1
|
Mercado-Gómez OF, Arriaga-Ávila VS, Vega-García A, Orozco-Suarez S, Pérez-Koldenkova V, Camarillo-Sánchez JJ, Álvarez-Herrera M, Guevara-Guzmán R. Daytime-Restricted Feeding Ameliorates Oxidative Stress by Increasing NRF2 Transcriptional Factor in the Rat Hippocampus in the Pilocarpine-Induced Acute Seizure Model. Brain Sci 2023; 13:1442. [PMID: 37891811 PMCID: PMC10605835 DOI: 10.3390/brainsci13101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Seizure-mediated oxidative stress is a crucial mechanism in the pathophysiology of epilepsy. This study evaluated the antioxidant effects of daytime-restricted feeding (DRF) and the role of the Nrf2 signaling pathway in a lithium-pilocarpine model seizure model that induces status epilepticus (SE). We performed a lipoperoxidation assay and dihydroethidium fluorescence to measure oxidative stress markers in the hippocampus (malondialdehyde and reactive oxygen species). The protein content of Nrf2 and its downstream protein SOD2 was evaluated using Western blotting. The cellular distribution of the Nrf2 and SOD2 proteins in the pyramidal cell layer of both the CA1 and CA3 hippocampal subfields and astrocytes (GFAP marker) were quantified using immunofluorescence and immunohistochemistry, respectively. Our results indicate that DRF reduced the malondialdehyde levels and the production of reactive oxygen species. Furthermore, a significant increase in Nrf2 and SOD2 protein content was observed in animals subjected to restrictive diet. In addition, DRF increased the relative intensity of the Nrf2 fluorescence in the perinuclear and nuclear compartments of pyramidal neurons in the CA1 subfield. Nrf2 immunoreactivity and the astrocyte marker GFAP also increased their colocalization under DRF conditions. Additionally, SOD2 immunoreactivity was increased in CA1 pyramidal neurons but not in the CA3 region. Our findings suggest that DRF partially prevents oxidative stress by increasing the Nrf2 transcriptional factor and the SOD2 enzyme during the development of SE.
Collapse
Affiliation(s)
- Octavio Fabián Mercado-Gómez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Virginia Selene Arriaga-Ávila
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Angélica Vega-García
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Sandra Orozco-Suarez
- Medical Research Unit in Neurological Diseases, National Medical Center XXI, Mexico City 06720, Mexico;
| | - Vadim Pérez-Koldenkova
- National Advanced Microscopy Laboratory, National Medical Center XXI, Mexico City 06720, Mexico
| | - Juan José Camarillo-Sánchez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Marcelino Álvarez-Herrera
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| | - Rosalinda Guevara-Guzmán
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (O.F.M.-G.); (V.S.A.-Á.); (A.V.-G.); (J.J.C.-S.); (M.Á.-H.)
| |
Collapse
|
2
|
Lee DS, Kim TH, Park H, Kim JE. CDDO-Me Abrogates Aberrant Mitochondrial Elongation in Clasmatodendritic Degeneration by Regulating NF-κB-PDI-Mediated S-Nitrosylation of DRP1. Int J Mol Sci 2023; 24:ijms24065875. [PMID: 36982949 PMCID: PMC10053800 DOI: 10.3390/ijms24065875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Clasmatodendrosis is a kind of astroglial degeneration pattern which facilitates excessive autophagy. Although abnormal mitochondrial elongation is relevant to this astroglial degeneration, the underlying mechanisms of aberrant mitochondrial dynamics are still incompletely understood. Protein disulfide isomerase (PDI) is an oxidoreductase in the endoplasmic reticulum (ER). Since PDI expression is downregulated in clasmatodendritic astrocytes, PDI may be involved in aberrant mitochondrial elongation in clasmatodendritic astrocytes. In the present study, 26% of CA1 astrocytes showed clasmatodendritic degeneration in chronic epilepsy rats. 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl or RTA 402) and SN50 (a nuclear factor-κB (NF-κB) inhibitor) ameliorated the fraction of clasmatodendritic astrocytes to 6.8 and 8.1% in CA1 astrocytes, accompanied by the decreases in lysosomal-associated membrane protein 1 (LAMP1) expression and microtubule-associated protein 1A/1B light-chain 3 (LC3)-II/LC3-I ratio, indicating the reduced autophagy flux. Furthermore, CDDO-Me and SN50 reduced NF-κB S529 fluorescent intensity to 0.6- and 0.57-fold of vehicle-treated animal level, respectively. CDDO-Me and SN50 facilitated mitochondrial fission in CA1 astrocytes, independent of dynamin-related protein 1 (DRP1) S616 phosphorylation. In chronic epilepsy rats, total PDI protein, S-nitrosylated PDI (SNO-PDI), and SNO-DRP1 levels were 0.35-, 0.34- and 0.45-fold of control level, respectively, in the CA1 region and increased CDDO-Me and SN50. Furthermore, PDI knockdown resulted in mitochondrial elongation in intact CA1 astrocytes under physiological condition, while it did not evoke clasmatodendrosis. Therefore, our findings suggest that NF-κB-mediated PDI inhibition may play an important role in clasmatodendrosis via aberrant mitochondrial elongation.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Kim JE, Park H, Kang TC. Peroxiredoxin 6 Regulates Glutathione Peroxidase 1-Medited Glutamine Synthase Preservation in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2023; 12:antiox12010156. [PMID: 36671018 PMCID: PMC9855017 DOI: 10.3390/antiox12010156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Clasmatodendrosis (an autophagic astroglial degeneration) plays an important role in the regulation of spontaneous seizure duration but not seizure frequency or behavioral seizure severity in chronic epilepsy rats. Recently, it has been reported that N-acetylcysteine (NAC), a precursor to glutathione (GSH), attenuates clasmatodendritic degeneration and shortens spontaneous seizure duration in chronic epilepsy rats, although the underlying mechanisms of its anti-convulsive effects are not fully understood. To elucidate this, the present study was designed to investigate whether NAC affects astroglial glutamine synthase (GS) expression mediated by GSH peroxidase 1 (GPx1) and/or peroxiredoxin 6 (Prdx6) in the epileptic hippocampus. As compared to control animals, GS and GPx1 expressions were upregulated in reactive CA1 astrocytes of chronic epilepsy rats, while their expressions were significantly decreased in clasmatodendritic CA1 astrocytes and reactive astrocytes within the molecular layer of the dentate gyrus. Prdx6 expression was increased in reactive CA1 astrocytes as well as clasmatodendritic CA1 astrocytes. In the molecular layer of the dentate gyrus, Prdx6 expression levels were similar to those in control animals. NAC ameliorated clasmatodendrosis through the increment of GS and GPx1 expressions, while it abolished Prdx6 upregulation. 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) alleviated clasmatodendrosis by enhancing GPx1 and GS expressions in clasmatodendritic CA1 astrocytes without changing the Prdx6 level. NAC or MJ33 did not affect GS, GPx1 and Prdx6 expression in astrocytes within the molecular layer of the dentate gyrus. These findings indicate that upregulated aiPLA2 activity of Prdx6 may abolish GPx1-mediated GS preservation and lead to clasmatodendrosis in CA1 astrocytes, which would extend spontaneous seizure duration due to impaired glutamate-glutamine conversion regulated by GS. Therefore, the present data suggest that aiPLA2 activity of Prdx6 in astrocytes may be one of the upstream effectors of seizure duration in the epileptic hippocampus.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
| |
Collapse
|
4
|
Sp1-Mediated Prdx6 Upregulation Leads to Clasmatodendrosis by Increasing Its aiPLA2 Activity in the CA1 Astrocytes in Chronic Epilepsy Rats. Antioxidants (Basel) 2022; 11:antiox11101883. [PMID: 36290607 PMCID: PMC9598987 DOI: 10.3390/antiox11101883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial degeneration (a non-apoptotic (type II) programmed cell death) whose underlying mechanisms are fully understood. Peroxiredoxin-6 (Prdx6), the “non-selenium glutathione peroxidase (NSGPx)”, is the only member of the 1-cysteine peroxiredoxin family. Unlike the other Prdx family, Prdx6 has multiple functions as glutathione peroxidase (GPx) and acidic calcium-independent phospholipase (aiPLA2). The present study shows that Prdx6 was upregulated in CA1 astrocytes in chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and N-acetylcysteine (NAC, a precursor of glutathione) ameliorated clasmatodendrosis accompanied by reduced Prdx6 level in CA1 astrocytes. Specificity protein 1 (Sp1) expression was upregulated in CA1 astrocyte, which was inhibited by mithramycin A (MMA). MMA alleviated clasmatodendrosis and Prdx6 upregulation. Sp1 expression was also downregulated by CDDO-Me and NAC. Furthermore, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) attenuated clasmatodendrosis without affecting Prdx6 expression. All chemicals shortened spontaneous seizure duration but not seizure frequency and behavioral seizure severity in chronic epilepsy rats. Therefore, our findings suggest that Sp1 activation may upregulate Prdx6, whose aiPLA2 activity would dominate over GPx activity in CA1 astrocytes and may lead to prolonged seizure activity due to autophagic astroglial degeneration.
Collapse
|
5
|
Kim JE, Lee DS, Kim TH, Kang TC. CDDO-Me Attenuates CA1 Neuronal Death by Facilitating RalBP1-Mediated Mitochondrial Fission and 4-HNE Efflux in the Rat Hippocampus Following Status Epilepticus. Antioxidants (Basel) 2022; 11:985. [PMID: 35624848 PMCID: PMC9137584 DOI: 10.3390/antiox11050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Ras-related protein Ral-A (RalA)-binding protein 1 (RalBP1, also known as Ral-interacting protein of 76 kDa (RLIP76) or Ral-interacting protein 1 (RLIP1 or RIP1)) is involved in the efflux of 4-hydroxynonenal (4-HNE, an end product of lipid peroxidation), as well as mitochondrial fission. In the present study, we found that 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) attenuated CA1 neuronal death and aberrant mitochondrial elongations in these neurons coupled with enhanced RalBP1 expression and reduced 4-HNE levels following status epilepticus (SE). RalBP1 knockdown did not affect mitochondrial dynamics and CA1 neuronal death under physiological and post-SE conditions. Following SE, however, cotreatment of RalBP1 siRNA diminished the effect of CDDO-Me on 4-HNE levels, mitochondrial hyperfusion in CA1 neurons, and CA1 neuronal death. These findings indicate that CDDO-Me may ameliorate CA1 neuronal death by facilitating RalBP1-mediated 4-HNE efflux and mitochondrial fission following SE. Therefore, our findings suggest that increased RalBP1 expression/activity may be one of the considerable targets to protect neurons from SE.
Collapse
Affiliation(s)
| | | | | | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology and Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (D.-S.L.); (T.-H.K.)
| |
Collapse
|
6
|
Matovu D, Cavalheiro EA. Differences in Evolution of Epileptic Seizures and Topographical Distribution of Tissue Damage in Selected Limbic Structures Between Male and Female Rats Submitted to the Pilocarpine Model. Front Neurol 2022; 13:802587. [PMID: 35449517 PMCID: PMC9017681 DOI: 10.3389/fneur.2022.802587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence shows that clinical features and comorbidities in temporal lobe epilepsy (TLE) may have different manifestations depending on the sex of patients. However, little is known about how sex-related mechanisms can interfere with the processes underlying the epileptic phenomenon. The findings of this study show that male rats with epilepsy in the pilocarpine model have longer-lasting and more severe epileptic seizures, while female rats have a higher frequency of epileptic seizures and a greater number of seizure clusters. Significant sex-linked pathological changes were also observed: epileptic brains of male and female rats showed differences in mass reduction of 41.8% in the amygdala and 18.2% in the olfactory bulb, while loss of neuronal cells was present in the hippocampus (12.3%), amygdala (18.1%), and olfactory bulb (7.5%). Another important sex-related finding was the changes in non-neuronal cells with increments for the hippocampus (36.1%), amygdala (14.7%), and olfactory bulb (37%). Taken together, our study suggests that these neuropathological changes may underlie the differences in the clinical features of epileptic seizures observed in male and female rats.
Collapse
Affiliation(s)
- Daniel Matovu
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| | - Esper A Cavalheiro
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| |
Collapse
|
7
|
CDDO-Me Attenuates Clasmatodendrosis in CA1 Astrocyte by Inhibiting HSP25-AKT Mediated DRP1-S637 Phosphorylation in Chronic Epilepsy Rats. Int J Mol Sci 2022; 23:ijms23094569. [PMID: 35562960 PMCID: PMC9105539 DOI: 10.3390/ijms23094569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
Clasmatodendrosis is one of the irreversible astroglial degeneration, which is involved in seizure duration and its progression in the epileptic hippocampus. Although sustained heat shock protein 25 (HSP25) induction leads to this autophagic astroglial death, dysregulation of mitochondrial dynamics (aberrant mitochondrial elongation) is also involved in the pathogenesis in clasmatodendrosis. However, the underlying molecular mechanisms of accumulation of elongated mitochondria in clasmatodendritic astrocytes are elusive. In the present study, we found that clasmatodendritic astrocytes showed up-regulations of HSP25 expression, AKT serine (S) 473 and dynamin-related protein 1 (DRP1) S637 phosphorylations in the hippocampus of chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; bardoxolone methyl or RTA 402) abrogated abnormal mitochondrial elongation by reducing HSP25 upregulation, AKT S473- and DRP1 S637 phosphorylations. Furthermore, HSP25 siRNA and 3-chloroacetyl-indole (3CAI, an AKT inhibitor) abolished AKT-DRP1-mediated mitochondrial elongation and attenuated clasmatodendrosis in CA1 astrocytes. These findings indicate that HSP25-AKT-mediated DRP1 S637 hyper-phosphorylation may lead to aberrant mitochondrial elongation, which may result in autophagic astroglial degeneration. Therefore, our findings suggest that the dysregulation of HSP25-AKT-DRP1-mediated mitochondrial dynamics may play an important role in clasmatodendrosis, which would have implications for the development of novel therapies against various neurological diseases related to astroglial degeneration.
Collapse
|
8
|
Kim JE, Lee DS, Kim TH, Kang TC. Glutathione Regulates GPx1 Expression during CA1 Neuronal Death and Clasmatodendrosis in the Rat Hippocampus following Status Epilepticus. Antioxidants (Basel) 2022; 11:antiox11040756. [PMID: 35453441 PMCID: PMC9024994 DOI: 10.3390/antiox11040756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Glutathione peroxidase-1 (GPx1) catalyze the reduction of H2O2 by using glutathione (GSH) as a cofactor. However, the profiles of altered GPx1 expression in response to status epilepticus (SE) have not been fully explored. In the present study, GPx1 expression was transiently decreased in dentate granule cells, while it was temporarily enhanced and subsequently reduced in CA1 neurons following SE. GPx1 expression was also transiently declined in CA1 astrocytes (within the stratum radiatum) following SE. However, it was elevated in reactive CA1 astrocytes, but not in clasmatodendritic CA1 astrocytes, in chronic epilepsy rats. Under physiological condition, L-buthionine sulfoximine (BSO, an inducer of GSH depletion) increased GPx1 expression in CA1 neurons but decreased it in CA1 astrocytes. However, N-acetylcysteine (NAC, an inducer of GSH synthesis) did not influence GPx1 expression in these cell populations. Following SE, BSO aggravated CA1 neuronal death, concomitant with reduced GPx1 expression. Further. BSO also lowered GPx1 expression in CA1 astrocytes. NAC effectively prevented neuronal death and GPx1 downregulation in CA1 neurons, and restored GPx1 expression to the control level in CA1 astrocytes. In chronic epilepsy rats, BSO reduced GPx1 intensity and exacerbated clasmatodendritic degeneration in CA1 astrocytes. In contrast, NAC restored GPx1 expression in clasmatodendritic astrocytes and ameliorated this autophagic astroglial death. To the best of our knowledge, our findings report, for the first time, the spatiotemporal profiles of altered GPx1 expression in the rat hippocampus following SE, and suggest GSH-mediated GPx1 regulation, which may affect SE-induced neuronal death and autophagic astroglial degeneration.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. and T.-C.K.)
| | | | | | - Tae-Cheon Kang
- Correspondence: (J.-E.K.); (T.-C.K.); Tel.: +82-33-248-2522 (J.-E.K.); +82-33-248-2524 (T.-C.K.); Fax: +82-33-248-2525 (J.-E.K. and T.-C.K.)
| |
Collapse
|
9
|
Xia L, Liu L, Cai Y, Zhang Y, Tong F, Wang Q, Ding J, Wang X. Inhibition of Gasdermin D-Mediated Pyroptosis Attenuates the Severity of Seizures and Astroglial Damage in Kainic Acid-Induced Epileptic Mice. Front Pharmacol 2022; 12:751644. [PMID: 35153737 PMCID: PMC8831916 DOI: 10.3389/fphar.2021.751644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Objective: Our study aimed to explore whether gasdermin D (GSDMD)-mediated pyroptosis is involved in the mechanism of kainic acid-induced seizures. Methods: C57BL/6 mice were randomly divided into sham and epilepsy groups. The epilepsy group was intrahippocampally injected with kainic acid to induce status epilepticus (SE), and the sham group was injected with an equal volume of saline. Dimethyl fumarate (DMF) was used as the GSDMD N-terminal fragments (GSDMD-N) inhibitor and suspended in 0.5% sodium carboxymethyl cellulose (CMC) for orally administration. The epilepsy group was divided into SE + CMC and SE + DMF groups. In the SE + DMF group, DMF was orally administered for 1 week before SE induction and was continued until the end of the experiment. An equal volume of CMC was administered to the sham and SE + CMC groups. Recurrent spontaneous seizures (SRSs) were monitored for 21 days after SE. Western blot analysis and immunofluorescent staining was performed. Results: The expression of GSDMD increased at 7–21 days post-SE, and GSDMD-N expression was significantly elevated 7 days after SE in both ipsilateral and contralateral hippocampus. GSDMD-positive cells were co-labeled with astrocytes, but not neurons or microglia. Astroglial damage occurs following status epilepticus (SE). Damaged astrocytes showed typical clasmatodendrosis in the CA1 region containing strong GSDMD expression at 7–21 days post-SE, accompanied by activated microglia. In the SE + DMF group, the expression of GSDMD-N was significantly inhibited compared to that in the SE + CMC group. After administration of DMF, SRSs at 7–21 days after SE were significantly decreased, and the number of clasmatodendritic astrocytes, microglia, and the expression of inflammatory factors such as IL-1β and IL-18 were significantly attenuated. Conclusion: GSDMD-mediated pyroptosis is involved in the mechanism of kainic acid-induced seizures. Our study provides a new potential therapeutic target for seizure control.
Collapse
Affiliation(s)
- Lu Xia
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Liu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiying Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiying Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fangchao Tong
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jing Ding, ; Xin Wang,
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of the State Key Laboratory of Medical Neurobiology, The institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- *Correspondence: Jing Ding, ; Xin Wang,
| |
Collapse
|
10
|
Altered Emotional Phenotypes in Chronic Kidney Disease Following 5/6 Nephrectomy. Brain Sci 2021; 11:brainsci11070882. [PMID: 34209259 PMCID: PMC8301795 DOI: 10.3390/brainsci11070882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/06/2023] Open
Abstract
Increased prevalence of chronic kidney disease (CKD) and neurological disorders including cerebrovascular disease, cognitive impairment, peripheral neuropathy, and dysfunction of central nervous system have been reported during the natural history of CKD. Psychological distress and depression are serious concerns in patients with CKD. However, the relevance of CKD due to decline in renal function and the pathophysiology of emotional deterioration is not clear. Male Sprague Dawley rats were divided into three groups: sham control, 5/6 nephrectomy at 4 weeks, and 5/6 nephrectomy at 10 weeks. Behavior tests, local field potentials, and histology and laboratory tests were conducted and investigated. We provided direct evidence showing that CKD rat models exhibited anxiogenic behaviors and depression-like phenotypes, along with altered hippocampal neural oscillations at 1–12 Hz. We generated CKD rat models by performing 5/6 nephrectomy, and identified higher level of serum creatinine and blood urea nitrogen (BUN) in CKD rats than in wild-type, depending on time. In addition, the level of α-smooth muscle actin (α-SMA) and collagen I for renal tissue was markedly elevated, with worsening fibrosis due to renal failures. The level of anxiety and depression-like behaviors increased in the 10-week CKD rat models compared with the 4-week rat models. In the recording of local field potentials, the power of delta (1–4 Hz), theta (4–7 Hz), and alpha rhythm (7–12 Hz) was significantly increased in the hippocampus of CKD rats compared with wild-type rats. Together, our findings indicated that anxiogenic behaviors and depression can be induced by CKD, and these abnormal symptoms can be worsened as the onset of CKD was prolonged. In conclusion, our results show that the hippocampus is vulnerable to uremia.
Collapse
|
11
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
12
|
Kim S, Choi BK, Park JA, Kim HJ, Oh TI, Kang WS, Kim JW, Park HJ. Identification of Brain Damage after Seizures Using an MR-Based Electrical Conductivity Imaging Method. Diagnostics (Basel) 2021; 11:diagnostics11030569. [PMID: 33809992 PMCID: PMC8004663 DOI: 10.3390/diagnostics11030569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022] Open
Abstract
Previous imaging studies have shown the morphological malformation and the alterations of ionic mobility, water contents, electrical properties, or metabolites in seizure brains. Magnetic resonance electrical properties tomography (MREPT) is a recently developed technique for the measurement of electrical tissue properties with a high frequency that provides cellular information regardless of the cell membrane. In this study, we examined the possibility of MREPT as an applicable technique to detect seizure-induced functional changes in the brain of rats. Ultra-high field (9.4 T) magnetic resonance imaging (MRI) was performed, 2 h, 2 days, and 1 week after the injection of N-methyl-D-aspartate (NMDA; 75 mg/kg). The conductivity images were reconstructed from B1 phase images using a magnetic resonance conductivity imaging (MRCI) toolbox. The high-frequency conductivity was significantly decreased in the hippocampus among various brain regions of NMDA-treated rats. Nissl staining showed shrunken cell bodies and condensed cytoplasm potently at 2 h after NMDA treatment, and neuronal cell loss at all time points in the hippocampus. These results suggest that the reduced electrical conductivity may be associated with seizure-induced neuronal loss in the hippocampus. Magnetic resonance (MR)-based electrical conductivity imaging may be an applicable technique to non-invasively identify brain damage after a seizure.
Collapse
Affiliation(s)
- Sanga Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bup Kyung Choi
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.C.); (H.J.K.)
| | - Ji Ae Park
- Division of Applied RI, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea;
| | - Hyung Joong Kim
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.C.); (H.J.K.)
| | - Tong In Oh
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (B.K.C.); (H.J.K.)
- Correspondence: (T.I.O.); (J.W.K.); (H.J.P.)
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (T.I.O.); (J.W.K.); (H.J.P.)
| | - Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (T.I.O.); (J.W.K.); (H.J.P.)
| |
Collapse
|
13
|
Lee DS, Kim JE. Regional specific activations of ERK1/2 and CDK5 differently regulate astroglial responses to ER stress in the rat hippocampus following status epilepticus. Brain Res 2021; 1753:147262. [PMID: 33422538 DOI: 10.1016/j.brainres.2020.147262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023]
Abstract
Endoplasmic reticulum (ER) triggers the regional specific astroglial responses to status epilepticus (SE, a prolonged seizure activity). However, the epiphenomena/downstream effecters for ER stress and the mechanism of ER stress signaling in astroglial apoptosis have not been fully understood. In the present study, tunicamycin-induced ER stress resulted in reactive astrogliosis-like events showing astroglial hypertrophy with the elevated extracellular signal-activated protein kinase 1/2 (ERK1/2) and cyclin-dependent kinase 5 (CDK5) phosphorylations in the CA1 region of the rat hippocampus. However, tunicamycin increased CDK5, but not ERK1/2, phosphorylation in the molecular layer of the dentate gyrus. Roscovitine (a CDK5 inhibitor) suppressed the effect of tunicamycin in the molecular layer of the dentate gyrus and the CA1 region, while U0126 (an ERK1/2 inhibitor) reversed it in the CA1 region. Salubrinal (an ER stress inhibitor) abrogated activations of ERK1/2 and CDK5, and attenuated reactive astrogliosis in the CA1 region and astroglial apoptosis in the molecular layer of the dentate gyrus following status epilepticus (SE, a prolonged seizure activity). These findings indicate that ER stress may induce reactive astrogliosis via ERK1/2-mediated CDK5 activation in the CA1 region. In the molecular layer of the dentate gyrus, however, ER stress may participate in astroglial apoptosis through ERK1/2-independent CDK5 activation following SE.
Collapse
Affiliation(s)
- Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| |
Collapse
|
14
|
Lana D, Ugolini F, Giovannini MG. Space-Dependent Glia-Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. Int J Mol Sci 2020; 21:E9441. [PMID: 33322419 PMCID: PMC7763751 DOI: 10.3390/ijms21249441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
This review is focused on the description and discussion of the alterations of astrocytes and microglia interplay in models of Alzheimer's disease (AD). AD is an age-related neurodegenerative pathology with a slowly progressive and irreversible decline of cognitive functions. One of AD's histopathological hallmarks is the deposition of amyloid beta (Aβ) plaques in the brain. Long regarded as a non-specific, mere consequence of AD pathology, activation of microglia and astrocytes is now considered a key factor in both initiation and progression of the disease, and suppression of astrogliosis exacerbates neuropathology. Reactive astrocytes and microglia overexpress many cytokines, chemokines, and signaling molecules that activate or damage neighboring cells and their mutual interplay can result in virtuous/vicious cycles which differ in different brain regions. Heterogeneity of glia, either between or within a particular brain region, is likely to be relevant in healthy conditions and disease processes. Differential crosstalk between astrocytes and microglia in CA1 and CA3 areas of the hippocampus can be responsible for the differential sensitivity of the two areas to insults. Understanding the spatial differences and roles of glia will allow us to assess how these interactions can influence the state and progression of the disease, and will be critical for identifying therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| |
Collapse
|
15
|
CDDO-Me Distinctly Regulates Regional Specific Astroglial Responses to Status Epilepticus via ERK1/2-Nrf2, PTEN-PI3K-AKT and NFκB Signaling Pathways. Antioxidants (Basel) 2020; 9:antiox9101026. [PMID: 33096818 PMCID: PMC7589507 DOI: 10.3390/antiox9101026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid. CDDO-Me shows anti-inflammatory and neuroprotective effects. Furthermore, CDDO-Me has antioxidant properties, since it activates nuclear factor-erythroid 2-related factor 2 (Nrf2), which is a key player of redox homeostasis. In the present study, we evaluated whether CDDO-Me affects astroglial responses to status epilepticus (SE, a prolonged seizure activity) in the rat hippocampus in order to understand the underlying mechanisms of reactive astrogliosis and astroglial apoptosis. Under physiological conditions, CDDO-Me increased Nrf2 expression in the hippocampus without altering activities (phosphorylations) of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), phosphatidylinositol-3-kinase (PI3K), and AKT. CDDO-Me did not affect seizure activity in response to pilocarpine. However, CDDO-Me ameliorated reduced astroglial Nrf2 expression in the CA1 region and the molecular layer of the dentate gyrus (ML), and attenuated reactive astrogliosis and ML astroglial apoptosis following SE. In CA1 astrocytes, CDDO-Me inhibited the PI3K/AKT pathway by activating PTEN. In contrast, CDDO-ME resulted in extracellular signal-related kinases 1/2 (ERK1/2)-mediated Nrf2 upregulation in ML astrocytes. Furthermore, CDDO-Me decreased nuclear factor-κB (NFκB) phosphorylation in both CA1 and ML astrocytes. Therefore, our findings suggest that CDDO-Me may attenuate SE-induced reactive astrogliosis and astroglial apoptosis via regulation of ERK1/2-Nrf2, PTEN-PI3K-AKT, and NFκB signaling pathways.
Collapse
|
16
|
Kim JE, Park H, Lee JE, Kang TC. Blockade of 67-kDa Laminin Receptor Facilitates AQP4 Down-Regulation and BBB Disruption via ERK1/2-and p38 MAPK-Mediated PI3K/AKT Activations. Cells 2020; 9:cells9071670. [PMID: 32664509 PMCID: PMC7407797 DOI: 10.3390/cells9071670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Recently, we have reported that dysfunctions of 67-kDa laminin receptor (67LR) induced by status epilepticus (SE, a prolonged seizure activity) and 67LR neutralization are involved in vasogenic edema formation, accompanied by the reduced aquaporin 4 (AQP4, an astroglial specific water channel) expression in the rat piriform cortex (PC). In the present study, we found that the blockade of 67LR activated p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways, which enhanced phosphatidylinositol 3 kinase (PI3K)/AKT phosphorylations in endothelial cells and astrocytes, respectively. 67LR-p38 MAPK-PI3K-AKT activation in endothelial cells increased vascular permeability. In contrast, 67LR-ERK1/2-PI3K-AKT signaling pathways in astrocytes regulated astroglial viability and AQP4 expression. These findings indicate that PI3K/AKT may integrate p38 MAPK and ERK1/2 signaling pathways to regulate AQP4 expression when 67LR functionality is reduced. Thus, we suggest that 67LR-p38 MAPK/ERK1/2-PI3K-AKT-AQP4 signaling cascades may mediate serum extravasation and AQP4 expression in astroglio-vascular systems, which is one of the considerable therapeutic targets for vasogenic edema in various neurological diseases.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (H.P.); (J.-E.L.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hana Park
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (H.P.); (J.-E.L.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ji-Eun Lee
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (H.P.); (J.-E.L.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (J.-E.K.); (H.P.); (J.-E.L.)
- Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
| |
Collapse
|
17
|
Yu YH, Park DK, Yoo DY, Kim DS. Altered expression of parvalbumin immunoreactivity in rat main olfactory bulb following pilocarpine-induced status epilepticus. BMB Rep 2020. [PMID: 32317084 PMCID: PMC7196189 DOI: 10.5483/bmbrep.2020.53.4.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is a chronic neurological disease characterized by spontaneous recurrent seizures and caused by various factors and mechanisms. Malfunction of the olfactory bulb is frequently observed in patients with epilepsy. However, the morphological changes in the olfactory bulb during epilepsy-induced neuropathology have not been elucidated. Therefore, in the present study, we investigated the expression of parvalbumin (PV), one of the calcium-binding proteins, and morphological changes in the rat main olfactory bulb (MOB) following pilocarpine-induced status epilepticus (SE). Pilocarpine-induced SE resulted in neuronal degeneration in the external plexiform layer (EPL) and glomerular layer (GL) of the MOB. PV immunoreactivity was observed in the neuronal somas and processes in the EPL and GL of the control group. However, six hours after pilocarpine administration, PV expression was remarkably decreased in the neuronal processes compared to the somas and the average number of PV-positive interneurons was significantly decreased. Three months after pilocarpine treatment, the number of PV-positive interneurons was also significantly decreased compared to the 6 hour group in both layers. In addition, the number of NeuN-positive neurons was also significantly decreased in the EPL and GL following pilocarpine treatment. In double immunofluorescence staining for PV and MAP2, the immunoreactivity for MAP2 around the PV-positive neurons was significantly decreased three months after pilocarpine treatment. Therefore, the present findings suggest that decreases in PV-positive GABAergic interneurons and dendritic density in the MOB induced impaired calcium buffering and reciprocal synaptic transmission. Thus, these alterations may be considered key factors aggravating olfactory function in patients with epilepsy.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
18
|
Early AN, Gorman AA, Van Eldik LJ, Bachstetter AD, Morganti JM. Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J Neuroinflammation 2020; 17:115. [PMID: 32290848 PMCID: PMC7158022 DOI: 10.1186/s12974-020-01800-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older-age individuals are at the highest risk for disability from a traumatic brain injury (TBI). Astrocytes are the most numerous glia in the brain, necessary for brain function, yet there is little known about unique responses of astrocytes in the aged-brain following TBI. METHODS Our approach examined astrocytes in young adult, 4-month-old, versus aged, 18-month-old mice, at 1, 3, and 7 days post-TBI. We selected these time points to span the critical period in the transition from acute injury to presumably irreversible tissue damage and disability. Two approaches were used to define the astrocyte contribution to TBI by age interaction: (1) tissue histology and morphological phenotyping, and (2) transcriptomics on enriched astrocytes from the injured brain. RESULTS Aging was found to have a profound effect on the TBI-induced loss of astrocyte function needed for maintaining water transport and edema-namely, aquaporin-4. The aged brain also demonstrated a progressive exacerbation of astrogliosis as a function of time after injury. Moreover, clasmatodendrosis, an underrecognized astrogliopathy, was found to be significantly increased in the aged brain, but not in the young brain. As a function of TBI, we observed a transitory refraction in the number of these astrocytes, which rebounded by 7 days post-injury in the aged brain. Transcriptomic data demonstrated disproportionate changes in genes attributed to reactive astrocytes, inflammatory response, complement pathway, and synaptic support in aged mice following TBI compared to young mice. Additionally, our data highlight that TBI did not evoke a clear alignment with the previously defined "A1/A2" dichotomy of reactive astrogliosis. CONCLUSIONS Overall, our findings point toward a progressive phenotype of aged astrocytes following TBI that we hypothesize to be maladaptive, shedding new insights into potentially modifiable astrocyte-specific mechanisms that may underlie increased fragility of the aged brain to trauma.
Collapse
Affiliation(s)
- Alexandria N Early
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy A Gorman
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
19
|
The Regional Specific Alterations in BBB Permeability are Relevant to the Differential Responses of 67-kDa LR Expression in Endothelial Cells and Astrocytes Following Status Epilepticus. Int J Mol Sci 2019; 20:ijms20236025. [PMID: 31795399 PMCID: PMC6929072 DOI: 10.3390/ijms20236025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (a prolonged seizure activity, SE) differently affects vasogenic edema formation and dystrophin-aquaporin 4 (AQP4) expressions between the rat hippocampus and the piriform cortex (PC). In the present study, we explored whether the 67-kDa laminin receptor (LR) expression was relevant to the regional specific susceptibility of vasogenic edema at 3 days after SE. In spite of no difference in expression levels of 67-kDa LR, dystrophin, and AQP4 under physiological conditions, SE-induced serum extravasation was more severe in the PC than the hippocampus. Western blots demonstrated that SE reduced expression levels of 67-kDa LR, dystrophin, and AQP4 in the PC, but not in the hippocampus proper. Immunofluorescent studies revealed that SE increased 67-kDa LR expression in reactive CA1 astrocyte, but reduced it in the PC and the molecular layer of the dentate gyrus due to massive astroglial loss. Furthermore, SE decreased expressions of endothelial 67-kDa LR and SMI-71 (endothelial brain barrier antigen) in these regions. The 67-kDa LR neutralization evoked serum extravasation in these regions of normal animals without astroglial loss. Similar to SE, 67-kDa LR neutralization also reduced dystrophin-AQP4 expressions in the PC more than the total hippocampus. Furthermore, 67-kDa LR IgG infusion increased phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), but not c-Jun N-terminal kinase, independent of phosphoprotein enriched in astrocytes of 15 kDa (PEA15) activity. Co-treatment of U0126 (an ERK1/2 inhibitor) alleviated vasogenic edema formation and the reduced dystrophin-AQP4 expressions induced by 67-kDa LR neutralization. The 67-kDa LR IgG infusion also increased the susceptibility to SE induction. Therefore, our findings suggested that the cellular specific alterations in 67-kDa LR expression might be involved in the severity of SE-induced vasogenic edema formation in regional specific manners, which might affect the susceptibility to SE induction.
Collapse
|
20
|
CDDO-Me Attenuates Vasogenic Edema and Astroglial Death by Regulating NF-κB p65 Phosphorylations and Nrf2 Expression Following Status Epilepticus. Int J Mol Sci 2019; 20:ijms20194862. [PMID: 31574956 PMCID: PMC6801369 DOI: 10.3390/ijms20194862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid that has anti-inflammatory, antioxidant, and neuroprotective activities. In the present study, we evaluate the effects of CDDO-Me on serum extravasation and astroglial death in the rat piriform cortex (PC) induced by status epilepticus (a prolonged seizure activity, SE) in order to propose an underlying pharmacological mechanism of CDDO-Me and its availability for treatment of vasogenic edema. CDDO-Me effectively mitigated serum extravasation and a massive astroglial loss in the PC following SE. CDDO-Me abrogated tumor necrosis factor-α (TNF-α) synthesis in activated microglia by inhibiting nuclear factor-κB (NF-κB) p65 serine 276 phosphorylation. CDDO-Me also abolished NF-κB threonine 435 phosphorylation in endothelial cells and TNF-α-mediated-phosphatidylinositol-3-kinase (PI3K)/AKT/endothelial nitric oxide synthase (eNOS) signaling cascades, which trigger vasogenic edema following SE. Furthermore, CDDO-Me increased astroglial viability via the up-regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression. Therefore, our findings suggest that CDDO-Me may ameliorate SE-induced vasogenic edema formation by regulating NF-κB p65 phosphorylations in microglia as well as endothelial cells and enhancing Nrf2 expression in astrocytes, respectively.
Collapse
|
21
|
Kim JE, Kang TC. PKC, AKT and ERK1/2-Mediated Modulations of PARP1, NF-κB and PEA15 Activities Distinctly Regulate Regional Specific Astroglial Responses Following Status Epilepticus. Front Mol Neurosci 2019; 12:180. [PMID: 31396050 PMCID: PMC6667551 DOI: 10.3389/fnmol.2019.00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023] Open
Abstract
Status epilepticus (SE, a prolonged seizure activity) leads to reactive astrogliosis and astroglial apoptosis in the regional specific manners, independent of hemodynamics. Poly(ADP-ribose) polymerase-1 (PARP1) activity is relevant to these distinct astroglial responses. Since various regulatory signaling molecules beyond PARP1 activity may be involved in the distinct astroglial response to SE, it is noteworthy to explore the roles of protein kinases in PARP1-mediated reactive astrogliosis and astroglial apoptosis following SE, albeit at a lesser extent. In the present study, inhibitions of protein kinase C (PKC), AKT and extracellular signal-related kinases 1/2 (ERK1/2), but not calcium/calmodulin-dependent protein kinase II (CaMKII), attenuated CA1 reactive astrogliosis accompanied by reducing PARP1 activity following SE, respectively. However, inhibition of AKT and ERK1/2 deteriorated SE-induced dentate astroglial loss concomitant with the diminished PARP1 activity. Following SE, PKC- and AKT inhibitors diminished phosphoprotein enriched in astrocytes of 15 kDa (PEA15)-S104 and -S116 phosphorylations in CA1 astrocytes, but not in dentate astrocytes, respectively. Inhibitors of PKC, AKT and ERK1/2 also abrogated SE-induced nuclear factor-κB (NF-κB)-S311 and -S468 phosphorylations in CA1 astrocytes. In contrast, both AKT and ERK1/2 inhibitors enhanced NF-κB-S468 phosphorylation in dentate astrocytes. Furthermore, PARP1 inhibitor aggravated dentate astroglial loss following SE. AKT inhibition deteriorated dentate astroglial loss and led to CA1 astroglial apoptosis following SE, which were ameliorated by AKT activation. These findings suggest that activities of PARP1, PEA15 and NF-κB may be distinctly regulated by PKC, AKT and ERK1/2, which may be involved in regional specific astroglial responses following SE.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
22
|
Mussulini BHM, Vizuete AFK, Braga M, Moro L, Baggio S, Santos E, Lazzarotto G, Zenki KC, Pettenuzzo L, Rocha JBTD, de Oliveira DL, Calcagnotto ME, Zuanazzi JAS, Burgos JS, Rico EP. Forebrain glutamate uptake and behavioral parameters are altered in adult zebrafish after the induction of Status Epilepticus by kainic acid. Neurotoxicology 2018; 67:305-312. [DOI: 10.1016/j.neuro.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
|
23
|
Kim JE, Kang TC. Nucleocytoplasmic p27 Kip1 Export Is Required for ERK1/2-Mediated Reactive Astroglial Proliferation Following Status Epilepticus. Front Cell Neurosci 2018; 12:152. [PMID: 29930499 PMCID: PMC5999727 DOI: 10.3389/fncel.2018.00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Reactive astrogliosis is a prominent and ubiquitous reaction of astrocytes to many types of brain injury. Up-regulation of glial fibrillary acidic protein (GFAP) expression and astroglial proliferation are hallmarks of reactive astrogliosis. However, the mechanisms that regulate reactive astrogliosis remain elusive. In the present study, status epilepticus (SE, a prolonged seizure activity) led to reactive astrogliosis showing the increases in GFAP expression and the number of proliferating astrocytes with prolonged extracellular signal receptor-activated kinases 1/2 (ERK1/2) activation and reduced nuclear p27Kip1 level. U0126, an ERK1/2 inhibitor, showed opposite effects. Leptomycin B (LMB), an inhibitor of chromosomal maintenance 1 (CRM1), attenuated nucleocytoplasmic p27Kip1 export and astroglial proliferation, although it up-regulated ERK1/2 phosphorylation and GFAP expression. Roscovitine ameliorated the reduced nuclear p27Kip1 level and astroglial proliferation without changing GFAP expression and ERK1/2 phosphorylation. U0126 aggravated SE-induced astroglial apoptosis in the molecular layer of the dentate gyrus that was unaffected by LMB and roscovitine. In addition, U0126 exacerbated SE-induced neuronal death, while LMB mitigated it. Roscovitine did not affect SE-induced neuronal death. The present data elucidate for the first time the roles of nucleocytoplasmic p27Kip1 transport in ERK1/2-mediated reactive astrogliosis independent of SE-induced neuronal death and astroglial apoptosis. Therefore, our findings suggest that nucleocytoplasmic p27Kip1 export may be required for ERK1/2-mediated astroglial proliferation during reactive astrogliosis, and that nuclear p27Kip1 entrapment may be a potential therapeutic strategy for anti-proliferation in reactive astrocytes.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
24
|
P2RX7-MAPK1/2-SP1 axis inhibits MTOR independent HSPB1-mediated astroglial autophagy. Cell Death Dis 2018; 9:546. [PMID: 29749377 PMCID: PMC5945848 DOI: 10.1038/s41419-018-0586-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022]
Abstract
Recently, we have reported that heat shock protein B1 (HSPB1) and purinergic receptor P2X7 (P2RX7) are involved in astroglial autophagy (clasmatodendrosis), following status epilepticus (SE). However, the underlying mechanisms of astroglial autophagy have not been completely established. In the present study, we found that the lacking of P2rx7 led to prolonged astroglial HSPB1 induction due to impaired mitogen-activated protein kinase 1/2 (MAPK1/2)-mediated specificity protein 1 (SP1) phosphorylation, following kainic acid-induced SE. Subsequently, the upregulated HSPB1 itself evoked ER stress and exerted protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1, AMPK1)/unc-51 such as autophagy activating kinase 1 (ULK1)- and AKT serine/threonine kinase 1 (AKT1)/glycogen synthase kinase 3 beta (GSK3B)/SH3-domain GRB2-like B1 (SH3GLB1)-mediated autophagic pathways, independent of mechanistic target of rapamycin (MTOR) activity in astrocytes. These findings provide a novel purinergic suppression mechanism to link chaperone expression to autophagy in astrocytes. Therefore, we suggest that P2RX7 may play an important role in the regulation of autophagy by the fine-tuning of HSPB1 expression.
Collapse
|
25
|
Park JY, Kang TC. The differential roles of PEA15 phosphorylations in reactive astrogliosis and astroglial apoptosis following status epilepticus. Neurosci Res 2018; 137:11-22. [PMID: 29438777 DOI: 10.1016/j.neures.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/27/2018] [Accepted: 02/09/2018] [Indexed: 11/17/2022]
Abstract
Up to this day, the roles of PEA15 expression and its phosphorylation in seizure-related events have not been still unclear. In the present study, we found that PEA15 was distinctly phosphorylated in reactive astrocytes and apoptotic astrocytes in the rat hippocampus following LiCl-pilocarpine-induced status epilepticus (SE, a prolonged seizure activity). PEA15-serine (S) 104 phosphorylation was up-regulated in reactive astrocytes following SE, although PEA15 expression and its S116 phosphorylation were unaltered. Bisindolylmaleimide (BIM), a protein kinase C (PKC) inhibitor, attenuated SE-induced reactive astrogliosis, but phorbol 12-myristate 13-acetate (PMA, a PKC activator) aggravated it. Unlike reactive astrocytes, PEA15-S116 phosphorylation was reduced in apoptotic astrocytes. However, PEA15 expression and its S104 phosphorylation were unchanged in apoptotic astrocyte. Neither BIM nor PMA affected SE-induced astroglial apoptosis. PEA15 expression and its phosphorylations were not relevant to SE-induced CA1 neuronal death. These findings indicate that PEA15-S104 and S116 phosphorylations may play a role in reactive astrogliosis and prevention of astroglial apoptosis, respectively. Therefore, we suggest that the selective manipulation of PEA15 phosphorylations may regulate apoptotic and/or proliferative signals in astrocytes.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
26
|
Xiong TQ, Chen LM, Tan BH, Guo CY, Li YN, Zhang YF, Li SL, Zhao H, Li YC. The effects of calcineurin inhibitor FK506 on actin cytoskeleton, neuronal survival and glial reactions after pilocarpine-induced status epilepticus in mice. Epilepsy Res 2018; 140:138-147. [PMID: 29358156 DOI: 10.1016/j.eplepsyres.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2023]
Abstract
After status epilepticus (SE), actin cytoskeleton (F-actin) becomes progressively deconstructed in the hippocampus, which is consistent with the delayed pyramidal cell death in both time course and spatial distribution. A variety of experiments show that calcineurin inhibitors such as FK506 are able to inhibit the SE-induced actin depolymerization. However, it is still unclear what changes happen to the F-actin in the epileptic brain after FK506 treatment. A pilocarpine model of SE in mice was used to examine the effects of FK506 on the F-actin in the hippocampal neurons. The post SE (PSE) mice with or without FK506 treatment were monitored consecutively for 14 days to examine the frequency and duration of spontaneous seizures. The effects of FK506 on the activity of cofilin and actin dynamics were assessed at 7 and 14 d PSE by western blots. The organization of F-actin, neuronal cell death, and glial reactions were investigated by phalloidin staining, histological and immunocytochemical staining, respectively. As compared to the PSE + vehicle mice, FK506 treatment significantly decreased the frequency and duration of spontaneous seizures. Relative to the PSE + vehicle mice, western blots detected a partial restoration of phosphorylated cofilin and a significant increase of F/G ratio in the hippocampus after FK506 treatment. In the PSE + vehicle mice, almost no F-actin puncta were left in the CA1 and CA3 subfields at 7 and 14 d PSE. FK506-treated PSE mice showed a similar decrease of F-actin, but the extent of damage was significantly ameliorated. Consistently, the surviving neurons became significantly increased in number after FK506 treatment, relative to the PSE + vehicle groups. After FK506 treatment, microglial reaction was partially inhibited, but the expression of GFAP was not significantly changed, compared to the PSE + vehicle mice. The results suggest that post-epileptic treatment with FK506 ameliorated, but could not stop the deconstruction of F-actin or the delayed neuronal loss in the PSE mice.
Collapse
Affiliation(s)
- Tian-Qing Xiong
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Ling-Meng Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Chun-Yan Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Yong-Nan Li
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Yan-Feng Zhang
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Hui Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China.
| |
Collapse
|
27
|
Kim JE, Park JY, Kang TC. TRPC6-mediated ERK1/2 Activation Regulates Neuronal Excitability via Subcellular Kv4.3 Localization in the Rat Hippocampus. Front Cell Neurosci 2017; 11:413. [PMID: 29326557 PMCID: PMC5742353 DOI: 10.3389/fncel.2017.00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/11/2017] [Indexed: 01/02/2023] Open
Abstract
Recently, we have reported that transient receptor potential channel-6 (TRPC6) plays an important role in the regulation of neuronal excitability and synchronization of spiking activity in the dentate granule cells (DGC). However, the underlying mechanisms of TRPC6 in these phenomena have been still unclear. In the present study, we investigated the role of TRPC6 in subcellular localization of Kv4.3 and its relevance to neuronal excitability in the rat hippocampus. TRPC6 knockdown increased excitability and inhibitory transmission in the DGC and the CA1 neurons in response to a paired-pulse stimulus. However, TRPC6 knockdown impaired γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus during and after high-frequency stimulation (HFS). TRPC6 knockdown reduced the Kv4.3 clusters in membrane fractions and its dendritic localization on DGC and GABAergic interneurons. TRPC6 knockdown also decreased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and the efficacy of 4-aminopyridine (4-AP) in neuronal excitability. An ERK1/2 inhibitor generated multiple population spikes in response to a paired-pulse stimulus, concomitant with reduced membrane Kv4.3 translocation. A TRPC6 activator (hyperforin) reversed the effects of TRPC knockdown, except paired-pulse inhibition. These findings provide valuable clues indicating that TRPC6-mediated ERK1/2 activation may regulate subcellular Kv4.3 localization in DGC and interneurons, which is cause-effect relationship between neuronal excitability and seizure susceptibility.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jin-Young Park
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
28
|
Kim JE, Kang TC. p47Phox/CDK5/DRP1-Mediated Mitochondrial Fission Evokes PV Cell Degeneration in the Rat Dentate Gyrus Following Status Epilepticus. Front Cell Neurosci 2017; 11:267. [PMID: 28919853 PMCID: PMC5585136 DOI: 10.3389/fncel.2017.00267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 01/31/2023] Open
Abstract
Parvalbumin (PV) is one of the calcium-binding proteins, which plays an important role in the responsiveness of inhibitory neurons to an adaptation to repetitive spikes. Furthermore, PV neurons are highly vulnerable to status epilepticus (SE, prolonged seizure activity), although the underlining mechanism remains to be clarified. In the present study, we found that p47Phox expression was transiently and selectively increased in PV neurons 6 h after SE. This up-regulated p47Phox expression was accompanied by excessive mitochondrial fission. In this time point, CDK5-tyrosine 15 and dynamin-related protein 1 (DRP1)-serine 616 phosphorylations were also increased in PV cells. Apocynin (a p47Phox inhibitor) effectively mitigated PV cell loss via inhibition of CDK5/DRP1 phosphorylations and mitochondrial fragmentation induced by SE. Roscovitine (a CDK5 inhibitor) and Mdivi-1 (a DRP1 inhibitor) attenuated SE-induced PV cell loss by inhibiting aberrant mitochondrial fission. These findings suggest that p47Phox/CDK5/DRP1 may be one of the important upstream signaling pathways in PV cell degeneration induced by SE via excessive mitochondrial fragmentation.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym UniversityChuncheon, South Korea
| |
Collapse
|
29
|
Yu YH, Lee K, Sin DS, Park KH, Park DK, Kim DS. Altered functional efficacy of hippocampal interneuron during epileptogenesis following febrile seizures. Brain Res Bull 2017; 131:25-38. [DOI: 10.1016/j.brainresbull.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022]
|
30
|
Simulated blast overpressure induces specific astrocyte injury in an ex vivo brain slice model. PLoS One 2017; 12:e0175396. [PMID: 28403239 PMCID: PMC5389806 DOI: 10.1371/journal.pone.0175396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/25/2017] [Indexed: 12/14/2022] Open
Abstract
Exposure to explosive blasts can produce functional debilitation in the absence of brain pathology detectable at the scale of current diagnostic imaging. Transient (ms) overpressure components of the primary blast wave are considered to be potentially damaging to the brain. Astrocytes participate in neuronal metabolic maintenance, blood–brain barrier, regulation of homeostatic environment, and tissue remodeling. Damage to astrocytes via direct physical forces has the potential to disrupt local and global functioning of neuronal tissue. Using an ex vivo brain slice model, we tested the hypothesis that viable astrocytes within the slice could be injured simply by transit of a single blast wave consisting of overpressure alone. A polymer split Hopkinson pressure bar (PSHPB) system was adapted to impart a single positive pressure transient with a comparable magnitude to those that might be present inside the head. A custom built test chamber housing the brain tissue slice incorporated revised design elements to reduce fluid space and promote transit of a uniform planar waveform. Confocal microscopy, stereology, and morphometry of glial fibrillary acidic protein (GFAP) immunoreactivity revealed that two distinct astrocyte injury profiles were identified across a 4 hr post-test survival interval: (a) presumed conventional astrogliosis characterized by enhanced GFAP immunofluorescence intensity without significant change in tissue area fraction and (b) a process comparable to clasmatodendrosis, an autophagic degradation of distal processes that has not been previously associated with blast induced neurotrauma. Analysis of astrocyte branching revealed early, sustained, and progressive differences distinct from the effects of slice incubation absent overpressure testing. Astrocyte vulnerability to overpressure transients indicates a potential for significant involvement in brain blast pathology and emergent dysfunction. The testing platform can isolate overpressure injury phenomena to provide novel insight on physical and biological mechanisms.
Collapse
|
31
|
Kim JE, Hyun HW, Min SJ, Kang TC. Sustained HSP25 Expression Induces Clasmatodendrosis via ER Stress in the Rat Hippocampus. Front Cell Neurosci 2017; 11:47. [PMID: 28275338 PMCID: PMC5319974 DOI: 10.3389/fncel.2017.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Heat shock protein (HSP) 25 (murine/rodent 25 kDa, human 27 kDa) is one of the major astroglial HSP families, which has a potent anti-apoptotic factor contributing to a higher resistance of astrocytes to the stressful condition. However, impaired removals of HSP25 decrease astroglial viability. In the present study, we investigated whether HSP25 is involved in astroglial apoptosis or clasmatodendrosis (autophagic astroglial death) in the rat hippocampus induced by status epilepticus (SE). Following SE, HSP25 expression was transiently increased in astrocytes within the dentate gyrus (DG), while it was sustained in CA1 astrocytes until 4 weeks after SE. HSP25 knockdown exacerbated SE-induced apoptotic astroglial degeneration, but mitigated clasmatodendrosis accompanied by abrogation of endoplasmic reticulum (ER) stress without changed seizure susceptibility or severity. These findings suggest that sustained HSP25 induction itself may result in clasmatodendrosis via prolonged ER stress. To the best of our knowledge, the present study demonstrates for the first time the double-edge properties of HSP25 in astroglial death induced by SE.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| |
Collapse
|
32
|
Hyun HW, Min SJ, Kim JE. CDK5 inhibitors prevent astroglial apoptosis and reactive astrogliosis by regulating PKA and DRP1 phosphorylations in the rat hippocampus. Neurosci Res 2017; 119:24-37. [PMID: 28153522 DOI: 10.1016/j.neures.2017.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 11/28/2022]
Abstract
Status epilepticus (SE) results in the unique pattern of dynamin-related protein 1 (DRP1)-mediated mitochondrial dynamics, which is associated with astroglial apoptosis and reactive astrogliosis in the regional-specific pattern representing the differential astroglial properties. However, less defined are the epiphenomena/upstream effecters for DRP1 phosphorylation in this process. Since cyclin-dependent kinase 5 (CDK5) is involved in reactive astrogliosis, CDK5 is one of the possible upstream regulators for DRP1 phosphorylation. In the present study, both olomoucine and roscovitine (CDK5 inhibitors) effectively ameliorated SE-induced astroglial apoptosis in the dentate gyrus without changed seizure susceptibility. In addition, they inhibited reactive astrogliosis in the CA1 region independent of neuronal death induced by SE. These effects of CDK5 inhibitors were relevant to abrogation of altered DRP1 phosphorylation ratio and mitochondrial length induced by SE. CDK5 inhibitors also negatively regulated protein kinase A (PKA) activity in astrocytes. Therefore, our findings suggest that CDK5 inhibitors may mitigate astroglial apoptosis and reactive astrogliosis accompanied by modulations of DRP1-mediated mitochondrial dynamics.
Collapse
Affiliation(s)
- Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 24252, South Korea.
| |
Collapse
|
33
|
Ko AR, Kang TC. Mannitol induces selective astroglial death in the CA1 region of the rat hippocampus following status epilepticus. BMB Rep 2016; 48:507-12. [PMID: 25703536 PMCID: PMC4641234 DOI: 10.5483/bmbrep.2015.48.9.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/29/2022] Open
Abstract
In the present study, we addressed the question of whether treatment with mannitol, an osmotic diuretic, affects astrogliovascular responses to status epilepticus (SE). In saline-treated animals, astrocytes exhibited reactive astrogliosis in the CA1-3 regions 2-4 days after SE. In the mannitol-treated animals, a large astroglial empty zone was observed in the CA1 region 2 days after SE. This astroglial loss was unrelated to vasogenic edema formation. There was no difference in SE-induced neuronal loss between saline- and mannitol-treated animals. Furthermore, mannitol treatment did not affect astroglial loss and vasogenic edema formation in the dentate gyrus and the piriform cortex. These findings suggest that mannitol treatment induces selective astroglial loss in the CA1 region independent of vasogenic edema formation following SE. These findings support the hypothesis that the susceptibility of astrocytes to SE is most likely due to the distinctive heterogeneity of astrocytes independent of hemodynamics. [BMB Reports 2015; 48(9): 507-512]
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
34
|
Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm. Proc Natl Acad Sci U S A 2016; 113:6550-5. [PMID: 27208094 DOI: 10.1073/pnas.1605019113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca(2+) channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca(2+) channels in the medial septal GABAergic projection neurons in this behavior.
Collapse
|
35
|
Ko AR, Hyun HW, Min SJ, Kim JE. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci 2016; 10:124. [PMID: 27242436 PMCID: PMC4870264 DOI: 10.3389/fncel.2016.00124] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE). Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic) astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission) effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fission) aggravated it. In addition, Mdivi-1 accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein 1 (DRP1; a mitochondrial fission protein) phosphorylation, not optic atrophy 1 (OPA1; a mitochondrial fusion protein) expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Hye-Won Hyun
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Su-Ji Min
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Chuncheon, South Korea
| |
Collapse
|
36
|
Kim YJ, Kim JE, Choi HC, Song HK, Kang TC. Cellular and regional specific changes in multidrug efflux transporter expression during recovery of vasogenic edema in the rat hippocampus and piriform cortex. BMB Rep 2016; 48:348-53. [PMID: 25388209 PMCID: PMC4578622 DOI: 10.5483/bmbrep.2015.48.6.237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 12/18/2022] Open
Abstract
In the present study, we investigated the characteristics of drug efflux transporter expressions following status epilepticus (SE). In the hippocampus and piriform cortex (PC), vasogenic edema peaked 3-4 days after SE. The expression of breast cancer resistance protein (BCRP), multidrug resistance protein-4 (MRP4), and p-glycoprotein (p-GP) were decreased 4 days after SE when vasogenic edema was peaked, but subsequently increased 4 weeks after SE. Multidrug resistance protein-1 (MRP1) expression gradually decreased in endothelial cells until 4 weeks after SE. These findings indicate that SE-induced vasogenic edema formation transiently reduced drug efflux pump expressions in endothelial cells. Subsequently, during recovery of vasogenic edema drug efflux pump expressions were differentially upregulated in astrocytes, neuropils, and endothelial cells. Therefore, we suggest that vasogenic edema formation may be a risk factor in pharmacoresistent epilepsy. [BMB Reports 2015; 48(6): 348-353]
Collapse
Affiliation(s)
- Yeon-Joo Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | - Hui-Chul Choi
- Institute of Epilepsy Research, College of Medicine, Hallym University; Department of Neurology, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | - Hong-Ki Song
- Institute of Epilepsy Research, College of Medicine, Hallym University; Department of Neurology, College of Medicine, Hallym University, Chunchon 200-702, Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University; Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, Korea
| |
Collapse
|
37
|
Relationship between seizure frequency and number of neuronal and non-neuronal cells in the hippocampus throughout the life of rats with epilepsy. Brain Res 2016; 1634:179-186. [PMID: 26764534 DOI: 10.1016/j.brainres.2015.12.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/11/2015] [Accepted: 12/26/2015] [Indexed: 11/22/2022]
Abstract
The relationship between seizure frequency and cell death has been a subject of controversy. To tackle this issue, we determined the frequency of seizures and the total number of hippocampal cells throughout the life of rats with epilepsy using the pilocarpine model. Seizure frequency varied in animals with epilepsy according to which period of life they were in, with a progressive increase in the number of seizures until 180 days (sixth months) of epileptic life followed by a decrease (330 days-eleventh month) and subsequently stabilization of seizures. Cell counts by means of isotropic fractionation showed a reduction in the number of hippocampal neuronal cells following 30, 90, 180 and 360 days of spontaneous recurrent seizures (SRS) in rats compared to their controls (about 25%-30% of neuronal cell reduction). In addition, animals with 360 days of SRS showed a reduction in the number of neuronal cells when compared with animals with 90 and 180 days of seizures. The total number of hippocampal non-neuronal cells was reduced in rats with epilepsy after 30 days of SRS, but no significant alteration was observed on the 90th, 180th and 360th days. The total number of neuronal cells was negatively correlated with seizure frequency, indicating an association between occurrence of epileptic seizures throughout life and neuronal loss. In sum, our results add novel data to the literature concerning the time-course of SRS and hippocampal cell number throughout epileptic life.
Collapse
|
38
|
Kim JY, Ko AR, Kim JE. P2X7 receptor-mediated PARP1 activity regulates astroglial death in the rat hippocampus following status epilepticus. Front Cell Neurosci 2015; 9:352. [PMID: 26388738 PMCID: PMC4560025 DOI: 10.3389/fncel.2015.00352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) plays a regulatory role in apoptosis, necrosis, and other cellular processes after injury. Recently, we revealed that PARP1 regulates the differential neuronal/astroglial responses to pilocarpine-induced status epilepticus (SE) in the distinct brain regions. In addition, P2X7 receptor (P2X7R), an ATP-gated ion channel, activation accelerates astroglial apoptosis, while it attenuates clasmatodendrosis (lysosome-derived autophagic astroglial death). Therefore, we investigated whether P2X7R regulates regional specific astroglial PARP1 expression/activation in response to SE. In the present study, P2X7R activation exacerbates SE-induced astroglial apoptosis, while P2X7R inhibition attenuates it accompanied by increasing PARP1 activity in the molecular layer of the dentate gyrus following SE. In the CA1 region, however, P2X7R inhibition deteriorates SE-induced clasmatodendrosis via PARP1 activation following SE. Taken together, our findings suggest that P2X7R function may affect SE-induced astroglial death by regulating PARP1 activation/expression in regional-specific manner. Therefore, the selective modulation of P2X7R-mediated PARP1 functions may be a considerable strategy for controls in various types of cell deaths.
Collapse
Affiliation(s)
- Ji Yang Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Okcheon-dong, Chuncheon, South Korea
| | - Ah-Reum Ko
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Okcheon-dong, Chuncheon, South Korea
| | - Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University Okcheon-dong, Chuncheon, South Korea
| |
Collapse
|
39
|
Kim YJ, Kang TC. The role of TRPC6 in seizure susceptibility and seizure-related neuronal damage in the rat dentate gyrus. Neuroscience 2015; 307:215-30. [PMID: 26327362 DOI: 10.1016/j.neuroscience.2015.08.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 11/29/2022]
Abstract
Transient receptor potential canonical channel-6 (TRPC6) forms Ca(2+)-permeable non-selective cation channels in neurons. Although TRPC6 plays an important role in neurite outgrowth and neuronal survival during development, TRPC6 expression profiles available to identify distinctive hippocampal neuronal damage and hippocampal excitability in epilepsy are less defined. As compared to normal animals, TRPC6 expression was down-regulated in chronic epileptic rats showing spontaneous recurrent seizures. TRPC6 knockdown increased seizure susceptibility, excitability ratio and paired-pulse inhibition in the dentate gyrus (DG) of normal animals. Furthermore, TRPC6 knockdown promoted programmed neuronal necrosis in dentate granule cells, but prevented it in CA1 and CA3 neurons following status epilepticus. The present data suggest for the first time that TRPC6 may inhibit seizure susceptibility and neuronal vulnerability in the rat DG.
Collapse
Affiliation(s)
- Y-J Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | - T-C Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon 200-702, South Korea.
| |
Collapse
|
40
|
Ko AR, Kim JY, Hyun HW, Kim JE. Endoplasmic reticulum (ER) stress protein responses in relation to spatio-temporal dynamics of astroglial responses to status epilepticus in rats. Neuroscience 2015; 307:199-214. [PMID: 26335380 DOI: 10.1016/j.neuroscience.2015.08.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022]
Abstract
In the present study, we investigated whether endoplasmic reticulum (ER) stress is associated with neuronal- and astroglial-death in the hippocampus using LiCl-pilocarpine-induced status epilepticus (SE) rat model. Glucose-related protein (GRP) 78 and protein disulfide isomerase (PDI) expressions were transiently increased in CA1 neurons and dentate granule cells, and subsequently decreased in these cells following SE. GRP94 and calnexin (CNX) expression was gradually reduced in CA1 neurons, not in dentate granule cells. Phospho-protein kinase RNA (PKR)-like ER kinase (pPERK), phospho-eukaryotic initiation factor 2α (peIF2A) and CCAAT/enhancer-binding protein homologous protein (CHOP) immunoreactivities were observed in 17%, 12% and 7% of degenerating CA1 neurons, respectively. GRP 78 and PDI expressions were also up-regulated in reactive astrocytes within the CA1-3 regions. In the molecular layer of the dentate gyrus, PDI-positive astrocytes showed TUNEL signal, nuclear apoptosis inducing factor translocation and pPERK/peIF2A/CHOP immunoreactivities. Four weeks after SE, clasmatodendritic astrocytes showed pPERK peIF2A and CNX immunoreactivities without CHOP expression. These findings indicate that SE-induced ER stress may be associated with astroglial apoptosis and autophagic astroglial death in the regional-specific pattern.
Collapse
Affiliation(s)
- A-R Ko
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J Y Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - H-W Hyun
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea
| | - J-E Kim
- Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon, Kangwon-Do 200-702, South Korea.
| |
Collapse
|
41
|
Continuous neurodegeneration and death pathway activation in neurons and glia in an experimental model of severe chronic epilepsy. Neurobiol Dis 2015; 83:54-66. [PMID: 26264964 DOI: 10.1016/j.nbd.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/21/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022] Open
Abstract
Whether seizures might determine the activation of cell death pathways and what could be the relevance of seizure-induced cell death in epilepsy are still highly debated issues. We recently developed an experimental model of acquired focal cortical dysplasia (the MAM-pilocarpine or MP rat) in which the occurrence of status epilepticus--SE--and subsequent seizures induced progressive cellular/molecular abnormalities and neocortical/hippocampal atrophy. Here, we exploited the same model to verify when, where, and how cell death occurred in neurons and glia during epilepsy course. We analyzed Fluoro Jade (FJ) staining and the activation of c-Jun- and caspase-3-dependent pathways during epilepsy, from few hours post-SE up to six months of spontaneous recurrent seizures. FJ staining revealed that cell injury in MP rats was not temporally restricted to SE, but extended throughout the different epileptic stages. The region-specific pattern of FJ staining changed during epilepsy, and FJ(+) neurons became more prominent in the dorsal and ventral hippocampal CA at chronic epilepsy stages. Phospho-c-Jun- and caspase-3-dependent pathways were selectively activated respectively in neurons and glia, at early but even more conspicuously at late chronic stages. Phospho-c-Jun activation was associated with increased cytochrome-c staining, particularly at chronic stages, and the staining pattern of cytochrome-c was suggestive of its release from the mitochondria. Taken together, these data support the content that at least in the MP rat model the recurrence of seizures can also sustain cell death mechanisms, thus continuously contributing to the pathologic process triggered by the occurrence of SE.
Collapse
|
42
|
Duarte-Guterman P, Lieblich SE, Chow C, Galea LAM. Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats. PLoS One 2015; 10:e0129880. [PMID: 26075609 PMCID: PMC4468121 DOI: 10.1371/journal.pone.0129880] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol’s effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.1, 5, 10 μg), G15 (40 μg), G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO). After 30 min, animals received an injection of bromodeoxyuridine (BrdU) and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg) decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie E. Lieblich
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carmen Chow
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liisa A. M. Galea
- Department of Psychology, Program in Neuroscience, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
43
|
Kim SW, Seo M, Kim DS, Kang M, Kim YS, Koh HY, Shin HS. Knockdown of phospholipase C-β1 in the medial prefrontal cortex of male mice impairs working memory among multiple schizophrenia endophenotypes. J Psychiatry Neurosci 2015; 40:78-88. [PMID: 25268789 PMCID: PMC4354821 DOI: 10.1503/jpn.130285] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Decreased expression of phospholipase C-β1 (PLC-β1) has been observed in the brains of patients with schizophrenia, but, to our knowledge, no studies have shown a possible association between this altered PLC-β1 expression and the pathogenesis of schizophrenia. Although PLC-β1-null (PLC-β1(-/-)) mice exhibit multiple endophenotypes of schizophrenia, it remains unclear how regional decreases in PLC-β1 expression in the brain contribute to specific behavioural defects. METHODS We selectively knocked down PLC-β1 in the medial prefrontal cortex (mPFC) using a small hairpin RNA strategy in mice. RESULTS Silencing PLC-β1 in the mPFC resulted in working memory deficits, as assayed using the delayed non-match-to-sample T-maze task. Notably, however, other schizophrenia-related behaviours observed in PLC-β1-/- mice, including phenotypes related to locomotor activity, sociability and sensorimotor gating, were normal in PLC-β1 knockdown mice. LIMITATIONS Phenotypes of PLC-β1 knockdown mice, such as locomotion, anxiety and sensorimotor gating, have already been published in our previous studies. Further, the neural mechanisms underlying the working memory deficit in mice may be different from those in human schizophrenia. CONCLUSION These results indicate that PLC-β1 signalling in the mPFC is required for working memory. Importantly, these results support the notion that the decrease in PLC-β1 expression in the brains of patients with schizophrenia is a pathogenically relevant molecular marker of the disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hee-Sup Shin
- Correspondence to: H.-S. Shin, Center for Cognition and Sociality, Institute for Basic Science (IBS), 70 Yuseong-daero 1689-gil, Yusung-gu, Daejeon 305-811, Republic of Korea;
| |
Collapse
|
44
|
PARP1 activation/expression modulates regional-specific neuronal and glial responses to seizure in a hemodynamic-independent manner. Cell Death Dis 2014; 5:e1362. [PMID: 25101675 PMCID: PMC4454306 DOI: 10.1038/cddis.2014.331] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/10/2014] [Accepted: 07/03/2014] [Indexed: 11/08/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) plays a regulatory role in apoptosis, necrosis and other cellular processes after injury. Status epilepticus (SE) induces neuronal and astroglial death that show regional-specific patterns in the rat hippocampus and piriform cortex (PC). Thus, we investigated whether PARP1 regulates the differential neuronal/glial responses to pilocarpine (PILO)-induced SE in the distinct brain regions. In the present study, both CA1 and CA3 neurons showed PARP1 hyperactivation-dependent neuronal death pathway, whereas PC neurons exhibited PARP1 degradation-mediated neurodegeneration following SE. PARP1 degradation was also observed in astrocytes within the molecular layer of the dentate gyrus. PARP1 induction was detected in CA1-3-reactive astrocytes, as well as in reactive microglia within the PC. Although PARP1 inhibitors attenuated CA1-3 neuronal death and reactive gliosis in the CA1 region, they deteriorated the astroglial death in the molecular layer of the dentate gyrus and in the stratum lucidum of the CA3 region. Ex vivo study showed the similar regional and cellular patterns of PARP1 activation/degradation. Taken together, our findings suggest that the cellular-specific PARP1 activation/degradation may distinctly involve regional-specific neuronal damage, astroglial death and reactive gliosis in response to SE independently of hemodynamics.
Collapse
|
45
|
Sohn EJ, Shin MJ, Kim DW, Ahn EH, Jo HS, Kim DS, Cho SW, Han KH, Park J, Eum WS, Hwang HS, Choi SY. Tat-fused recombinant human SAG prevents dopaminergic neurodegeneration in a MPTP-induced Parkinson's disease model. Mol Cells 2014; 37:226-33. [PMID: 24625574 PMCID: PMC3969043 DOI: 10.14348/molcells.2014.2314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/18/2014] [Accepted: 01/27/2014] [Indexed: 02/03/2023] Open
Abstract
Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium (MPP(+)) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by MPP(+) in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.
Collapse
Affiliation(s)
- Eun Jeong Sohn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 210-702,
Korea
| | - Eun Hee Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 330-090,
Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736,
Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Hyun Sook Hwang
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702,
Korea
| |
Collapse
|
46
|
Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 2014; 21:663-88. [PMID: 24251566 PMCID: PMC4101766 DOI: 10.2174/0929867320666131119152201] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G Biagini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Laboratorio di Epilettologia Sperimentale, Universita di Modena e Reggio Emilia, Via Campi, 287, 41125 Modena, Italy.
| |
Collapse
|
47
|
Rossi AR, Angelo MF, Villarreal A, Lukin J, Ramos AJ. Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus. PLoS One 2013; 8:e78516. [PMID: 24250797 PMCID: PMC3826740 DOI: 10.1371/journal.pone.0078516] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
The lithium-pilocarpine model of epilepsy reproduces in rodents several features of human temporal lobe epilepsy, by inducing an acute status epilepticus (SE) followed by a latency period. It has been proposed that the neuronal network reorganization that occurs during latency determines the subsequent appearance of spontaneous recurrent seizures. The aim of this study was to evaluate neuronal and glial responses during the latency period that follows SE. Given the potential role of astrocytes in the post-SE network reorganization, through the secretion of synaptogenic molecules such as thrombospondins, we also studied the effect of treatment with the α2δ1 thrombospondin receptor antagonist gabapentin. Adult male Wistar rats received 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once SE was achieved, seizures were stopped with 20 mg/kg diazepam. Animals then received 400 mg/kg/day gabapentin or saline for either 4 or 14 days. In vitro experiments were performed in dissociated mixed hippocampal cell culture exposed to glutamate, and subsequently treated with gabapentin or vehicle. During the latency period, the hippocampus and pyriform cortex of SE-animals presented a profuse reactive astrogliosis, with increased GFAP and nestin expression. Gliosis intensity was dependent on the Racine stage attained by the animals and peaked 15 days after SE. Microglia was also reactive after SE, and followed the same pattern. Neuronal degeneration was present in SE-animals, and also depended on the Racine stage and the SE duration. Polysialic-acid NCAM (PSA-NCAM) expression was increased in hippocampal CA-1 and dentate gyrus of SE-animals. Gabapentin treatment was able to reduce reactive gliosis, decrease neuronal loss and normalize PSA-NCAM staining in hippocampal CA-1. In vitro, gabapentin treatment partially prevented the dendritic loss and reactive gliosis caused by glutamate excitotoxicity. Our results show that gabapentin treatment during the latency period after SE protects neurons and normalizes PSA-NCAM probably by direct interaction with neurons and glia.
Collapse
Affiliation(s)
- Alicia Raquel Rossi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Maria Florencia Angelo
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jerónimo Lukin
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
48
|
Oh YJ, Na J, Jeong JH, Park DK, Park KH, Ko JS, Kim DS. Alterations in hyperpolarization-activated cyclic nucleotidegated cation channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus. BMB Rep 2013. [PMID: 23187002 PMCID: PMC4133809 DOI: 10.5483/bmbrep.2012.45.11.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the effects of HCN as potential mediators in the pathogenesis of epilepsy that evoke long-term impaired excitability; the present study was designed to elucidate whether the alterations of HCN expression induced by status epilepticus (SE) is responsible for epileptogenesis. Although HCN1 immunoreactivity was observed in the hippocampus, its immunoreactivities were enhanced at 12 hrs following SE. Although, HCN1 immunoreactivities were reduced in all the hippocampi at 2 weeks, a re-increase in the expression at 2-3 months following SE was observed. In contrast to HCN1, HCN 4 expressions were un-changed, although HCN2 immunoreactive neurons exhibited some changes following SE. Taken together, our findings suggest that altered expressions of HCN1 following SE may be mainly involved in the imbalances of neurotransmissions to hippocampal circuits; thus, it is proposed that HCN1 may play an important role in the epileptogenic period as a compensatory response.
Collapse
Affiliation(s)
- Yun-Jung Oh
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Ohlsson M, Nieto JH, Christe KL, Havton LA. Long-term effects of a lumbosacral ventral root avulsion injury on axotomized motor neurons and avulsed ventral roots in a non-human primate model of cauda equina injury. Neuroscience 2013; 250:129-39. [PMID: 23830908 DOI: 10.1016/j.neuroscience.2013.06.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 06/03/2013] [Accepted: 06/19/2013] [Indexed: 12/27/2022]
Abstract
Here, we have translated from the rat to the non-human primate a unilateral lumbosacral injury as a model for cauda equina injury. In this morphological study, we have investigated retrograde effects of a unilateral L6-S2 ventral root avulsion (VRA) injury as well as the long-term effects of Wallerian degeneration on avulsed ventral roots at 6-10 months post-operatively in four adult male rhesus monkeys. Immunohistochemistry for choline acetyl transferase and glial fibrillary acidic protein demonstrated a significant loss of the majority of the axotomized motoneurons in the affected L6-S2 segments and signs of an associated astrocytic glial response within the ventral horn of the L6 and S1 spinal cord segments. Quantitative analysis of the avulsed ventral roots showed that they exhibited normal size and were populated by a normal number of myelinated axons. However, the myelinated axons in the avulsed ventral roots were markedly smaller in caliber compared to the fibers of the intact contralateral ventral roots, which served as controls. Ultrastructural studies confirmed the presence of small myelinated axons and a population of unmyelinated axons within the avulsed roots. In addition, collagen fibers were readily identified within the endoneurium of the avulsed roots. In summary, a lumbosacral VRA injury resulted in retrograde motoneuron loss and astrocytic glial activation in the ventral horn. Surprisingly, the Wallerian degeneration of motor axons in the avulsed ventral roots was followed by a repopulation of the avulsed roots by small myelinated and unmyelinated fibers. We speculate that the small axons may represent sprouting or axonal regeneration by primary afferents or autonomic fibers.
Collapse
Affiliation(s)
- M Ohlsson
- Department of Clinical Neuroscience, Division of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Anesthesiology & Perioperative Care, University of California at Irvine, Irvine, CA, USA
| | | | | | | |
Collapse
|
50
|
The effect of levetiracetam on status epilepticus-induced neuronal death in the rat hippocampus. Seizure 2013; 22:368-77. [PMID: 23490457 DOI: 10.1016/j.seizure.2013.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/21/2013] [Accepted: 02/11/2013] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Levetiracetam has been reported to be well tolerated and effective in status epilepticus (SE) refractory to benzodiazepine. Because of little preclinical or clinical data concerning the outcomes of LEV in SE-induced neuronal death and vasogenic edema, we investigated the effect of LEV on SE-induced injury in comparison to diazepam (DZP), and valproate (VPA). METHODS Two hours after pilocarpine-induced SE, rats were given one of the following drugs; (1) DZP, (2) LEV, (3) VPA, (4) DZP+LEV, (5) DZP+VPA, and (6) DZP+oxiracetam. Three-four days after SE, neuronal damage and vasogenic edema were evaluated by Fluoro-Jade B (FJB) staining and serum-protein extravasation, respectively. RESULTS LEV (≥50 mg/kg) was effective to protect neuronal damage from SE in comparison to DZP and VPA. LEV as an add-on drug with DZP could not alleviate neuronal damage as compared to LEV alone. VPA (≥100 mg/kg) was effective to protect neuronal damage from SE, as compared to DZP. VPA as an add-on drug with DZP reduced neuronal damage, as compared to DZP alone. CONCLUSION These findings suggest that LEV may negatively interact with DZP, and be more effective to prevent SE-induced neuronal death as a first line drug than as a second line therapy after BDZ treatment.
Collapse
|