1
|
Rigosi E, O'Carroll DC. Acute Application of Imidacloprid Alters the Sensitivity of Direction Selective Motion Detecting Neurons in an Insect Pollinator. Front Physiol 2021; 12:682489. [PMID: 34305640 PMCID: PMC8300694 DOI: 10.3389/fphys.2021.682489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cholinergic pesticides, such as the neonicotinoid imidacloprid, are the most important insecticides used for plant protection worldwide. In recent decades, concerns have been raised about side effects on non-target insect species, including altered foraging behavior and navigation. Although pollinators rely on visual cues to forage and navigate their environment, the effects of neonicotinoids on visual processing have been largely overlooked. To test the effect of acute treatment with imidacloprid at known concentrations in the brain, we developed a modified electrophysiological setup that allows recordings of visually evoked responses while perfusing the brain in vivo. We obtained long-lasting recordings from direction selective wide-field, motion sensitive neurons of the hoverfly pollinator, Eristalis tenax. Neurons were treated with imidacloprid (3.9 μM, 0.39 μM or a sham control treatment using the solvent (dimethylsulfoxide) only. Exposure to a high, yet sub-lethal concentration of imidacloprid significantly alters their physiological response to motion stimuli. We observed a general effect of imidacloprid (3.9 μM) increasing spontaneous activity, reducing contrast sensitivity and giving weaker directional tuning to wide-field moving stimuli, with likely implications for errors in flight control, hovering and routing. Our electrophysiological approach reveals the robustness of the fly visual pathway against cholinergic perturbance (i.e., at 0.39 μM) but also potential threatening effects of cholinergic pesticides (i.e., evident at 3.9 μM) for the visual motion detecting system of an important pollinator.
Collapse
Affiliation(s)
- Elisa Rigosi
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
2
|
Chatterjee A, Bais D, Brockmann A, Ramesh D. Search Behavior of Individual Foragers Involves Neurotransmitter Systems Characteristic for Social Scouting. FRONTIERS IN INSECT SCIENCE 2021; 1:664978. [PMID: 38468879 PMCID: PMC10926421 DOI: 10.3389/finsc.2021.664978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/10/2021] [Indexed: 03/13/2024]
Abstract
In honey bees search behavior occurs as social and solitary behavior. In the context of foraging, searching for food sources is performed by behavioral specialized foragers, the scouts. When the scouts have found a new food source, they recruit other foragers (recruits). These recruits never search for a new food source on their own. However, when the food source is experimentally removed, they start searching for that food source. Our study provides a detailed description of this solitary search behavior and the variation of this behavior among individual foragers. Furthermore, mass spectrometric measurement showed that the initiation and performance of this solitary search behavior is associated with changes in glutamate, GABA, histamine, aspartate, and the catecholaminergic system in the optic lobes and central brain area. These findings strikingly correspond with the results of an earlier study that showed that scouts and recruits differ in the expression of glutamate and GABA receptors. Together, the results of both studies provide first clear support for the hypothesis that behavioral specialization in honey bees is based on adjusting modulatory systems involved in solitary behavior to increase the probability or frequency of that behavior.
Collapse
Affiliation(s)
- Arumoy Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Deepika Bais
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Divya Ramesh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Damulewicz M, Woźnicka O, Jasińska M, Pyza E. CRY-dependent plasticity of tetrad presynaptic sites in the visual system of Drosophila at the morning peak of activity and sleep. Sci Rep 2020; 10:18161. [PMID: 33097794 PMCID: PMC7585400 DOI: 10.1038/s41598-020-74442-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/22/2020] [Indexed: 11/09/2022] Open
Abstract
Tetrad synapses are formed between the retina photoreceptor terminals and postsynaptic cells in the first optic neuropil (lamina) of Drosophila. They are remodelled in the course of the day and show distinct functional changes during activity and sleep. These changes result from fast degradation of the presynaptic scaffolding protein Bruchpilot (BRP) by Cryptochrome (CRY) in the morning and depend on BRP-170, one of two BRP isoforms. This process also affects the number of synaptic vesicles, both clear and dense-core, delivered to the presynaptic elements. In cry01 mutants lacking CRY and in brpΔ170, the number of synaptic vesicles is lower in the morning peak of activity than during night-sleep while in wild-type flies the number of synaptic vesicles is similar at these two time points. CRY may also set phase of the circadian rhythm in plasticity of synapses. The process of synapse remodelling stimulates the formation of clear synaptic vesicles in the morning. They carry histamine, a neurotransmitter in tetrad synapses and seem to be formed from glial capitate projections inside the photoreceptor terminals. In turn dense-core vesicles probably carry synaptic proteins building the tetrad presynaptic element.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Małgorzata Jasińska
- Department of Histology, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
4
|
Akashi HD, Chen PJ, Akiyama T, Terai Y, Wakakuwa M, Takayama Y, Tominaga M, Arikawa K. Physiological responses of ionotropic histamine receptors, PxHCLA and PxHCLB, to neurotransmitter candidates in a butterfly, Papilio xuthus. J Exp Biol 2018; 221:jeb.183129. [DOI: 10.1242/jeb.183129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022]
Abstract
Histamine is the only known neurotransmitter released by arthropod photoreceptors. Synaptic transmission from photoreceptors to second order neurons is mediated by the activation of histamine-gated chloride channels (HCLs). These histaminergic synapses have been assumed to be conserved among insect visual systems. However, our understanding of the channels in question has thus far been based on studies in flies. In the butterfly Papilio xuthus, we have identified two candidate histamine-gated chloride channels, PxHCLA and PxHCLB, and studied their physiological properties using a whole-cell patch-clamp technique. We studied the responses of channels expressed in cultured cells to histamine as well as to other neurotransmitter candidates, namely GABA, tyramine, serotonin, D-/L- glutamate, and glycine. We found that histamine and GABA activated both PxHCLA and PxHCLB, while the other molecules did not. The sensitivity to histamine and GABA was consistently higher in PxHCLB than in PxHCLA. Interestingly, simultaneous application of histamine and GABA activated both PxHCLA and PxHCLB more strongly than either neurotansmitter individually; histamine and GABA may have synergistic effects on PxHCLs in the regions where they colocalize. Our results suggest that the physiological properties of the histamine receptors are basically conserved among insects, but that the response to GABA differs between butterflies and flies, implying variation in early visual processing among species.
Collapse
Affiliation(s)
- Hiroshi D. Akashi
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Pei-Ju Chen
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Tokiho Akiyama
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Motohiro Wakakuwa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
5
|
Juusola M, Dau A, Song Z, Solanki N, Rien D, Jaciuch D, Dongre SA, Blanchard F, de Polavieja GG, Hardie RC, Takalo J. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. eLife 2017; 6:26117. [PMID: 28870284 PMCID: PMC5584993 DOI: 10.7554/elife.26117] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements. Fruit flies have five eyes: two large compound eyes which support vision, plus three smaller single lens eyes which are used for navigation. Each compound eye monitors 180° of space and consists of roughly 750 units, each containing eight light-sensitive cells called photoreceptors. This relatively wide spacing of photoreceptors is thought to limit the sharpness, or acuity, of vision in fruit flies. The area of the human retina (the light-sensitive surface at back of our eyes) that generates our sharpest vision contains photoreceptors that are 500 times more densely packed. Despite their differing designs, human and fruit fly eyes work via the same general principles. If we, or a fruit fly, were to hold our gaze completely steady, the world would gradually fade from view as the eye adapted to the unchanging visual stimulus. To ensure this does not happen, animals continuously make rapid, automatic eye movements called microsaccades. These refresh the image on the retina and prevent it from fading. Yet it is not known why do they not also cause blurred vision. Standard accounts of vision assume that the retina and the brain perform most of the information processing required, with photoreceptors simply detecting how much light enters the eye. However, Juusola, Dau, Song et al. now challenge this idea by showing that photoreceptors are specially adapted to detect the fluctuating patterns of light that enter the eye as a result of microsaccades. Moreover, fruit fly eyes resolve small moving objects far better than would be predicted based on the spacing of their photoreceptors. The discovery that photoreceptors are well adapted to deal with eye movements changes our understanding of insect vision. The findings also disprove the 100-year-old dogma that the spacing of photoreceptors limits the sharpness of vision in compound eyes. Further studies are required to determine whether photoreceptors in the retinas of other animals, including humans, have similar properties.
Collapse
Affiliation(s)
- Mikko Juusola
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - An Dau
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zhuoyi Song
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Narendra Solanki
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Diana Rien
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - David Jaciuch
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Sidhartha Anil Dongre
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Florence Blanchard
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Gonzalo G de Polavieja
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Cambridge, United Kingdom
| | - Jouni Takalo
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Woźnicka O, Görlich A, Sigrist S, Pyza E. BRP-170 and BRP190 isoforms of Bruchpilot protein differentially contribute to the frequency of synapses and synaptic circadian plasticity in the visual system of Drosophila. Front Cell Neurosci 2015; 9:238. [PMID: 26175667 PMCID: PMC4485229 DOI: 10.3389/fncel.2015.00238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/12/2015] [Indexed: 11/13/2022] Open
Abstract
In the first optic neuropil (lamina) of the optic lobe of Drosophila melanogaster, two classes of synapses, tetrad and feedback, show daily rhythms in the number and size of presynaptic profiles examined at the level of transmission electron microscopy (TEM). Number of tetrad presynaptic profiles increases twice a day, once in the morning and again in the evening, and their presynaptic ribbons are largest in the evening. In contrast, feedback synapses peak at night. The frequency of synapses is correlated with size of the presynaptic element measured as the platform size of so-called T-bars, with T-bar platforms being largest with increasing synapse frequency. The large scaffold protein Bruchpilot (BRP) is a major essential constituent of T-bars, with two major isoforms of 190 and 170 kD forming T-bars of the peripheral neuromuscular junctions (NMJ) synapses and in the brain. In addition to the analysis of cyclic plasticity of tetrad and feedback synapses in wild-type flies, we used TEM to examine daily changes in the size and distribution of synapses within isoform-specific BRP mutants, expressing BRP-190 (BRPΔ170) or BRP-170 (BRPΔ190) only. We found that the number and circadian plasticity of synapses depends on both isoforms. In the BRPΔ190 lacking BRP-190 there was almost 50% less tetrad synapses demonstrable than when both isoforms were present. The lack of BRP-170 and BRP-190 increased and decreased, respectively the number of feedback synapses, indicating that BRP-190 forms most of the feedback synapses. In both mutants, the daily plasticity of tetrad and feedback presynaptic profiles was abolished, except for feedback synapses in BRPΔ190. The oscillations in the number and size of presynaptic elements seem to depend on a different contribution of BRP isoforms in a presynaptic element at different time during the day and night and at various synapse types. The participation of both BRP isoforms may vary in different classes of synapses.
Collapse
Affiliation(s)
- Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Alicja Görlich
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Krakow, Poland
| | - Stephan Sigrist
- Neurogenetik, Institut für Biologie, Freie Universität Berlin Berlin, Germany ; NeuroCure and Institut für Medizinische Physik and Biophysik, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|
7
|
Hu W, Wang T, Wang X, Han J. Ih channels control feedback regulation from amacrine cells to photoreceptors. PLoS Biol 2015; 13:e1002115. [PMID: 25831426 PMCID: PMC4382183 DOI: 10.1371/journal.pbio.1002115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/23/2015] [Indexed: 12/02/2022] Open
Abstract
In both vertebrates and invertebrates, photoreceptors’ output is regulated by feedback signals from interneurons that contribute to several important visual functions. Although synaptic feedback regulation of photoreceptors is known to occur in Drosophila, many questions about the underlying molecular mechanisms and physiological implementation remain unclear. Here, we systematically investigated these questions using a broad range of experimental methods. We isolated two Ih mutant fly lines that exhibit rhythmic photoreceptor depolarization without light stimulation. We discovered that Ih channels regulate glutamate release from amacrine cells by modulating calcium channel activity. Moreover, we showed that the eye-enriched kainate receptor (EKAR) is expressed in photoreceptors and receives the glutamate signal released from amacrine cells. Finally, we presented evidence that amacrine cell feedback regulation helps maintain light sensitivity in ambient light. Our findings suggest plausible molecular underpinnings and physiological effects of feedback regulation from amacrine cells to photoreceptors. These results provide new mechanistic insight into how synaptic feedback regulation can participate in network processing by modulating neural information transfer and circuit excitability. A systematic study of the Drosophila visual system clarifies the molecular mechanisms and physiological effects of feedback regulation of photoreceptors by amacrine cells, essential for maintaining light sensitivity. Feedback regulation is a common feature of neural circuits during the process of acquiring information. Therefore, it is important to understand how this phenomenon occurs. Using the primary visual system of the fruit fly Drosophila melanogaster as a model, we systematically investigated the molecular mechanisms and the physiological implementation of feedback regulation from amacrine cells (second order neurons that are present in the lamina) to photoreceptors. We isolated two fly lines with mutations in the gene that encodes for the ion channel known as Ih, whose photoreceptors exhibited rhythmic depolarizations in the absence of light stimulation. We demonstrated that Ih channels function in amacrine cells to regulate the release of the neurotransmitter glutamate by modulating the activity of the voltage-gated calcium channel, Cac. We further found that the glutamate signal released by amacrine cells is sensed and transduced by glutamate receptors expressed by the photoreceptors. Finally, we showed that this feedback regulation is critical for maintaining light sensitivity in the presence of ambient light. Our results suggest that regulation of synaptic feedback in a neuronal network modulates information transfer and circuit excitability.
Collapse
Affiliation(s)
- Wen Hu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tingting Wang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiao Wang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Junhai Han
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
8
|
Shinomiya K, Karuppudurai T, Lin TY, Lu Z, Lee CH, Meinertzhagen IA. Candidate neural substrates for off-edge motion detection in Drosophila. Curr Biol 2014; 24:1062-70. [PMID: 24768048 DOI: 10.1016/j.cub.2014.03.051] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND In the fly's visual motion pathways, two cell types-T4 and T5-are the first known relay neurons to signal small-field direction-selective motion responses [1]. These cells then feed into large tangential cells that signal wide-field motion. Recent studies have identified two types of columnar neurons in the second neuropil, or medulla, that relay input to T4 from L1, the ON-channel neuron in the first neuropil, or lamina, thus providing a candidate substrate for the elementary motion detector (EMD) [2]. Interneurons relaying the OFF channel from L1's partner, L2, to T5 are so far not known, however. RESULTS Here we report that multiple types of transmedulla (Tm) neurons provide unexpectedly complex inputs to T5 at their terminals in the third neuropil, or lobula. From the L2 pathway, single-column input comes from Tm1 and Tm2 and multiple-column input from Tm4 cells. Additional input to T5 comes from Tm9, the medulla target of a third lamina interneuron, L3, providing a candidate substrate for L3's combinatorial action with L2 [3]. Most numerous, Tm2 and Tm9's input synapses are spatially segregated on T5's dendritic arbor, providing candidate anatomical substrates for the two arms of a T5 EMD circuit; Tm1 and Tm2 provide a second. Transcript profiling indicates that T5 expresses both nicotinic and muscarinic cholinoceptors, qualifying T5 to receive cholinergic inputs from Tm9 and Tm2, which both express choline acetyltransferase (ChAT). CONCLUSIONS We hypothesize that T5 computes small-field motion signals by integrating multiple cholinergic Tm inputs using nicotinic and muscarinic cholinoceptors.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thangavel Karuppudurai
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Tzu-Yang Lin
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
9
|
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J Neurosci 2014; 34:2254-63. [PMID: 24501364 DOI: 10.1523/jneurosci.3938-13.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Visual systems extract directional motion information from spatiotemporal luminance changes on the retina. An algorithmic model, the Reichardt detector, accounts for this by multiplying adjacent inputs after asymmetric temporal filtering. The outputs of two mirror-symmetrical units tuned to opposite directions are thought to be subtracted on the dendrites of wide-field motion-sensitive lobula plate tangential cells by antagonistic transmitter systems. In Drosophila, small-field T4/T5 cells carry visual motion information to the tangential cells that are depolarized during preferred and hyperpolarized during null direction motion. While preferred direction input is likely provided by excitation from T4/T5 terminals, the origin of null direction inhibition is unclear. Probing the connectivity between T4/T5 and tangential cells in Drosophila using a combination of optogenetics, electrophysiology, and pharmacology, we found a direct excitatory as well as an indirect inhibitory component. This suggests that the null direction response is caused by feedforward inhibition via yet unidentified neurons.
Collapse
|
10
|
Müller CHG, Rieger V, Perez Y, Harzsch S. Immunohistochemical and ultrastructural studies on ciliary sense organs of arrow worms (Chaetognatha). ZOOMORPHOLOGY 2013. [DOI: 10.1007/s00435-013-0211-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Sinakevitch IT, Smith AN, Locatelli F, Huerta R, Bazhenov M, Smith BH. Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Front Syst Neurosci 2013; 7:70. [PMID: 24187534 PMCID: PMC3807565 DOI: 10.3389/fnsys.2013.00070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/07/2013] [Indexed: 12/01/2022] Open
Abstract
Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.
Collapse
|
12
|
Kita T, Ozoe F, Azuma M, Ozoe Y. Differential distribution of glutamate- and GABA-gated chloride channels in the housefly Musca domestica. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:887-893. [PMID: 23806605 DOI: 10.1016/j.jinsphys.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
l-Glutamic acid (glutamate) mediates fast inhibitory neurotransmission by affecting glutamate-gated chloride channels (GluCls) in invertebrates. The molecular function and pharmacological properties of GluCls have been well studied, but not much is known about their physiological role and localization in the insect body. The distribution of GluCls in the housefly (Musca domestica L.) was thus compared with the distribution of γ-aminobutyric acid (GABA)-gated chloride channels (GABACls). Quantitative PCR and ligand-binding experiments indicate that the GluCl and GABACl transcripts and proteins are predominantly expressed in the adult head. Intense GluCl immunostaining was detected in the lamina, leg motor neurons, and legs of adult houseflies. The GABACl (Rdl) immunostaining was more widely distributed, and was found in the medulla, lobula, lobula plate, mushroom body, antennal lobe, and ellipsoid body. The present findings suggest that GluCls have physiological roles in different tissues than GABACls.
Collapse
Affiliation(s)
- Tomo Kita
- Division of Bioscience and Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | | | | | | |
Collapse
|
13
|
Raghu SV, Claussen J, Borst A. Neurons with GABAergic phenotype in the visual system of Drosophila. J Comp Neurol 2013; 521:252-65. [PMID: 22886821 DOI: 10.1002/cne.23208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/16/2012] [Accepted: 08/03/2012] [Indexed: 12/11/2022]
Abstract
The visual system of Drosophila contains ~60,000 neurons per hemisphere that are organized in parallel, retinotopically arranged columns. The neuroanatomy of these neurons has been mapped in considerable detail at both the light and ultrastructural level. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we characterize those neurons in the Drosophila optic lobes that possibly release gamma aminobutyric acid (GABA), the major inhibitory neurotransmitter of the insect central nervous system. We identified 26 different types of neurons of the lamina, medulla, lobula, and lobula plate. Based on the previous Golgi-staining analysis (Fischbach and Dittrich [1989] Cell Tissue Res 258:441-475), the identified neurons are further classified into 11 major subgroups representing lamina monopolar (L), medulla intrinsic (Mi, Mt), bushy T (T), transmedullary (Tm), transmedullary Y (TmY), Y, lobula-complex intrinsic (Lccn), lobula columnar (Lcn), lobula plate intrinsic (Lpi), and lobula tangential (Lt) cell types. This detailed map of neurons with GABAergic phenotype will contribute to the future neurogenetic dissection of information processing circuits in the fly visual system.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
14
|
Stiefel KM, Tapson J, van Schaik A. Temporal order detection and coding in nervous systems. Neural Comput 2012; 25:510-31. [PMID: 23148408 DOI: 10.1162/neco_a_00400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This letter discusses temporal order coding and detection in nervous systems. Detection of temporal order in the external world is an adaptive function of nervous systems. In addition, coding based on the temporal order of signals can be used as an internal code. Such temporal order coding is a subset of temporal coding. We discuss two examples of processing the temporal order of external events: the auditory location detection system in birds and the visual direction detection system in flies. We then discuss how somatosensory stimulus intensities are translated into a temporal order code in the human peripheral nervous system. We next turn our attention to input order coding in the mammalian cortex. We review work demonstrating the capabilities of cortical neurons for detecting input order. We then discuss research refuting and demonstrating the representation of stimulus features in the cortex by means of input order. After some general theoretical considerations on input order detection and coding, we conclude by discussing the existing and potential use of input order coding in neuromorphic engineering.
Collapse
Affiliation(s)
- Klaus M Stiefel
- University of Western Sydney, MARCS Institute, Bioelectronics and Neuroscience Penrith, NSW 2751, Australia.
| | | | | |
Collapse
|
15
|
Hamanaka Y, Kinoshita M, Homberg U, Arikawa K. Immunocytochemical localization of amines and GABA in the optic lobe of the butterfly, Papilio xuthus. PLoS One 2012; 7:e41109. [PMID: 22844431 PMCID: PMC3402530 DOI: 10.1371/journal.pone.0041109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
Butterflies have sophisticated color vision. While the spectral organization of the compound eye has been well characterized in the Japanese yellow swallowtail butterfly, Papilio xuthus, neural mechanisms underlying its color vision are largely unexplored. Towards a better understanding of signal processing in the visual system of P. xuthus, we used immunocytochemical techniques to analyze the distribution of transmitter candidates, namely, histamine, serotonin, tyramine and γ-aminobutyric acid (GABA). Photoreceptor terminals in the lamina and medulla exhibited histamine immunoreactivity as demonstrated in other insects. The anti-histamine antiserum also labeled a few large medulla neurons. Medulla intrinsic neurons and centrifugal neurons projecting to the lamina showed serotonin immunoreactivity. Tyramine immunostaining was detected in a subset of large monopolar cells (LMCs) in the lamina, transmedullary neurons projecting to the lobula plate, and cell bodies surrounding the first optic chiasma. An anti-GABA antiserum labeled a subset of LMCs and populations of columnar and tangential neurons surrounding the medulla. Each of the four antisera also labeled a few centrifugal neurons that innervate the lobula complex from the central brain, suggesting that they have neuromodulatory roles. A distinctive feature we found in this study is the possibility that tyramine and GABA act as transmitters in LMCs of P. xuthus, which has not been reported in any other insects so far.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Laboratory of Neuroethology, Sokendai, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa, Japan
| | - Michiyo Kinoshita
- Laboratory of Neuroethology, Sokendai, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa, Japan
| | - Uwe Homberg
- Department of Biology, Animal Physiology, University of Marburg, Marburg, Germany
| | - Kentaro Arikawa
- Laboratory of Neuroethology, Sokendai, The Graduate University for Advanced Studies, Shonan Village, Hayama, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
16
|
Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting CY, O'Kane CJ, Tang S, Lee CH, Hardie RC, Juusola M. Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 2012; 336:925-31. [PMID: 22605779 DOI: 10.1126/science.1215317] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Color and motion information are thought to be channeled through separate neural pathways, but it remains unclear whether and how these pathways interact to improve motion perception. In insects, such as Drosophila, it has long been believed that motion information is fed exclusively by one spectral class of photoreceptor, so-called R1 to R6 cells; whereas R7 and R8 photoreceptors, which exist in multiple spectral classes, subserve color vision. Here, we report that R7 and R8 also contribute to the motion pathway. By using electrophysiological, optical, and behavioral assays, we found that R7/R8 information converge with and shape the motion pathway output, explaining flies' broadly tuned optomotor behavior by its composite responses. Our results demonstrate that inputs from photoreceptors of different spectral sensitivities improve motion discrimination, increasing robustness of perception.
Collapse
Affiliation(s)
- Trevor J Wardill
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Meinertzhagen IA, Lee CH. The genetic analysis of functional connectomics in Drosophila. ADVANCES IN GENETICS 2012; 80:99-151. [PMID: 23084874 DOI: 10.1016/b978-0-12-404742-6.00003-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fly and vertebrate nervous systems share many organizational features, such as layers, columns and glomeruli, and utilize similar synaptic components, such as ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly's connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental mechanisms of neural computation that underlie behavior.
Collapse
Affiliation(s)
- Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2.
| | | |
Collapse
|
18
|
Takemura SY, Karuppudurai T, Ting CY, Lu Z, Lee CH, Meinertzhagen IA. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr Biol 2011; 21:2077-84. [PMID: 22137471 PMCID: PMC3265035 DOI: 10.1016/j.cub.2011.10.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/20/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022]
Abstract
Detecting motion is a feature of all advanced visual systems [1], nowhere more so than in flying animals, like insects [2, 3]. In flies, an influential autocorrelation model for motion detection, the elementary motion detector circuit (EMD; [4, 5]), compares visual signals from neighboring photoreceptors to derive information on motion direction and velocity. This information is fed by two types of interneuron, L1 and L2, in the first optic neuropile, or lamina, to downstream local motion detectors in columns of the second neuropile, the medulla. Despite receiving carefully matched photoreceptor inputs, L1 and L2 drive distinct, separable pathways responding preferentially to moving "on" and "off" edges, respectively [6, 7]. Our serial electron microscopy (EM) identifies two types of transmedulla (Tm) target neurons, Tm1 and Tm2, that receive apparently matched synaptic inputs from L2. Tm2 neurons also receive inputs from two retinotopically posterior neighboring columns via L4, a third type of lamina neuron. Light microscopy reveals that the connections in these L2/L4/Tm2 circuits are highly determinate. Single-cell transcript profiling suggests that nicotinic acetylcholine receptors mediate transmission within the L2/L4/Tm2 circuits, whereas L1 is apparently glutamatergic. We propose that Tm2 integrates sign-conserving inputs from neighboring columns to mediate the detection of front-to-back motion generated during forward motion.
Collapse
MESH Headings
- Adaptation, Physiological
- Animals
- Drosophila melanogaster/cytology
- Drosophila melanogaster/metabolism
- Drosophila melanogaster/physiology
- Drosophila melanogaster/radiation effects
- Interneurons/physiology
- Microscopy, Electron
- Motion Perception
- Optic Lobe, Nonmammalian/cytology
- Optic Lobe, Nonmammalian/physiology
- Optic Lobe, Nonmammalian/radiation effects
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/metabolism
- Photoreceptor Cells, Invertebrate/radiation effects
- Receptors, Glutamate/physiology
- Receptors, Nicotinic/physiology
- Signal Transduction
- Vision, Ocular/physiology
- Vision, Ocular/radiation effects
- Visual Pathways/cytology
- Visual Pathways/physiology
- Visual Pathways/radiation effects
Collapse
Affiliation(s)
- Shin-ya Takemura
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - Thangavel Karuppudurai
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Chun-Yuan Ting
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Zhiyuan Lu
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | - Chi-Hon Lee
- Section on Neuronal Connectivity, Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| | - Ian A. Meinertzhagen
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| |
Collapse
|
19
|
The Drosophila SK channel (dSK) contributes to photoreceptor performance by mediating sensitivity control at the first visual network. J Neurosci 2011; 31:13897-910. [PMID: 21957252 DOI: 10.1523/jneurosci.3134-11.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The contribution of the SK (small-conductance calcium-activated potassium) channel to neuronal functions in complex circuits underlying sensory processing and behavior is largely unknown in the absence of suitable animal models. Here, we generated a Drosophila line that lacks the single highly conserved SK gene in its genome (dSK). In R1-R6 photoreceptors, dSK encodes a slow Ca²⁺-activated K(+) current similar to its mammalian counterparts. Compared with wild-type, dSK(-) photoreceptors and interneurons showed accelerated oscillatory responses and adaptation. These enhanced kinetics were accompanied with more depolarized dSK(-) photoreceptors axons, assigning a role for dSK in network gain control during light-to-dark transitions. However, compensatory network adaptation, through increasing activity between synaptic neighbors, overcame many detriments of missing dSK current enabling dSK(-) photoreceptors to maintain normal information transfer rates to naturalistic stimuli. While demonstrating important functional roles for dSK channel in the visual circuitry, these results also clarify how homeostatically balanced network functions can compensate missing or faulty ion channels.
Collapse
|
20
|
Abstract
Motion-sensitive neurons in the visual systems of many species, including humans, exhibit a depression of motion responses immediately after being exposed to rapidly moving images. This motion adaptation has been extensively studied in flies, but a neuronal mechanism that explains the most prominent component of adaptation, which occurs regardless of the direction of motion of the visual stimulus, has yet to be proposed. We identify a neuronal mechanism, namely frequency-dependent synaptic depression, which explains a number of the features of adaptation in mammalian motion-sensitive neurons and use it to model fly motion adaptation. While synaptic depression has been studied mainly in spiking cells, we use the same principles to develop a simple model for depression in a graded synapse. By incorporating this synaptic model into a neuronally based model for elementary motion detection, along with the implementation of a center-surround spatial band-pass filtering stage that mimics the interactions among a subset of visual neurons, we show that we can predict with remarkable success most of the qualitative features of adaptation observed in electrophysiological experiments. Our results support the idea that diverse species share common computational principles for processing visual motion and suggest that such principles could be neuronally implemented in very similar ways.
Collapse
|
21
|
Besson M, Sinakevitch I, Melon C, Iché-Torres M, Birman S. Involvement of the drosophila taurine/aspartate transporter dEAAT2 in selective olfactory and gustatory perceptions. J Comp Neurol 2011; 519:2734-57. [DOI: 10.1002/cne.22649] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Abstract
When the contrast of an image flickers as it moves, humans perceive an illusory reversal in the direction of motion. This classic illusion, called reverse-phi motion, has been well-characterized using psychophysics, and several models have been proposed to account for its effects. Here, we show that Drosophila melanogaster also respond behaviorally to the reverse-phi illusion and that the illusion is present in dendritic calcium signals of motion-sensitive neurons in the fly lobula plate. These results closely match the predictions of the predominant model of fly motion detection. However, high flicker rates cause an inversion of the reverse-phi behavioral response that is also present in calcium signals of lobula plate tangential cell dendrites but not predicted by the model. The fly's behavioral and neural responses to the reverse-phi illusion reveal unexpected interactions between motion and flicker signals in the fly visual system and suggest that a similar correlation-based mechanism underlies visual motion detection across the animal kingdom.
Collapse
|
23
|
Candidate glutamatergic neurons in the visual system of Drosophila. PLoS One 2011; 6:e19472. [PMID: 21573163 PMCID: PMC3088675 DOI: 10.1371/journal.pone.0019472] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/03/2011] [Indexed: 01/17/2023] Open
Abstract
The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L), transmedullary (Tm), transmedullary Y (TmY), Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am), bushy T (T), translobula plate (Tlp), lobula intrinsic (Lcn, Lt, Li), lobula plate tangential (LPTCs) and lobula plate intrinsic (LPi) cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.
Collapse
|
24
|
Varija Raghu S, Reiff DF, Borst A. Neurons with cholinergic phenotype in the visual system of Drosophila. J Comp Neurol 2011; 519:162-76. [PMID: 21120933 DOI: 10.1002/cne.22512] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The optic lobe of Drosophila houses about 60,000 neurons that are organized in parallel, retinotopically arranged columns. Based on the Golgi-staining method, Fischbach and Dittrich ([1989] Cell Tissue Res 258:441-475) determined that each column contains about 90 identified cells. Each of these cells is supposed to release one or two different neurotransmitters. However, for most cells the released neurotransmitter is not known. Here we characterize the vast majority of the neurons in the Drosophila optic lobe that release acetylcholine (Ach), the major excitatory neurotransmitter of the insect central nervous system. We employed a promoter specific for cholinergic neurons and restricted its activity to single or a few cells using the MARCM technique. This approach allowed us to establish an anatomical map of neurons with a cholinergic phenotype based on their branching pattern. We identified 43 different types of neurons with a cholinergic phenotype. Thirty-one of them match previously described members of nine different subgroups: Transmedullary (Tm), Transmedullary Y (TmY), Medulla intrinsic (Mi, Mt, and Pm), Bushy T (T), Translobula Plate (Tlp), and Lobula intrinsic (Lcn and Lt) neurons (Fischbach and Dittrich [1989]). Intriguingly, 12 newly identified cell types suggest that previous Golgi studies were not saturating and that the actual number of different neurons per column is higher than previously thought. This study and similar ones on other neurotransmitter systems will contribute towards a columnar wiring diagram and foster the functional dissection of the visual circuitry in Drosophila.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
25
|
Fei H, Chow DM, Chen A, Romero-Calderón R, Ong WS, Ackerson LC, Maidment NT, Simpson JH, Frye MA, Krantz DE. Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection. ACTA ACUST UNITED AC 2010; 213:1717-30. [PMID: 20435823 DOI: 10.1242/jeb.036053] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of gamma amino butyric acid (GABA) release and inhibitory neurotransmission in regulating most behaviors remains unclear. The vesicular GABA transporter (VGAT) is required for the storage of GABA in synaptic vesicles and provides a potentially useful probe for inhibitory circuits. However, specific pharmacologic agents for VGAT are not available, and VGAT knockout mice are embryonically lethal, thus precluding behavioral studies. We have identified the Drosophila ortholog of the vesicular GABA transporter gene (which we refer to as dVGAT), immunocytologically mapped dVGAT protein expression in the larva and adult and characterized a dVGAT(minos) mutant allele. dVGAT is embryonically lethal and we do not detect residual dVGAT expression, suggesting that it is either a strong hypomorph or a null. To investigate the function of VGAT and GABA signaling in adult visual flight behavior, we have selectively rescued the dVGAT mutant during development. We show that reduced GABA release does not compromise the active optomotor control of wide-field pattern motion. Conversely, reduced dVGAT expression disrupts normal object tracking and figure-ground discrimination. These results demonstrate that visual behaviors are segregated by the level of GABA signaling in flies, and more generally establish dVGAT as a model to study the contribution of GABA release to other complex behaviors.
Collapse
Affiliation(s)
- Hao Fei
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Edwards TN, Meinertzhagen IA. The functional organisation of glia in the adult brain of Drosophila and other insects. Prog Neurobiol 2010; 90:471-97. [PMID: 20109517 DOI: 10.1016/j.pneurobio.2010.01.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
This review annotates and categorises the glia of adult Drosophila and other model insects and analyses the developmental origins of these in the Drosophila optic lobe. The functions of glia in the adult vary depending upon their sub-type and location in the brain. The task of annotating glia is essentially complete only for the glia of the fly's lamina, which comprise: two types of surface glia-the pseudocartridge and fenestrated glia; two types of cortex glia-the distal and proximal satellite glia; and two types of neuropile glia-the epithelial and marginal glia. We advocate that the term subretinal glia, as used to refer to both pseudocartridge and fenestrated glia, be abandoned. Other neuropiles contain similar glial subtypes, but other than the antennal lobes these have not been described in detail. Surface glia form the blood brain barrier, regulating the flow of substances into and out of the nervous system, both for the brain as a whole and the optic neuropiles in particular. Cortex glia provide a second level of barrier, wrapping axon fascicles and isolating neuronal cell bodies both from neighbouring brain regions and from their underlying neuropiles. Neuropile glia can be generated in the adult and a subtype, ensheathing glia, are responsible for cleaning up cellular debris during Wallerian degeneration. Both the neuropile ensheathing and astrocyte-like glia may be involved in clearing neurotransmitters from the extracellular space, thus modifying the levels of histamine, glutamate and possibly dopamine at the synapse to ultimately affect behaviour.
Collapse
Affiliation(s)
- Tara N Edwards
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada, B3H 4J1.
| | | |
Collapse
|
27
|
de Haro M, Al-Ramahi I, Benito-Sipos J, López-Arias B, Dorado B, Veenstra JA, Herrero P. Detailed analysis of leucokinin-expressing neurons and their candidate functions in the Drosophila nervous system. Cell Tissue Res 2009; 339:321-36. [PMID: 19941006 DOI: 10.1007/s00441-009-0890-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
The distribution of leucokinin (LK) neurons in the central nervous system (CNS) of Drosophila melanogaster was described by immunolabelling many years ago. However, no detailed underlying information of the input or output connections of their neurites was then available. Here, we provide a more accurate morphological description by employing a novel LK-specific GAL4 line that recapitulates LK expression. In order to analyse the possible afferent and efferent neural candidates of LK neurons, we used this lk-GAL4 line together with other CNS-Gal4 lines, combined with antisera against various neuropeptides or neurotransmitters. We found four kinds of LK neurons in the brain. (1) The lateral horn neurons connect the antennal glomerula to the mushroom bodies. (2) The suboesophageal neurons connect the gustatory receptors to the suboesophageal ganglia and ventral nerve cord. (3) The anterior neurons innervate the corpus cardiacum of the ring gland but LK expression is surprisingly not detectable from the third instar onwards in these neurons. (4) A set of abdominal ganglion neurons connect to the dorsal median tract in larvae and send their axons to a segmental muscle 8. Thus, the methods employed in our study can be used to identify individual neuropeptidergic neurons and thereby characterize functional cues or developmental transformations in their differentiation.
Collapse
Affiliation(s)
- María de Haro
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sztarker J, Strausfeld N, Andrew D, Tomsic D. Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. J Comp Neurol 2009; 513:129-50. [PMID: 19123235 DOI: 10.1002/cne.21942] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Crustaceans are among the most extensively distributed arthropods, occupying many ecologies and manifesting a great variety of compound eye optics; but in comparison with insects, relatively little is known about the organization and neuronal morphologies of their underlying optic neuropils. Most studies, which have been limited to descriptions of the first neuropil--the lamina--suggest that different species have approximately comparable cell types. However, such studies have been limited with regard to the types of neurons they identify and most omit their topographic relationships. It is also uncertain whether similarities, such as they are, are independent of visual ecologies. The present account describes and compares the morphologies and dispositions of monopolar and other efferent neurons as well as the organization of tangential and smaller centrifugal neurons in two grapsoid crabs, one from the South Atlantic, the other from the North Pacific. Because these species occupy significantly disparate ecologies we ask whether this might be reflected in differences of cell arrangements within the most peripheral levels of the visual system. The present study identifies such differences with respect to the organization of centrifugal neurons to the lamina. We also identify in both species neurons in the lamina that have hitherto not been identified in crustaceans and we draw specific comparisons between the layered organization of the grapsoid lamina and layered laminas of insects.
Collapse
Affiliation(s)
- Julieta Sztarker
- Laboratorio de Neurobiología de la Memoria, Depto. Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Buenos Aires 1428, Argentina
| | | | | | | |
Collapse
|
29
|
Nikolaev A, Zheng L, Wardill TJ, O'Kane CJ, de Polavieja GG, Juusola M. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: II mechanisms. PLoS One 2009; 4:e4306. [PMID: 19180195 PMCID: PMC2628722 DOI: 10.1371/journal.pone.0004306] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 12/30/2008] [Indexed: 11/19/2022] Open
Abstract
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information.
Collapse
Affiliation(s)
- Anton Nikolaev
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Lei Zheng
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Trevor J. Wardill
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Cahir J. O'Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Gonzalo G. de Polavieja
- Department of Theoretical Physics, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto ‘Nicolás Cabrera’ de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- State Key Laboratory of Cognitive Neuroscience, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
30
|
Zheng L, Nikolaev A, Wardill TJ, O'Kane CJ, de Polavieja GG, Juusola M. Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I dynamics. PLoS One 2009; 4:e4307. [PMID: 19180196 PMCID: PMC2628724 DOI: 10.1371/journal.pone.0004307] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 12/23/2008] [Indexed: 12/17/2022] Open
Abstract
Because of the limited processing capacity of eyes, retinal networks must adapt constantly to best present the ever changing visual world to the brain. However, we still know little about how adaptation in retinal networks shapes neural encoding of changing information. To study this question, we recorded voltage responses from photoreceptors (R1–R6) and their output neurons (LMCs) in the Drosophila eye to repeated patterns of contrast values, collected from natural scenes. By analyzing the continuous photoreceptor-to-LMC transformations of these graded-potential neurons, we show that the efficiency of coding is dynamically improved by adaptation. In particular, adaptation enhances both the frequency and amplitude distribution of LMC output by improving sensitivity to under-represented signals within seconds. Moreover, the signal-to-noise ratio of LMC output increases in the same time scale. We suggest that these coding properties can be used to study network adaptation using the genetic tools in Drosophila, as shown in a companion paper (Part II).
Collapse
Affiliation(s)
- Lei Zheng
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Anton Nikolaev
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Trevor J. Wardill
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Cahir J. O'Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Gonzalo G. de Polavieja
- Department of Theoretical Physics, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto ‘Nicolás Cabrera’ de Física de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mikko Juusola
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- State Key Laboratory of Cognitive Neuroscience, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
31
|
Takemura SY, Lu Z, Meinerzhagen. IA. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 2008; 509:493-513. [PMID: 18537121 PMCID: PMC2481516 DOI: 10.1002/cne.21757] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Understanding the visual pathways of the fly's compound eye has been blocked for decades at the second optic neuropil, the medulla, a two-part relay comprising 10 strata (M1-M10), and the largest neuropil in the fly's brain. Based on the modularity of its composition, and two previous reports, on Golgi-impregnated cell types (Fischbach and Dittrich, Cell Tissue Res.,1989; 258:441-475) and their synaptic circuits in the first neuropil, the lamina, we used serial-section electron microscopy to examine inputs to the distal strata M1-M6. We report the morphology of the reconstructed medulla terminals of five lamina cells, L1-L5, two photoreceptors, R7 and R8, and three neurons, medulla cell T1 and centrifugal cells C2 and C3. The morphology of these conforms closely to previous reports from Golgi impregnation. This fidelity provides assurance that our reconstructions are complete and accurate. Synapses of these terminals broadly localize to the terminal and provide contacts to unidentified targets, mostly medulla cells, as well as sites of connection between the terminals themselves. These reveal that R8 forms contacts upon R7 and thus between these two spectral inputs; that L3 provides input upon both pathways, adding an achromatic input; that the terminal of L5 reciprocally connects to that of L1, thus being synaptic in the medulla despite lacking synapses in the lamina; that the motion-sensing input cells L1 and L2 lack direct interconnection but both receive input from C2 and C3, resembling lamina connections of these cells; and that, as in the lamina, T1 provides no output chemical synapses.
Collapse
Affiliation(s)
- Shin-ya Takemura
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4J1
| | - Zhiyuan Lu
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4J1
| | - Ian A. Meinerzhagen.
- Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4J1
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Canada B3H 4J1
| |
Collapse
|
32
|
Sinakevitch I, Sjöholm M, Hansson BS, Strausfeld NJ. Global and local modulatory supply to the mushroom bodies of the moth Spodoptera littoralis. ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:260-272. [PMID: 18406668 PMCID: PMC4876857 DOI: 10.1016/j.asd.2008.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 01/05/2008] [Accepted: 01/08/2008] [Indexed: 05/26/2023]
Abstract
The moth Spodoptera littoralis, is a major pest of agriculture whose olfactory system is tuned to odorants emitted by host plants and conspecifics. As in other insects, the paired mushroom bodies are thought to play pivotal roles in behaviors that are elicited by contextual and multisensory signals, amongst which those of specific odors dominate. Compared with species that have elaborate behavioral repertoires, such as the honey bee Apis mellifera or the cockroach Periplaneta americana, the mushroom bodies of S. littoralis were originally viewed as having a simple cellular organization. This has been since challenged by observations of putative transmitters and neuromodulators. As revealed by immunocytology, the spodopteran mushroom bodies, like those of other taxa, are subdivided longitudinally into discrete neuropil domains. Such divisions are further supported by the present study, which also demonstrates discrete affinities to different mushroom body neuropils by antibodies raised against two putative transmitters, glutamate and gamma-aminobutyric acid, and against three putative neuromodulatory substances: serotonin, A-type allatostatin, and tachykinin-related peptides. The results suggest that in addition to longitudinal divisions of the lobes, circuits in the calyces and lobes are likely to be independently modulated.
Collapse
Affiliation(s)
- Irina Sinakevitch
- IBDML-UMR 6216, Case 907 Parc Scientifique de Luminy, 13288 Marseille, Cedex 9, France
| | - Marcus Sjöholm
- Department of Crop Science, Swedish University of Agricultural Sciences, SE-23053, Alnarp, Sweden
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knoell-Strasse 8, D-07745 Jena, Germany
| | - Nicholas J. Strausfeld
- Arizona Research Laboratories Division of Neurobiology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
33
|
Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS One 2008; 3:e2110. [PMID: 18464935 PMCID: PMC2373871 DOI: 10.1371/journal.pone.0002110] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/11/2008] [Indexed: 02/01/2023] Open
Abstract
Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to γ-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABAB type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABAB receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABAA receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in α-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.
Collapse
|
34
|
Daniels RW, Gelfand MV, Collins CA, DiAntonio A. Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J Comp Neurol 2008; 508:131-52. [PMID: 18302156 DOI: 10.1002/cne.21670] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system (CNS) and at Drosophila neuromuscular junctions (NMJs). Although glutamate is also used as a transmitter in the Drosophila CNS, there has been no systematic description of the central glutamatergic signaling system in the fly. With the recent cloning of the Drosophila vesicular glutamate transporter (DVGLUT), it is now possible to mark many, if not all, central glutamatergic neurons and synapses. Here we present the pattern of glutamatergic synapses and cell bodies in the late larval CNS and in the adult fly brain by using an anti-DVGLUT antibody. We also introduce two new tools for studying the Drosophila glutamatergic system: a dvglut promoter fragment fused to Gal4 whose expression labels glutamatergic neurons and a green fluorescent protein (GFP)-tagged DVGLUT transgene that localizes to synapses. In the larval CNS, we find synaptic DVGLUT immunoreactivity prominent in all brain lobe neuropil compartments except for the mushroom body. Likewise in the adult CNS, glutamatergic synapses are abundant throughout all major brain structures except the mushroom body. We also find that the larval ventral nerve cord neuropil is rich in glutamatergic synapses, which are primarily located near the dorsal surface of the neuropil, segregated from the ventrally positioned cholinergic processes. This description of the glutamatergic system in Drosophila highlights the prevalence of glutamatergic neurons in the CNS and presents tools for future study and manipulation of glutamatergic transmission.
Collapse
Affiliation(s)
- Richard W Daniels
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
35
|
Strausfeld NJ, Okamura JY. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J Comp Neurol 2007; 500:166-88. [PMID: 17099891 DOI: 10.1002/cne.21196] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reconstructions of silver-stained brains revealed 27 optic glomeruli that occupy a major volume of the lateral protocerebrum. Axons from different morphological types of columnar output neurons from the lobula complex sort out to specific glomeruli. Glomeruli are partially enwrapped by glial processes and are invaded by the dendrites and terminals of local interneurons that connect different glomeruli in a manner analogous to local interneurons in the antennal lobes. Each type of columnar neuron contributes to a palisade-like ensemble that extends across the whole or a circumscribed area of the retinotopic mosaic. A second class of outputs from the lobula comprises wide-field neurons, the dendrites of which interact with planar fields or column-like patches of retinotopic inputs from the medulla. These neurons also send their axons to optic glomeruli. Dye fills demonstrate that lobula complex neurons supplying glomeruli do not generally terminate directly on descending neurons. Local interneurons and projection neurons provide integrative circuitry within and among glomeruli. As exemplified by the anterior optic tubercle, optic glomeruli can also have elaborate internal architectures. The results are discussed with respect to the identification of motion- and orientation-selective neurons at the level of the lobula and lateral protocerebrum and with respect to the evolutionary implications raised by the existence of neural arrangements serving the compound eyes, which are organized like neuropils serving segmental ganglia equipped with appendages.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
36
|
Zheng L, de Polavieja GG, Wolfram V, Asyali MH, Hardie RC, Juusola M. Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. ACTA ACUST UNITED AC 2006; 127:495-510. [PMID: 16636201 PMCID: PMC2151524 DOI: 10.1085/jgp.200509470] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the layer of first visual synapses, information from photoreceptors is processed and transmitted towards the brain. In fly compound eye, output from photoreceptors (R1-R6) that share the same visual field is pooled and transmitted via histaminergic synapses to two classes of interneuron, large monopolar cells (LMCs) and amacrine cells (ACs). The interneurons also feed back to photoreceptor terminals via numerous ligand-gated synapses, yet the significance of these connections has remained a mystery. We investigated the role of feedback synapses by comparing intracellular responses of photoreceptors and LMCs in wild-type Drosophila and in synaptic mutants, to light and current pulses and to naturalistic light stimuli. The recordings were further subjected to rigorous statistical and information-theoretical analysis. We show that the feedback synapses form a negative feedback loop that controls the speed and amplitude of photoreceptor responses and hence the quality of the transmitted signals. These results highlight the benefits of feedback synapses for neural information processing, and suggest that similar coding strategies could be used in other nervous systems.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Biomedical Science, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|
37
|
Allodi S, Bressan CM, Carvalho SL, Cavalcante LA. Regionally specific distribution of the binding of anti-glutamine synthetase and anti-S100 antibodies and of Datura stramonium lectin in glial domains of the optic lobe of the giant prawn. Glia 2006; 53:612-20. [PMID: 16435368 DOI: 10.1002/glia.20317] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We previously characterized some crustacean glial cells by markers such as 2',3'-cyclic nucleotide 3'-phosphodiesterase and glial fibrillary acidic protein. Here we use antibodies against glutamine synthetase full-length molecule (anti-GS/FL), a GS C-terminal peptide (anti-GS/20aa-C), and brain S100 (anti-S100), as well as the binding of the insect glia and rat astrocytic marker Datura stramonium lectin (DSL), in the optic lobe of the prawn Macrobrachium rosenbergii. All markers label the lamina ganglionaris cartridge region (lighter: anti-GS/FL; heavier: DSL). In addition, anti-GS/FL labels superficial somata of external and internal medullas and internal chiasm cells. Both anti-GS/20aa-C and anti-S100 label heavily the glial sheaths of the lamina ganglionaris. In addition, anti-S100 binds to the perineurial glia of medullary parenchymal vessels. Western blot analyses show that both anti-GS/FL and anti-GS/20aa-C bind mostly to a band of 50-55 kDa, compatible with a long isoform of vertebrate GS, and accessorily to a possible dimer and, in the case of anti-GS/20aa-C, to an ill-defined band of intermediate mass. Binding of anti-S100 is selective for a single band of about 68 kDa but shows no protein in the weight range of the canonical S100 protein superfamily. DSL reveals two bands of about 75 and about 120 kDa, thus within the range of maximal recognition for rat astrocytes. Our results suggest that phenotype protein markers of the optic lobe glia share antigenic determinants with S100 and (a long form of) GS and that, similarly to vertebrate and insect glia, crustacean glia protein and N-glycan residue markers display regional heterogeneity.
Collapse
Affiliation(s)
- Silvana Allodi
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, ICB, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
38
|
Hamasaka Y, Wegener C, Nässel DR. GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium. ACTA ACUST UNITED AC 2006; 65:225-40. [PMID: 16118795 DOI: 10.1002/neu.20184] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Circadian clocks play vital roles in the control of daily rhythms in physiology and behavior of animals. In Drosophila, analysis of the molecular and behavioral rhythm has shown that the master clock neurons are entrained by sensory inputs and are synchronized with other clock neurons. However, little is known about the neuronal circuits of the Drosophila circadian system and the neurotransmitters that act on the clock neurons. Here, we provide evidence for a new neuronal input pathway to the master clock neurons, s-LN(v)s, in Drosophila that utilizes GABA as a slow inhibitory neurotransmitter. We monitored intracellular calcium levels in dissociated larval s-LN(v)s with the calcium-sensitive dye Fura-2. GABA decreased intracellular calcium in the s-LN(v)s and blocked spontaneous oscillations in calcium levels. The duration of this response was dose-dependent between 1 nM and 100 microM. The response to GABA was blocked by a metabotropic GABA(B) receptor (GABA(B)-R) antagonist, CGP54626, but not by an ionotropic receptor antagonist, picrotoxin. The GABA(B)-R agonist, 3-APMPA, produced a response similar to GABA. An antiserum against one of the Drosophila GABA(B)-Rs (GABA(B)-R2) labeled the dendritic regions of the s-LN(v)s in both adults and larvae, as well as the dissociated s-LN(v)s. We found that some GABAergic processes terminate at the dendrites of the LN(v)s, as revealed by GABA immunostaining and a GABA-specific GAL4 line (GAD1-gal4). Our results suggest that the s-LN(v)s receive slow inhibitory GABAergic inputs that decrease intracellular calcium of these clock neurons and block their calcium cycling. This response is mediated by postsynaptic GABA(B) receptors.
Collapse
|
39
|
Douglass JK, Strausfeld NJ. Sign-conserving amacrine neurons in the fly's external plexiform layer. Vis Neurosci 2005; 22:345-58. [PMID: 16079009 DOI: 10.1017/s095252380522309x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 02/16/2005] [Indexed: 11/07/2022]
Abstract
Amacrine cells in the external plexiform layer of the fly's lamina have been intracellulary recorded and dye-filled for the first time. The recordings demonstrate that like the lamina's short photoreceptors R1-R6, type 1 lamina amacrine neurons exhibit nonspiking, "sign-conserving" sustained depolarizations in response to illumination. This contrasts with the sign-inverting responses that typify first-order retinotopic relay neurons: monopolar cells L1-L5 and the T1 efferent neuron. The contrast frequency tuning of amacrine neurons is similar to that of photoreceptors and large lamina monopolar cells. Initial observations indicate that lamina amacrine receptive fields are also photoreceptor-like, suggesting either that their inputs originate from a small number of neighboring visual sampling units (VSUs), or that locally generated potentials decay rapidly with displacement. Lamina amacrines also respond to motion, and in one recording these responses were selective for the orientation of moving edges. This functional organization corresponds to the anatomy of amacrine cells, in which postsynaptic inputs from several neighboring photoreceptor endings are linked by a network of very thin distal processes. In this way, each VSU can receive convergent inputs from a surround of amacrine processes. This arrangement is well suited for relaying responses to local intensity fluctuations from neighboring VSUs to a central VSU where amacrines are known to be presynaptic to the dendrites of the T1 efferent. The T1 terminal converges at a deeper level with that of the L2 monopolar cell relaying from the same optic cartridge. Thus, the localized spatial responses and receptor-like temporal response properties of amacrines are consistent with possible roles in lateral inhibition, motion processing, or orientation processing.
Collapse
Affiliation(s)
- John K Douglass
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, 85721, USA.
| | | |
Collapse
|
40
|
Rogers SM, Matheson T, Sasaki K, Kendrick K, Simpson SJ, Burrows M. Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust. J Exp Biol 2004; 207:3603-17. [PMID: 15339956 DOI: 10.1242/jeb.01183] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYDesert locusts (Schistocerca gregaria) can undergo a profound transformation between solitarious and gregarious forms, which involves widespread changes in behaviour, physiology and morphology. This phase change is triggered by the presence or absence of other locusts and occurs over a timescale ranging from hours, for some behaviours to change, to generations,for full morphological transformation. The neuro-hormonal mechanisms that drive and accompany phase change in either direction remain unknown. We have used high-performance liquid chromatography (HPLC) to compare amounts of 13 different potential neurotransmitters and/or neuromodulators in the central nervous systems of final instar locust nymphs undergoing phase transition and between long-term solitarious and gregarious adults. Long-term gregarious and solitarious locust nymphs differed in 11 of the 13 substances analysed: eight increased in both the brain and thoracic nerve cord (including glutamate,GABA, dopamine and serotonin), whereas three decreased (acetylcholine,tyramine and citrulline). Adult locusts of both extreme phases were similarly different. Isolating larval gregarious locusts led to rapid changes in seven chemicals equal to or even exceeding the differences seen between long-term solitarious and gregarious animals. Crowding larval solitarious locusts led to rapid changes in six chemicals towards gregarious values within the first 4 h(by which time gregarious behaviours are already being expressed), before returning to nearer long-term solitarious values 24 h later. Serotonin in the thoracic ganglia, however, did not follow this trend, but showed a ninefold increase after a 4 h period of crowding. After crowding solitarious nymphs for a whole larval stadium, the amounts of all chemicals, except octopamine, were similar to those of long-term gregarious locusts. Our data show that changes in levels of neuroactive substances are widespread in the central nervous system and reflect the time course of behavioural and physiological phase change.
Collapse
Affiliation(s)
- Stephen M Rogers
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Higgins CM, Douglass JK, Strausfeld NJ. The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. Vis Neurosci 2004; 21:567-86. [PMID: 15579222 DOI: 10.1017/s0952523804214079] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Indexed: 11/07/2022]
Abstract
Based on comparative anatomical studies and electrophysiological experiments, we have identified a conserved subset of neurons in the lamina, medulla, and lobula of dipterous insects that are involved in retinotopic visual motion direction selectivity. Working from the photoreceptors inward, this neuronal subset includes lamina amacrine (α) cells, lamina monopolar (L2) cells, the basket T-cell (T1 or β), the transmedullary cell Tm1, and the T5 bushy T-cell. Two GABA-immunoreactive neurons, the transmedullary cell Tm9 and a local interneuron at the level of T5 dendrites, are also implicated in the motion computation. We suggest that these neurons comprise the small-field elementary motion detector circuits the outputs of which are integrated by wide-field lobula plate tangential cells. We show that a computational model based on the available data about these neurons is consistent with existing models of biological elementary motion detection, and present a comparable version of the Hassenstein-Reichardt (HR) correlation model. Further, by using the model to synthesize a generic tangential cell, we show that it can account for the responses of lobula plate tangential cells to a wide range of transient stimuli, including responses which cannot be predicted using the HR model. This computational model of elementary motion detection is the first which derives specifically from the functional organization of a subset of retinotopic neurons supplying the lobula plate. A key prediction of this model is that elementary motion detector circuits respond quite differently to small-field transient stimulation than do spatially integrated motion processing neurons as observed in the lobula plate. In addition, this model suggests that the retinotopic motion information provided to wide-field motion-sensitive cells in the lobula is derived from a less refined stage of processing than motion inputs to the lobula plate.
Collapse
Affiliation(s)
- Charles M Higgins
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|