics for Cognitive Impairment. Curr Top Behav Neurosci 2020; 45:209-245. [PMID: 32451955 DOI: 10.1007/7854_2020_140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The α7 nicotinic acetylcholine receptor (nAChR) is a promising target for the treatment of cognitive deficits associated with psychiatric and neurological disorders, including schizophrenia and Alzheimer's disease (AD). Several α7 nAChR agonists and positive allosteric modulators (PAMs) have demonstrated procognitive effects in preclinical models and early clinical trials. However, despite intense research efforts in the pharmaceutical industry and academia, none of the α7 nAChR ligands has been approved for clinical use. This chapter will focus on the α7 nAChR ligands that have advanced to clinical studies and explore the reasons why these agents have not met with unequivocal clinical success.
Collapse
Affiliation(s)
- Xiaohai Wang
- Department of Neuroscience Research, Merck & Co. Inc., West Point, PA, USA
| | - Ian M Bell
- Department of Discovery Chemistry, Merck & Co. Inc., West Point, PA, USA
| | - Jason M Uslaner
- Department of Neuroscience Research, Merck & Co. Inc., West Point, PA, USA.
| |
Collapse
|
13
|
Sajedin A, Menhaj MB, Vahabie AH, Panzeri S, Esteky H. Cholinergic Modulation Promotes Attentional Modulation in Primary Visual Cortex- A Modeling Study. Sci Rep 2019; 9:20186. [PMID: 31882838 PMCID: PMC6934489 DOI: 10.1038/s41598-019-56608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Attention greatly influences sensory neural processing by enhancing firing rates of neurons that represent the attended stimuli and by modulating their tuning properties. The cholinergic system is believed to partly mediate the attention contingent improvement of cortical processing by influencing neuronal excitability, synaptic transmission and neural network characteristics. Here, we used a biophysically based model to investigate the mechanisms by which cholinergic system influences sensory information processing in the primary visual cortex (V1) layer 4C. The physiological properties and architectures of our model were inspired by experimental data and include feed-forward input from dorsal lateral geniculate nucleus that sets up orientation preference in V1 neural responses. When including a cholinergic drive, we found significant sharpening in orientation selectivity, desynchronization of LFP gamma power and spike-field coherence, decreased response variability and correlation reduction mostly by influencing intracortical interactions and by increasing inhibitory drive. Our results indicated that these effects emerged due to changes specific to the behavior of the inhibitory neurons. The behavior of our model closely resembles the effects of attention on neural activities in monkey V1. Our model suggests precise mechanisms through which cholinergic modulation may mediate the effects of attention in the visual cortex.
Collapse
Affiliation(s)
- Atena Sajedin
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran
| | - Mohammad Bagher Menhaj
- Department of Electrical Engineering, Amirkabir University of Technology, Hafez Ave., 15875-4413, Tehran, Iran.
| | - Abdol-Hossein Vahabie
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), 19395-5746, Tehran, Iran
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068, Rovereto, Italy
| | - Hossein Esteky
- Research Group for Brain and Cognitive Sciences, School of Medicine, Shahid Beheshti Medical University, 19839-63113, Tehran, Iran.
| |
Collapse
|
14
|
Vyunova TV, Andreeva LA, Shevchenko KV, Myasoedov NF. An integrated approach to study the molecular aspects of regulatory peptides biological mechanism. J Labelled Comp Radiopharm 2019; 62:812-822. [PMID: 31325343 DOI: 10.1002/jlcr.3785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
An integrated methodological approach to study the molecular aspects of short regulatory neuropeptides biological mechanism is proposed. The complex research is based on radioligand-receptor method of analysis and covers such points of peptides molecular activity as: specific binding of peptides to brain cells plasmatic membranes, formation of tissue specific synacton, influence of peptides (as allosteric modulators) on functionality of different neuroreceptors as well as delayed in time effects of peptides on receptor-binding activity of well-known neuroreceptor systems. Radiolabeled ligands in such complex study are the one of the best and precision instruments to uncover the molecular mechanism of multiple and multitarget biological effects of regulatory peptides. In this issue we used heptapeptide Semax as a model regulatory peptide, [3 H]Ach and [3 H]GABA as an effector molecules, and the rat model of stress-induced memory and behavior impairment as a morbid state. We showed the ability of Semax to modulate in a dose-dependent manner [3 H]Ach and [3 H]GABA specific binding to some of its corresponding receptors as well as to affect the number of [3 H]GABA specific binding places on rat neurons plasmatic membranes after complex stress exposure.
Collapse
Affiliation(s)
- Tatiana V Vyunova
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Lioudmila A Andreeva
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin V Shevchenko
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai F Myasoedov
- Sector of Regulatory Peptides, Department of Chemistry of Physiologically Active Substances, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,The Mental Health Research Center of the Russian Academy of Medical, Moscow, Russia
| |
Collapse
|
15
|
Hu T, Yang Z, Li MD. Pharmacological Effects and Regulatory Mechanisms of Tobacco Smoking Effects on Food Intake and Weight Control. J Neuroimmune Pharmacol 2018; 13:453-466. [PMID: 30054897 DOI: 10.1007/s11481-018-9800-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Abstract
Beyond promoting smoking initiation and preventing smokers from quitting, nicotine can reduce food intake and body weight and thus is viewed as desirable by some smokers, especially many women. During the last several decades, the molecular mechanisms underlying the inverse correlation between smoking and body weight have been investigated extensively in both animals and humans. Nicotine's weight effects appear to result especially from the drug's stimulation of α3β4 nicotine acetylcholine receptors (nAChRs), which are located on pro-opiomelanocortin (POMC) neurons in the arcuate nucleus (ARC), leading to activation of the melanocortin circuit, which is associated with body weight. Further, α7- and α4β2-containing nAChRs have been implicated in weight control by nicotine. This review summarizes current understanding of the regulatory effects of nicotine on food intake and body weight according to the findings from pharmacological, molecular genetic, electrophysiological, and feeding studies on these appetite-regulating molecules, such as α3β4, α7, and α4β2 nAChRs; neuropeptide Y (NPY); POMC; melanocortin 4 receptor (MC4R); agouti-related peptide (AgRP); leptin, ghrelin, and protein YY (PYY).
Collapse
Affiliation(s)
- Tongyuan Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China. .,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China. .,Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
16
|
Mukherjee J, Lao PJ, Betthauser TJ, Samra GK, Pan ML, Patel IH, Liang C, Metherate R, Christian BT. Human brain imaging of nicotinic acetylcholine α4β2* receptors using [ 18 F]Nifene: Selectivity, functional activity, toxicity, aging effects, gender effects, and extrathalamic pathways. J Comp Neurol 2017; 526:80-95. [PMID: 28875553 DOI: 10.1002/cne.24320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholinergic receptors (nAChR's) have been implicated in several brain disorders, including addiction, Parkinson's disease, Alzheimer's disease and schizophrenia. Here we report in vitro selectivity and functional properties, toxicity in rats, in vivo evaluation in humans, and comparison across species of [18 F]Nifene, a fast acting PET imaging agent for α4β2* nAChRs. Nifene had subnanomolar affinities for hα2β2 (0.34 nM), hα3β2 (0.80 nM) and hα4β2 (0.83 nM) nAChR but weaker (27-219 nM) for hβ4 nAChR subtypes and 169 nM for hα7 nAChR. In functional assays, Nifene (100 μM) exhibited 14% agonist and >50% antagonist characteristics. In 14-day acute toxicity in rats, the maximum tolerated dose (MTD) and the no observed adverse effect level (NOAEL) were estimated to exceed 40 μg/kg/day (278 μg/m2 /day). In human PET studies, [18 F]Nifene (185 MBq; <0.10 μg) was well tolerated with no adverse effects. Distribution volume ratios (DVR) of [18 F]Nifene in white matter thalamic radiations were ∼1.6 (anterior) and ∼1.5 (superior longitudinal fasciculus). Habenula known to contain α3β2 nAChR exhibited low levels of [18 F]Nifene binding while the red nucleus with α2β2 nAChR had DVR ∼1.6-1.7. Females had higher [18 F]Nifene binding in all brain regions, with thalamus showing >15% than males. No significant aging effect was observed in [18 F]Nifene binding over 5 decades. In all species (mice, rats, monkeys, and humans) thalamus showed highest [18 F]Nifene binding with reference region ratios >2 compared to extrathalamic regions. Our findings suggest that [18 F]Nifene PET may be used to study α4β2* nAChRs in various CNS disorders and for translational research.
Collapse
Affiliation(s)
- Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Patrick J Lao
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| | - Tobey J Betthauser
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| | - Gurleen K Samra
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Min-Liang Pan
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | - Ishani H Patel
- Preclinical Imaging, Department of Radiological Sciences, University of California, Irvine, California
| | | | - Raju Metherate
- Department of Neurobiology and Behavior, University of California, Irvine, California
| | - Bradley T Christian
- Department of Medical Physics and Waisman Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
17
|
Iha HA, Kunisawa N, Shimizu S, Tokudome K, Mukai T, Kinboshi M, Ikeda A, Ito H, Serikawa T, Ohno Y. Nicotine Elicits Convulsive Seizures by Activating Amygdalar Neurons. Front Pharmacol 2017; 8:57. [PMID: 28232801 PMCID: PMC5298991 DOI: 10.3389/fphar.2017.00057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
Nicotinic acetylcholine (nACh) receptors are implicated in the pathogenesis of epileptic disorders; however, the mechanisms of nACh receptors in seizure generation remain unknown. Here, we performed behavioral and immunohistochemical studies in mice and rats to clarify the mechanisms underlying nicotine-induced seizures. Treatment of animals with nicotine (1–4 mg/kg, i.p.) produced motor excitement in a dose-dependent manner and elicited convulsive seizures at 3 and 4 mg/kg. The nicotine-induced seizures were abolished by a subtype non-selective nACh antagonist, mecamylamine (MEC). An α7 nACh antagonist, methyllycaconitine, also significantly inhibited nicotine-induced seizures whereas an α4β2 nACh antagonist, dihydro-β-erythroidine, affected only weakly. Topographical analysis of Fos protein expression, a biological marker of neural excitation, revealed that a convulsive dose (4 mg/kg) of nicotine region-specifically activated neurons in the piriform cortex, amygdala, medial habenula, paratenial thalamus, anterior hypothalamus and solitary nucleus among 48 brain regions examined, and this was also suppressed by MEC. In addition, electric lesioning of the amygdala, but not the piriform cortex, medial habenula and thalamus, specifically inhibited nicotine-induced seizures. Furthermore, microinjection of nicotine (100 and 300 μg/side) into the amygdala elicited convulsive seizures in a dose-related manner. The present results suggest that nicotine elicits convulsive seizures by activating amygdalar neurons mainly via α7 nACh receptors.
Collapse
Affiliation(s)
- Higor A Iha
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences Osaka, Japan
| | - Naofumi Kunisawa
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences Osaka, Japan
| | - Saki Shimizu
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences Osaka, Japan
| | - Kentaro Tokudome
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences Osaka, Japan
| | - Takahiro Mukai
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences Osaka, Japan
| | - Masato Kinboshi
- Laboratory of Pharmacology, Osaka University of Pharmaceutical SciencesOsaka, Japan; Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto UniversityKyoto, Japan; Department of Neurology, Graduate School of Medicine, Wakayama Medical UniversityWakayama, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Hidefumi Ito
- Department of Neurology, Graduate School of Medicine, Wakayama Medical University Wakayama, Japan
| | - Tadao Serikawa
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences Osaka, Japan
| | - Yukihiro Ohno
- Laboratory of Pharmacology, Osaka University of Pharmaceutical Sciences Osaka, Japan
| |
Collapse
|
18
|
Sitte HH, Pifl C, Rajput AH, Hörtnagl H, Tong J, Lloyd GK, Kish SJ, Hornykiewicz O. Dopamine and noradrenaline, but not serotonin, in the human claustrum are greatly reduced in patients with Parkinson's disease: possible functional implications. Eur J Neurosci 2016; 45:192-197. [PMID: 27741357 DOI: 10.1111/ejn.13435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022]
Abstract
In the human brain, the claustrum is a small subcortical telencephalic nucleus, situated between the insular cortex and the putamen. A plethora of neuroanatomical studies have shown the existence of dense, widespread, bidirectional and bilateral monosynaptic interconnections between the claustrum and most cortical areas. A rapidly growing body of experimental evidence points to the integrative role of claustrum in complex brain functions, from motor to cognitive. Here, we examined for the first time, the behaviour of the classical monoamine neurotransmitters dopamine, noradrenaline and serotonin in the claustrum of the normal autopsied human brain and of patients who died with idiopathic Parkinson's disease (PD). We found in the normal claustrum substantial amounts of all three monoamine neurotransmitters, substantiating the existence of the respective brain stem afferents to the claustrum. In PD, the levels of dopamine and noradrenaline were greatly reduced by 93 and 81%, respectively. Serotonin levels remained unchanged. We propose that by virtue of their projections to the claustrum, the brain stem dopamine, noradrenaline and serotonin systems interact directly with the cortico-claustro-cortical information processing mechanisms, by-passing their (parallel) routes via the basal ganglia-thalamo-cortical circuits. We suggest that loss of dopamine and noradrenaline in the PD claustrum is critical in the aetiology of both the motor and the non-motor symptoms of PD.
Collapse
Affiliation(s)
- Harald H Sitte
- Centre for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstrasse 13A, A-1090, Vienna, Austria
| | - Christian Pifl
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ali H Rajput
- Division of Neurology, Saskatchewan Movement Disorders Program, Saskatoon Health Region, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heide Hörtnagl
- Department of Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Oleh Hornykiewicz
- Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Bürgi JJ, Bertrand S, Marger F, Bertrand D, Reymond J. Fluorescent Agonists of the
α
7 Nicotinic Acetylcholine Receptor Derived from 3‐Amino‐Quinuclidine. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justus J. Bürgi
- Department of Chemistry and Biochemistry University of Berne Freiestrasse 3 CH‐3012 Berne
| | - Sonia Bertrand
- HiQScreen Sàrl 6 route de Compois CH‐1222 Vésenaz Geneva
| | - Fabrice Marger
- HiQScreen Sàrl 6 route de Compois CH‐1222 Vésenaz Geneva
| | | | - Jean‐Louis Reymond
- Department of Chemistry and Biochemistry University of Berne Freiestrasse 3 CH‐3012 Berne
| |
Collapse
|
20
|
Shimegi S, Kimura A, Sato A, Aoyama C, Mizuyama R, Tsunoda K, Ueda F, Araki S, Goya R, Sato H. Cholinergic and serotonergic modulation of visual information processing in monkey V1. ACTA ACUST UNITED AC 2016; 110:44-51. [PMID: 27619519 DOI: 10.1016/j.jphysparis.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/24/2016] [Accepted: 09/08/2016] [Indexed: 11/30/2022]
Abstract
The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure.
Collapse
Affiliation(s)
- Satoshi Shimegi
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | - Akihiro Kimura
- Department of Healthcare, Osaka Health Science University, Toyonaka, Osaka 560-0043, Japan
| | - Akinori Sato
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chisa Aoyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryo Mizuyama
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keisuke Tsunoda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fuyuki Ueda
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sera Araki
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryoma Goya
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiromichi Sato
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan; Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
21
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
22
|
Quik M, Zhang D, McGregor M, Bordia T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2015; 97:399-407. [PMID: 26093062 PMCID: PMC4600450 DOI: 10.1016/j.bcp.2015.06.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Accumulating evidence suggests that CNS α7 nicotinic acetylcholine receptors (nAChRs) are important targets for the development of therapeutic approaches for Parkinson's disease. This progressive neurodegenerative disorder is characterized by debilitating motor deficits, as well as autonomic problems, cognitive declines, changes in affect and sleep disturbances. Currently l-dopa is the gold standard treatment for Parkinson's disease motor problems, particularly in the early disease stages. However, it does not improve the other symptoms, nor does it reduce the inevitable disease progression. Novel therapeutic strategies for Parkinson's disease are therefore critical. Extensive pre-clinical work using a wide variety of experimental models shows that nicotine and nAChR agonists protect against damage to nigrostriatal and other neuronal cells. This observation suggests that nicotine and/or nAChR agonists may be useful as disease modifying agents. Additionally, studies in several parkinsonian animal models including nonhuman primates show that nicotine reduces l-dopa-induced dyskinesias, a side effect of l-dopa therapy that may be as incapacitating as Parkinson's disease itself. Work with subtype selective nAChR agonists indicate that α7 nAChRs are involved in mediating both the neuroprotective and antidyskinetic effects, thus offering a targeted strategy with optimal beneficial effects and minimal adverse responses. Here, we review studies demonstrating a role for α7 nAChRs in protection against neurodegenerative effects and for the reduction of l-dopa-induced dyskinesias. Altogether, this work suggests that α7 nAChRs may be useful targets for reducing Parkinson's disease progression and for the management of the dyskinesias that arise with l-dopa therapy.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Matthew McGregor
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| |
Collapse
|
23
|
PET imaging evaluation of [(18)F]DBT-10, a novel radioligand specific to α7 nicotinic acetylcholine receptors, in nonhuman primates. Eur J Nucl Med Mol Imaging 2015; 43:537-47. [PMID: 26455500 DOI: 10.1007/s00259-015-3209-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Positron emission tomography (PET) radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer's disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR-specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[(18)F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([(18)F]DBT-10), in nonhuman primates. METHODS [(18)F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [(18)F]DBT-10 PET, with measurement of [(18)F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [(18)F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (V T/f P). RESULTS [(18)F]DBT-10 was produced within 90 min at high specific activities of 428 ± 436 GBq/μmol at end of synthesis. Metabolism of [(18)F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15-55%. Uptake of [(18)F]DBT-10 in brain occurred rapidly, reaching peak standardized uptake values (SUVs) of 2.9-3.7 within 30 min. The plasma-free fraction was 18.8 ± 3.4%. No evidence for radiolabeled [(18)F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated V T/f P values were 193-376 ml/cm(3) across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose-dependent blockade of [(18)F]DBT-10 binding by structural analog ASEM was observed throughout the brain, and occupancy plots yielded a V ND/f P estimate of 20 ± 16 ml/cm(3). CONCLUSION These results demonstrate suitable kinetic properties of [(18)F]DBT-10 for in vivo quantification of α7-nAChR binding in nonhuman primates.
Collapse
|
24
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [PMID: 26419447 DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Chih-Hung L Lee
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Dorothy Flood
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Fabrice Marger
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Diana Donnelly-Roberts
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| |
Collapse
|
25
|
Wallace TL, Bertrand D. Neuronal α7 Nicotinic Receptors as a Target for the Treatment of Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:79-111. [PMID: 26472526 DOI: 10.1016/bs.irn.2015.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Schizophrenia is a lifelong disease, the burden of which is often underestimated. Characterized by positive (e.g., hallucinations) and negative (e.g., avolition, amotivation) symptoms, schizophrenia is also accompanied with profound impairments in cognitive function that progress throughout the development of the disease. Although treatment with antipsychotic medications can effectively dampen some of the positive symptoms, these medications largely fail to reverse cognitive deficits or to mitigate negative symptoms. With a worldwide prevalence of approximately 1%, schizophrenia remains a large unmet medical need that stands to benefit greatly from (1) continued research to better understand the biological underpinnings of the disease and (2) the targeted development of novel therapeutics to improve the lives of those affected individuals. Improvements in our understanding of the neuronal networks associated with schizophrenia as well as progress in identifying genetic risk factors and environmental conditions that may predispose individuals to developing the disease are advancing new strategies to study and treat it. Herein, we review the evidence that supports the role of α7 nicotinic acetylcholine receptors in the central nervous system and why these receptors constitute a promising target to treat some of the prominent symptoms of schizophrenia.
Collapse
|
26
|
Horti AG. Development of [(18)F]ASEM, a specific radiotracer for quantification of the α7-nAChR with positron-emission tomography. Biochem Pharmacol 2015; 97:566-575. [PMID: 26232729 DOI: 10.1016/j.bcp.2015.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022]
Abstract
The alpha-7 subtype of the nicotinic acetylcholine receptor (α7-nAChR) is fundamental to physiology; it mediates various brain functions and represents an important target for drug discovery. Exploration of the brain nicotinic acetylcholine receptors (nAChRs) using positron-emission tomography (PET) will make it possible to better understand the important role of this receptor and to study its involvement in schizophrenia, bipolar disorder, Alzheimer's and Parkinson's diseases, drug dependence, inflammation and many other disorders and simplify the development of nicotinic drugs for treatment of these disorders. Until recently, PET imaging of α7-nAChRs has been impeded by the absence of good radiotracers. This review describes various endeavors to develop α7-nAChR PET tracers by several research groups including the author's group. Most initial PET tracers for imaging α7-nAChRs did not exhibit suitable imaging properties due to their low specific binding. Newly discovered [(18)F]ASEM is the first highly specific α7-nAChR radioligand and in 2014 it was translated to human PET imaging.
Collapse
Affiliation(s)
- Andrew G Horti
- Department of Radiology, The Johns Hopkins School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287-0816, USA.
| |
Collapse
|
27
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
28
|
Shorey-Kendrick LE, Ford MM, Allen DC, Kuryatov A, Lindstrom J, Wilhelm L, Grant KA, Spindel ER. Nicotinic receptors in non-human primates: Analysis of genetic and functional conservation with humans. Neuropharmacology 2015; 96:263-73. [PMID: 25661700 PMCID: PMC4486519 DOI: 10.1016/j.neuropharm.2015.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/18/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Daicia C Allen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Alexander Kuryatov
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Larry Wilhelm
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
29
|
Quik M, Bordia T, Zhang D, Perez XA. Nicotine and Nicotinic Receptor Drugs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:247-71. [DOI: 10.1016/bs.irn.2015.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Antolin-Fontes B, Ables JL, Görlich A, Ibañez-Tallon I. The habenulo-interpeduncular pathway in nicotine aversion and withdrawal. Neuropharmacology 2014; 96:213-22. [PMID: 25476971 DOI: 10.1016/j.neuropharm.2014.11.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 12/23/2022]
Abstract
Progress has been made over the last decade in our understanding of the brain areas and circuits involved in nicotine reward and withdrawal, leading to models of addiction that assign different addictive behaviors to distinct, yet overlapping, neural circuits (Koob and Volkow, 2010; Lobo and Nestler, 2011; Tuesta et al., 2011; Volkow et al., 2011). Recently the habenulo-interpeduncular (Hb-IPN) midbrain pathway has re-emerged as a new critical crossroad that influences the brain response to nicotine. This brain area is particularly enriched in nicotinic acetylcholine receptor (nAChR) subunits α5, α3 and β4 encoded by the CHRNA5-A3-B4 gene cluster, which has been associated with vulnerability to tobacco dependence in human genetics studies. This finding, together with studies in mice involving deletion and replacement of nAChR subunits, and investigations of the circuitry, cell types and electrophysiological properties, have begun to identify the molecular mechanisms that take place in the MHb-IPN which underlie critical aspects of nicotine dependence. In the current review we describe the anatomical and functional connections of the MHb-IPN system, as well as the contribution of specific nAChRs subtypes in nicotine-mediated behaviors. Finally, we discuss the specific electrophysiological properties of MHb-IPN neuronal populations and how nicotine exposure alters their cellular physiology, highlighting the unique role of the MHb-IPN in the context of nicotine aversion and withdrawal. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Beatriz Antolin-Fontes
- Laboratory of Molecular Biology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, NY 10065, New York, USA
| | - Jessica L Ables
- Laboratory of Molecular Biology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, NY 10065, New York, USA
| | - Andreas Görlich
- Laboratory of Molecular Biology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, NY 10065, New York, USA
| | - Inés Ibañez-Tallon
- Laboratory of Molecular Biology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, NY 10065, New York, USA.
| |
Collapse
|
31
|
Abstract
There have been a number of attempts to study PET radioligands for imaging nicotinic acetylcholine receptors (nAChRs) in the human brain, and the most successful tracers found are radioligands for imaging α4β2-nAChRs, which is the main cerebral nAChRs subtype. C-Nicotine and 2-[F]FA have been applied in many studies in humans. However, neither is entirely ideal and efforts have been made to develop radioligands with optimized imaging properties. Only a few reports have been published on radioligands for α7-nAChRs imaging, another important cerebral nAChRs subtype. This paper will review the development of PET radioligands for imaging cerebral nAChRs.
Collapse
|
32
|
McFadden KL, Cornier MA, Tregellas JR. The role of alpha-7 nicotinic receptors in food intake behaviors. Front Psychol 2014; 5:553. [PMID: 24936193 PMCID: PMC4047526 DOI: 10.3389/fpsyg.2014.00553] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/19/2014] [Indexed: 12/31/2022] Open
Abstract
Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR) has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin and neuropeptide Y. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.
Collapse
Affiliation(s)
- Kristina L McFadden
- Department of Psychiatry, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA
| | - Marc-Andre Cornier
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA
| | - Jason R Tregellas
- Department of Psychiatry, School of Medicine, University of Colorado - Anschutz Medical Campus Aurora, CO, USA ; Research Service, Veterans Affairs Medical Center Denver, CO, USA
| |
Collapse
|
33
|
Mello NK, Fivel PA, Kohut SJ, Carroll FI. Effects of chronic varenicline treatment on nicotine, cocaine, and concurrent nicotine+cocaine self-administration. Neuropsychopharmacology 2014; 39:1222-31. [PMID: 24304823 PMCID: PMC3957118 DOI: 10.1038/npp.2013.325] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 11/09/2022]
Abstract
Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal treatment medication would reduce both cigarette smoking and cocaine abuse. Varenicline is a clinically available, partial agonist at α4β2* and α6β2* nicotinic acetylcholine receptors (nAChRs) and a full agonist at α7 nAChRs. Varenicline facilitates smoking cessation in clinical studies and reduced nicotine self-administration, and substituted for the nicotine-discriminative stimulus in preclinical studies. The present study examined the effects of chronic varenicline treatment on self-administration of IV nicotine, IV cocaine, IV nicotine+cocaine combinations, and concurrent food-maintained responding by five cocaine- and nicotine-experienced adult rhesus monkeys (Macaca mulatta). Varenicline (0.004-0.04 mg/kg/h) was administered intravenously every 20 min for 23 h each day for 7-10 consecutive days. Each varenicline treatment was followed by saline-control treatment until food- and drug-maintained responding returned to baseline. During control treatment, nicotine+cocaine combinations maintained significantly higher levels of drug self-administration than nicotine or cocaine alone (P<0.05-0.001). Varenicline dose-dependently reduced responding maintained by nicotine alone (0.0032 mg/kg/inj) (P<0.05), and in combination with cocaine (0.0032 mg/kg/inj) (P<0.05) with no significant effects on food-maintained responding. However, varenicline did not significantly decrease self-administration of a low dose of nicotine (0.001 mg/kg), cocaine alone (0.0032 and 0.01 mg/kg/inj), or 0.01 mg/kg cocaine combined with the same doses of nicotine. We conclude that varenicline selectively attenuates the reinforcing effects of nicotine alone but not cocaine alone, and its effects on nicotine+cocaine combinations are dependent on the dose of cocaine.
Collapse
Affiliation(s)
- Nancy K Mello
- Alcohol and Drug Abuse Research Center, McLean Hospital—Harvard Medical School, Belmont, MA, USA
| | - Peter A Fivel
- Alcohol and Drug Abuse Research Center, McLean Hospital—Harvard Medical School, Belmont, MA, USA
| | - Stephen J Kohut
- Alcohol and Drug Abuse Research Center, McLean Hospital—Harvard Medical School, Belmont, MA, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, USA
| |
Collapse
|
34
|
Horti AG, Gao Y, Kuwabara H, Wang Y, Abazyan S, Yasuda RP, Tran T, Xiao Y, Sahibzada N, Holt DP, Kellar KJ, Pletnikov MV, Pomper MG, Wong DF, Dannals RF. 18F-ASEM, a radiolabeled antagonist for imaging the α7-nicotinic acetylcholine receptor with PET. J Nucl Med 2014; 55:672-7. [PMID: 24556591 DOI: 10.2967/jnumed.113.132068] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The α7-nicotinic cholinergic receptor (α7-nAChR) is a key mediator of brain communication and has been implicated in a wide variety of central nervous system disorders. None of the currently available PET radioligands for α7-nAChR are suitable for quantitative PET imaging, mostly because of insufficient specific binding. The goal of this study was to evaluate the potential of (18)F-ASEM ((18)F-JHU82132) as an α7-nAChR radioligand for PET. METHODS The inhibition binding assay and receptor functional properties of ASEM were assessed in vitro. The brain regional distribution of (18)F-ASEM in baseline and blockade were evaluated in DISC1 mice (dissection) and baboons (PET). RESULTS ASEM is an antagonist for the α7-nAChR with high binding affinity (Ki = 0.3 nM). (18)F-ASEM readily entered the baboon brain and specifically labeled α7-nAChR. The in vivo specific binding of (18)F-ASEM in the brain regions enriched with α7-nAChRs was 80%-90%. SSR180711, an α7-nAChR-selective partial agonist, blocked (18)F-ASEM binding in the baboon brain in a dose-dependent manner, suggesting that the binding of (18)F-ASEM was mediated by α7-nAChRs and the radioligand was suitable for drug evaluation studies. In the baboon baseline studies, the brain regional volume of distribution (VT) values for (18)F-ASEM were 23 (thalamus), 22 (insula), 18 (hippocampus), and 14 (cerebellum), whereas in the binding selectivity (blockade) scan, all regional VT values were reduced to less than 4. The range of regional binding potential values in the baboon brain was from 3.9 to 6.6. In vivo cerebral binding of (18)F-ASEM and α7-nAChR expression in mutant DISC1 mice, a rodent model of schizophrenia, was significantly lower than in control animals, which is in agreement with previous postmortem human data. CONCLUSION (18)F-ASEM holds promise as a radiotracer with suitable imaging properties for quantification of α7-nAChR in the human brain.
Collapse
Affiliation(s)
- Andrew G Horti
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Smits R, Fischer S, Hiller A, Deuther-Conrad W, Wenzel B, Patt M, Cumming P, Steinbach J, Sabri O, Brust P, Hoepping A. Synthesis and biological evaluation of both enantiomers of [(18)F]flubatine, promising radiotracers with fast kinetics for the imaging of α4β2-nicotinic acetylcholine receptors. Bioorg Med Chem 2013; 22:804-12. [PMID: 24369841 DOI: 10.1016/j.bmc.2013.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/30/2022]
Abstract
Both enantiomers of the epibatidine analogue flubatine display high affinity towards the α4β2 nicotinic acetylcholine receptor (nAChR) in vitro, accompanied by negligible interactions with diverse off-target proteins. Extended single dose toxicity studies in rodent indicated a NOEL (No Observed Effect Level) of 6.2μg/kg for (-)-flubatine and 1.55μg/kg for (+)-flubatine. We developed syntheses for both flubatine enantiomers and their corresponding precursors for radiolabeling. The newly synthesized trimethylammonium precursors allowed for highly efficient (18)F-radiolabelling in radiochemical yields >60% and specific activities >750GBq/μmol, thus making the radioligands practical for clinical investigation.
Collapse
Affiliation(s)
- René Smits
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Achim Hiller
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103 Leipzig, Germany
| | - Paul Cumming
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstrasse 18, D-04103 Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Institute of Radiopharmacy, Permoserstrasse-15, D-04318 Leipzig, Germany
| | - Alexander Hoepping
- ABX Advanced Biochemical Compounds GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454 Radeberg, Germany.
| |
Collapse
|
36
|
Papke RL, Stokes C, Muldoon P, Imad Damaj M. Similar activity of mecamylamine stereoisomers in vitro and in vivo. Eur J Pharmacol 2013; 720:264-75. [PMID: 24161916 DOI: 10.1016/j.ejphar.2013.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
A previous characterization of mecamylamine stereoisomers using nicotinic acetylcholine receptors expressed in Xenopus oocytes revealed only small differences between the activity of the R and S forms of mecamylamine. However, that work was limited in the breadth of receptor subtypes tested, especially in regard to the discrimination of high and low sensitivity receptors, which differ in the ratios of alpha and beta subunits. We report new data using subunit concatamers, which produce uniform populations of high-sensitivity or low-sensitivity receptors, as well as alpha2, alpha5, and alpha6-containing receptors, which were not studied previously. Consistent with previous studies, we found that beta4-containing receptors were most sensitive to mecamylamine and that the IC50 values for the inhibition of net charge were lower than for inhibition of peak currents. No large differences were seen between the activities of the mecamylamine isomers. Additionally, a previously reported potentiation of high-sensitivity α4β2 receptors by S-mecamylamine could not be reproduced in the oocyte system, even with mutants that had greatly reduced sensitivity to mecamylamine inhibition or when the selective agonist TC-2559 was used. In vivo studies suggested that the R-isomer might be somewhat more potent than the S isomer at blocking CNS effects of nicotine. Although the potency difference was no more than a factor of two, it is consistent with lower LD50 estimates previously reported for the R isomer. Our results significantly extend knowledge of the nicotinic acetylcholine receptor activity profile of mecamylamine and support the hypothesis that these effects are not strongly stereoisomer selective.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, College of Medicine, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
37
|
Localization of α7 nicotinic acetylcholine receptor immunoreactivity on GABAergic interneurons in layers I-III of the rat retrosplenial granular cortex. Neuroscience 2013; 252:443-59. [PMID: 23985568 DOI: 10.1016/j.neuroscience.2013.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 01/08/2023]
Abstract
The rat retrosplenial granular cortex (RSG) receives cholinergic input from the medial septum-diagonal band (MS-DB) of the cholinergic basal forebrain (CBF), with projections terminating in layers I-III of RSG. The modulatory effects of acetylcholine (ACh) on cortical GABAergic interneurons in these layers are mediated by α7 nicotinic acetylcholine receptors (α7nAChRs). α7nAChRs are most abundant in the cerebral cortex and are largely localized to GABAergic interneurons. However, the CBF projection to the RSG has not been studied in detail, and the cellular or subcellular distribution of α7nAChRs in the rat RSG remains unclear. The main objective of this study was to test that α7nAChRs reside on GABAergic interneurons in CBF terminal fields of the rat RSG. First, we set out to define the characteristics of CBF projections from the MS-DB to layers of the RSG using anterograde neural tracing and immunohistochemical labeling with cholinergic markers. These results revealed that the pattern of axon terminal labeling in layer Ia, as well as layer II/III of the RSG is remarkably similar to the pattern of cholinergic axons in the RSG. Next, we investigated the relationship between α7nAChRs, labeled using either α-bungarotoxin or α7nAChR antibody, and the local neurochemical environment by labeling surrounding cells with antibodies against glutamic acid decarboxylase (GAD), parvalbumin (PV) and reelin (a marker of the ionotropic serotonin receptor-expressing GABAergic interneurons). α7nAChRs were found to be localized on both somatodendritic and neuronal elements within subpopulations of GABAergic PV-, reelin-stained and non PV-stained neurons in layers I-III of the RSG. Finally, electron microscopy revealed that α7nAChRs are GAD- and PV-positive cytoplasmic and neuronal elements. These results strongly suggest that ACh released from CBF afferents is transmitted via α7nAChR to GAD-, PV-, and reelin-positive GABAergic interneurons in layers I-III of the RSG.
Collapse
|
38
|
An experimental study on (131)I-CHIBA-1001: a radioligand for α7 nicotinic acetylcholine receptors. PLoS One 2013; 8:e70188. [PMID: 23936161 PMCID: PMC3728097 DOI: 10.1371/journal.pone.0070188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
Objective The α7 nicotinic acetylcholine receptors (nAChRs) play a vital role in the pathophysiology of neuropsychiatric diseases such as Alzheimer’s disease and depression. However, there is currently no suitable positron emission tomography (PET) or Single-Photon Emission Computed Tomography (SPECT) radioligands for imaging α7 nAChRs in brain. Here our aim is to radiosynthesize a novel SPECT radioligand 131I-CHIBA-1001 for whole body biodistribution study and in vivo imaging of α7 nAChRs in brain. Method 131I-CHIBA-1001 was radiosynthesized by chloramine-T method. Different conditions of reaction time and temperature were tested to get a better radiolabeling yield. Radiolabeling yield and radiochemical purities of 131I-CHIBA-1001 were analyzed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) system. Whole body biodistribution study was performed at different time points post injection of 131I-CHIBA-1001 in KM mice. Monkey subject was used for in vivo SPECT imaging in brain. Result The radiolabeling yield of 131I-CHIBA-1001 reached 96% within 1.5∼2.0 h at 90∼95°C. The radiochemical purity reached more than 99% after HPLC purification. 131I-CHIBA-1001 was highly stable in saline and fresh human serum in room temperature and 37°C separately. The biodistribution data of brain at 15, 30, and 60 min were 11.05±1.04%ID/g, 8.8±0.04%ID/g and 6.28±1.13%ID/g, respectively. In experimental SPECT imaging, the distribution of radioactivity in the brain regions was paralleled with the distribution of α7 nAChRs in the monkey brain. Moreover, in the blocking SPECT imaging study, the selective α7 nAChR agonist SSR180711 blocked the radioactive uptake in the brain successfully. Conclusion The CHIBA-1001 can be successfully radiolabeled with 131I using the chloramine-T method. 131I-CHIBA-1001 can successfully accumulate in the monkey brain and image the α7 acetylcholine receptors. 131I-CHIBA-1001 can be a candidate for imagingα7 acetylcholine receptors, which will be of great value for the diagnosis and treatment of mental diseases.
Collapse
|
39
|
Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci U S A 2013; 110:12078-83. [PMID: 23818597 DOI: 10.1073/pnas.1307849110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in α7 nicotinic acetylcholine receptors (α7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510-1512]; however, little is known about how α7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477-485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore α7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of α7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110-1114]. We additionally show that α7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to α7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia.
Collapse
|
40
|
Mello NK, Fivel PA, Kohut SJ. Effects of chronic buspirone treatment on nicotine and concurrent nicotine+cocaine self-administration. Neuropsychopharmacology 2013; 38:1264-75. [PMID: 23337868 PMCID: PMC3656370 DOI: 10.1038/npp.2013.25] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/27/2012] [Accepted: 01/14/2013] [Indexed: 11/09/2022]
Abstract
Nicotine dependence and cocaine abuse are major public health problems, and most cocaine abusers also smoke cigarettes. An ideal pharmacotherapy would reduce both cigarette smoking and cocaine abuse. Buspirone (Buspar) is a clinically available, non-benzodiazepine anxiolytic medication that acts on serotonin and dopamine systems. In preclinical studies, it reduced cocaine self-administration following both acute and chronic treatment in rhesus monkeys. The present study evaluated the effectiveness of chronic buspirone treatment on self-administration of intravenous (IV) nicotine and IV nicotine+cocaine combinations. Five cocaine-experienced adult rhesus monkeys (Macaca mulatta) were trained to self-administer nicotine or nicotine+cocaine combinations, and food pellets (1 g) during four 1-h daily sessions under a second-order schedule of reinforcement (FR 2 (VR16:S)). Each nicotine+cocaine combination maintained significantly higher levels of drug self-administration than nicotine or cocaine alone (P<0.05-0.001). Buspirone (0.032-0.56 mg/kg/h) was administered IV through one lumen of a double-lumen catheter every 20 min for 23 h each day, for 7-10 consecutive days. Each 7-10-day sequence of buspirone treatment was followed by saline-control treatment for at least 3 days until food- and drug-maintained responding returned to baseline. Buspirone dose-dependently reduced responding maintained by nicotine alone (0.001-0.1 mg/kg/inj; P<0.01) and by nicotine (0.001 or 0.0032 mg/kg/inj)+cocaine combinations (0.0032 mg/kg/inj; P<0.05-0.001) with no significant effects on food-maintained responding. We conclude that buspirone selectively attenuates the reinforcing effects of nicotine alone and nicotine+cocaine polydrug combinations in a nonhuman primate model of drug self-administration.
Collapse
Affiliation(s)
- Nancy K Mello
- Alcohol and Drug Abuse Research Center, McLean Hospital-Harvard Medical School, Belmont, MA 02478, USA.
| | | | | |
Collapse
|
41
|
Picciotto MR, Mineur YS. Molecules and circuits involved in nicotine addiction: The many faces of smoking. Neuropharmacology 2013; 76 Pt B:545-53. [PMID: 23632083 DOI: 10.1016/j.neuropharm.2013.04.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/26/2023]
Abstract
Tobacco smoking in humans is one of the most persistent and widespread addictions and is driven by nicotine in tobacco smoke. Over the last several decades, understanding of the molecular and cellular basis for nicotine addiction has increased tremendously as a result of pharmacological, molecular genetic, electrophysiological and behavioral studies of nicotine reinforcement. Studies of the biological basis for nicotine reinforcement has helped in the design of new treatments for smoking cessation such as varenicline; however, smokers report that they smoke for many reasons, including the ability to control symptoms of anxiety and depression or the desire to control appetite. Further, developmental exposure to tobacco smoke increases the likelihood of adult smoking. Here we review what is known about the molecular and circuit basis for a number of behaviors related to tobacco smoking. Leveraging the knowledge from studies of different behaviors mediated by nicotine receptors in multiple brain circuits could provide points of convergence that will inform future therapeutic development for smoking cessation. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA.
| | | |
Collapse
|
42
|
Horti AG, Ravert HT, Gao Y, Holt DP, Bunnelle WH, Schrimpf MR, Li T, Ji J, Valentine H, Scheffel U, Kuwabara H, Wong DF, Dannals RF. Synthesis and evaluation of new radioligands [(11)C]A-833834 and [(11)C]A-752274 for positron-emission tomography of α7-nicotinic acetylcholine receptors. Nucl Med Biol 2013; 40:395-402. [PMID: 23294899 PMCID: PMC3596482 DOI: 10.1016/j.nucmedbio.2012.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/31/2012] [Accepted: 11/20/2012] [Indexed: 01/31/2023]
Abstract
INTRODUCTION α7-nicotinic acetylcholine receptor (α7-nAChR) is one of the major neuronal nAChR subtypes. α7-nAChR is involved in variety of neuronal processes and disorders including schizophrenia and Alzheimer's disease. A number of α7-nAChR PET radioligands have been developed, but a quality radiotracer remains to be discovered. METHODS High binding affinity α7-nAChR ligands A-833834 and A-752274 were radiolabeled with (11)C. Baseline and blockade biodistribution studies in the mouse brain of [(11)C]A-833834 (5-(6-(5-[(11)C]methylhexahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)pyridazin-3-yl)-1H-indole) and [(11)C]A-752274 (2-(6-[(11)C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)-7-(6-methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)-9H-fluoren-9-one) were performed. [(11)C]A-752274 was evaluated in a baseline baboon PET study. RESULTS [(11)C]A-833834 and [(11)C]A-752274 were synthesized by radiomethylation of corresponding des-methyl precursors. The radioligands were prepared with radiochemical yield of 12%-32%, high specific radioactivity (330-403GBq/μmol) and radiochemical purity>95%. Dissection studies with [(11)C]A-833834 demonstrated low specific α7-nAChR binding in the mouse brain. [(11)C]A-752274 specifically (~50%) labeled α7-nAChR in the mouse thalamus. However, [(11)CA-752274 exhibited low brain uptake in baboon (%SUV<100). CONCLUSION Two novel α7-nAChR ligands radioligands were synthesized and studied in animals. Specific binding of [(11)C]A-833834 in the mouse brain is low due to the insufficient binding affinity of the radioligand. The very high binding affinity [(11)C]A-752274 exhibited good specific binding in the α7-nAChR-rich mouse brain regions. The low uptake of [(11)C]A-752274 in the baboon brain is due to its high hydrophilicity, rapid metabolism or other properties. Future development of α7-nAChR PET radioligands will be based on compounds with high binding affinities and good blood-brain barrier permeability.
Collapse
Affiliation(s)
- Andrew G Horti
- Division of Nuclear Medicine, Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cholinergic modulation of response gain in the rat primary visual cortex. Sci Rep 2013; 3:1138. [PMID: 23378897 PMCID: PMC3560357 DOI: 10.1038/srep01138] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/27/2012] [Indexed: 12/24/2022] Open
Abstract
Acetylcholine (ACh) is known to modulate neuronal activity in the rodent primary visual cortex (V1). Although cholinergic modulation has been extensively examined in vitro, far less is understood regarding how ACh modulates visual information processing in vivo. We therefore extracellularly recorded visual responses to drifting sinusoidal grating stimuli from V1 of anesthetized rats and tested the effects of ACh administered locally by microiontophoresis. ACh exerted response facilitation or suppression in individual neurons across all cortical layers without any laminar bias. We assessed ACh effects on the stimulus contrast-response function, finding that ACh increased or decreased the response to varying stimulus contrasts in proportion to the magnitude of the control response without changing the shape of the original contrast-response function, which describes response gain control but not contrast gain control. Our results indicate that ACh serves as a gain controller in the visual cortex of rodents.
Collapse
|
44
|
Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol Ther 2013; 137:22-54. [DOI: 10.1016/j.pharmthera.2012.08.012] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/20/2012] [Indexed: 12/14/2022]
|
45
|
Wallace TL, Bertrand D. Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia. Expert Opin Ther Targets 2012; 17:139-55. [PMID: 23231385 DOI: 10.1517/14728222.2013.736498] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Schizophrenia is a profoundly debilitating disease that represents not only an individual, but a societal problem. Once characterized solely by the hyperactivity of the dopaminergic system, therapies directed to dampen dopaminergic neurotransmission were developed. However, these drugs do not address the significant impairments in cognition and the negative symptoms of the disease, and it is now apparent that disequilibrium of many neurotransmitter systems is involved. Despite enormous efforts, minimal progress has been made toward the development of safer, more effective therapies to date. AREAS COVERED The high preponderance of smoking in schizophrenics suggests that nicotine may provide symptomatic improvement, which has led to investigation for selective molecules targeted to individual nicotinic receptor (nAChR) subtypes. Of special interest is activation of the homomeric α7nAChR, which is widely distributed in the brain and has been implicated in the pathophysiology of schizophrenia through numerous approaches. EXPERT OPINION Preclinical and clinical data suggest that neuronal α7nAChRs play an important role in cognitive functions. Moreover, some, but not all, early clinical trials conducted with α7nAChR agonists show cognitive benefits in schizophrenics. These encouraging results suggest that development of compounds targeting α7nAChRs will represent a valuable tool to mitigate symptoms associated with schizophrenia, and open new strategies for better pharmacological treatment of these patients.
Collapse
Affiliation(s)
- Tanya L Wallace
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, USA
| | | |
Collapse
|
46
|
Gudehithlu KP, Duchemin AM, Tejwani GA, Neff NH, Hadjiconstantinou M. Nicotine-induced changes of brain β-endorphin. Neuropeptides 2012; 46:125-31. [PMID: 22483037 DOI: 10.1016/j.npep.2012.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/31/2012] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
A consensus has emerged that endogenous opioid peptides and their receptors play an important role in the psychoactive properties of nicotine. Although behavioral studies have shown that β-endorphin contributes to the rewarding and emotional effects of nicotine, whether the drug alters the function of brain endorphinergic neurons is not fully explored. These studies investigated the effect of acute, 1mg/kg, sc, and chronic, daily injection of 1mg/kg, sc, for 14 days, administration of free base nicotine on brain β-endorphin and its precursor proopiomelanocortin (POMC). Acute and chronic treatment with nicotine decreased β-endorphin content in hypothalamus, the principal site of β-endorphin producing neurons in the brain, and in the endorphinergic terminal fields in striatum and hippocampus. The acute effect of nicotine on β-endorphin was reversed by the nicotinic antagonist mecamylamine and the dopamine antagonist haloperidol, indicating pharmacological specificity and involvement of dopamine D2-like receptors. Similar observations were made in prefrontal cortex. POMC mRNA in hypothalamus and prefrontal cortex was unchanged following acute nicotine, but it decreased moderately with chronic treatment. The nicotine treatments had no effect on pituitary and plasma β-endorphin. Taken together, these results could be interpreted to indicate that nicotine alters the synthesis and release of β-endorphin in the limbic brain in vivo. Altered endorphinergic function may contribute to the behavioral effects of acute and chronic nicotine treatment and play a role in nicotine addiction.
Collapse
Affiliation(s)
- K P Gudehithlu
- Department of Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
47
|
Nicotinic acetylcholine receptor expression on B-lymphoblasts of healthy versus schizophrenic subjects stratified for smoking: [3H]-nicotine binding is decreased in schizophrenia and correlates with negative symptoms. J Neural Transm (Vienna) 2011; 119:587-95. [DOI: 10.1007/s00702-011-0743-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/20/2011] [Indexed: 10/14/2022]
|
48
|
Soma S, Shimegi S, Osaki H, Sato H. Cholinergic modulation of response gain in the primary visual cortex of the macaque. J Neurophysiol 2011; 107:283-91. [PMID: 21994270 DOI: 10.1152/jn.00330.2011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
ACh modulates neuronal activity throughout the cerebral cortex, including the primary visual cortex (V1). However, a number of issues regarding this modulation remain unknown, such as the effect and its function and the receptor subtypes involved. To address these issues, we combined extracellular single-unit recordings and microiontophoretic administration of ACh and measured V1 neuronal responses to drifting sinusoidal grating stimuli in anesthetized macaque monkeys. ACh was found to have mostly facilitatory effects on the visual responses, although some cases of suppressive effects were also seen. To assess the functional role of ACh, we further examined how ACh modulates the stimulus contrast-response function, finding that the response gain increased with the facilitatory effect. The response facilitation was completely or strongly blocked by atropine (At), a muscarinic ACh receptor (mAChR) antagonist, in almost all neurons (96% of cells), whereas any residual effect after At administration was fully removed by mecamylamine, a nicotinic AChR (nAChR) antagonist, suggesting a predominant role for mAChRs in this mechanism. Furthermore, we found no laminar distribution bias for the facilitatory modulation, although the relative contribution of mAChRs was smaller in layer 4C than in other layers. The suppressive effect was blocked completely by At. These results demonstrate that ACh plays an important role in visual information processing in V1 by controlling the response gain via mAChRs across all cortical layers and via nAChRs, mainly in layer 4C.
Collapse
Affiliation(s)
- Shogo Soma
- Graduate Schools of Frontier Biosciences and Medicine, Osaka Univ., 1-17 Machikaneyama, Toyonaka, Osaka, Japan
| | | | | | | |
Collapse
|
49
|
Hillmer AT, Wooten DW, Moirano JM, Slesarev M, Barnhart TE, Engle JW, Nickles RJ, Murali D, Schneider ML, Mukherjee J, Christian BT. Specific α4β2 nicotinic acetylcholine receptor binding of [F-18]nifene in the rhesus monkey. Synapse 2011; 65:1309-18. [PMID: 21674627 DOI: 10.1002/syn.20965] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/29/2011] [Indexed: 11/11/2022]
Abstract
OBJECTIVE [F-18]Nifene is a PET radioligand developed to image α4β2* nicotinic acetylcholine receptors (nAChR) in the brain. This work assesses the in vivo binding and imaging characteristics of [F-18]nifene in rhesus monkeys for the development of PET experiments examining nAChR binding. METHODS Dynamic PET imaging experiments with [F-18]nifene were acquired in four anesthetized Macaca mulatta (rhesus) monkeys using a microPET P4 scanner. Data acquisition was initiated with a bolus injection of 109 ± 17 MBq [F-18]nifene and the time course of the radioligand in the brain was measured for up to 120 min. For two experiments, a displacement dose of (-)nicotine (0.03 mg kg(-1) , i.v.) was given 45-60 min post injection and followed 30 min later with a second [F-18]nifene injection to measure radioligand nondisplaceable uptake. Time activity curves were extracted in the regions of the antereoventral thalamus (AVT), lateral geniculate nucleus region (LGN), frontal cortex, and the cerebellum (CB). RESULTS The highest levels of [F-18]nifene uptake were observed in the AVT and LGN. Target-to-CB ratios reached maximum values of 3.3 ± 0.4 in the AVT and 3.2 ± 0.3 in the LGN 30-45 min postinjection. Significant binding of [F-18]nifene was observed in the subiculum, insula cortex, temporal cortex, cingulate gyrus, frontal cortex, striatum, and midbrain areas. The (-)nicotine displaced bound [F-18]nifene to near background levels within 15 min postdrug injection. No discernable displacement was observed in the CB, suggesting its potential as a reference region. Logan graphical estimates using the CB as a reference region yielded binding potentials of 1.6 ± 0.2 in the AVT and 1.3 ± 0.1 in the LGN. The postnicotine injection displayed uniform nondisplaceable uptake of [F-18]nifene throughout gray and white brain matter. CONCLUSIONS [F-18]Nifene exhibits rapid equilibration and a moderately high target to background binding profile in the α4β2* nAChR rich regions of the brain, thus providing favorable imaging characteristics as a PET radiotracer for nAChR assay.
Collapse
Affiliation(s)
- A T Hillmer
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53593, USA. ahillmer@ wisc.edu
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maier DL, Hill G, Ding M, Tuke D, Einstein E, Gurley D, Gordon JC, Bock MJ, Smith JS, Bialecki R, Eisman M, Elmore CS, Werkheiser JL. Pre-clinical validation of a novel alpha-7 nicotinic receptor radiotracer, [3H]AZ11637326: Target localization, biodistribution and ligand occupancy in the rat brain. Neuropharmacology 2011; 61:161-71. [DOI: 10.1016/j.neuropharm.2011.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/03/2011] [Accepted: 03/30/2011] [Indexed: 11/15/2022]
|