1
|
Takeda A, Teshima M, Funakoshi K. Involvement of vimentin- and BLBP-positive glial cells and their MMP expression in axonal regeneration after spinal cord transection in goldfish. Cell Tissue Res 2024; 398:15-25. [PMID: 39120736 DOI: 10.1007/s00441-024-03907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
In goldfish, spinal cord injury triggers the formation of a fibrous scar at the injury site. Regenerating axons are able to penetrate the scar tissue, resulting in the recovery of motor function. Previous findings suggested that regenerating axons enter the scar through tubular structures surrounded by glial elements with laminin-positive basement membranes and that glial processes expressing glial fibrillary acidic protein (GFAP) are associated with axonal regeneration. How glia contribute to promoting axonal regeneration, however, is unknown. Here, we revealed that glial processes expressing vimentin or brain lipid-binding protein (BLBP) also enter the fibrous scar after spinal cord injury in goldfish. Vimentin-positive glial processes were more numerous than GFAP- or BLBP-positive glial processes in the scar tissue. Regenerating axons in the scar tissue were more closely associated with vimentin-positive glial processes than GFAP-positive glial processes. Vimentin-positive glial processes co-expressed matrix metalloproteinase (MMP)-14. Our findings suggest that vimentin-positive glial processes closely associate with regenerating axons through tubular structures entering the scar after spinal cord injury in goldfish. In intact spinal cord, ependymo-radial glial cell bodies express BLBP and their radial processes express vimentin, suggesting that vimentin-positive glial processes derive from migrating ependymo-radial glial cells. MMP-14 expressed in vimentin-positive glial cells and their processes might provide a beneficial environment for axonal regeneration.
Collapse
Affiliation(s)
- Akihito Takeda
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Minami Teshima
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
2
|
Pushchina EV, Varaksin AA. Constitutive Neurogenesis and Neuronal Plasticity in the Adult Cerebellum and Brainstem of Rainbow Trout, Oncorhynchus mykiss. Int J Mol Sci 2024; 25:5595. [PMID: 38891784 PMCID: PMC11171520 DOI: 10.3390/ijms25115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The central nervous system of Pacific salmon retains signs of embryonic structure throughout life and a large number of neuroepithelial neural stem cells (NSCs) in the proliferative areas of the brain, in particular. However, the adult nervous system and neurogenesis studies on rainbow trout, Oncorhynchus mykiss, are limited. Here, we studied the localization of glutamine synthetase (GS), vimentin (Vim), and nestin (Nes), as well as the neurons formed in the postembryonic period, labeled with doublecortin (DC), under conditions of homeostatic growth in adult cerebellum and brainstem of Oncorhynchus mykiss using immunohistochemical methods and Western Immunoblotting. We observed that the distribution of vimentin (Vim), nestin (Nes), and glutamine synthetase (GS), which are found in the aNSPCs of both embryonic types (neuroepithelial cells) and in the adult type (radial glia) in the cerebellum and the brainstem of trout, has certain features. Populations of the adult neural stem/progenitor cells (aNSPCs) expressing GS, Vim, and Nes have different morphologies, localizations, and patterns of cluster formation in the trout cerebellum and brainstem, which indicates the morphological and, obviously, functional heterogeneity of these cells. Immunolabeling of PCNA revealed areas in the cerebellum and brainstem of rainbow trout containing proliferating cells which coincide with areas expressing Vim, Nes, and GS. Double immunolabeling revealed the PCNA/GS PCNA/Vim coexpression patterns in the neuroepithelial-type cells in the PVZ of the brainstem. PCNA/GS coexpression in the RG was detected in the submarginal zone of the brainstem. The results of immunohistochemical study of the DC distribution in the cerebellum and brainstem of trout have showed a high level of expression of this marker in various cell populations. This may indicate: (i) high production of the adult-born neurons in the cerebellum and brainstem of adult trout, (ii) high plasticity of neurons in the cerebellum and brainstem of trout. We assume that the source of new cells in the trout brain, along with PVZ and SMZ, containing proliferating cells, may be local neurogenic niches containing the PCNA-positive and silent (PCNA-negative), but expressing NSC markers, cells. The identification of cells expressing DC, Vim, and Nes in the IX-X cranial nerve nuclei of trout was carried out.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia;
| | | |
Collapse
|
3
|
Expression of Doublecortin, Glial Fibrillar Acidic Protein, and Vimentin in the Intact Subpallium and after Traumatic Injury to the Pallium in Juvenile Salmon, Oncorhynchus masou. Int J Mol Sci 2022; 23:ijms23031334. [PMID: 35163257 PMCID: PMC8836249 DOI: 10.3390/ijms23031334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.
Collapse
|
4
|
Molecular Markers of Adult Neurogenesis in the Telencephalon and Tectum of Rainbow Trout, Oncorhynchus mykiss. Int J Mol Sci 2022; 23:ijms23031188. [PMID: 35163116 PMCID: PMC8835435 DOI: 10.3390/ijms23031188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.
Collapse
|
5
|
Gao X, Tang Y, Yang GD, Wei W. Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy Associated With Area Postrema Syndrome: A Case Report. Front Neurol 2022; 12:803116. [PMID: 35002942 PMCID: PMC8739890 DOI: 10.3389/fneur.2021.803116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Glial fibrillary acidic protein astrocytopathy is an immunotherapy-responsive autoimmune disease of the central nervous system with various clinical manifestations; among these, there are few reports about area postrema syndrome (APS). The authors present the case of a female patient admitted to the hospital with intractable nausea and vomiting as the predominant symptom. The patient's cerebrospinal fluid was tested by cell-based assays (CBA) and found positive for the presence of anti-glial fibrillary acidic protein (GFAP) antibody, in addition, serological testing showed elevated levels of thyroglobulin and thyroperoxidase-specific antibodies. Brain and cervical MRI showed abnormally high signal on the T2 sequence in the dorsal medulla oblongata and right pontine arm. Therefore, the patient was diagnosed with autoimmune GFAP astrocytopathy. The symptoms improved rapidly after treatment with corticosteroids, and no recurrence has been observed thus far. APS may be a relatively rare clinical manifestation of GFAP astrocytopathy. Importantly, such presentation is challenging to correctly diagnose without typical MRI imaging findings. However, the detection of antibodies in the cerebrospinal fluid or serum may be valuable. Systemic and neurological autoimmunity often coexist, comprehensive antibody screening should be conducted.
Collapse
Affiliation(s)
- Xin Gao
- Department of Neurology, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Ying Tang
- Department of Neurology, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Guo-Dong Yang
- Department of Neurology, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Wu Wei
- Department of Neurology, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| |
Collapse
|
6
|
Arellano JI, Morozov YM, Micali N, Rakic P. Radial Glial Cells: New Views on Old Questions. Neurochem Res 2021; 46:2512-2524. [PMID: 33725233 PMCID: PMC8855517 DOI: 10.1007/s11064-021-03296-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as guides for migration of neurons from the ventricular surface to their final positions in the brain. These cells originate from neuroepithelial cells (NEC) from which they inherit their epithelial features and polarized morphology, with processes extending from the ventricular to the pial surface of the embryonic cerebrum. We have learnt a great deal since the first descriptions of these cells at the end of the nineteenth century. However, there are still questions regarding how and when NEC transform into RGC or about the function of intermediate filaments such as glial fibrillary acidic protein (GFAP) in RGCs and their dynamics during neurogenesis. For example, it is not clear why RGCs in primates, including humans, express GFAP at the onset of cortical neurogenesis while in rodents it is expressed when it is essentially complete. Based on an ultrastructural analysis of GFAP expression and cell morphology of dividing progenitors in the developing neocortex of the macaque monkey, we show that RGCs become the main progenitor in the developing cerebrum by the start of neurogenesis, as all dividing cells show glial features such as GFAP expression and lack of tight junctions. Also, our data suggest that RGCs retract their apical process during mitosis. We discuss our findings in the context of the role and molecular characteristics of RGCs in the vertebrate brain, their differences with NECs and their dynamic behavior during the process of neurogenesis.
Collapse
Affiliation(s)
- Jon I Arellano
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Nicola Micali
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine and Kavli Institute for Neuroscience, New Haven, CT, 06510, USA.
| |
Collapse
|
7
|
Kálmán M, Matuz V, Sebők OM, Lőrincz D. Evolutionary Modifications Are Moderate in the Astroglial System of Actinopterygii as Revealed by GFAP Immunohistochemistry. Front Neuroanat 2021; 15:698459. [PMID: 34267629 PMCID: PMC8276248 DOI: 10.3389/fnana.2021.698459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
The present paper is the first comparative study on the astroglia of several actinopterygian species at different phylogenetical positions, teleosts (16 species), and non-teleosts (3 species), based on the immunohistochemical staining of GFAP (glial fibrillary acidic protein), the characteristic cytoskeletal intermediary filament protein, and immunohistochemical marker of astroglia. The question was, how the astroglial architecture reflexes the high diversity of this largest vertebrate group. The actinopterygian telencephalon has a so-called ‘eversive’ development in contrast to the ‘evagination’ found in sarcopterygii (including tetrapods). Several brain parts either have no equivalents in tetrapod vertebrates (e.g., torus longitudinalis, lobus inferior, lobus nervi vagi), or have rather different shapes (e.g., the cerebellum). GFAP was visualized applying DAKO polyclonal anti-GFAP serum. The study was focused mainly on the telencephalon (eversion), tectum (visual orientation), and cerebellum (motor coordination) where the evolutionary changes were most expected, but the other areas were also investigated. The predominant astroglial elements were tanycytes (long, thin, fiber-like cells). In the teleost telencephala a ‘fan-shape’ re-arrangement of radial glia reflects the eversion. In bichir, starlet, and gar, in which the eversion is less pronounced, the ‘fan-shape’ re-arrangement did not form. In the tectum the radial glial processes were immunostained, but in Ostariophysi and Euteleostei it did not extend into their deep segments. In the cerebellum Bergmann-like glia was found in each group, including non-teleosts, except for Cyprinidae. The vagal lobe was uniquely enlarged and layered in Cyprininae, and had a corresponding layered astroglial system, which left almost free of GFAP the zones of sensory and motor neurons. In conclusion, despite the diversity and evolutionary alterations of Actinopterygii brains, the diversity of the astroglial architecture is moderate. In contrast to Chondrichthyes and Amniotes; in Actinopterygii true astrocytes (stellate-shaped extraependymal cells) did not appear during evolution, and the expansion of GFAP-free areas was limited.
Collapse
Affiliation(s)
- Mihály Kálmán
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Vanessza Matuz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Olivér M Sebők
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Dávid Lőrincz
- Department of Zoology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Hydrogen Sulfide and Pathophysiology of the CNS. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Pushchina EV, Stukaneva ME, Varaksin AA. Hydrogen Sulfide Modulates Adult and Reparative Neurogenesis in the Cerebellum of Juvenile Masu Salmon, Oncorhynchus masou. Int J Mol Sci 2020; 21:ijms21249638. [PMID: 33348868 PMCID: PMC7766854 DOI: 10.3390/ijms21249638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023] Open
Abstract
Fish are a convenient model for the study of reparative and post-traumatic processes of central nervous system (CNS) recovery, because the formation of new cells in their CNS continues throughout life. After a traumatic injury to the cerebellum of juvenile masu salmon, Oncorhynchus masou, the cell composition of the neurogenic zones containing neural stem cells (NSCs)/neural progenitor cells (NPCs) in the acute period (two days post-injury) changes. The presence of neuroepithelial (NE) and radial glial (RG) neuronal precursors located in the dorsal, lateral, and basal zones of the cerebellar body was shown by the immunohistochemical (IHC) labeling of glutamine synthetase (GS). Progenitors of both types are sources of neurons in the cerebellum of juvenile O. masou during constitutive growth, thus, playing an important role in CNS homeostasis and neuronal plasticity during ontogenesis. Precursors with the RG phenotype were found in the same regions of the molecular layer as part of heterogeneous constitutive neurogenic niches. The presence of neuroepithelial and radial glia GS+ cells indicates a certain proportion of embryonic and adult progenitors and, obviously, different contributions of these cells to constitutive and reparative neurogenesis in the acute post-traumatic period. Expression of nestin and vimentin was revealed in neuroepithelial cerebellar progenitors of juvenile O. masou. Patterns of granular expression of these markers were found in neurogenic niches and adjacent areas, which probably indicates the neurotrophic and proneurogenic effects of vimentin and nestin in constitutive and post-traumatic neurogenesis and a high level of constructive metabolism. No expression of vimentin and nestin was detected in the cerebellar RG of juvenile O. masou. Thus, the molecular markers of NSCs/NPCs in the cerebellum of juvenile O. masou are as follows: vimentin, nestin, and glutamine synthetase label NE cells in intact animals and in the post-traumatic period, while GS expression is present in the RG of intact animals and decreases in the acute post-traumatic period. A study of distribution of cystathionine β-synthase (CBS) in the cerebellum of intact young O. masou showed the expression of the marker mainly in type 1 cells, corresponding to NSCs/NCPs for other molecular markers. In the post-traumatic period, the number of CBS+ cells sharply increased, which indicates the involvement of H2S in the post-traumatic response. Induction of CBS in type 3 cells indicates the involvement of H2S in the metabolism of extracellular glutamate in the cerebellum, a decrease in the production of reactive oxygen species, and also arrest of the oxidative stress development, a weakening of the toxic effects of glutamate, and a reduction in excitotoxicity. The obtained results allow us to consider H2S as a biologically active substance, the numerous known effects of which can be supplemented by participation in the processes of constitutive neurogenesis and neuronal regeneration.
Collapse
|
10
|
Pushchina EV, Zharikova EI, Varaksin AA, Prudnikov IM, Tsyvkin VN. Proliferation, Adult Neuronal Stem Cells and Cells Migration in Pallium during Constitutive Neurogenesis and after Traumatic Injury of Telencephalon of Juvenile Masu Salmon, Oncorhynchus masou. Brain Sci 2020; 10:brainsci10040222. [PMID: 32276413 PMCID: PMC7226367 DOI: 10.3390/brainsci10040222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
A study of the lateral pallium in zebrafish and the visual tectum of the medaka revealed a population of adult neuroepithelial (NE) cells supported from the early stage of development to various postembryonic stages of ontogenesis. These data emphasize the importance of non-radial glial stem cells in the neurogenesis of adult animals, in particular fish. However, the distribution, cell cycle features, and molecular markers of NE cells and glial progenitors in fish are still poorly understood at the postembryonic stages of ontogenesis. Fetalization predominates in the ontogenetic development of salmon fish, which is associated with a delay in development and preservation of the features of the embryonic structure of the brain during the first year of life. In the present work, we studied the features of proliferation and the migration of neuronal precursors in the pallial proliferative zone of juvenile Oncorhynchus masou. The aim of the study is a comparative analysis of the distribution of glial-type aNSCs markers, such as vimentin and glial fibrillar acid protein GFAP, as well as the proliferation marker BrdU and migratory neuronal precursor doublecortin, in the pallial zone of the intact telencephalon in juvenile O. masou normal and after mechanical injury. The immunohistochemical IHC labeling with antibodies to vimentin, GFAP and doublecortin in the pallium of intact fish revealed single, small, round and oval immunopositive cells, that correspond to a persistent pool of neuronal and/or glial progenitors. After the injury, heterogeneous cell clusters, radial glia processes, single and small intensely labeled GFAP+ cells in the parenchyma of Dd and lateral part of pallium (Dl) appeared, corresponding to reactive neurogenic niches containing glial aNSCs. A multifold increase in the pool of Vim+ neuronal precursor cells (NPCs) resulting from the injury was observed. Vim+ cells of the neuroepithelial type in Dd and Dm and cells of the glial type were identified in Dl after the injury. Doublecortine (Dc) immunolabeling after the injury revealed the radial migration of neuroblasts into Dm from the neurogenic zone of the pallium. The appearance of intensely labeled Dc+ cells in the brain parenchyma might indicate the activation of resident aNSCs as a consequence of the traumatic process.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.I.Z.); (A.A.V.)
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine; (I.M.P.); (V.N.T.)
- Correspondence: ; Tel.: +79-149680177
| | - Eva I. Zharikova
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.I.Z.); (A.A.V.)
| | - Anatoly A. Varaksin
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (E.I.Z.); (A.A.V.)
| | - Igor M. Prudnikov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine; (I.M.P.); (V.N.T.)
| | - Vladimir N. Tsyvkin
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 01024 Kyiv, Ukraine; (I.M.P.); (V.N.T.)
| |
Collapse
|
11
|
Pushchina EV, Kapustyanov IA, Varaksin AA. Neural Stem Cells/Neuronal Precursor Cells and Postmitotic Neuroblasts in Constitutive Neurogenesis and After ,Traumatic Injury to the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta. Brain Sci 2020; 10:brainsci10020065. [PMID: 31991815 PMCID: PMC7071460 DOI: 10.3390/brainsci10020065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
The proliferation of neural stem cells (NSCs)/neuronal precursor cells (NPCs) and the occurrence of postmitotic neuroblasts in the mesencephalic tegmentum of intact juvenile chum salmon, Oncorhynchus keta, and at 3 days after a tegmental injury, were studied by immunohistochemical labeling. BrdU+ constitutive progenitor cells located both in the periventricular matrix zone and in deeper subventricular and parenchymal layers of the brain are revealed in the tegmentum of juvenile chum salmon. As a result of traumatic damage to the tegmentum, the proliferation of resident progenitor cells of the neuroepithelial type increases. Nestin-positive and vimentin-positive NPCs and granules located in the periventricular and subventricular matrix zones, as well as in the parenchymal regions of the tegmentum, are revealed in the mesencephalic tegmentum of juvenile chum salmon, which indicates a high level of constructive metabolism and constitutive neurogenesis. The expression of vimentin and nestin in the extracellular space, as well as additionally in the NSCs and NPCs of the neuroepithelial phenotype, which do not express nestin in the control animals, is enhanced during the traumatic process. As a result of the proliferation of such cells in the post-traumatic period, local Nes+ and Vim+ NPCs clusters are formed and become involved in the reparative response. Along with the primary traumatic lesion, which coincides with the injury zone, additional Nes+ and Vim+ secondary lesions are observed to form in the adjacent subventricular and parenchymal zones of the tegmentum. In the lateral tegmentum, the number of doublecortin-positive cells is higher compared to that in the medial tegmentum, which determines the different intensities and rates of neuronal differentiation in the sensory and motor regions of the tegmentum, respectively. In periventricular regions remote from the injury, the expression of doublecortin in single cells and their groups significantly increases compared to that in the damage zone.
Collapse
Affiliation(s)
- Evgeniya V. Pushchina
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (I.A.K.); (A.A.V.)
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv 01024, Ukraine
- Correspondence:
| | - Ilya A. Kapustyanov
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (I.A.K.); (A.A.V.)
| | - Anatoly A. Varaksin
- Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, Vladivostok 690041, Russia; (I.A.K.); (A.A.V.)
| |
Collapse
|
12
|
Pushchina EV, Varaksin AA, Obukhov DK, Prudnikov IM. GFAP expression in the optic nerve and increased H 2S generation in the integration centers of the rainbow trout ( Oncorhynchus mykiss) brain after unilateral eye injury. Neural Regen Res 2020; 15:1867-1886. [PMID: 32246635 PMCID: PMC7513979 DOI: 10.4103/1673-5374.280320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hydrogen sulfide (H2S) is considered as a protective factor against cardiovascular disorders. However, there are few reports on the effects of H2S in the central nervous system during stress or injury. Previous studies on goldfish have shown that astrocytic response occurs in the damaged and contralateral optic nerves. Glial fibrillary acidic protein (GFAP) concentration in the optic nerves of rainbow trout has not been measured previously. This study further characterized the astrocytic response in the optic nerve and the brain of a rainbow trout (Oncorhynchus mykiss) after unilateral eye injury and estimated the amount of H2S-producing enzyme cystathionine β-synthase (CBS) in the brain of the rainbow trout. Within 1 week after unilateral eye injury, a protein band corresponding to a molecular weight of 50 kDa was identified in the ipsi- and contralateral optic nerves of the rainbow trout. The concentration of GFAP in the injured optic nerve increased compared to the protein concentration on the contralateral side. The results of a quantitative analysis of GFAP+ cell distribution in the contralateral optic nerve showed the largest number of GFAP+ cells and fibers in the optic nerve head. In the damaged optic nerve, patterns of GFAP+ cell migration and large GFAP+ bipolar activated astrocytes were detected at 1 week after unilateral eye injury. The study of H2S-producing system after unilateral eye injury in the rainbow trout was conducted using enzyme-linked immunosorbent assay, western blot analysis, and immunohistochemistry of polyclonal antibodies against CBS in the integrative centers of the brain: telencephalon, optic tectum, and cerebellum. Enzyme-linked immunosorbent assay results showed a 1.7-fold increase in CBS expression in the rainbow trout brain at 1 week after unilateral eye injury compared with that in intact animals. In the ventricular and subventricular regions of the rainbow trout telencephalon, CBS+ radial glia and neuroepithelial cells were identified. After unilateral eye injury, the number of CBS+ neuroepithelial cells in the pallial and subpallial periventricular regions of the telencephalon increased. In the optic tectum, unilateral eye injury led to an increase in CBS expression in radial glial cells; simultaneously, the number of CBS+ neuroepithelial cells decreased in intact animals. In the cerebellum of the rainbow trout, neuroglial interrelationships were revealed, where H2S was released, apparently, from astrocyte-like cells. The organization of H2S-producing cell complexes suggests that, the amount of glutamate produced in the rainbow trout cerebellum and its reuptake was controlled by astrocyte-like cells, reducing its excitotoxicity. In the dorsal matrix zone and granular eminences of the rainbow trout cerebellum, CBS was expressed in neuroepithelial cells. After unilateral eye injury, the level of CBS activity increased in all parts of the cerebellum. An increase in the number of H2S-producing cells was a response to oxidative stress after unilateral eye injury, and the overproduction of H2S in the cerebellum occurred to neutralize reactive oxygen species, providing the cells of the rainbow trout cerebellum with a protective effect. A structural reorganization in the dorsal matrix zone, associated with the appearance of an additional CBS+ apical zone, and a decrease in the enzyme activity in the dorsal matrix zone, was revealed in the zones of constitutive neurogenesis. All experiments were approved by the Commission on Biomedical Ethics, A.V. Zhirmunsky National Scientific Center of Marine Biology (NSCMB), Far Eastern Branch, Russian Academy of Science (FEB RAS) (approval No. 1) on July 31, 2019.
Collapse
Affiliation(s)
- Evgeniya V Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Anatoly A Varaksin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | | | - Igor M Prudnikov
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
13
|
Affiliation(s)
- Elia Sechi
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA/Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
14
|
Docampo-Seara A, Santos-Durán GN, Candal E, Rodríguez Díaz MÁ. Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Struct Funct 2018; 224:33-56. [PMID: 30242506 PMCID: PMC6373381 DOI: 10.1007/s00429-018-1758-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
Radial glial cells (RGCs) are the first cell populations of glial nature to appear during brain ontogeny. They act as primary progenitor (stem) cells as well as a scaffold for neuronal migration. The proliferative capacity of these cells, both in development and in adulthood, has been subject of interest during past decades. In contrast with mammals where RGCs are restricted to specific ventricular areas in the adult brain, RGCs are the predominant glial element in fishes. However, developmental studies on the RGCs of cartilaginous fishes are scant. We have studied the expression patterns of RGCs markers including glial fibrillary acidic protein (GFAP), brain lipid binding protein (BLBP), and glutamine synthase (GS) in the telencephalic hemispheres of catshark (Scyliorhinus canicula) from early embryos to post-hatch juveniles. GFAP, BLBP and GS are first detected, respectively, in early, intermediate and late embryos. Expression of these glial markers was observed in cells with radial glia morphology lining the telencephalic ventricles, as well as in their radial processes and endfeet at the pial surface and their expression continue in ependymal cells (or tanycytes) in early juveniles. In addition, BLBP- and GS-immunoreactive cells morphologically resembling oligodendrocytes were observed. In late embryos, most of the GFAP- and BLBP-positive RGCs also coexpress GS and show proliferative activity. Our results indicate the existence of different proliferating subpopulations of RGCs in the embryonic ventricular zone of catshark. Further investigations are needed to determine whether these proliferative RGCs could act as neurogenic and/or gliogenic precursors.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - G N Santos-Durán
- Laboratory of Artificial and Natural Evolution (LANE), Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - E Candal
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Miguel Ángel Rodríguez Díaz
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
16
|
Kommata V, Dermon CR. Transient vimentin expression during the embryonic development of the chicken cerebellum. Int J Dev Neurosci 2017; 65:11-20. [PMID: 29030097 DOI: 10.1016/j.ijdevneu.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/16/2023] Open
Abstract
Complex morphogenetic events, critical for the development of normal cerebellum foliation and layering, are known to involve type III intermediate filament protein such as vimentin expressed by Bergmann glia. The present study aimed to determine aspects of intermediate and late embryonic pattern of vimentin expression during the corticogenesis of chicken cerebellum at embryonic days 10-19 (E10-E19), using single and double immunohistochemistry/immunofluorescence. Vimentin expression showed partial co-localization with the glial markers GFAP and BLBP. Within cerebellar cortex, vimentin+ fibers were first found within lobules I and X (E10) and gradually extended to all folia (E15-E17), located within the external granule (EGL) the molecular cell layer, showing a radial orientation towards the inner granular layer and the cerebellar white matter oriented longitudinally. Interestingly, within the immature fissures base of most lobules, vimentin+ fibers radiate in a fan shape. Short-term BrdU experiments revealed that EGL cell proliferation was higher in the fissure base compared to folia apex. In addition, following 24-h survival, BrdU+ cells were found in close association to vimentin+ fibers in the EGL pre-migratory zone and within immature molecular layer. Paralleling cerebellum development, vimentin expression gradually extended to all folia sub-regions (base, wall, apex), but, at day E19, it was mainly confined to the folia apex and secondary fissure base. Taken together our data further support the possible role of vimentin+ fibers in the structural events of cerebellum corticogenesis, suggesting the participation of radial/Bergmann glia in chicken cerebellum foliation, similarly to that described for mammalian cerebellum morphogenesis.
Collapse
Affiliation(s)
- Vasiliki Kommata
- Lab Human & Animal Physiology, Dept. Biology, Univ. Patras, Patras, Greece
| | - Catherine R Dermon
- Lab Human & Animal Physiology, Dept. Biology, Univ. Patras, Patras, Greece.
| |
Collapse
|
17
|
Wen CM, Chen MM, Nan FH, Wang CS. Immunocytochemical characterisation of neural stem-progenitor cells from green terror cichlid Aequidens rivulatus. JOURNAL OF FISH BIOLOGY 2017; 90:201-221. [PMID: 27730642 DOI: 10.1111/jfb.13170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein. Nevertheless, astrocytes were polymorphic and were the most dominant cells in the NSPC cultures. By using Matrigel, radial glia exhibiting a long GFAP+ or DARPP-32+ fibre and neurons exhibiting a significant acetyl-tubulin+ process were obtained. The results confirmed that NSPCs obtained from A. rivulatus brains can proliferate and differentiate into neurons in vitro. Clonal culture can be useful for further studying the distinct NSPCs.
Collapse
Affiliation(s)
- C M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - M M Chen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - F H Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - C S Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| |
Collapse
|
18
|
Chouchene L, Pellegrini E, Gueguen MM, Hinfray N, Brion F, Piccini B, Kah O, Saïd K, Messaoudi I, Pakdel F. Inhibitory effect of cadmium on estrogen signaling in zebrafish brain and protection by zinc. J Appl Toxicol 2016; 36:863-71. [DOI: 10.1002/jat.3285] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Lina Chouchene
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Elisabeth Pellegrini
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Marie-Madeleine Gueguen
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Nathalie Hinfray
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - François Brion
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - Benjamin Piccini
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques; Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte; France
| | - Olivier Kah
- Neuroendocrine Effects of Endocrine Disruptors; University of Rennes 1, Campus de Beaulieu; France
| | - Khaled Saïd
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Imed Messaoudi
- Génétique, Biodiversité et Valorisation des Bioressources; Université de Monastir, Institut Supérieur de Biotechnologie de Monastir; Tunisia
| | - Farzad Pakdel
- Transcription, Environnement et Cancer; Institut de Recherche en Santé-Environnement-Travail (Irset), Inserm UMR 1085, Université de Rennes 1; France
| |
Collapse
|
19
|
Development of a cell line from the American eel brain expressing endothelial cell properties. In Vitro Cell Dev Biol Anim 2015; 52:395-409. [DOI: 10.1007/s11626-015-9986-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022]
|
20
|
Cid P, Doldán MJ, De Miguel Villegas E. Morphogenesis of the saccus vasculosus of turbot Scophthalmus maximus: assessment of cell proliferation and distribution of parvalbumin and calretinin during ontogeny. JOURNAL OF FISH BIOLOGY 2015; 87:17-27. [PMID: 25973992 DOI: 10.1111/jfb.12681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
The ontogenesis of the saccus vasculosus (SV) of turbot Scophthalmus maximus is described using histological and immunohistochemical methods to assess the general morphology, as well as the distribution of proliferative cells and several calcium-binding proteins (CaBP). The results reveal that the SV begins to differentiate on hatching, when immature coronet cells are morphologically distinguishable. Further morphogenesis involves the formation of a tubular avascular SV, which remains until premetamorphic larval stages. Folding and vascularization of the SV occurs mostly during metamorphosis, when S. maximus settle down on the bottom. Proliferative cells were placed within the SV itself and in the neighbouring infundibular hypothalamus. Their putative relationship with the growth of the SV is discussed. The CaBPs analysed are expressed in coronet cells. Parvalbumin is expressed in these cells from the beginning of their differentiation, while calretinin expression arises in the tubular SV and becomes more widespread over time. These data emphasize the importance of calcium buffering in the function of coronet cells.
Collapse
Affiliation(s)
- P Cid
- Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain
| | - M J Doldán
- Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain
| | - E De Miguel Villegas
- Laboratory of Cell Biology, Department of Functional Biology, University of Vigo, 36200 Vigo, Spain
| |
Collapse
|
21
|
Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. Neuroscience 2015; 284:134-152. [DOI: 10.1016/j.neuroscience.2014.09.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022]
|
22
|
Combinatorial analysis of calcium-binding proteins in larval and adult zebrafish primary olfactory system identifies differential olfactory bulb glomerular projection fields. Brain Struct Funct 2014; 220:1951-70. [PMID: 24728871 DOI: 10.1007/s00429-014-0765-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/25/2014] [Indexed: 01/05/2023]
Abstract
In the zebrafish (Danio rerio) olfactory epithelium, the calcium-binding proteins (CBPs) calretinin and S100/S100-like protein are mainly expressed in ciliated or crypt olfactory sensory neurons (OSNs), respectively. In contrast parvalbumin and calbindin1 have not been investigated. We present a combinatorial immunohistological analysis of all four CBPs, including their expression in OSNs and their axonal projections to the olfactory bulb in larval and adult zebrafish. A major expression of calretinin and S100 in ciliated and crypt cells, respectively, with some expression of S100 in microvillous cells is confirmed. Parvalbumin and calbindin1 are strongly expressed in ciliated and microvillous cells, but not in crypt cells. Moreover, detailed combinatorial double-label experiments indicate that there are eight subpopulations of zebrafish OSNs: S100-positive crypt cells (negative for all other three CBPs), parvalbumin only, S100 and parvalbumin, parvalbumin and calbindin1, and parvalbumin and calbindin1 and calretinin-positive microvillous OSNs, as well as a major parvalbumin and calbindin1 and calretinin, and minor parvalbumin and calbindin1 and calretinin-only-positive ciliated OSN populations. CBP-positive projections to olfactory bulb are consistent with previous reports of ciliated OSNs projecting to dorsal and ventromedial glomerular fields and microvillous OSNs to ventrolateral glomerular fields. We newly describe parvalbumin-positive fibers to the mediodorsal field which is calretinin free, with its anterior part showing additionally calbindin1-positive fibers, but absence thereof in the posterior part, indicating an origin from microvillous OSNs in both parts. One singular glomerulus (mdG2) exhibits S100 and parvalbumin-positive fibers, apparently originating from all crypt cells plus some microvillous OSNs. Arguments for various olfactory labeled lines are discussed.
Collapse
|
23
|
The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 2013; 4:2108. [PMID: 23820554 DOI: 10.1038/ncomms3108] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/04/2013] [Indexed: 12/28/2022] Open
Abstract
The pars tuberalis of the pituitary gland is the regulatory hub for seasonal reproduction in birds and mammals. Although fish also exhibit robust seasonal responses, they do not possess an anatomically distinct pars tuberalis. Here we report that the saccus vasculosus of fish is a seasonal sensor. We observe expression of key genes regulating seasonal reproduction and rhodopsin family genes in the saccus vasculosus of masu salmon. Immunohistochemical studies demonstrate that all of these genes are expressed in the coronet cells of the saccus vasculosus, suggesting the existence of a photoperiodic signalling pathway from light input to neuroendocrine output. In addition, isolated saccus vasculosus has the capacity to respond to photoperiodic signals, and its removal abolishes photoperiodic response of the gonad. Although the physiological role of the saccus vasculosus has been a mystery for several centuries, our findings indicate that the saccus vasculosus acts as a sensor of seasonal changes in day length in fish.
Collapse
|
24
|
Mack AF, Tiedemann K. Cultures of astroglial cells derived from brain of adult cichlid fish. J Neurosci Methods 2013; 212:269-75. [DOI: 10.1016/j.jneumeth.2012.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/22/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
|
25
|
Graña P, Huesa G, Anadón R, Yáñez J. Immunohistochemical study of the distribution of calcium binding proteins in the brain of a chondrostean (Acipenser baeri). J Comp Neurol 2012; 520:2086-122. [DOI: 10.1002/cne.23030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Zupanc GKH, Sîrbulescu RF, Ilieş I. Radial glia in the cerebellum of adult teleost fish: implications for the guidance of migrating new neurons. Neuroscience 2012; 210:416-30. [PMID: 22465441 DOI: 10.1016/j.neuroscience.2012.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 12/17/2022]
Abstract
In contrast to mammals, in teleost fish radial glia persist beyond early development. This persistence parallels the enormous potential of teleosts to continuously generate a large number of new neurons in dozens of specific proliferation zones in the adult brain. In the present study, we characterized in the teleost fish Apteronotus leptorhynchus the immunological properties of radial glia in the corpus cerebelli-a cerebellar subdivision with particularly high proliferative activity-and examined their possible function in the guidance of migrating young neurons. Radial glia stained immunopositive for glial fibrillary acidic protein (GFAP) and vimentin, and in most cases the two intermediate filament proteins co-localized. GFAP immunolabeling combined with immunohistochemistry against the mitotic marker 5-bromo-2'-deoxyuridine (BrdU) revealed an abundance of elongated BrdU-labeled nuclei closely apposed to, or localized within, GFAP-immunoreactive radial glia. The association of BrdU-labeled nuclei and GFAP-immunoreactive radial glial fibers was particularly pronounced 2 days after BrdU administration, when the migratory activity of the young cells is highest. When the new cells reach the granular layer, they start expressing the neuronal marker protein Hu C/D, but continue their close association with radial glial fibers. These results suggest the role of radial glia in the guidance of migrating adult-born neurons in the teleostean cerebellum. This function appears to be mediated both by somal translocation and by a glial-guided mode of locomotion.
Collapse
Affiliation(s)
- G K H Zupanc
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
27
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M. Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 2011; 58:1345-63. [PMID: 20607866 DOI: 10.1002/glia.21012] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult telencephalic neurogenesis is a conserved trait of all vertebrates studied. It has been investigated in detail in rodents, but very little is known about the composition of neurogenic niches and the cellular nature of progenitors in nonmammalian vertebrates. To understand the components of the progenitor zones in the adult zebrafish telencephalon and the link between glial characteristics and progenitor state, we examined whether canonical glial markers are colocalized with proliferation markers. In the adult zebrafish telencephalon, we identify heterogeneous progenitors that reside in two distinct glial domains. We find that the glial composition of the progenitor zone is linked to its proliferative behavior. Analyzing both fast-cycling proliferating cells as well as slowly cycling progenitors, we find four distinct progenitor types characterized by differential expression of glial markers. Importantly, a significant proportion of progenitors do not display typical radial glia characteristics. By blocking or activating Fgf signaling by misexpression of a dominant negative Fgf-receptor 1 or Fgf8a, respectively, we find that ventral and dorsal progenitors in the telencephalon also differ in their requirement for Fgf signaling. Together with data on the expression of Fgf signaling components in the ventricular zone of the telencephalon, this suggests that Fgf signaling directly regulates proliferation of specific subsets of adult telencephalic progenitors in vivo. Taken together our results show that adult neural progenitor cells are heterogeneous with their respect to distribution into two distinct glial domains and their dependence upon Fgf signaling as a proliferative cue in the zebrafish telencephalon.
Collapse
Affiliation(s)
- Julia Ganz
- Biotechnology Center and Center for Regenerative Therapies Dresden, Dresden University of Technology, Tatzberg 47-49, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
29
|
Adrio F, Rodríguez-Moldes I, Anadón R. Distribution of glycine immunoreactivity in the brain of the Siberian sturgeon (Acipenser baeri): Comparison with γ-aminobutyric acid. J Comp Neurol 2011; 519:1115-42. [DOI: 10.1002/cne.22556] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Grupp L, Wolburg H, Mack AF. Astroglial structures in the zebrafish brain. J Comp Neurol 2011; 518:4277-87. [PMID: 20853506 DOI: 10.1002/cne.22481] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand components shaping the neuronal environment we studied the astroglial cells in the zebrafish brain using immunocytochemistry for structural and junctional markers, electron microscopy including freeze fracturing, and probed for the water channel protein aquaporin-4. Glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) showed largely overlapping immunoreactivity: GFAP in the main glial processes and GS in main processes and smaller branches. Claudin-3 immunoreactivity was spread in astroglial cells along their major processes. The ventricular lining was immunoreactive for the tight-junction associated protein ZO-1, in the telencephalon located on the dorsal, lateral, and medial surface due to the everting morphogenesis. In the tectum, subpial glial endfeet were also positive for ZO-1. Correspondingly, electron microscopy revealed junctional complexes between subpial glial endfeet. However, in freeze-fracture analysis tight junctional strands were not found between astroglial membranes, either in the optic tectum or in the telencephalon. Occurrence of aquaporin-4, the major astrocytic water channel in mammals, was demonstrated by polymerase chain reaction (PCR) analysis and immunocytochemistry in tectum and telencephalon. Localization of aquaporin-4 was not polarized but distributed along the entire radial extent of the cell. Interestingly, their membranes were devoid of the orthogonal arrays of particles formed by aquaporin-4 in mammals. Finally, we investigated astroglial cells in proliferative areas. Brain lipid basic protein, a marker of early glial differentiation but not GS, were present in some proliferation zones, whereas cells lining the ventricle were positive for both markers. Thus, astroglial cells in the zebrafish differ in many aspects from mammalian astrocytes.
Collapse
Affiliation(s)
- Larissa Grupp
- Institute of Anatomy, University of Tübingen, D-72074 Tübingen, Germany
| | | | | |
Collapse
|
31
|
Alunni A, Hermel JM, Heuzé A, Bourrat F, Jamen F, Joly JS. Evidence for neural stem cells in the medaka optic tectum proliferation zones. Dev Neurobiol 2010; 70:693-713. [DOI: 10.1002/dneu.20799] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Ito Y, Tanaka H, Okamoto H, Ohshima T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev Biol 2010; 342:26-38. [PMID: 20346355 DOI: 10.1016/j.ydbio.2010.03.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 01/11/2023]
Abstract
In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely divided into 3 regions: 1 mitotic region and 2 post-mitotic regions-the superficial and deep layers. These regions are distinguished by the differential expression of several marker genes: pcna, sox2, msi1, elavl3, gfap, fabp7a, and s100beta. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics. Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the structure of the optic tectum in adult zebrafish.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | |
Collapse
|
33
|
Wen CM, Wang CS, Chin TC, Cheng ST, Nan FH. Immunochemical and molecular characterization of a novel cell line derived from the brain of Trachinotus blochii (Teleostei, Perciformes): A fish cell line with oligodendrocyte progenitor cell and tanycyte characteristics. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:224-31. [PMID: 20167281 DOI: 10.1016/j.cbpa.2010.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 01/24/2023]
Abstract
Ependymal radial glial cells, also called tanycytes, are the predominant glial fibrillary acidic protein (GFAP)- and vimentin (VIM)-expressing cells in fish ependyma. Radial glial cells have been proposed to be neural stem cells but their molecular expression is not well understood. Previous studies revealed that fish neural progenitor and neural stem cells have A2B5, a marker for oligodendrocyte progenitor cells (OPCs). In this study, an A2B5(+) cell line, SPB, was isolated from the brain of the teleost Trachinotus blochii and characterized. SPB cells usually grew as polygonal epithelial cells, but at high density, long processes were commonly observed. Using immunocytochemistry, SPB cells were shown to exhibit oligodendrocyte markers such as galactocerebroside and Olig2, and radial glial cell markers such as brain lipid-binding protein, GFAP, Sox2, and VIM. SPB cells were also observed to have DARPP-32, a marker for tanycytes in mammals, and primary cilia. RT-PCR additionally revealed expression of bone morphogenetic protein 4, connexin35, Noggin2, and proteolipid protein in SPB cells. Results of this study suggest that SPB cells are OPCs that can display tanycyte characteristics. Fish tanycytes can be neural stem cells suggesting that SPB cells are neural stem cells. SPB is the first fish cell line showing primary cilia and markers for both OPCs and tanycytes.
Collapse
Affiliation(s)
- Chiu-Ming Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan.
| | | | | | | | | |
Collapse
|
34
|
Cuoghi B, Mola L. Macroglial cells of the teleost central nervous system: a survey of the main types. Cell Tissue Res 2009; 338:319-32. [PMID: 19865831 DOI: 10.1007/s00441-009-0870-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 08/31/2009] [Indexed: 12/31/2022]
Abstract
Following our previous review of teleost microglia, we focus here on the morphological and histochemical features of the three principal macroglia types in the teleost central nervous system (ependymal cells, astrocyte-like cells/radial glia and oligodendrocytes). This review is concerned with recent literature and not only provides insights into the various individual aspects of the different types of macroglial cells plus a comparison with mammalian glia, but also indicates the several potentials that the neural tissue of teleosts exhibits in neurobiological research. Indeed, some areas of the teleost brain are particularly suitable in terms of the establishment of a "simple" but complete research model (i.e. the visual pathway complex and the supramedullary neuron cluster in puffer fish). The relationships between neurons and glial cells are considered in fish, with the aim of providing an integrated picture of the complex ways in which neurons and glia communicate and collaborate in normal and injured neural tissues. The recent setting up of successful protocols for fish glia and mixed neuron-glia cultures, together with the molecular facilities offered by the knowledge of some teleost genomes, should allow consistent input towards the achievement of this aim.
Collapse
Affiliation(s)
- Barbara Cuoghi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy
| | | |
Collapse
|
35
|
Wen CM, Huang JY, Ciou JH, Kao YL, Cheng YH. Immunochemical and molecular characterization of GBC4 as a tanycyte-like cell line derived from grouper brain. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:191-201. [DOI: 10.1016/j.cbpa.2009.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 02/07/2009] [Accepted: 02/10/2009] [Indexed: 10/21/2022]
|
36
|
Bennett L, Yang M, Enikolopov G, Iacovitti L. Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol Cell Neurosci 2009; 41:337-47. [PMID: 19409493 DOI: 10.1016/j.mcn.2009.04.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 04/13/2009] [Accepted: 04/22/2009] [Indexed: 01/06/2023] Open
Abstract
Neurogenesis in the adult mammalian nervous system is now well established in the subventricular zone of the anterolateral ventricle and subgranular zone of the hippocampus. In these regions, neurons are thought to arise from neural stem cells, identified by their expression of specific intermediate filament proteins (nestin, vimentin, GFAP) and transcription factors (Sox2). In the present study, we show that in adult rat and mouse, the circumventricular organs (CVOs) are rich in nestin+, GFAP+, vimentin+ cells which express Sox2 and the cell cycle-regulating protein Ki67. In culture, these cells proliferate as neurospheres and express neuronal (doublecortin+, beta-tubulin III+) and glial (S100beta+, GFAP+, RIP+) phenotypic traits. Further, our in vivo studies using bromodeoxyuridine show that CVO cells proliferate and undergo constitutive neurogenesis and gliogenesis. These findings suggest that CVOs may constitute a heretofore unknown source of stem/progenitor cells, capable of giving rise to new neurons and/or glia in the adult brain.
Collapse
Affiliation(s)
- Lori Bennett
- Farber Institute for Neurosciences, Department of Neurology, Thomas Jefferson University Medical College, 900 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
37
|
Wen CM, Cheng YH, Huang YF, Wang CS. Isolation and characterization of a neural progenitor cell line from tilapia brain. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:167-80. [DOI: 10.1016/j.cbpa.2007.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/15/2022]
|
38
|
Kaslin J, Ganz J, Brand M. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2008; 363:101-22. [PMID: 17282988 PMCID: PMC2605489 DOI: 10.1098/rstb.2006.2015] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Post-embryonic neurogenesis is a fundamental feature of the vertebrate brain. However, the level of adult neurogenesis decreases significantly with phylogeny. In the first part of this review, a comparative analysis of adult neurogenesis and its putative roles in vertebrates are discussed. Adult neurogenesis in mammals is restricted to two telencephalic constitutively active zones. On the contrary, non-mammalian vertebrates display a considerable amount of adult neurogenesis in many brain regions. The phylogenetic differences in adult neurogenesis are poorly understood. However, a common feature of vertebrates (fish, amphibians and reptiles) that display a widespread adult neurogenesis is the substantial post-embryonic brain growth in contrast to birds and mammals. It is probable that the adult neurogenesis in fish, frogs and reptiles is related to the coordinated growth of sensory systems and corresponding sensory brain regions. Likewise, neurons are substantially added to the olfactory bulb in smell-oriented mammals in contrast to more visually oriented primates and songbirds, where much fewer neurons are added to the olfactory bulb. The second part of this review focuses on the differences in brain plasticity and regeneration in vertebrates. Interestingly, several recent studies show that neurogenesis is suppressed in the adult mammalian brain. In mammals, neurogenesis can be induced in the constitutively neurogenic brain regions as well as ectopically in response to injury, disease or experimental manipulations. Furthermore, multipotent progenitor cells can be isolated and differentiated in vitro from several otherwise silent regions of the mammalian brain. This indicates that the potential to recruit or generate neurons in non-neurogenic brain areas is not completely lost in mammals. The level of adult neurogenesis in vertebrates correlates with the capacity to regenerate injury, for example fish and amphibians exhibit the most widespread adult neurogenesis and also the greatest capacity to regenerate central nervous system injuries. Studying these phenomena in non-mammalian vertebrates may greatly increase our understanding of the mechanisms underlying regeneration and adult neurogenesis. Understanding mechanisms that regulate endogenous proliferation and neurogenic permissiveness in the adult brain is of great significance in therapeutical approaches for brain injury and disease.
Collapse
Affiliation(s)
| | | | - Michael Brand
- Biotechnology Centre and Centre for Regenerative Therapies Dresden, Dresden University of TechnologyTatzberg 47-51, 01307 Dresden, Germany
| |
Collapse
|
39
|
Joly JS, Osório J, Alunni A, Auger H, Kano S, Rétaux S. Windows of the brain: Towards a developmental biology of circumventricular and other neurohemal organs. Semin Cell Dev Biol 2007; 18:512-24. [PMID: 17631396 DOI: 10.1016/j.semcdb.2007.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/05/2007] [Indexed: 11/25/2022]
Abstract
We review the anatomical and functional features of circumventricular organs in vertebrates and their homologous neurohemal organs in invertebrates. Focusing on cyclostomes (lamprey) and urochordates (ascidians), we discuss the evolutionary origin of these organs as a function of their cell type specification and morphogenesis.
Collapse
Affiliation(s)
- Jean-Stéphane Joly
- U1126/INRA Morphogenèse du système nerveux des chordés group, DEPSN, UPR2197, Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91198 GIF SUR YVETTE, France.
| | | | | | | | | | | |
Collapse
|
40
|
Sueiro C, Carrera I, Ferreiro S, Molist P, Adrio F, Anadón R, Rodríguez-Moldes I. New insights on Saccus vasculosus evolution: a developmental and immunohistochemical study in elasmobranchs. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:187-204. [PMID: 17595538 DOI: 10.1159/000104309] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/12/2007] [Indexed: 11/19/2022]
Abstract
The saccus vasculosus (SV) is a circumventricular organ of the hypothalamus of many jawed fishes whose functions have not yet been clarified. It is a vascularized neuroepithelium that consists of coronet cells, cerebrospinal fluid-contacting (CSF-c) neurons and supporting cells. To assess the organization, development and evolution of the SV, the expression of glial fibrillary acidic protein (GFAP) and the neuronal markers gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD; the GABA synthesizing enzyme), neuropeptide Y (NPY), neurophysin II (NPH), tyrosine hydroxylase (TH; the rate-limiting catecholamine-synthesizing enzyme) and serotonin (5-HT), were investigated by immunohistochemistry in developing and adult sharks. Coronet cells showed GFAP immunoreactivity from embryos at stage 31 to adults, indicating a glial nature. GABAergic CSF-c neurons were evidenced just when the primordium of the SV becomes detectable (at stage 29). Double immunolabeling revealed colocalization of NPY and GAD in these cells. Some CSF-c cells showed TH immunoreactivity in postembryonic stages. Saccofugal GABAergic fibers formed a defined SV tract from the stage 30 and scattered neurosecretory (NPH-immunoreactive) and monoaminergic (5-HT- and TH-immunoreactive) saccopetal fibers were first detected at stages 31 and 32, respectively. The early differentiation of GABAergic neurons and the presence of a conspicuous GABAergic saccofugal system are shared by elasmobranch and teleosts (trout), suggesting that GABA plays a key function in the SV circuitry. Monoaminergic structures have not been reported in the SV of bony fishes, and were probably acquired secondarily in sharks. The existence of saccopetal monoaminergic and neurosecretory fibers reveals reciprocal connections between the SV and hypothalamic structures which have not been previously detected in teleosts.
Collapse
Affiliation(s)
- Catalina Sueiro
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Pellegrini E, Mouriec K, Anglade I, Menuet A, Le Page Y, Gueguen MM, Marmignon MH, Brion F, Pakdel F, Kah O. Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol 2007; 501:150-67. [PMID: 17206614 DOI: 10.1002/cne.21222] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Compared with other vertebrates, the brain of adult teleost fish exhibits two unique features: it exhibits unusually high neurogenic activity and strongly expresses aromatase, a key enzyme that converts aromatizable androgens into estrogens. Until now, these two features, high neurogenic and aromatase activities, have never been related to each other. Recently, it was shown that aromatase is expressed in radial glial cells of the forebrain and not in neurons. Here, we further document that Aromatase B is never detected in cells expressing the markers of postmitotic neurons, Hu and acetylated tubulin. By using a combination of bromodeoxyuridine (BrdU) treatment and immunohistochemical techniques, we demonstrate for the first time to our knowledge that aromatase-positive radial cells actively divide to generate newborn cells in many forebrain regions. Such newborn cells can further divide, as shown by BrdU-proliferating cell nuclear antigen double staining. We also demonstrate that, over time, newborn cells move away from the ventricles, most likely by migrating along the radial processes. Finally, by using antisera to Hu and acetylated tubulin, we further document that some of the newborn cells derived from radial glia differentiate into neurons. These data provide new evidence for the mechanism of neurogenesis in the brain of adult fish. In addition, given that estrogens are well-known neurotrophic and neuroprotective factors affecting proliferation, apoptosis, migration, and differentiation, the expression of aromatase in the neural stem cells of the adult strongly demonstrates that the fish brain is an outstanding model for studying the effects of estrogens on adult neurogenesis and brain repair.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Université de Rennes 1, 35042 Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lamas I, Anadón R, Díaz-Regueira S. Carnosine-like immunoreactivity in neurons of the brain of an advanced teleost, the gray mullet (Chelon labrosus, Risso). Brain Res 2007; 1149:87-100. [PMID: 17425949 DOI: 10.1016/j.brainres.2007.02.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/26/2022]
Abstract
The distribution of the dipeptide carnosine (beta-alanyl-L-histidine) and the related dipeptides anserine and homocarnosine has been studied by biochemical methods and immunohistochemistry in the brain of mammals and other tetrapods. These studies have indicated the presence of these dipeptides mainly in glial cells and in some neurons (olfactory receptor neurons and certain putative migrating neurons and neuroblasts). Here, we used immunohistochemistry with a polyclonal anti-carnosine antibody and the streptavidin-avidin method to study for the first time the distribution of carnosine/carnosine-related dipeptides in the brain of a teleost fish (the gray mullet Chelon labrosus). In order to assess the neuronal nature of carnosine-immunoreactive cells, we also used double immunofluorescence methods with antibodies to carnosine and to the neuronal protein HuC/D. The results obtained show that carnosine and/or related dipeptides are present in neurons of various brain regions. The carnosine-like-immunoreactive neuronal populations of the optic tectum and cerebellum are described in detail. In the optic tectum, immunoreactivity to carnosine/carnosine-related dipeptides is present in neurons of the stratum album and the stratum griseum centrale. In the cerebellum, immunoreactivity to these dipeptides is localized in Purkinje cells, in putative Golgi and stellate cells, and in many nerve fibers. Carnosine-like immunoreactive cells in mullet brain seem to be specific types of neurons, in line with previous results in a urodele but at variance with previous results in mammals, reptiles and anurans.
Collapse
Affiliation(s)
- Iván Lamas
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15007 A Coruña, Spain
| | | | | |
Collapse
|
43
|
Zheng CH, Feng L. Neuregulin regulates the formation of radial glial scaffold in hippocampal dentate gyrus of postnatal rats. J Cell Physiol 2006; 207:530-9. [PMID: 16456862 DOI: 10.1002/jcp.20591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the rodent hippocampus, the radial glial scaffold consists of radial glial cells (RGCs) and plays important roles in neurogenesis in this area after birth. However, the mechanisms that maintain the radial glial scaffold in the postnatal dentate gyrus (DG) area remain elusive. In the present work, we studied the role of Neuregulin (NRG) in the formation and maintenance of the radial glial scaffold in the hippocampal DG of postnatal rats using slice culture. We found that ErbB4 receptors were expressed in vimentin-positive RGCs in DG of postnatal day 6 (P6) rats. Treatment with NRG and Ab-3, the inhibitor of ErbB4, revealed that in P6 rats exogenous NRG promoted the proliferation of Vimentin-positive RGCs in DG. On the other hand, endogenous NRG was found necessary for maintaining the characteristic morphological and immunohistochemical features of these cells. These results indicated that NRG plays a critical role in the formation and maintenance of the radial glial scaffold in the hippocampal DG of postnatal rats.
Collapse
Affiliation(s)
- Chang-Hong Zheng
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
44
|
Pellegrini E, Menuet A, Lethimonier C, Adrio F, Gueguen MM, Tascon C, Anglade I, Pakdel F, Kah O. Relationships between aromatase and estrogen receptors in the brain of teleost fish. Gen Comp Endocrinol 2005; 142:60-6. [PMID: 15862549 DOI: 10.1016/j.ygcen.2004.12.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/08/2004] [Accepted: 12/13/2004] [Indexed: 11/18/2022]
Abstract
Teleost fish are known for exhibiting a high aromatase activity mainly due to the expression of the cyp19b gene, encoding aromatase B (AroB). Recent studies based on both in situ hybridization and immunohistochemistry have demonstrated in three different species that this activity is restricted to radial glial cells. In agreement with measurements of aromatase activity, such aromatase-expressing cells are more abundant in the telencephalon, preoptic area, and mediobasal hypothalamus, although positive cells are also found in the midbrain and hindbrain. Comparative distribution of AroB and estrogen receptor (ERalpha, ERbeta1, and ERbeta2) expression indicates that the preoptic region and hypothalamus are major target for locally produced estradiol (E2) which is likely involved in controlling expression of genes implicated in neuroendocrine regulations. However, AroB and ER have never been reported to be co-expressed in the same cells which is intriguing given that, at least in some species, AroB is strongly up-regulated by E2 itself in agreement with the presence of an estrogen-responsive element (ERE) in the proximal promoter of the cyp19b gene. In vivo data in zebrafish have shown that E2 up-regulates AroB only in radial glial cells. This is in agreement with in vitro transfection experiments indicating that this ERE is functional, but not sufficient, as the E2 regulation of AroB only occurs in glial cell contexts, suggesting a cooperation between ER and so far unidentified glial-specific factors. These data also suggest that radial glial cells may express low amounts of ER that escaped detection until now. The expression of AroB in radial cells, well known for their roles in neurogenesis and now considered as progenitor cells, suggests that local E2 production within these cells could influence the well-documented capacity of the brain of teleosts to grow during adulthood.
Collapse
Affiliation(s)
- Elisabeth Pellegrini
- Endocrinologie Moléculaire de la Reproduction, UMR CNRS 6026, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|