1
|
Vaidya SP, Anversa RG, Pinares-Garcia P, Walker LC, Pracejus N, Reid CA, Lawrence AJ. Inhibition of HCN channels decreases motivation for alcohol and deprivation-induced drinking in alcohol preferring rats. Neuropharmacology 2025; 270:110371. [PMID: 39983913 DOI: 10.1016/j.neuropharm.2025.110371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Globally, around 400 million people live with an alcohol use disorder (AUD), yet current treatments available are suboptimal at a population level. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels are implicated in the modulation of complex motivated behaviours, including reward seeking. Here, we investigated the potential involvement of HCN channels in alcohol reinforcing effects, contributing to alcohol intake and relapse-like drinking following abstinence in iP rats. The functional role of HCN channels in the motivation to acquire alcohol and relapse-like behaviour was tested in vivo through intracerebroventricular (ICV) infusion of a HCN channel inhibitor, ZD7288 prior to operant progressive ratio responding or the alcohol deprivation effect. Acute ICV infusion of ZD7288 (3 μg/5 μL) significantly reduced motivation to acquire alcohol and attenuated the alcohol deprivation effect after 14 days of abstinence, without affecting spontaneous locomotor activity. HCN channels are densely expressed in cholinergic neurons of the medial habenula (mHb), which have been implicated in stress, aversion, and drug/alcohol intake-associated behaviours. To investigate the impact of alcohol on the expression of HCN channels, cholinergic markers and acetylcholine receptors, we performed qPCR on mHb tissue in alcohol-preferring (iP) rats following chronic voluntary alcohol intake or abstinence. qPCR results showed an upregulation of mRNA encoding key ion channels in the mHb following abstinence from chronic voluntary alcohol use. Collectively, these findings suggest that HCN channels contribute to motivation to consume alcohol and relapse-like behaviour during abstinence in iP rats.
Collapse
Affiliation(s)
- Shivani P Vaidya
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Roberta G Anversa
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Paulo Pinares-Garcia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Natasha Pracejus
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Australia.
| |
Collapse
|
2
|
Teichman EM, Hu J, Lin HY, Fisher-Foye RL, Blando A, Hu X, Kaniskan HÜ, Montgomery SE, Cai M, Parise LF, Wang J, Russo SJ, Han MH, Jin J, Morel C. Design and validation of novel brain-penetrant HCN channel inhibitors to ameliorate social stress-induced susceptible phenotype. Mol Psychiatry 2025:10.1038/s41380-025-02972-8. [PMID: 40199995 DOI: 10.1038/s41380-025-02972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/16/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Major Depressive Disorder (MDD) is a devastating, multifactorial disease with limited pharmacological treatment options. Patients with MDD exhibit alterations in their dopamine (DA) signaling pathways through the midbrain ventral tegmental area (VTA). A similar observation is also detected in preclinical models of stress - mice exhibit behavioral and physiological impairments following chronic social defeat stress (CSDS). Prior studies demonstrate that CSDS-susceptible mice have increased VTA DA neuronal excitability, in part driven by an upregulation in hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Inhibiting HCN channels with known inhibitors such as Cilobradine alleviates the negative behavioral effects of CSDS. Here, we aimed to identify Cilobradine analogs with improved neural tropism and inhibitory efficacy. Two compounds, MS7710 and MS7712, differing by their left-hand side moieties, have a similar, potent inhibitory effect on VTA DA Ih currents as compared to Cilobradine, and a greater inhibitory effect than Cilobradine on VTA DA firing rate. We demonstrate that MS7710 and MS7712 have superior brain/plasma concentration ratios as compared to Cilobradine. They were efficacious at inhibiting VTA DA neuron firing rate and bursting activity in CSDS-susceptible male mice at lower doses than Cilobradine, which was recapitulated in female CSDS-susceptible mice with MS7710. Finally, we define that a single intraperitoneal injection of MS7710 ameliorates CSDS-induced social interaction deficits and reward-associated cognitive inflexibility for at least two weeks in male and female mice. These findings yield a novel HCN channel inhibitor with improved neural tropism and stress-alleviating effects that could provide a basis for future antidepressant drug discovery.
Collapse
Affiliation(s)
- Emily M Teichman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hsiao-Yun Lin
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel L Fisher-Foye
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anthony Blando
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah E Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Modendo Inc., 3415 Colorado Ave, Boulder, Colorado, 80303, USA
| | - Min Cai
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lyonna F Parise
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Wang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Scott J Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Brain-Body Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology; Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Carole Morel
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Bompierre S, Byelyayeva Y, Mota E, Lefevre M, Pumo A, Kehler J, Castro LRV, Vincent P. Cross-pathway integration of cAMP signals through cGMP and calcium-regulated phosphodiesterases in mouse striatal cholinergic interneurons. Br J Pharmacol 2025; 182:1236-1253. [PMID: 39604216 DOI: 10.1111/bph.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Acetylcholine plays a key role in striatal function. Firing properties of striatal cholinergic interneurons depend on intracellular cAMP through the regulation of Ih currents. Yet, the dynamics of cyclic nucleotide signalling in these neurons have remained elusive. EXPERIMENTAL APPROACH We used highly selective FRET biosensors and pharmacological compounds to analyse the functional contribution of phosphodiesterases in striatal cholinergic interneurons in mouse brain slices. KEY RESULTS PDE1A, PDE3A and PDE4 appear as the main controllers of cAMP levels in striatal cholinergic interneurons. The calcium signal elicited through NMDA or metabotropic glutamate receptors activates PDE1A, which degrades both cAMP and cGMP. Interestingly, the nitric oxide/cGMP pathway amplifies cAMP signalling via PDE3A inhibition-a mechanism hitherto unexplored in a neuronal context. CONCLUSIONS AND IMPLICATIONS The expression pattern of specific PDE enzymes in striatal cholinergic interneurons, by integrating diverse intracellular pathways, can adjust cAMP responses bidirectionally. These properties eventually allow striatal cholinergic interneurons to dynamically regulate their overall activity and modulate acetylcholine release. Remarkably, this effect is the opposite of the cGMP-induced inhibition of cAMP signals involving PDE2A in striatal medium-sized spiny neurons, which provides important insights for the understanding of signal integration in the striatum.
Collapse
Affiliation(s)
- Ségolène Bompierre
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | | | - Elia Mota
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Marion Lefevre
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Anna Pumo
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | | | - Liliana R V Castro
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
| | - Pierre Vincent
- CNRS, Biological Adaptation and Ageing, Sorbonne Université, Paris, France
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Amakhin DV, Sinyak DS, Soboleva EB, Zaitsev AV. HCN channels promote Na/K-ATPase activity during slow afterhyperpolarization after seizure-like events in vitro. J Physiol 2025; 603:1197-1223. [PMID: 39918972 DOI: 10.1113/jp286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are strongly involved in the regulation of neuronal excitability, with their precise role being determined by their subcellular localization and interaction with other ion channels and transporters. Their role in causing epileptic seizures is not fully understood. Using whole-cell patch-clamp recordings of rat brain slices, we show that HCN channels constitute a substantial fraction of the membrane conductance of deep entorhinal principal neurons. Using the 4-aminopyridine model of epileptic seizures in vitro, we show that HCN channel blockade with ZD-7288 increases the frequency of seizure-like events (SLEs) and alters the time course of afterhyperpolarization after SLEs (post-SLE AHP), promoting its faster onset and making it more transient. Simultaneous whole-cell patch-clamp and K+ ion-selective electrode recordings revealed that the time course of changes in neuronal membrane potential and extracellular K+ concentration after SLEs in the presence of ZD-7288 differed from that in the control, which can be explained by altered Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium pump)] activity after SLEs. To confirm this hypothesis, we demonstrated the ouabain sensitivity of post-SLE AHP and showed that loading neurons with high intracellular Na+ concentration prevented the effect of HCN channel blockade on post-SLE AHP. Taken together, the results obtained suggest that during post-SLE AHP, the influx of Na+ through HCN channels helps to maintain Na/K-ATPase hyperactivity, resulting in the longer pauses between SLEs. Mathematical modelling confirmed the feasibility of the proposed mechanism. Such an interplay between Na/K-ATPase and HCN channels may be crucial for the regulation of seizure termination in epilepsy. KEY POINTS: HCN channels constitute a significant fraction of the resting membrane conductance of deep entorhinal principal neurons. HCN channels modulate the seizure-like events (SLEs) in the entorhinal cortex. The blockade of HCN channels increases the frequency of SLEs and reduces the duration of the afterhyperpolarization that follows them. The results suggest that HCN channels affect intracellular sodium ion concentration dynamics, prolonging the activity of the Na/K-ATPase [sodium-potassium adenosine triphosphatase (sodium-potassium) pump] after SLEs, which in turn results in longer pauses between them.
Collapse
Affiliation(s)
- Dmitry V Amakhin
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Denis S Sinyak
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Elena B Soboleva
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Aleksey V Zaitsev
- Laboratory of Molecular Mechanisms of Neural Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| |
Collapse
|
5
|
Zhang X, Zhang Y, Zhang T, Wang J, Liu C, Shang Q, Wei X, Zhu H, Shen H, Sun B. HCN2 deficiency correlates with memory deficits and hyperexcitability of dCA1 pyramidal neurons in Alzheimer's disease. Alzheimers Res Ther 2025; 17:55. [PMID: 40016780 PMCID: PMC11866685 DOI: 10.1186/s13195-025-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Abnormal excitability of hippocampal neurons may lead to dysfunction of neural circuits and then causes cognitive impairments in Alzheimer's disease (AD). However, the underlying mechanisms remain to be fully elucidated. METHODS Electrophysiology was performed to examine the intrinsic excitability of CA1 neurons and the activity of the hyperpolarization-activated cyclic nucleotide-gated ion channels (HCNs) of CA1 neurons in wild type (WT) and hAPP-J20 mice. The activity of CA1 pyramidal neurons (PNs) was modulated with chemogenetics. The activity of HCNs was regulated with nonselective facilitator (cAMP) or inhibitor (ZD7288) of HCNs. Immunohistochemical staining or western blotting were performed to examine the expression of HCN1 and HCN2 in the hippocampus of WT and hAPP-J20 mice, or AD patients and non-AD controls. AAVs were injected to specifically modulate the expression of HCN2 in dorsal CA1 (dCA1) PNs. Cognitive performance of mice was assessed with behavioral tests. RESULTS dCA1 PNs were more excitable in hAPP-J20 mice, but the excitability of PNs in the ventral CA1 (vCA1) or PV neurons was comparable between WT and hAPP-J20 mice. The activity of the HCNs was reduced in dCA1 PNs of hAPP-J20 mice, and pharmacologically increasing the activity of HCNs attenuated the hyperexcitability of dCA1 PNs in hAPP-J20 mice, suggesting that the reduced activity of HCNs is associated with the hyperexcitability of dCA1 PNs in hAPP-J20 mice. The expression of HCN2 but not HCN1 was reduced in the hippocampus of hAPP-J20 mice, and the expression of HCN2 was also reduced in the hippocampus of AD patients, suggesting that dysregulation of HCN2 is associated with the reduced activity of HCNs in AD. Overexpressing HCN2 rescued the activity of HCNs, attenuated the hyperexcitability of dCA1 PNs and improved memory of hAPP-J20 mice, and knocking down HCN2 impaired the function of HCNs, increased the excitability of dCA1 PNs and led to memory deficits in WT mice. CONCLUSIONS Our data suggest that dysregulation of HCNs, particularly HCN2, contributes to the abnormal excitability of CA1 PNs in AD mice and probably in AD patients as well, and thus provide new insights into the mechanisms underlying the aberrant activity or excitability of hippocampal neurons in AD.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| | - Yiping Zhang
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jing Wang
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Chang Liu
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Qing Shang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang Province, 315211, China
| | - Xiaojie Wei
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Huaqiang Zhu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang Province, 315100, China
| | - Haowei Shen
- Department of Pharmacology, Health Science Center of Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
6
|
Ordemann GJ, Lyuboslavsky P, Kizimenko A, Brumback AC. Fmr1 KO causes delayed rebound spike timing in mediodorsal thalamocortical neurons through regulation of HCN channel activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636122. [PMID: 39975001 PMCID: PMC11838482 DOI: 10.1101/2025.02.02.636122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background The neurodevelopmental disorder Fragile X syndrome (FXS) results from hypermethylation of the FMR1 gene which prevents FMRP production. FMRP modulates the expression and function of a wide variety of proteins, including voltage-gated ion channels such as Hyperpolarization-Activated Cyclic Nucleotide gated (HCN) channels, which are integral to rhythmic activity in thalamic structures. Thalamocortical pathology, particularly involving the mediodorsal thalamus (MD), has been implicated in neurodevelopmental disorders. MD connectivity with mPFC is integral to executive functions like working memory and social behaviors that are disrupted in FXS. Methods We used a combination of retrograde labeling and ex vivo brain slice whole cell electrophysiology in 40 wild type and 42 Fmr1 KO male mice to investigate how a lack of Fmr1 affects intrinsic cellular properties in lateral (MD-L) and medial (MD-M) MD neurons that project to the medial prefrontal cortex (MD→mPFC neurons). Results In MD-L neurons, Fmr1 knockout caused a decrease in HCN-mediated membrane properties such as voltage sag and membrane afterhyperpolarization. These changes in subthreshold properties were accompanied by changes in suprathreshold neuron properties such as the variability of action potential burst timing. Conclusions In Fmr1 knockout mice, reduced HCN channel activity in MD→mPFC neurons impairs both the timing and magnitude of HCN-mediated membrane potential regulation. Changes in response timing may adversely affect rhythm propagation in Fmr1 KO thalamocortical circuitry. MD thalamic neurons are critical for maintaining rhythmic activity involved in cognitive and affective functions. Understanding specific mechanisms of thalamocortical circuit activity may lead to therapeutic interventions for individuals with FXS.
Collapse
Affiliation(s)
- Gregory J. Ordemann
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| | - Polina Lyuboslavsky
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| | - Alena Kizimenko
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| | - Audrey C. Brumback
- Department of Neurology, Dell Medical School at The University of Texas at Austin
- Department of Pediatrics, Dell Medical School at The University of Texas at Austin
- Center for Learning and Memory at The University of Texas at Austin
| |
Collapse
|
7
|
Kamiya H. Modeling analysis of depolarization-assisted afterdischarge in hippocampal mossy fibers. Front Neural Circuits 2025; 18:1505204. [PMID: 39845337 PMCID: PMC11750859 DOI: 10.3389/fncir.2024.1505204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion. In this study, the mechanisms were explored by computational approaches using a simple model of hippocampal mossy fibers implemented with the structure of en passant axons and experimentally obtained properties of ionic conductances. When slight depolarization of distal axons was given in conjunction with the high-frequency stimulus, robust afterdischarges were triggered after cessation of the repetitive stimulus and lasted for a prolonged period after the stimulus. Each spike during the afterdischarge recorded from distal axons precedes that recorded from the soma, suggesting that the afterdischarge was ectopically generated from distal axons and propagated antidromically toward the soma. Notably, when potassium channels in the model are replaced with non-inactivating ones, repetitive stimuli fail to induce afterdischarge. These results suggested that the inactivating property of axonal potassium channels plays a crucial role in generating the afterdischarge. Accumulated inactivation of potassium channels during strong repetitive stimulation may alter mossy fiber excitability, leading to ectopic afterdischarges from sites distinct from the physiological spike initiation region.
Collapse
Affiliation(s)
- Haruyuki Kamiya
- Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Mishra P, Narayanan R. The enigmatic HCN channels: A cellular neurophysiology perspective. Proteins 2025; 93:72-92. [PMID: 37982354 PMCID: PMC7616572 DOI: 10.1002/prot.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
What physiological role does a slow hyperpolarization-activated ion channel with mixed cation selectivity play in the fast world of neuronal action potentials that are driven by depolarization? That puzzling question has piqued the curiosity of physiology enthusiasts about the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are widely expressed across the body and especially in neurons. In this review, we emphasize the need to assess HCN channels from the perspective of how they respond to time-varying signals, while also accounting for their interactions with other co-expressing channels and receptors. First, we illustrate how the unique structural and functional characteristics of HCN channels allow them to mediate a slow negative feedback loop in the neurons that they express in. We present the several physiological implications of this negative feedback loop to neuronal response characteristics including neuronal gain, voltage sag and rebound, temporal summation, membrane potential resonance, inductive phase lead, spike triggered average, and coincidence detection. Next, we argue that the overall impact of HCN channels on neuronal physiology critically relies on their interactions with other co-expressing channels and receptors. Interactions with other channels allow HCN channels to mediate intrinsic oscillations, earning them the "pacemaker channel" moniker, and to regulate spike frequency adaptation, plateau potentials, neurotransmitter release from presynaptic terminals, and spike initiation at the axonal initial segment. We also explore the impact of spatially non-homogeneous subcellular distributions of HCN channels in different neuronal subtypes and their interactions with other channels and receptors. Finally, we discuss how plasticity in HCN channels is widely prevalent and can mediate different encoding, homeostatic, and neuroprotective functions in a neuron. In summary, we argue that HCN channels form an important class of channels that mediate a diversity of neuronal functions owing to their unique gating kinetics that made them a puzzle in the first place.
Collapse
Affiliation(s)
- Poonam Mishra
- Department of Neuroscience, Yale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
9
|
Osbourne A, Melliza A, Dudley SK, da Silva GSF, Zoccal DB, Revill AL. Cholinergic modulation of upper airway control: maturational changes and mechanisms at cellular and synaptic levels. J Neurophysiol 2025; 133:46-59. [PMID: 39607299 DOI: 10.1152/jn.00165.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Respiration is governed by a central rhythm and pattern generator, which has the pre-Bötzinger complex as the inspiratory oscillator initiating the coordinated activity of several respiratory muscles, including the diaphragm, intercostals, and upper airway muscles. The diaphragm is the main inspiratory pump muscle driving inflow, whereas dilator upper airway muscles, such as tongue muscles, reduce airway resistance during inspiration. Breathing exhibits a marked state-dependent pattern attributed to changes in neuromodulatory tone in respiratory-related brain regions, including decreases in noradrenaline and serotonin and increases in acetylcholine levels during rapid eye movement (REM) sleep. Here, we discuss respiratory modulation by acetylcholine acting on its metabotropic muscarinic receptors, focusing on the regulation of upper airway muscle activity during sleep and wakefulness and its changing effects with postnatal maturation. We focus on experimental data examining muscarinic receptor distribution patterns, the ion channels they modulate, and how these distribution patterns change with postnatal maturation. We also consider experimental data highlighting cholinergic cellular and synaptic effects on hypoglossal motoneurons and pre-Bötzinger complex neurons and how they might explain changes in the effects of cholinergic modulation with development. Overall, this discussion is critical to comprehending the postnatal maturation in the cholinergic modulation of the respiratory control system leading to opposing effects of muscarinic receptors on upper airway muscle activity in neonate (excitatory) and adult (inhibitory) preparations. The changes in cholinergic pathways associated with dysfunctional upper airway patency control are also discussed in the context of pathologies such as sleep-disordered breathing.
Collapse
Affiliation(s)
- Alexis Osbourne
- Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Aleanna Melliza
- Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Sydney K Dudley
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Glauber S F da Silva
- Department of Physiology and Biophysics, Institute of Biological Science Federal, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Ann L Revill
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| |
Collapse
|
10
|
Zhao P, Xiong H, Kuang G, Sun C, Zhang X, Huang Y, Luo S, Zhang L, Jiang J, He X. Analysis of epilepsy-associated variants in HCN3 - Functional implications and clinical observations. Epilepsia Open 2024; 9:2294-2305. [PMID: 39361439 PMCID: PMC11633725 DOI: 10.1002/epi4.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE This case study investigates the role of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels, which are integral membrane proteins crucial for regulating neuronal excitability. HCN channels are composed of four subunits (HCN1-4), with HCN1, HCN2, and HCN4 previously linked to epilepsy. However, the role of the HCN3 in epileptogenesis remains underexplored. METHODS We recruited a cohort of 298 epilepsy patients to screen for genetic variants in the HCN3 (NM_020897.3) using Sanger sequencing. We identified rare variants and conducted functional assays to evaluate their pathogenicity. RESULTS We identified three rare heterozygous variants in HCN3: c.1370G > A (R457H), c.1982G > A (R661Q), and c.1982G > A(P630L). In vitro functional analyses demonstrated that these variants affected the expression level of HCN3 protein without altering its membrane localization. Whole-cell voltage-clamp experiments showed that two variants (R457H and R661Q) significantly reduced current density in cells, while P630L has no effect on ion channel current. SIGNIFICANCE Our findings suggest that the identified HCN3 genetic variants disrupt HCN ion channel function, highlighting HCN3 as a novel candidate gene involved in epileptic disorders. This expands the genetic landscape of epilepsy and provides new insights into its molecular underpinnings. PLAIN LANGUAGE SUMMARY Epilepsy is a brain disease that can be caused by mutations in specific genes. We found three rare variants in HCN3 gene in 298 patients with epilepsy, and two of the three mutations could be pathogenic and cause epilepsy and another one is single-nucleotide polymorphism, which could have no effect and no contribution to the development of epilepsy.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Hongbo Xiong
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Gunagtao Kuang
- Department of Neuroelectrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Chen Sun
- Maternal Health Care Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Sukun Luo
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Lei Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
| | - Jun Jiang
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanChina
- Clinical Medical Research Center for Birth Defect Prevention and Treatmentin WuhanWuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital)Tongji Medical College, Huazhong University of Science & TechnologyWuhanChina
| |
Collapse
|
11
|
Gong LN, Liu HW, Lai K, Zhang Z, Mao LF, Liu ZQ, Li MX, Yin XL, Liang M, Shi HB, Wang LY, Yin SK. Selective Vulnerability of GABAergic Inhibitory Interneurons to Bilirubin Neurotoxicity in the Neonatal Brain. J Neurosci 2024; 44:e0442242024. [PMID: 39313321 PMCID: PMC11551895 DOI: 10.1523/jneurosci.0442-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Hyperbilirubinemia (HB) is a key risk factor for hearing loss in neonates, particularly premature infants. Here, we report that bilirubin (BIL)-dependent cell death in the auditory brainstem of neonatal mice of both sexes is significantly attenuated by ZD7288, a blocker for hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated current (I h), or by genetic deletion of HCN1. GABAergic inhibitory interneurons predominantly express HCN1, on which BIL selectively acts to increase their intrinsic excitability and mortality by enhancing HCN1 activity and Ca2+-dependent membrane targeting. Chronic BIL elevation in neonatal mice in vivo increases the fraction of spontaneously active interneurons and their firing frequency, I h, and death, compromising audition at the young adult stage in HCN1+/+, but not in HCN1-/- genotype. We conclude that HB preferentially targets HCN1 to injure inhibitory interneurons, fueling a feedforward loop in which lessening inhibition cascades hyperexcitability, Ca2+ overload, neuronal death, and auditory impairments. These findings rationalize HCN1 as a potential target for managing HB encephalopathy.
Collapse
Affiliation(s)
- Li-Na Gong
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Han-Wei Liu
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ke Lai
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Zhen Zhang
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lin-Fei Mao
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhen-Qi Liu
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Ming-Xian Li
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Head & Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xin-Lu Yin
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Head & Neck Surgery, Renji Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min Liang
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Otorhinolaryngology Head & Neck Surgery, Xinhua Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
12
|
Buss EW, Lofaro OM, Barnett A, Leroy F, Santoro B, Siegelbaum SA, Bock T. HCN1 hyperpolarization-activated cyclic nucleotide-gated channels enhance evoked GABA release from parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 2024; 121:e2319246121. [PMID: 39378096 PMCID: PMC11494348 DOI: 10.1073/pnas.2319246121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/27/2024] [Indexed: 10/10/2024] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels generate the cationic Ih current in neurons and regulate the excitability of neuronal networks. The function of HCN channels depends, in part, on their subcellular localization. Of the four HCN isoforms (HCN1-4), HCN1 is strongly expressed in the dendrites of pyramidal neurons (PNs) in hippocampal area CA1 but also in presynaptic terminals of parvalbumin-positive interneurons (PV+ INs), which provide strong inhibitory control over hippocampal activity. Yet, little is known about how HCN1 channels in these cells regulate the evoked release of the inhibitory transmitter GABA from their axon terminals. Here, we used genetic, optogenetic, electrophysiological, and imaging techniques to investigate how the electrophysiological properties of PV+ INs are regulated by HCN1, including how HCN1 activity at presynaptic terminals regulates the release of GABA onto PNs in CA1. We found that application of HCN1 pharmacological blockers reduced the amplitude of the inhibitory postsynaptic potential recorded from CA1 PNs in response to selective optogenetic stimulation of PV+ INs. Homozygous HCN1 knockout mice also show reduced IPSCs in postsynaptic cells. Finally, two-photon imaging using genetically encoded fluorescent calcium indicators revealed that HCN1 blockers reduced the probability that an extracellular electrical stimulating pulse evoked a Ca2+ response in individual PV+ IN presynaptic boutons. Taken together, our results show that HCN1 channels in the axon terminals of PV+ interneurons facilitate GABAergic transmission in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Eric W. Buss
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Olivia M. Lofaro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Anastasia Barnett
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Felix Leroy
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Bina Santoro
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Steven A. Siegelbaum
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
| | - Tobias Bock
- Departments of Neuroscience and Pharmacology, Kavli Institute for Brain Science, Zuckerman Mind Brain Behavior Institute, Columbia University Medical Center, New York, NY10027
- Department of Systems Neurophysiology, Institute for Zoology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen52074, Germany
| |
Collapse
|
13
|
Kola PK, Oraegbuna CS, Lei S. Ionic mechanisms involved in arginine vasopressin-mediated excitation of auditory cortical and thalamic neurons. Mol Cell Neurosci 2024; 130:103951. [PMID: 38942186 PMCID: PMC11401767 DOI: 10.1016/j.mcn.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
The axons containing arginine vasopressin (AVP) from the hypothalamus innervate a variety of structures including the cerebral cortex, thalamus, hippocampus and amygdala. A plethora amount of evidence indicates that activation of the V1a subtype of the vasopressin receptors facilitates anxiety-like and fear responses. As an essential structure involved in fear and anxiety responses, the amygdala, especially the lateral nucleus of amygdala (LA), receives glutamatergic innervations from the auditory cortex and auditory thalamus where high density of V1a receptors have been detected. However, the roles and mechanisms of AVP in these two important areas have not been determined, which prevents the understanding of the mechanisms whereby V1a activation augments anxiety and fear responses. Here, we used coronal brain slices and studied the effects of AVP on neuronal activities of the auditory cortical and thalamic neurons. Our results indicate that activation of V1a receptors excited both auditory cortical and thalamic neurons. In the auditory cortical neurons, AVP increased neuronal excitability by depressing multiple subtypes of inwardly rectifying K+ (Kir) channels including the Kir2 subfamily, the ATP-sensitive K+ channels and the G protein-gated inwardly rectifying K+ (GIRK) channels, whereas activation of V1a receptors excited the auditory thalamic neurons by depressing the Kir2 subfamily of the Kir channels as well as activating the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and a persistent Na+ channel. Our results may help explain the roles of V1a receptors in facilitating fear and anxiety responses. Categories: Cell Physiology.
Collapse
Affiliation(s)
- Phani K Kola
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, United States of America
| | - Chidiebele S Oraegbuna
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, United States of America
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, United States of America.
| |
Collapse
|
14
|
Zhang Z, Luo X, Jiang L, Wu H, Tan Z. How do HCN channels play a part in Alzheimer's and Parkinson's disease? Ageing Res Rev 2024; 100:102436. [PMID: 39047878 DOI: 10.1016/j.arr.2024.102436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD) are well-known, yet their underlying causes remain unclear. Recent studies have suggested that disruption of ion channels contribute to their pathogenesis. Among these channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, encoded by HCN1-4 genes, are of particular interest due to their role in generating hyperpolarization-activated current (Ih), which is crucial in various neural activities impacting memory and motor functions. A growing body of evidence underscores the pivotal role of HCN in Aβ generation, glial cell function, and ischemia-induced dementia; while HCN is expressed in various regions of the basal ganglia, modulating their functions and influencing motor disorders in PD; neuroinflammation triggered by microglial activation represents a shared pathological mechanism in both AD and PD, in which HCN also plays a significant part. This review delves into the neuronal functions governed by HCN, its roles in the aforementioned pathogenesis, its expression patterns in AD and PD, and discusses potential therapeutic drugs targeting HCN for the treatment of these diseases, aiming to offer a novel perspective and inspire future research endeavors.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Xin Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Department of Physiology, Basic Medical School, Hengyang Medical College, The Neuroscience Institute, University of South China, Hengyang 421001, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Huilan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, PR China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, PR China; Changsha Taihe Hospital, Changsha 410000, PR China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha 410205, PR China.
| |
Collapse
|
15
|
Furukawa K, Inoshita T, Kawaguchi SY. Graded control of Purkinje cell outputs by cAMP through opposing actions on axonal action potential and transmitter release. J Physiol 2024. [PMID: 39052311 DOI: 10.1113/jp286668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
All-or-none signalling by action potentials (APs) in neuronal axons is pivotal for the precisely timed and identical size of outputs to multiple distant targets. However, technical limitations with respect to measuring the signalling in small intact axons have hindered the evaluation of high-fidelity signal propagation. Here, using direct recordings from axonal trunks and/or terminals of cerebellar Purkinje cells in slice and culture, we demonstrate that the timing and amplitude of axonal outputs are gradually modulated by cAMP depending on the length of axon. During the propagation in long axon, APs were attenuated and slowed in conduction by cAMP via specifically decreasing axonal Na+ currents. Consequently, the Ca2+ influx and transmitter release at distal boutons are reduced by cAMP, counteracting its direct facilitating effect on release machinery as observed at various CNS synapses. Together, our tour de force functional dissection has unveiled the axonal distance-dependent graded control of output timing and strength by intracellular signalling. KEY POINTS: The information processing in the nervous system has been classically thought to rely on the axonal faithful and high-speed conduction of action potentials (APs). We demonstrate that the strength and timing of axonal outputs are weakened and delayed, respectively, by cytoplasmic cAMP depending on the axonal length in cerebellar Purkinje cells (PCs). Direct axonal patch clamp recordings uncovered axon-specific attenuation of APs by cAMP through reduction of axonal Na+ currents. cAMP directly augments transmitter release at PC terminals without changing presynaptic Ca2+ influx or readily releasable pool of vesicles, although the extent is weaker compared to other CNS synapses. Two opposite actions of cAMP on PC axons, AP attenuation and release augmentation, together give rise to graded control of synaptic outputs in a manner dependent on the axonal length.
Collapse
Affiliation(s)
- Kei Furukawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takuma Inoshita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shin-Ya Kawaguchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Mehrotra D, Levenstein D, Duszkiewicz AJ, Carrasco SS, Booker SA, Kwiatkowska A, Peyrache A. Hyperpolarization-activated currents drive neuronal activation sequences in sleep. Curr Biol 2024; 34:3043-3054.e8. [PMID: 38901427 DOI: 10.1016/j.cub.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Sequential neuronal patterns are believed to support information processing in the cortex, yet their origin is still a matter of debate. We report that neuronal activity in the mouse postsubiculum (PoSub), where a majority of neurons are modulated by the animal's head direction, was sequentially activated along the dorsoventral axis during sleep at the transition from hyperpolarized "DOWN" to activated "UP" states, while representing a stable direction. Computational modeling suggested that these dynamics could be attributed to a spatial gradient of hyperpolarization-activated currents (Ih), which we confirmed in ex vivo slice experiments and corroborated in other cortical structures. These findings open up the possibility that varying amounts of Ih across cortical neurons could result in sequential neuronal patterns and that traveling activity upstream of the entorhinal-hippocampal circuit organizes large-scale neuronal activity supporting learning and memory during sleep.
Collapse
Affiliation(s)
- Dhruv Mehrotra
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Daniel Levenstein
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; MILA, 6666 Rue Saint-Urbain, Montréal, QC H2S 3H1, Canada
| | - Adrian J Duszkiewicz
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sofia Skromne Carrasco
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, 3801 Rue University, Montréal, QC H3A 2B4, Canada
| | - Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Angelika Kwiatkowska
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Adrien Peyrache
- Montréal Neurological Institute and Hospital, Department of Neurology and Neurosurgery, 3801 Rue University, Montréal, QC H3A 2B4, Canada.
| |
Collapse
|
17
|
Yu B, Lu Q, Li J, Cheng X, Hu H, Li Y, Che T, Hua Y, Jiang H, Zhang Y, Xian C, Yang T, Fu Y, Chen Y, Nan W, McCormick PJ, Xiong B, Duan J, Zeng B, Li Y, Fu Y, Zhang J. Cryo-EM structure of human HCN3 channel and its regulation by cAMP. J Biol Chem 2024; 300:107288. [PMID: 38636662 PMCID: PMC11126801 DOI: 10.1016/j.jbc.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
HCN channels are important for regulating heart rhythm and nerve activity and have been studied as potential drug targets for treating depression, arrhythmia, nerve pain, and epilepsy. Despite possessing unique pharmacological properties, HCN channels share common characteristics in that they are activated by hyperpolarization and modulated by cAMP and other membrane lipids. However, the mechanisms of how these ligands bind and modulate HCN channels are unclear. In this study, we solved structures of full-length human HCN3 using cryo-EM and captured two different states, including a state without any ligand bound and a state with cAMP bound. Our structures reveal the novel binding sites for cholesteryl hemisuccinate in apo state and show how cholesteryl hemisuccinate and cAMP binding cause conformational changes in different states. These findings explain how these small modulators are sensed in mammals at the molecular level. The results of our study could help to design more potent and specific compounds to influence HCN channel activity and offer new therapeutic possibilities for diseases that lack effective treatment.
Collapse
Affiliation(s)
- Bo Yu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiuyuan Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jian Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xinyu Cheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Han Hu
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Yuanshuo Li
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tong Che
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yaoguang Hua
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Haihai Jiang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuting Zhang
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Cuiling Xian
- Shenzhen Crystalo Biopharmaceutical Co, Ltd, Shenzhen, Guangdong, China
| | - Tingting Yang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Fu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yixiang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiwei Nan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Peter J McCormick
- William Harvey Research Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Duan
- Human Aging Research Institute (HARI), School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanyan Li
- Department of Chemical Biology, School of Life Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, Guangdong, China; Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Jin Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
18
|
Belghazi M, Iborra C, Toutendji O, Lasserre M, Debanne D, Goaillard JM, Marquèze-Pouey B. High-Resolution Proteomics Unravel a Native Functional Complex of Cav1.3, SK3, and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Midbrain Dopaminergic Neurons. Cells 2024; 13:944. [PMID: 38891076 PMCID: PMC11172389 DOI: 10.3390/cells13110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Pacemaking activity in substantia nigra dopaminergic neurons is generated by the coordinated activity of a variety of distinct somatodendritic voltage- and calcium-gated ion channels. We investigated whether these functional interactions could arise from a common localization in macromolecular complexes where physical proximity would allow for efficient interaction and co-regulations. For that purpose, we immunopurified six ion channel proteins involved in substantia nigra neuron autonomous firing to identify their molecular interactions. The ion channels chosen as bait were Cav1.2, Cav1.3, HCN2, HCN4, Kv4.3, and SK3 channel proteins, and the methods chosen to determine interactions were co-immunoprecipitation analyzed through immunoblot and mass spectrometry as well as proximity ligation assay. A macromolecular complex composed of Cav1.3, HCN, and SK3 channels was unraveled. In addition, novel potential interactions between SK3 channels and sclerosis tuberous complex (Tsc) proteins, inhibitors of mTOR, and between HCN4 channels and the pro-degenerative protein Sarm1 were uncovered. In order to demonstrate the presence of these molecular interactions in situ, we used proximity ligation assay (PLA) imaging on midbrain slices containing the substantia nigra, and we could ascertain the presence of these protein complexes specifically in substantia nigra dopaminergic neurons. Based on the complementary functional role of the ion channels in the macromolecular complex identified, these results suggest that such tight interactions could partly underly the robustness of pacemaking in dopaminergic neurons.
Collapse
Affiliation(s)
- Maya Belghazi
- CRN2M Centre de Recherche Neurobiologie-Neurophysiologie, CNRS, UMR7286, Aix-Marseille Université, 13015 Marseille, France;
- Institut de Microbiologie de la Méditerranée (IMM), CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Cécile Iborra
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Ophélie Toutendji
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Manon Lasserre
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Dominique Debanne
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| | - Jean-Marc Goaillard
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, 13005 Marseille, France
| | - Béatrice Marquèze-Pouey
- Ion Channel and Synaptic Neurobiology, INSERM, UMR1072, Aix-Marseille Université, 13015 Marseille, France; (C.I.); (O.T.); (M.L.); (D.D.); (J.-M.G.)
| |
Collapse
|
19
|
Zhao K, Li Y, Lai H, Niu R, Li H, He S, Su Z, Gui Y, Ren L, Yang X, Zhou L. Alterations in HCN1 expression and distribution during epileptogenesis in rats. Epilepsy Res 2024; 202:107355. [PMID: 38555654 DOI: 10.1016/j.eplepsyres.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN1) is predominantly located in key regions associated with epilepsy, such as the neocortex and hippocampus. Under normal physiological conditions, HCN1 plays a crucial role in the excitatory and inhibitory regulation of neuronal networks. In temporal lobe epilepsy, the expression of HCN1 is decreased in the hippocampi of both animal models and patients. However, whether HCN1 expression changes during epileptogenesis preceding spontaneous seizures remains unclear. OBJECTIVE The aim of this study was to determine whether the expression of HCN1 is altered during the epileptic prodromal phase, thereby providing evidence for its role in epileptogenesis. METHODS We utilized a cobalt wire-induced rat epilepsy model to observe changes in HCN1 during epileptogenesis and epilepsy. Additionally, we also compared HCN1 alterations in epileptogenic tissues between cobalt wire- and pilocarpine-induced epilepsy rat models. Long-term video EEG recordings were used to confirm seizures development. Transcriptional changes, translation, and distribution of HCN1 were assessed using high-throughput transcriptome sequencing, total protein extraction, membrane and cytoplasmic protein fractionation, western blotting, immunohistochemistry, and immunofluorescence techniques. RESULTS In the cobalt wire-induced rat epilepsy model during the epileptogenesis phase, total HCN1 mRNA and protein levels were downregulated. Specifically, the membrane expression of HCN1 was decreased, whereas cytoplasmic HCN1 expression showed no significant change. The distribution of HCN1 in the distal dendrites of neurons decreased. During the epilepsy period, similar HCN1 alterations were observed in the neocortex of rats with cobalt wire-induced epilepsy and hippocampus of rats with lithium pilocarpine-induced epilepsy, including downregulation of mRNA levels, decreased total protein expression, decreased membrane expression, and decreased distal dendrite expression. CONCLUSIONS Alterations in HCN1 expression and distribution are involved in epileptogenesis beyond their association with seizure occurrence. Similarities in HCN1 alterations observed in epileptogenesis-related tissues from different models suggest a shared pathophysiological pathway in epileptogenesis involving HCN1 dysregulation. Therefore, the upregulation of HCN1 expression in neurons, maintenance of the HCN1 membrane, and distal dendrite distribution in neurons may represent promising disease-modifying strategies in epilepsy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; Guangzhou National Laboratory, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | | | - Ruili Niu
- Guangzhou National Laboratory, Guangzhou, China
| | - Huifeng Li
- Guangzhou National Laboratory, Guangzhou, China
| | - Shipei He
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhengwei Su
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yue Gui
- Guangzhou National Laboratory, Guangzhou, China
| | - Lijie Ren
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.
| | | | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
20
|
Wu J, El-Hassar L, Datta D, Thomas M, Zhang Y, Jenkins DP, DeLuca NJ, Chatterjee M, Gribkoff VK, Arnsten AFT, Kaczmarek LK. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability in Working Memory Circuits. Mol Neurobiol 2024; 61:2430-2445. [PMID: 37889366 DOI: 10.1007/s12035-023-03719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels co-immunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Lynda El-Hassar
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Merrilee Thomas
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - David P Jenkins
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Nicholas J DeLuca
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Manavi Chatterjee
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Valentin K Gribkoff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
21
|
Hou G, Hao M, Duan J, Han MH. The Formation and Function of the VTA Dopamine System. Int J Mol Sci 2024; 25:3875. [PMID: 38612683 PMCID: PMC11011984 DOI: 10.3390/ijms25073875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.
Collapse
Affiliation(s)
- Guoqiang Hou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mei Hao
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiawen Duan
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ming-Hu Han
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China (M.H.); (J.D.)
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
22
|
Harde E, Hierl M, Weber M, Waiz D, Wyler R, Wach JY, Haab R, Gundlfinger A, He W, Schnider P, Paina M, Rolland JF, Greiter-Wilke A, Gasser R, Reutlinger M, Dupont A, Roberts S, O'Connor EC, Bartels B, Hall BJ. Selective and brain-penetrant HCN1 inhibitors reveal links between synaptic integration, cortical function, and working memory. Cell Chem Biol 2024; 31:577-592.e23. [PMID: 38042151 DOI: 10.1016/j.chembiol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.
Collapse
Affiliation(s)
- Eva Harde
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Markus Hierl
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Weber
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Waiz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger Wyler
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Yves Wach
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rachel Haab
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anja Gundlfinger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weiping He
- WuXi AppTec (Wuhan) Co., Ltd, 666 Gaoxin Road, Wuhan East Lake High-Tech Development Zone, Wuhan, Huibei, China
| | - Patrick Schnider
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Andrea Greiter-Wilke
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rodolfo Gasser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Reutlinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Dupont
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Björn Bartels
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Benjamin J Hall
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
23
|
Kim D, Roh H, Lee HM, Kim SJ, Im M. Localization of hyperpolarization-activated cyclic nucleotide-gated channels in the vertebrate retinas across species and their physiological roles. Front Neuroanat 2024; 18:1385932. [PMID: 38562955 PMCID: PMC10982330 DOI: 10.3389/fnana.2024.1385932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Transmembrane proteins known as hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control the movement of Na+ and K+ ions across cellular membranes. HCN channels are known to be involved in crucial physiological functions in regulating neuronal excitability and rhythmicity, and pacemaker activity in the heart. Although HCN channels have been relatively well investigated in the brain, their distribution and function in the retina have received less attention, remaining their physiological roles to be comprehensively understood. Also, because recent studies reported HCN channels have been somewhat linked with the dysfunction of photoreceptors which are affected by retinal diseases, investigating HCN channels in the retina may offer valuable insights into disease mechanisms and potentially contribute to identifying novel therapeutic targets for retinal degenerative disorders. This paper endeavors to summarize the existing literature on the distribution and function of HCN channels reported in the vertebrate retinas of various species and discuss the potential implications for the treatment of retinal diseases. Then, we recapitulate current knowledge regarding the function and regulation of HCN channels, as well as their relevance to various neurological disorders.
Collapse
Affiliation(s)
- Daniel Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Hyeonhee Roh
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Hyung-Min Lee
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Sang Jeong Kim
- Department of Biomedical Sciences, College of Medicine, Seoul National University (SNU), Seoul, Republic of Korea
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Qi ZX, Yan Q, Fan XJ, Peng JY, Zhu HX, Jiang YM, Chen L, Zhuang QX. Role of HCN channels in the functions of basal ganglia and Parkinson's disease. Cell Mol Life Sci 2024; 81:135. [PMID: 38478096 PMCID: PMC10937777 DOI: 10.1007/s00018-024-05163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from dopaminergic neuron degeneration in the substantia nigra caused by age, genetics, and environment. The disease severely impacts a patient's quality of life and can even be life-threatening. The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a member of the HCN1-4 gene family and is widely expressed in basal ganglia nuclei. The hyperpolarization-activated current mediated by the HCN channel has a distinct impact on neuronal excitability and rhythmic activity associated with PD pathogenesis, as it affects the firing activity, including both firing rate and firing pattern, of neurons in the basal ganglia nuclei. This review aims to comprehensively understand the characteristics of HCN channels by summarizing their regulatory role in neuronal firing activity of the basal ganglia nuclei. Furthermore, the distribution and characteristics of HCN channels in each nucleus of the basal ganglia group and their effect on PD symptoms through modulating neuronal electrical activity are discussed. Since the roles of the substantia nigra pars compacta and reticulata, as well as globus pallidus externus and internus, are distinct in the basal ganglia circuit, they are individually described. Lastly, this investigation briefly highlights that the HCN channel expressed on microglia plays a role in the pathological process of PD by affecting the neuroinflammatory response.
Collapse
Affiliation(s)
- Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China
- National Center for Neurological Disorders, Shanghai, 200030, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China
| | - Qi Yan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Jian-Ya Peng
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Hui-Xian Zhu
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yi-Miao Jiang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200030, China.
- National Center for Neurological Disorders, Shanghai, 200030, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200030, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200030, China.
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
25
|
Morris PG, Taylor JD, Paton JFR, Nogaret A. Single shot detection of alterations across multiple ionic currents from assimilation of cell membrane dynamics. Sci Rep 2024; 14:6031. [PMID: 38472404 DOI: 10.1038/s41598-024-56576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The dysfunction of ion channels is a causative factor in a variety of neurological diseases, thereby defining the implicated channels as key drug targets. The detection of functional changes in multiple specific ionic currents currently presents a challenge, particularly when the neurological causes are either a priori unknown, or are unexpected. Traditional patch clamp electrophysiology is a powerful tool in this regard but is low throughput. Here, we introduce a single-shot method for detecting alterations amongst a range of ion channel types from subtle changes in membrane voltage in response to a short chaotically driven current clamp protocol. We used data assimilation to estimate the parameters of individual ion channels and from these we reconstructed ionic currents which exhibit significantly lower error than the parameter estimates. Such reconstructed currents thereby become sensitive predictors of functional alterations in biological ion channels. The technique correctly predicted which ionic current was altered, and by approximately how much, following pharmacological blockade of BK, SK, A-type K+ and HCN channels in hippocampal CA1 neurons. We anticipate this assay technique could aid in the detection of functional changes in specific ionic currents during drug screening, as well as in research targeting ion channel dysfunction.
Collapse
Affiliation(s)
- Paul G Morris
- Department of Physics, University of Bath, Claverton Down, Bath, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Joseph D Taylor
- Department of Physics, University of Bath, Claverton Down, Bath, UK
| | - Julian F R Paton
- Manaaki Manawa - the Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | - Alain Nogaret
- Department of Physics, University of Bath, Claverton Down, Bath, UK.
| |
Collapse
|
26
|
Tiryaki ES, Arslan G, Günaydın C, Ayyıldız M, Ağar E. The role of HCN channels on the effects of T-type calcium channels and GABA A receptors in the absence epilepsy model of WAG/Rij rats. Pflugers Arch 2024; 476:337-350. [PMID: 38159130 DOI: 10.1007/s00424-023-02900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.
Collapse
Affiliation(s)
- Emre Soner Tiryaki
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Gökhan Arslan
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye.
| | - Caner Günaydın
- Department of Pharmacology, Faculty of Medicine, University of Samsun, Samsun, Türkiye
| | - Mustafa Ayyıldız
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| | - Erdal Ağar
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
27
|
Lyman KA, Han Y, Robinson AP, Weinberg SE, Fisher DW, Heuermann RJ, Lyman RE, Kim DK, Ludwig A, Chandel NS, Does MD, Miller SD, Chetkovich DM. Characterization of hyperpolarization-activated cyclic nucleotide-gated channels in oligodendrocytes. Front Cell Neurosci 2024; 18:1321682. [PMID: 38469353 PMCID: PMC10925711 DOI: 10.3389/fncel.2024.1321682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mature oligodendrocytes (OLG) are the myelin-forming cells of the central nervous system. Recent work has shown a dynamic role for these cells in the plasticity of neural circuits, leading to a renewed interest in voltage-sensitive currents in OLG. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and their respective current (Ih) were recently identified in mature OLG and shown to play a role in regulating myelin length. Here we provide a biochemical and electrophysiological characterization of HCN channels in cells of the oligodendrocyte lineage. We observed that mice with a nonsense mutation in the Hcn2 gene (Hcn2ap/ap) have less white matter than their wild type counterparts with fewer OLG and fewer oligodendrocyte progenitor cells (OPCs). Hcn2ap/ap mice have severe motor impairments, although these deficits were not observed in mice with HCN2 conditionally eliminated only in oligodendrocytes (Cnpcre/+; Hcn2F/F). However, Cnpcre/+; Hcn2F/F mice develop motor impairments more rapidly in response to experimental autoimmune encephalomyelitis (EAE). We conclude that HCN2 channels in OLG may play a role in regulating metabolism.
Collapse
Affiliation(s)
- Kyle A. Lyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew P. Robinson
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel W. Fisher
- Department of Psychiatry, University of Washington, Seattle, WA, United States
| | - Robert J. Heuermann
- Department of Neurology, Washington University, St. Louis, MO, United States
| | - Reagan E. Lyman
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, OH, United States
| | - Dong Kyu Kim
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Andreas Ludwig
- Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
29
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
30
|
Vinnenberg L, Rychlik N, Oniani T, Williams B, White JA, Kovac S, Meuth SG, Budde T, Hundehege P. Assessing neuroprotective effects of diroximel fumarate and siponimod via modulation of pacemaker channels in an experimental model of remyelination. Exp Neurol 2024; 371:114572. [PMID: 37852467 DOI: 10.1016/j.expneurol.2023.114572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Cuprizone (CPZ)-induced alterations in axonal myelination are associated with a period of neuronal hyperexcitability and increased activity of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels in the thalamocortical (TC) system. Substances used for the treatment of multiple sclerosis (MS) have been shown to normalize neuronal excitability in CPZ-treated mice. Therefore, we aimed to examine the effects of diroximel fumarate (DRF) and the sphingosine 1-phospate receptor (S1PR) modulator siponimod on action potential firing and the inward current (Ih) carried by HCN ion channels in naive conditions and during different stages of de- and remyelination. Here, DRF application reduced Ih current density in ex vivo patch clamp recordings from TC neurons of the ventrobasal thalamic complex (VB), thereby counteracting the increase of Ih during early remyelination. Siponimod reduced Ih in VB neurons under control conditions but had no effect in neurons of the auditory cortex (AU). Furthermore, siponimod increased and decreased AP firing properties of neurons in VB and AU, respectively. Computational modeling revealed that both DRF and siponimod influenced thalamic bursting during early remyelination by delaying the onset and decreasing the interburst frequency. Thus, substances used in MS treatment normalize excitability in the TC system by influencing AP firing and Ih.
Collapse
Affiliation(s)
- Laura Vinnenberg
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Nicole Rychlik
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| | - Tengiz Oniani
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Brandon Williams
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, 610 Commonwealth Ave, Boston MA-02215, USA
| | - John A White
- Department of Biomedical Engineering, Center for Systems Neuroscience, Neurophotonics Center, Boston University, 610 Commonwealth Ave, Boston MA-02215, USA
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| | - Sven G Meuth
- Neurology Clinic, Medical Faculty, University Clinic Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Thomas Budde
- Institute of Physiology I, Münster University, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, Münster University, Albert-Schweitzer-Campus 1, D-48149 Münster, Germany
| |
Collapse
|
31
|
Datta D, Perone I, Morozov YM, Arellano J, Duque A, Rakic P, van Dyck CH, Arnsten AFT. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer's disease. Cereb Cortex 2023; 33:11501-11516. [PMID: 37874022 PMCID: PMC10724870 DOI: 10.1093/cercor/bhad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Isabella Perone
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jon Arellano
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alvaro Duque
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Amy F T Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
32
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
33
|
Haam J, Gunin S, Wilson L, Fry S, Bernstein B, Thomson E, Noblet H, Cushman J, Yakel JL. Entorhinal cortical delta oscillations drive memory consolidation. Cell Rep 2023; 42:113267. [PMID: 37838945 PMCID: PMC10872950 DOI: 10.1016/j.celrep.2023.113267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Long-term memories are formed by creating stable memory representations via memory consolidation, which mainly occurs during sleep following the encoding of labile memories in the hippocampus during waking. The entorhinal cortex (EC) has intricate connections with the hippocampus, but its role in memory consolidation is largely unknown. Using cell-type- and input-specific in vivo neural activity recordings, here we show that the temporoammonic pathway neurons in the EC, which directly innervate the output area of the hippocampus, exhibit potent oscillatory activities during anesthesia and sleep. Using in vivo individual and populational neuronal activity recordings, we demonstrate that a subpopulation of the temporoammonic pathway neurons, which we termed sleep cells, generate delta oscillations via hyperpolarization-activated cyclic-nucleotide-gated channels during sleep. The blockade of these oscillations significantly impaired the consolidation of hippocampus-dependent memory. Together, our findings uncover a key driver of delta oscillations and memory consolidation that are found in the EC.
Collapse
Affiliation(s)
- Juhee Haam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - Suman Gunin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Leslie Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Sydney Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Briana Bernstein
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Eric Thomson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Hayden Noblet
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jesse Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
34
|
Tibbs GR, Uprety R, Warren JD, Beyer NP, Joyce RL, Ferrer MA, Mellado W, Wong VSC, Goldberg DC, Cohen MW, Costa CJ, Li Z, Zhang G, Dephoure NE, Barman DN, Sun D, Ingólfsson HI, Sauve AA, Willis DE, Goldstein PA. An anchor-tether 'hindered' HCN1 inhibitor is antihyperalgesic in a rat spared nerve injury neuropathic pain model. Br J Anaesth 2023; 131:745-763. [PMID: 37567808 PMCID: PMC10541997 DOI: 10.1016/j.bja.2023.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Neuropathic pain impairs quality of life, is widely prevalent, and incurs significant costs. Current pharmacological therapies have poor/no efficacy and significant adverse effects; safe and effective alternatives are needed. Hyperpolarisation-activated cyclic nucleotide-regulated (HCN) channels are causally implicated in some forms of peripherally mediated neuropathic pain. Whilst 2,6-substituted phenols, such as 2,6-di-tert-butylphenol (26DTB-P), selectively inhibit HCN1 gating and are antihyperalgesic, the development of therapeutically tolerable, HCN-selective antihyperalgesics based on their inverse agonist activity requires that such drugs spare the cardiac isoforms and do not cross the blood-brain barrier. METHODS In silico molecular dynamics simulation, in vitro electrophysiology, and in vivo rat spared nerve injury methods were used to test whether 'hindered' variants of 26DTB-P (wherein a hydrophilic 'anchor' is attached in the para-position of 26DTB-P via an acyl chain 'tether') had the desired properties. RESULTS Molecular dynamics simulation showed that membrane penetration of hindered 26DTB-Ps is controlled by a tethered diol anchor without elimination of head group rotational freedom. In vitro and in vivo analysis showed that BP4L-18:1:1, a variant wherein a diol anchor is attached to 26DTB-P via an 18-carbon tether, is an HCN1 inverse agonist and an orally available antihyperalgesic. With a CNS multiparameter optimisation score of 2.25, a >100-fold lower drug load in the brain vs blood, and an absence of adverse cardiovascular or CNS effects, BP4L-18:1:1 was shown to be poorly CNS penetrant and cardiac sparing. CONCLUSIONS These findings provide a proof-of-concept demonstration that anchor-tethered drugs are a new chemotype for treatment of disorders involving membrane targets.
Collapse
Affiliation(s)
- Gareth R Tibbs
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rajendra Uprety
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - J David Warren
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Nicole P Beyer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Rebecca L Joyce
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew A Ferrer
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Noah E Dephoure
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Dipti N Barman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Delin Sun
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Anthony A Sauve
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E Willis
- Burke Neurological Institute, White Plains, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Peter A Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
35
|
Carzoli KL, Kogias G, Fawcett-Patel J, Liu SJ. Cerebellar interneurons control fear memory consolidation via learning-induced HCN plasticity. Cell Rep 2023; 42:113057. [PMID: 37656617 PMCID: PMC10616818 DOI: 10.1016/j.celrep.2023.113057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/30/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
While synaptic plasticity is considered the basis of learning and memory, modifications of the intrinsic excitability of neurons can amplify the output of neuronal circuits and consequently change behavior. However, the mechanisms that underlie learning-induced changes in intrinsic excitability during memory formation are poorly understood. In the cerebellum, we find that silencing molecular layer interneurons completely abolishes fear memory, revealing their critical role in memory consolidation. The fear conditioning paradigm produces a lasting reduction in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in these interneurons. This change increases intrinsic membrane excitability and enhances the response to synaptic stimuli. HCN loss is driven by a decrease in endocannabinoid levels via altered cGMP signaling. In contrast, an increase in release of cerebellar endocannabinoids during memory consolidation abolishes HCN plasticity. Thus, activity in cerebellar interneurons drives fear memory formation via a learning-specific increase in intrinsic excitability, and this process requires the loss of endocannabinoid-HCN signaling.
Collapse
Affiliation(s)
- Kathryn Lynn Carzoli
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Georgios Kogias
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Jessica Fawcett-Patel
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA
| | - Siqiong June Liu
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Southeast Louisiana VA Healthcare System, New Orleans, LA 70119, USA.
| |
Collapse
|
36
|
Gao N, Liu Z, Wang H, Shen C, Dong Z, Cui W, Xiong WC, Mei L. Deficiency of Cullin 3, a Protein Encoded by a Schizophrenia and Autism Risk Gene, Impairs Behaviors by Enhancing the Excitability of Ventral Tegmental Area (VTA) DA Neurons. J Neurosci 2023; 43:6249-6267. [PMID: 37558490 PMCID: PMC10490515 DOI: 10.1523/jneurosci.0247-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
The dopaminergic neuromodulator system is fundamental to brain functions. Abnormal dopamine (DA) pathway is implicated in psychiatric disorders, including schizophrenia (SZ) and autism spectrum disorder (ASD). Mutations in Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex, have been associated with SZ and ASD. However, little is known about the function and mechanism of CUL3 in the DA system. Here, we show that CUL3 is critical for the function of DA neurons and DA-relevant behaviors in male mice. CUL3-deficient mice exhibited hyperactive locomotion, deficits in working memory and sensorimotor gating, and increased sensitivity to psychostimulants. In addition, enhanced DA signaling and elevated excitability of the VTA DA neurons were observed in CUL3-deficient animals. Behavioral impairments were attenuated by dopamine D2 receptor antagonist haloperidol and chemogenetic inhibition of DA neurons. Furthermore, we identified HCN2, a hyperpolarization-activated and cyclic nucleotide-gated channel, as a potential target of CUL3 in DA neurons. Our study indicates that CUL3 controls DA neuronal activity by maintaining ion channel homeostasis and provides insight into the role of CUL3 in the pathogenesis of psychiatric disorders.SIGNIFICANCE STATEMENT This study provides evidence that Cullin 3 (CUL3), a core component of the Cullin-RING ubiquitin E3 ligase complex that has been associated with autism spectrum disorder and schizophrenia, controls the excitability of dopamine (DA) neurons in mice. Its DA-specific heterozygous deficiency increased spontaneous locomotion, impaired working memory and sensorimotor gating, and elevated response to psychostimulants. We showed that CUL3 deficiency increased the excitability of VTA DA neurons, and inhibiting D2 receptor or DA neuronal activity attenuated behavioral deficits of CUL3-deficient mice. We found HCN2, a hyperpolarization-activated channel, as a target of CUL3 in DA neurons. Our findings reveal CUL3's role in DA neurons and offer insights into the pathogenic mechanisms of autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhipeng Liu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Zhaoqi Dong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wanpeng Cui
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
- Chinese Institutes for Medical Research, Beijing, China 100069
- Capital Medical University, Beijing, China 100069
| |
Collapse
|
37
|
Cai M, Zhu Y, Shanley MR, Morel C, Ku SM, Zhang H, Shen Y, Friedman AK, Han MH. HCN channel inhibitor induces ketamine-like rapid and sustained antidepressant effects in chronic social defeat stress model. Neurobiol Stress 2023; 26:100565. [PMID: 37664876 PMCID: PMC10468802 DOI: 10.1016/j.ynstr.2023.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Repeated, long-term (weeks to months) exposure to standard antidepressant medications is required to achieve treatment efficacy. In contrast, acute ketamine quickly improves mood for an extended time. Recent work implicates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are involved in mediating ketamine's antidepressant effects. In this study, we directly targeted HCN channels and achieved ketamine-like rapid and sustained antidepressant efficacy. Our in vitro electrophysiological recordings first showed that HCN inhibitor DK-AH 269 (also called cilobradine) decreased the pathological HCN-mediated current (Ih) and abnormal hyperactivity of ventral tegmental area (VTA) dopamine (DA) neurons in a depressive-like model produced by chronic social defeat stress (CSDS). Our in vivo studies further showed that acute intra-VTA or acute systemic administration of DK-AH 269 normalized social behavior and rescued sucrose preference in CSDS-susceptible mice. The single-dose of DK-AH 269, both by intra-VTA microinfusion and intraperitoneal (ip) approaches, could produce an extended 13-day duration of antidepressant-like efficacy. Animals treated with acute DK-AH 269 spent less time immobile than vehicle-treated mice during forced swim test. A social behavioral reversal lasted up to 13 days following the acute DK-AH 269 ip injection, and this rapid and sustained antidepressant-like response is paralleled with a single-dose treatment of ketamine. This study provides a novel ion channel target for acutely acting, long-lasting antidepressant-like effects.
Collapse
Affiliation(s)
- Min Cai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yingbo Zhu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Shenzhen Naowunao Network Technology Co.,Ltd., Shenzhen, Guangdong, China
| | - Mary Regis Shanley
- Department of Biological Sciences, Hunter College, Biology and Biochemistry PhD Program, Graduate Center, The City University of New York, New York, NY, USA
| | - Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacy M. Ku
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongxing Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuan Shen
- Anesthesia and Brain Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Allyson K. Friedman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Mu L, Liu X, Yu H, Vickstrom CR, Friedman V, Kelly TJ, Hu Y, Su W, Liu S, Mantsch JR, Liu QS. cAMP-mediated upregulation of HCN channels in VTA dopamine neurons promotes cocaine reinforcement. Mol Psychiatry 2023; 28:3930-3942. [PMID: 37845497 PMCID: PMC10730389 DOI: 10.1038/s41380-023-02290-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Chronic cocaine exposure induces enduring neuroadaptations that facilitate motivated drug taking. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to modulate neuronal firing and pacemaker activity in ventral tegmental area (VTA) dopamine neurons. However, it remained unknown whether cocaine self-administration affects HCN channel function and whether HCN channel activity modulates motivated drug taking. We report that rat VTA dopamine neurons predominantly express Hcn3-4 mRNA, while VTA GABA neurons express Hcn1-4 mRNA. Both neuronal types display similar hyperpolarization-activated currents (Ih), which are facilitated by acute increases in cAMP. Acute cocaine application decreases voltage-dependent activation of Ih in VTA dopamine neurons, but not in GABA neurons. Unexpectedly, chronic cocaine self-administration results in enhanced Ih selectively in VTA dopamine neurons. This differential modulation of Ih currents is likely mediated by a D2 autoreceptor-induced decrease in cAMP as D2 (Drd2) mRNA is predominantly expressed in dopamine neurons, whereas D1 (Drd1) mRNA is barely detectable in the VTA. Moreover, chronically decreased cAMP via Gi-DREADD stimulation leads to an increase in Ih in VTA dopamine neurons and enhanced binding of HCN3/HCN4 with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), an auxiliary subunit that is known to facilitate HCN channel surface trafficking. Finally, we show that systemic injection and intra-VTA infusion of the HCN blocker ivabradine reduces cocaine self-administration under a progressive ratio schedule and produces a downward shift of the cocaine dose-response curve. Our results suggest that cocaine self-administration induces an upregulation of Ih in VTA dopamine neurons, while HCN inhibition reduces the motivation for cocaine intake.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wantang Su
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John R Mantsch
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
39
|
Joyce RL, Tibbs GR, David Warren J, Costa CJ, Aromolaran K, Lea Sanford R, Andersen OS, Li Z, Zhang G, Willis DE, Goldstein PA. Probucol is anti-hyperalgesic in a mouse peripheral nerve injury model of neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100141. [PMID: 38099280 PMCID: PMC10719523 DOI: 10.1016/j.ynpai.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2023]
Abstract
2,6-di-tert-butylphenol (2,6-DTBP) ameliorates mechanical allodynia and thermal hyperalgesia produced by partial sciatic nerve ligation in mice, and selectively inhibits HCN1 channel gating. We hypothesized that the clinically utilized non-anesthetic dimerized congener of 2,6-DTBP, probucol (2,6-di-tert-butyl-4-[2-(3,5-di-tert-butyl-4-hydroxyphenyl)sulfanylpropan-2-ylsulfanyl]phenol), would relieve the neuropathic phenotype that results from peripheral nerve damage, and that the anti-hyperalgesic efficacy in vivo would correlate with HCN1 channel inhibition in vitro. A single oral dose of probucol (800 mg/kg) relieved mechanical allodynia and thermal hyperalgesia in a mouse spared-nerve injury neuropathic pain model. While the low aqueous solubility of probucol precluded assessment of its possible interaction with HCN1 channels, our results, in conjunction with recent data demonstrating that probucol reduces lipopolysaccharide-induced mechanical allodynia and thermal hyperalgesia, support the testing/development of probucol as a non-opioid, oral antihyperalgesic albeit one of unknown mechanistic action.
Collapse
Affiliation(s)
- Rebecca L. Joyce
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Gareth R. Tibbs
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - J. David Warren
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | | | - Kelly Aromolaran
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - R. Lea Sanford
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Olaf S. Andersen
- Dept. of Physiology & Biophysics, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
| | - Zhucui Li
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Guoan Zhang
- Dept. of Biochemistry, 413 E. 69th Street, Weill Cornell Medicine, New York, NY, USA
| | - Dianna E. Willis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
| | - Peter A. Goldstein
- Dept. of Anesthesiology, 1300 York Ave., Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY, USA
- Dept. of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
40
|
Shu Y, Hasenstaub A, McCormick DA. The h-current controls cortical recurrent network activity through modulation of dendrosomatic communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548753. [PMID: 37502942 PMCID: PMC10370005 DOI: 10.1101/2023.07.12.548753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A fundamental feature of the cerebral cortex is the ability to rapidly turn on and off maintained activity within ensembles of neurons through recurrent excitation balanced by inhibition. Here we demonstrate that reduction of the h-current, which is especially prominent in pyramidal cell dendrites, strongly increases the ability of local cortical networks to generate maintained recurrent activity. Reduction of the h-current resulted in hyperpolarization and increase in input resistance of both the somata and apical dendrites of layer 5 pyramidal cells, while strongly increasing the dendrosomatic transfer of low (<20 Hz) frequencies, causing an increased responsiveness to dynamic clamp-induced recurrent network-like activity injected into the dendrites and substantially increasing the duration of spontaneous Up states. We propose that modulation of the h-current may strongly control the ability of cortical networks to generate recurrent persistent activity and the formation and dissolution of neuronal ensembles.
Collapse
Affiliation(s)
- Yousheng Shu
- The Fudan University Fenglin Campus, 131 Dong’an Road, Xuhui District, Shanghai
| | - Andrea Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery (OHNS), University of California, San Francisco, 675 Nelson Rising Lane, #514B, San Francisco CA 94158
| | - David A. McCormick
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510; Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| |
Collapse
|
41
|
Jang DC, Chung G, Kim SK, Kim SJ. Dynamic alteration of intrinsic properties of the cerebellar Purkinje cell during the motor memory consolidation. Mol Brain 2023; 16:58. [PMID: 37430311 DOI: 10.1186/s13041-023-01043-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Intrinsic plasticity of the cerebellar Purkinje cell (PC) plays a critical role in motor memory consolidation. However, detailed changes in their intrinsic properties during memory consolidation are not well understood. Here, we report alterations in various properties involved in intrinsic excitability, such as the action potential (AP) threshold, AP width, afterhyperpolarization (AHP), and sag voltage, which are associated with the long-term depression of intrinsic excitability following the motor memory consolidation process. We analyzed data recorded from PCs before and 1, 4, and 24 h after cerebellum-dependent motor learning and found that these properties underwent dynamic changes during the consolidation process. We further analyzed data from PC-specific STIM1 knockout (STIM1PKO) mice, which show memory consolidation deficits, and derived intrinsic properties showing distinct change patterns compared with those of wild-type littermates. The levels of memory retention in the STIM1PKO mice were significantly different compared to wild-type mice between 1 and 4 h after training, and AP width, fast- and medium-AHP, and sag voltage showed different change patterns during this period. Our results provide information regarding alterations in intrinsic properties during a particular period that are critical for memory consolidation.
Collapse
Affiliation(s)
- Dong Cheol Jang
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Geehoon Chung
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Department of East-West Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sang Jeong Kim
- Department of Physiology, Neuroscience Research Center, Wide River Institute of Immunology, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
| |
Collapse
|
42
|
Crunelli V, David F, Morais TP, Lorincz ML. HCN channels and absence seizures. Neurobiol Dis 2023; 181:106107. [PMID: 37001612 DOI: 10.1016/j.nbd.2023.106107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.
| | - Francois David
- Integrative Neuroscience and Cognition Center, Paris University, Paris, France
| | - Tatiana P Morais
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, Malta University, Msida, Malta
| | - Magor L Lorincz
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK; Department of Physiology, Szeged University, Szeged, Hungary.
| |
Collapse
|
43
|
Kassab NED, Mehlfeld V, Kass J, Biel M, Schneider G, Rammes G. Xenon's Sedative Effect Is Mediated by Interaction with the Cyclic Nucleotide-Binding Domain (CNBD) of HCN2 Channels Expressed by Thalamocortical Neurons of the Ventrobasal Nucleus in Mice. Int J Mol Sci 2023; 24:ijms24108613. [PMID: 37239964 DOI: 10.3390/ijms24108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Previous studies have shown that xenon reduces hyperpolarization-activated cyclic nucleotide-gated channels type-2 (HCN2) channel-mediated current (Ih) amplitude and shifts the half-maximal activation voltage (V1/2) in thalamocortical circuits of acute brain slices to more hyperpolarized potentials. HCN2 channels are dually gated by the membrane voltage and via cyclic nucleotides binding to the cyclic nucleotide-binding domain (CNBD) on the channel. In this study, we hypothesize that xenon interferes with the HCN2 CNBD to mediate its effect. Using the transgenic mice model HCN2EA, in which the binding of cAMP to HCN2 was abolished by two amino acid mutations (R591E, T592A), we performed ex-vivo patch-clamp recordings and in-vivo open-field test to prove this hypothesis. Our data showed that xenon (1.9 mM) application to brain slices shifts the V1/2 of Ih to more hyperpolarized potentials in wild-type thalamocortical neurons (TC) (V1/2: -97.09 [-99.56--95.04] mV compared to control -85.67 [-94.47--82.10] mV; p = 0.0005). These effects were abolished in HCN2EA neurons (TC), whereby the V1/2 reached only -92.56 [-93.16- -89.68] mV with xenon compared to -90.03 [-98.99--84.59] mV in the control (p = 0.84). After application of a xenon mixture (70% xenon, 30% O2), wild-type mice activity in the open-field test decreased to 5 [2-10] while in HCN2EA mice it remained at 30 [15-42]%, (p = 0.0006). In conclusion, we show that xenon impairs HCN2 channel function by interfering with the HCN2 CNBD site and provide in-vivo evidence that this mechanism contributes to xenon-mediated hypnotic properties.
Collapse
Affiliation(s)
- Nour El Dine Kassab
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Verena Mehlfeld
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Jennifer Kass
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Martin Biel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universitñt Mnchen, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
44
|
Wu J, El-Hassar L, Datta D, Thomas M, Zhang Y, Jenkins DP, DeLuca NJ, Chatterjee M, Gribkoff VK, Arnsten AFT, Kaczmarek LK. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability and Working Memory. RESEARCH SQUARE 2023:rs.3.rs-2870277. [PMID: 37205397 PMCID: PMC10187370 DOI: 10.21203/rs.3.rs-2870277/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels coimmunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ +current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.
Collapse
Affiliation(s)
- Jing Wu
- Yale University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang X, Gan S, Zhang Z, Zhu P, Li CH, Luo F. HCN-Channel-Dependent Hyperexcitability of the Layer V Pyramidal Neurons in IL-mPFC Contributes to Fentanyl-Induced Hyperalgesia in Male Rats. Mol Neurobiol 2023; 60:2553-2571. [PMID: 36689134 DOI: 10.1007/s12035-023-03218-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Opioids are often first-line analgesics in pain therapy. However, prolonged use of opioids causes paradoxical pain, termed "opioid-induced hyperalgesia (OIH)." The infralimbic medial prefrontal cortex (IL-mPFC) has been suggested to be critical in inflammatory and neuropathic pain processing through its dynamic output from layer V pyramidal neurons. Whether OIH condition induces excitability changes of these output neurons and what mechanisms underlie these changes remains elusive. Here, with combination of patch-clamp recording, immunohistochemistry, as well as optogenetics, we revealed that IL-mPFC layer V pyramidal neurons exhibited hyperexcitability together with higher input resistance. In line with this, optogenetic and chemogenetic activation of these neurons aggravates behavioral hyperalgesia in male OIH rats. Inhibition of these neurons alleviates hyperalgesia in male OIH rats but exerts an opposite effect in male control rats. Electrophysiological analysis of hyperpolarization-activated cation current (Ih) demonstrated that decreased Ih is a prerequisite for the hyperexcitability of IL-mPFC output neurons. This decreased Ih was accompanied by a decrease in HCN1, but not HCN2, immunolabeling, in these neurons. In contrast, the application of HCN channel blocker increased the hyperalgesia threshold of male OIH rats. Consequently, we identified an HCN-channel-dependent hyperexcitability of IL-mPFC output neurons, which governs the development and maintenance of OIH in male rats.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sifei Gan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zeru Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengfei Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Hong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, Hubei, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
46
|
Zhou X, Li A, Mi X, Li Y, Ding Z, An M, Chen Y, Li W, Tao X, Chen X, Li Y. Hyperexcited limbic neurons represent sexual satiety and reduce mating motivation. Science 2023; 379:820-825. [PMID: 36758107 DOI: 10.1126/science.abl4038] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Transient sexual experiences can have long-lasting effects on behavioral decisions, but the neural coding that accounts for this change is unclear. We found that the ejaculation experience selectively activated estrogen receptor 2 (Esr2)-expressing neurons in the bed nucleus of the stria terminalis (BNST)-BNSTEsr2-and led to persistent decreases in firing threshold for days, during which time the mice displayed sexual satiety. Inhibition of hyperexcited BNSTEsr2 elicited fast mating recovery in satiated mice of both sexes. In males, such hyperexcitability reduced mating motivation and was partially mediated by larger HCN (hyperpolarization-activated cyclic nucleotide-gated) currents. Thus, BNSTEsr2 not only encode a specific mating action but also represent a persistent state of sexual satiety, and alterations in a neuronal ion channel contribute to sexual experience-dependent long-term changes to mating drive.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Ang Li
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 102206, China
| | - Xue Mi
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yixuan Li
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 102206, China
| | - Zhaoyi Ding
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Min An
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yalan Chen
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Wei Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xianming Tao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xinfeng Chen
- Chinese Institute for Brain Research, Beijing 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 102206, China
| | - Ying Li
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
47
|
Altered EEG power spectrum, but not sleep-wake architecture, in HCN1 knockout mice. Behav Brain Res 2023; 437:114105. [PMID: 36089097 DOI: 10.1016/j.bbr.2022.114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022]
Abstract
Sleep is a complex biological state characterized by large populations of neurons firing in a rhythmic or synchronized manner. HCN channels play a critical role in generating and sustaining synchronized neuronal firing and are involved in the actions of anaesthetics. However, the role of these channels in sleep-wakefulness per se has yet to be studied. We conducted polysomnographic recordings of Hcn1 constitutive knockout (Hcn1 KO) and wild-type (WT) mice in order to investigate the potential role of HCN1 channels in sleep/wake regulation. EEG and EMG data were analysed using the Somnivore™ machine learning algorithm. Time spent in each vigilance state, bout number and duration, and EEG power spectral activity were compared between genotypes. There were no significant differences in the time spent in wake, rapid eye movement (REM) or non-REM (NREM) sleep between Hcn1 KO and WT mice. Wake bout duration during the inactive phase was significantly shorter in Hcn1 KO mice whilst no other bout parameters were affected by genotype. Hcn1 KO mice showed a reduction in overall EEG power which was particularly prominent in the theta (5-9 Hz) and alpha (9-15 Hz) frequency bands and most evident during NREM sleep. Together these data suggest that HCN1 channels do not play a major role in sleep architecture or modulation of vigilance states. However, loss of these channels significantly alters underlying neuronal activity within these states which may have functional consequences.
Collapse
|
48
|
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int J Mol Sci 2023; 24:1477. [PMID: 36674992 PMCID: PMC9862736 DOI: 10.3390/ijms24021477] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Spike-wave discharges are the hallmark of idiopathic generalized epilepsy. They are caused by a disorder in the thalamocortical network. Commercially available anti-epileptic drugs have pronounced side effects (i.e., sedation and gastroenterological concerns), which might result from a low selectivity to molecular targets. We suggest a specific subtype of adrenergic receptors (ARs) as a promising anti-epileptic molecular target. In rats with a predisposition to absence epilepsy, alpha2 ARs agonists provoke sedation and enhance spike-wave activity during transitions from awake/sedation. A number of studies together with our own observations bring evidence that the sedative and proepileptic effects require different alpha2 ARs subtypes activation. Here we introduce a new concept on target pharmacotherapy of absence epilepsy via alpha2B ARs which are presented almost exclusively in the thalamus. We discuss HCN and calcium channels as the most relevant cellular targets of alpha2 ARs involved in spike-wave activity generation.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Elizaveta Rutskova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
| | - Kirill Smirnov
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, Moscow 117485, Russia
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia
| |
Collapse
|
49
|
Zhao K, Li Y, Yang X, Zhou L. The Impact of Altered HCN1 Expression on Brain Function and Its Relationship with Epileptogenesis. Curr Neuropharmacol 2023; 21:2070-2078. [PMID: 37366350 PMCID: PMC10556362 DOI: 10.2174/1570159x21666230214110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) is predominantly expressed in neurons from the neocortex and hippocampus, two important regions related to epilepsy. Both animal models for epilepsy and epileptic patients show decreased HCN1 expression and HCN1-mediated Ih current. It has been shown in neuroelectrophysiological experiments that a decreased Ih current can increase neuronal excitability. However, some studies have shown that blocking the Ih current in vivo can exert antiepileptic effects. This paradox raises an important question regarding the causal relationship between HCN1 alteration and epileptogenesis, which to date has not been elucidated. In this review, we summarize the literature related to HCN1 and epilepsy, aiming to find a possible explanation for this paradox, and explore the correlation between HCN1 and the mechanism of epileptogenesis. We analyze the alterations in the expression and distribution of HCN1 and the corresponding impact on brain function in epilepsy. In addition, we also discuss the effect of blocking Ih on epilepsy symptoms. Addressing these issues will help to inspire new strategies to explore the relationship between HCN1 and epileptogenesis, and ultimately promote the development of new targets for epilepsy therapy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| |
Collapse
|
50
|
Wu Y, Luo XD, Xiang T, Li SJ, Ma MG, Chen ML. Activation of metabotropic glutamate receptor 1 regulates hippocampal CA1 region excitability in rats with status epilepticus by suppressing the HCN1 channel. Neural Regen Res 2023; 18:594-602. [DOI: 10.4103/1673-5374.350206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|