1
|
Milanick W, Li J, Thomas CI, Al-Yaari M, Guerrero-Given D, Kamasawa N, Young SM. Presynaptic α 2δs specify synaptic gain, not synaptogenesis, in the mammalian brain. Neuron 2025:S0896-6273(25)00296-X. [PMID: 40367942 DOI: 10.1016/j.neuron.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/13/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
The α2δs are a family of extracellular synaptic molecules that are auxiliary subunits of voltage-gated Ca2+ channel (CaV) complexes. They are linked to brain disorders and are drug targets. The α2δs are implicated in controlling synapse development and function through distinct CaV-dependent and CaV-independent pathways. However, the mechanisms of action remain enigmatic since synapses contain mixtures of α2δ isoforms in the pre- and postsynaptic compartments. We developed a triple conditional knockout mouse model and demonstrated the combined selective presynaptic ablation of α2δs in vivo in a developing mammalian glutamatergic synapse. We identified presynaptic α2δs as positive regulators of Munc13-1 levels, an essential neurotransmitter release protein. We found that mammalian synapse development, presynaptic CaV2.1 organization, and the transsynaptic alignment of presynaptic release sites and postsynaptic glutamate receptors are independent of presynaptic α2δs. Therefore, our results define presynaptic α2δ regulatory roles and suggest a new α2δ role in controlling synaptic strength and plasticity.
Collapse
Affiliation(s)
- William Milanick
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Jianing Li
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Connon I Thomas
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Mohammed Al-Yaari
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Debbie Guerrero-Given
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Naomi Kamasawa
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Samuel M Young
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, Department of Pharmacology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Tetzlaff SK, Reyhan E, Layer N, Bengtson CP, Heuer A, Schroers J, Faymonville AJ, Langeroudi AP, Drewa N, Keifert E, Wagner J, Soyka SJ, Schubert MC, Sivapalan N, Pramatarov RL, Buchert V, Wageringel T, Grabis E, Wißmann N, Alhalabi OT, Botz M, Bojcevski J, Campos J, Boztepe B, Scheck JG, Conic SH, Puschhof MC, Villa G, Drexler R, Zghaibeh Y, Hausmann F, Hänzelmann S, Karreman MA, Kurz FT, Schröter M, Thier M, Suwala AK, Forsberg-Nilsson K, Acuna C, Saez-Rodriguez J, Abdollahi A, Sahm F, Breckwoldt MO, Suchorska B, Ricklefs FL, Heiland DH, Venkataramani V. Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing. Cell 2025; 188:390-411.e36. [PMID: 39644898 DOI: 10.1016/j.cell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Glioblastomas are invasive brain tumors with high therapeutic resistance. Neuron-to-glioma synapses have been shown to promote glioblastoma progression. However, a characterization of tumor-connected neurons has been hampered by a lack of technologies. Here, we adapted retrograde tracing using rabies viruses to investigate and manipulate neuron-tumor networks. Glioblastoma rapidly integrated into neural circuits across the brain, engaging in widespread functional communication, with cholinergic neurons driving glioblastoma invasion. We uncovered patient-specific and tumor-cell-state-dependent differences in synaptogenic gene expression associated with neuron-tumor connectivity and subsequent invasiveness. Importantly, radiotherapy enhanced neuron-tumor connectivity by increased neuronal activity. In turn, simultaneous neuronal activity inhibition and radiotherapy showed increased therapeutic effects, indicative of a role for neuron-to-glioma synapses in contributing to therapeutic resistance. Lastly, rabies-mediated genetic ablation of tumor-connected neurons halted glioblastoma progression, offering a viral strategy to tackle glioblastoma. Together, this study provides a framework to comprehensively characterize neuron-tumor networks and target glioblastoma.
Collapse
Affiliation(s)
- Svenja K Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas Layer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anton J Faymonville
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Nina Drewa
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elijah Keifert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Wagner
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella J Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Marc C Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nirosan Sivapalan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Rangel L Pramatarov
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Wageringel
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Grabis
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Botz
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jovana Bojcevski
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Berin Boztepe
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas G Scheck
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Sascha Henry Conic
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Maria C Puschhof
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Giulia Villa
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix T Kurz
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Neuroradiology, University Hospital Geneva, Geneva, Switzerland
| | - Manuel Schröter
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Marc Thier
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Henrik Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Grün F, van den Bergh N, Klevanski M, Verma MS, Bühler B, Nienhaus GU, Kuner T, Jäschke A, Sunbul M. Super-Resolved Protein Imaging Using Bifunctional Light-Up Aptamers. Angew Chem Int Ed Engl 2024; 63:e202412810. [PMID: 39115976 PMCID: PMC11627133 DOI: 10.1002/anie.202412810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Efficient labeling methods for protein visualization with minimal tag size and appropriate photophysical properties are required for single-molecule localization microscopy (SMLM), providing insights into the organization and interactions of biomolecules in cells at the molecular level. Among the fluorescent light-up aptamers (FLAPs) originally developed for RNA imaging, RhoBAST stands out due to its remarkable brightness, photostability, fluorogenicity, and rapid exchange kinetics, enabling super-resolved imaging with high localization precision. Here, we expand the applicability of RhoBAST to protein imaging by fusing it to protein-binding aptamers. The versatility of such bifunctional aptamers is demonstrated by employing a variety of protein-binding aptamers and different FLAPs. Moreover, fusing RhoBAST with the GFP-binding aptamer AP3 facilitates high- and super-resolution imaging of GFP-tagged proteins, which is particularly valuable in view of the widespread availability of plasmids and stable cell lines expressing proteins fused to GFP. The bifunctional aptamers compare favorably with standard antibody-based immunofluorescence protocols, as they are 7-fold smaller than antibody conjugates and exhibit higher bleaching-resistance. We demonstrate the effectiveness of our approach in super-resolution microscopy in secondary mammalian cell lines and primary neurons by RhoBAST-PAINT, an SMLM protein imaging technique that leverages the transient binding of the fluorogenic rhodamine dye SpyRho to RhoBAST.
Collapse
Affiliation(s)
- Franziska Grün
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
| | - Niklas van den Bergh
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
- Department of Nuclear MedicineHeidelberg University Hospital69120HeidelbergGermany
| | - Maja Klevanski
- Department of Functional NeuroanatomyHeidelberg University69120HeidelbergGermany
| | - Mrigank S. Verma
- Institute of Applied Physics (APH)Karlsruhe Institute of Technology76131KarlsruheGermany
- Department of Applied Physics and Science EducationEindhoven University of Technology5612APEindhovenNetherlands
| | - Bastian Bühler
- Department of Chemical BiologyMax Planck Institute for Medical Research69120HeidelbergGermany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics (APH)Karlsruhe Institute of Technology76131KarlsruheGermany
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Institute of Biological and Chemical Systems (IBCS)Karlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
- Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
| | - Thomas Kuner
- Department of Functional NeuroanatomyHeidelberg University69120HeidelbergGermany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB)Heidelberg University69120HeidelbergGermany
| |
Collapse
|
4
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Schubert MC, Soyka SJ, Tamimi A, Maus E, Schroers J, Wißmann N, Reyhan E, Tetzlaff SK, Yang Y, Denninger R, Peretzke R, Beretta C, Drumm M, Heuer A, Buchert V, Steffens A, Walshon J, McCortney K, Heiland S, Bendszus M, Neher P, Golebiewska A, Wick W, Winkler F, Breckwoldt MO, Kreshuk A, Kuner T, Horbinski C, Kurz FT, Prevedel R, Venkataramani V. Deep intravital brain tumor imaging enabled by tailored three-photon microscopy and analysis. Nat Commun 2024; 15:7383. [PMID: 39256378 PMCID: PMC11387418 DOI: 10.1038/s41467-024-51432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Intravital 2P-microscopy enables the longitudinal study of brain tumor biology in superficial mouse cortex layers. Intravital microscopy of the white matter, an important route of glioblastoma invasion and recurrence, has not been feasible, due to low signal-to-noise ratios and insufficient spatiotemporal resolution. Here, we present an intravital microscopy and artificial intelligence-based analysis workflow (Deep3P) that enables longitudinal deep imaging of glioblastoma up to a depth of 1.2 mm. We find that perivascular invasion is the preferred invasion route into the corpus callosum and uncover two vascular mechanisms of glioblastoma migration in the white matter. Furthermore, we observe morphological changes after white matter infiltration, a potential basis of an imaging biomarker during early glioblastoma colonization. Taken together, Deep3P allows for a non-invasive intravital investigation of brain tumor biology and its tumor microenvironment at subcortical depths explored, opening up opportunities for studying the neuroscience of brain tumors and other model systems.
Collapse
Affiliation(s)
- Marc Cicero Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella Judith Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amr Tamimi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Svenja Kristin Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Yang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Denninger
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Robin Peretzke
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlo Beretta
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Michael Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Alicia Steffens
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Jordain Walshon
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Neher
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Felix Tobias Kurz
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany.
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
6
|
Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wißmann N, Botz M, Soyka SJ, Beretta CA, Pramatarov RL, Fankhauser L, Garofano L, Freudenberg A, Wagner J, Tanev DI, Ratliff M, Xie R, Kessler T, Hoffmann DC, Hai L, Dörflinger Y, Hoppe S, Yabo YA, Golebiewska A, Niclou SP, Sahm F, Lasorella A, Slowik M, Döring L, Iavarone A, Wick W, Kuner T, Winkler F. Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell 2022; 185:2899-2917.e31. [PMID: 35914528 DOI: 10.1016/j.cell.2022.06.054] [Citation(s) in RCA: 286] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/10/2022] [Accepted: 06/28/2022] [Indexed: 12/29/2022]
Abstract
Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.
Collapse
Affiliation(s)
- Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Yvonne Yang
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Cicero Schubert
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ekin Reyhan
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Svenja Kristin Tetzlaff
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Niklas Wißmann
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Botz
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Stella Judith Soyka
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Carlo Antonio Beretta
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Rangel Lyubomirov Pramatarov
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Laura Fankhauser
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10027, USA
| | | | - Julia Wagner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Dimitar Ivanov Tanev
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Neurosurgery Clinic, University Hospital Mannheim, 68167 Mannheim, Germany
| | - Ruifan Xie
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tobias Kessler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dirk C Hoffmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Ling Hai
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yvette Dörflinger
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Simone Hoppe
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Lasorella
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10027, USA
| | - Martin Slowik
- Institute of Mathematics, University of Mannheim, 68131 Mannheim, Germany
| | - Leif Döring
- Institute of Mathematics, University of Mannheim, 68131 Mannheim, Germany
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10027, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, 69120 Heidelberg, Germany.
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
8
|
Ikuta R, Hamada S. The presynaptic active zone protein Bassoon as a marker for synapses between Type III cells and afferent nerve fibers in taste buds. Chem Senses 2022; 47:6619055. [PMID: 35762653 DOI: 10.1093/chemse/bjac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Taste buds are receptor organs for gustation. Two types of taste receptor cells have been identified in taste buds: Type II and Type III cells. Type III cells connect with afferent fibers through conventional chemical synapses. In the present study, we used immunocytochemistry to examine the distribution pattern of Bassoon, a scaffolding protein of the cytomatrix at the active zones of conventional synapses in mouse taste buds. Bassoon was predominantly detected as small puncta in Type III cells. Bassoon-immunoreactive puncta were observed in proximity to or partially overlapping with intragemmal nerve fibers. The distribution pattern of Bassoon in taste buds was similar among circumvallate, fungiform, and foliate taste buds. Immunoelectron microscopy showed Bassoon at the active zones of the conventional synapses of Type III cells in circumvallate taste buds. The present results demonstrate that Bassoon is a marker for synapses between Type III cells and afferent fibers in mouse taste buds.
Collapse
Affiliation(s)
- Rio Ikuta
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| | - Shun Hamada
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, 1-1-1, Kasumigaoka, Higashi-ku, Fukuoka 813-8529, Japan
| |
Collapse
|
9
|
Narayanasamy KK, Stojic A, Li Y, Sass S, Hesse MR, Deussner-Helfmann NS, Dietz MS, Kuner T, Klevanski M, Heilemann M. Visualizing Synaptic Multi-Protein Patterns of Neuronal Tissue With DNA-Assisted Single-Molecule Localization Microscopy. Front Synaptic Neurosci 2021; 13:671288. [PMID: 34220481 PMCID: PMC8247585 DOI: 10.3389/fnsyn.2021.671288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023] Open
Abstract
The development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350–400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy (SMLM). In a single labeling step, antibodies conjugated with short DNA oligonucleotides visualized multiple targets by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. This approach avoids potential effects on structural integrity when using multiple rounds of immunolabeling and eliminates chromatic aberration, because all targets are imaged using a single excitation laser wavelength. This method proved robust for multi-target imaging in semi-thin tissue sections with a lateral resolution better than 25 nm, paving the way toward structural cell biology with single-molecule SRM.
Collapse
Affiliation(s)
- Kaarjel K Narayanasamy
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Aleksandar Stojic
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Yunqing Li
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Steffen Sass
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Marina R Hesse
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nina S Deussner-Helfmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Maja Klevanski
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mike Heilemann
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
Yao S, Zhou Q, Li S, Takahata T. Immunoreactivity of Vesicular Glutamate Transporter 2 Corresponds to Cytochrome Oxidase-Rich Subcompartments in the Visual Cortex of Squirrel Monkeys. Front Neuroanat 2021; 15:629473. [PMID: 33679337 PMCID: PMC7930324 DOI: 10.3389/fnana.2021.629473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons. In this study, we systematically compared the labeling patterns observed between CO histochemistry and immunohistochemistry (IHC) for VGLUT2 from the system to microarchitecture levels in the visual cortex of squirrel monkeys. The two staining patterns bore striking similarities at all levels of the visual cortex, including the honeycomb structure of V1 layer 3Bβ (Brodmann's layer 4A), the patchy architecture in the deep layers of V1, the superficial blobs of V1, and the V2 stripes. The microarchitecture was more evident in VGLUT2 IHC, as expected. VGLUT2 protein expression that produced specific IHC labeling is thought to originate from the thalamus since the lateral geniculate nucleus (LGN) and the pulvinar complex both show high expression levels of VGLUT2 mRNA, but cortical neurons do not. These observations support our theory that the subcompartments revealed by CO histochemistry represent the distribution of thalamo-cortical afferent terminals in the primate visual cortex.
Collapse
Affiliation(s)
- Songping Yao
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuiyu Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.,Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Sierksma MC, Slotman JA, Houtsmuller AB, Borst JGG. Structure-function relation of the developing calyx of Held synapse in vivo. J Physiol 2020; 598:4603-4619. [PMID: 33439501 PMCID: PMC7689866 DOI: 10.1113/jp279976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS During development the giant, auditory calyx of Held forms a one-to-one connection with a principal neuron of the medial nucleus of the trapezoid body. While anatomical studies described that most of the target cells are temporarily contacted by multiple calyces, multi-calyceal innervation was only sporadically observed in in vivo recordings, suggesting a structure-function discrepancy. We correlated synaptic strength of inputs, identified in in vivo recordings, with post hoc labelling of the recorded neuron and synaptic terminals containing vesicular glutamate transporters (VGluT). During development only one input increased to the level of the calyx of Held synapse, and its strength correlated with the large VGluT cluster contacting the postsynaptic soma. As neither competing strong inputs nor multiple large VGluT clusters on a single cell were observed, our findings did not indicate a structure-function discrepancy. ABSTRACT In adult rodents, a principal neuron in the medial nucleus of the trapezoid (MNTB) is generally contacted by a single, giant axosomatic terminal called the calyx of Held. How this one-on-one relation is established is still unknown, but anatomical evidence suggests that during development principal neurons are innervated by multiple calyces, which may indicate calyceal competition. However, in vivo electrophysiological recordings from principal neurons indicated that only a single strong synaptic connection forms per cell. To test whether a mismatch exists between synaptic strength and terminal size, we compared the strength of synaptic inputs with the morphology of the synaptic terminals. In vivo whole-cell recordings of the MNTB neurons from newborn Wistar rats of either sex were made while stimulating their afferent axons, allowing us to identify multiple inputs. The strength of the strongest input increased to calyceal levels in a few days across cells, while the strength of the second strongest input was stable. The recorded cells were subsequently immunolabelled for vesicular glutamate transporters (VGluT) to reveal axosomatic terminals with structured-illumination microscopy. Synaptic strength of the strongest input was correlated with the contact area of the largest VGluT cluster at the soma (r = 0.8), and no indication of a mismatch between structure and strength was observed. Together, our data agree with a developmental scheme in which one input strengthens and becomes the calyx of Held, but not with multi-calyceal competition.
Collapse
Affiliation(s)
- Martijn C Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands.,Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, F-75012, France
| | - Johan A Slotman
- Department of Pathology-Optical Imaging Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology-Optical Imaging Centre, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| | - J Gerard G Borst
- Department of Neuroscience, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, 3000 CA, The Netherlands
| |
Collapse
|
12
|
Murray KD, Liu XB, King AN, Luu JD, Cheng HJ. Age-Related Changes in Synaptic Plasticity Associated with Mossy Fiber Terminal Integration during Adult Neurogenesis. eNeuro 2020; 7:ENEURO.0030-20.2020. [PMID: 32332082 PMCID: PMC7240290 DOI: 10.1523/eneuro.0030-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 12/17/2022] Open
Abstract
Mouse hippocampus retains the capacity for neurogenesis throughout lifetime, but such plasticity decreases with age. Adult hippocampal neurogenesis (AHN) involves the birth, maturation, and synaptic integration of newborn granule cells (GCs) into preexisting hippocampal circuitry. While functional integration onto adult-born GCs has been extensively studied, maturation of efferent projections onto CA3 pyramidal cells is less understood, particularly in aged brain. Here, using combined light and reconstructive electron microscopy (EM), we describe the maturation of mossy fiber bouton (MFB) connectivity with CA3 pyramidal cells in young adult and aged mouse brain. We found mature synaptic contacts of newborn GCs were formed in both young and aged brains. However, the dynamics of their spatiotemporal development and the cellular process by which these cells functionally integrated over time were different. In young brain newborn GCs either formed independent nascent MFB synaptic contacts or replaced preexisting MFBs, but these contacts were pruned over time to a mature state. In aged brain only replacement of preexisting MFBs was observed and new contacts were without evidence of pruning. These data illustrate that functional synaptic integration of AHN occurs in young adult and aged brain, but with distinct dynamics. They suggest elimination of preexisting connectivity is required for the integration of adult-born GCs in aged brain.
Collapse
Affiliation(s)
- Karl D Murray
- Center for Neuroscience
- Department of Psychiatry and Behavioral Neuroscience
| | | | | | | | - Hwai-Jong Cheng
- Center for Neuroscience
- Department of Neurobiology, Physiology and behavior
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, CA 95618
| |
Collapse
|
13
|
Fluorescence-Based Quantitative Synapse Analysis for Cell Type-Specific Connectomics. eNeuro 2019; 6:ENEURO.0193-19.2019. [PMID: 31548370 PMCID: PMC6873163 DOI: 10.1523/eneuro.0193-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Anatomical methods for determining cell type-specific connectivity are essential to inspire and constrain our understanding of neural circuit function. We developed genetically-encoded reagents for fluorescence-synapse labeling and connectivity analysis in brain tissue, using a fluorogen-activating protein (FAP)-coupled or YFP-coupled, postsynaptically-localized neuroligin-1 (NL-1) targeting sequence (FAP/YFPpost). FAPpost expression did not alter mEPSC or mIPSC properties. Sparse AAV-mediated expression of FAP/YFPpost with the cell-filling, red fluorophore dTomato (dTom) enabled high-throughput, compartment-specific detection of putative synapses across diverse neuron types in mouse somatosensory cortex. We took advantage of the bright, far-red emission of FAPpost puncta for multichannel fluorescence alignment of dendrites, FAPpost puncta, and presynaptic neurites in transgenic mice with saturated labeling of parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP)-expressing neurons using Cre-reporter driven expression of YFP. Subtype-specific inhibitory connectivity onto layer 2/3 (L2/3) neocortical pyramidal (Pyr) neurons was assessed using automated puncta detection and neurite apposition. Quantitative and compartment-specific comparisons show that PV inputs are the predominant source of inhibition at both the soma and the dendrites and were particularly concentrated at the primary apical dendrite. SST inputs were interleaved with PV inputs at all secondary-order and higher-order dendritic branches. These fluorescence-based synapse labeling reagents can facilitate large-scale and cell-type specific quantitation of changes in synaptic connectivity across development, learning, and disease states.
Collapse
|
14
|
Presynaptic Mitochondria Volume and Abundance Increase during Development of a High-Fidelity Synapse. J Neurosci 2019; 39:7994-8012. [PMID: 31455662 DOI: 10.1523/jneurosci.0363-19.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
The calyx of Held, a large glutamatergic presynaptic terminal in the auditory brainstem undergoes developmental changes to support the high action-potential firing rates required for auditory information encoding. In addition, calyx terminals are morphologically diverse, which impacts vesicle release properties and synaptic plasticity. Mitochondria influence synaptic plasticity through calcium buffering and are crucial for providing the energy required for synaptic transmission. Therefore, it has been postulated that mitochondrial levels increase during development and contribute to the morphological-functional diversity in the mature calyx. However, the developmental profile of mitochondrial volumes and subsynaptic distribution at the calyx of Held remains unclear. To provide insight on this, we developed a helper-dependent adenoviral vector that expresses the genetically encoded peroxidase marker for mitochondria, mito-APEX2, at the mouse calyx of Held. We developed protocols to detect labeled mitochondria for use with serial block face scanning electron microscopy to carry out semiautomated segmentation of mitochondria, high-throughput whole-terminal reconstruction, and presynaptic ultrastructure in mice of either sex. Subsequently, we measured mitochondrial volumes and subsynaptic distributions at the immature postnatal day (P)7 and the mature (P21) calyx. We found an increase of mitochondria volumes in terminals and axons from P7 to P21 but did not observe differences between stalk and swelling subcompartments in the mature calyx. Based on these findings, we propose that mitochondrial volumes and synaptic localization developmentally increase to support high firing rates required in the initial stages of auditory information processing.SIGNIFICANCE STATEMENT Elucidating the developmental processes of auditory brainstem presynaptic terminals is critical to understanding auditory information encoding. Additionally, morphological-functional diversity at these terminals is proposed to enhance coding capacity. Mitochondria provide energy for synaptic transmission and can buffer calcium, impacting synaptic plasticity; however, their developmental profile to ultimately support the energetic demands of synapses following the onset of hearing remains unknown. Therefore, we created a helper-dependent adenoviral vector with the mitochondria-targeting peroxidase mito-APEX2 and expressed it at the mouse calyx of Held. Volumetric reconstructions of serial block face electron microscopy data of immature and mature labeled calyces reveal that mitochondrial volumes are increased to support high firing rates upon maturity.
Collapse
|
15
|
Fekete A, Nakamura Y, Yang YM, Herlitze S, Mark MD, DiGregorio DA, Wang LY. Underpinning heterogeneity in synaptic transmission by presynaptic ensembles of distinct morphological modules. Nat Commun 2019; 10:826. [PMID: 30778063 PMCID: PMC6379440 DOI: 10.1038/s41467-019-08452-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Synaptic heterogeneity is widely observed but its underpinnings remain elusive. We addressed this issue using mature calyx of Held synapses whose numbers of bouton-like swellings on stalks of the nerve terminals inversely correlate with release probability (Pr). We examined presynaptic Ca2+ currents and transients, topology of fluorescently tagged knock-in Ca2+ channels, and Ca2+ channel-synaptic vesicle (SV) coupling distance using Ca2+ chelator and inhibitor of septin cytomatrix in morphologically diverse synapses. We found that larger clusters of Ca2+ channels with tighter coupling distance to SVs elevate Pr in stalks, while smaller clusters with looser coupling distance lower Pr in swellings. Septin is a molecular determinant of the differences in coupling distance. Supported by numerical simulations, we propose that varying the ensemble of two morphological modules containing distinct Ca2+ channel-SV topographies diversifies Pr in the terminal, thereby establishing a morpho-functional continuum that expands the coding capacity within a single synapse population.
Collapse
Affiliation(s)
- Adam Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yukihiro Nakamura
- Department of Pharmacology, Jikei University School of Medicine, Nishishinbashi, Minato-ku, Tokyo, 1058461, Japan
| | - Yi-Mei Yang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biomedical Sciences, University of Minnesota Medical School, 1035 University Drive, Duluth, MN, 55812, USA
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780, Bochum, Germany
| | - Melanie D Mark
- Department of General Zoology and Neurobiology, Ruhr-University Bochum, Universitätsstrasse 150, D-44780, Bochum, Germany
| | - David A DiGregorio
- Unit of Dynamic Neuronal Imaging, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3571, Genes, Synapses and Cognition, Institut Pasteur, 25 rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Lu-Yang Wang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
16
|
Takahata T, Patel NB, Balaram P, Chino YM, Kaas JH. Long-term histological changes in the macaque primary visual cortex and the lateral geniculate nucleus after monocular deprivation produced by early restricted retinal lesions and diffuser induced form deprivation. J Comp Neurol 2018; 526:2955-2972. [PMID: 30004587 DOI: 10.1002/cne.24494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 06/02/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022]
Abstract
Ocular dominance (OD) plasticity has been extensively studied in various mammalian species. While robust OD shifts are typically observed after monocular eyelid suture, relatively poor OD plasticity is observed for early eye removal or after tetrodotoxin (TTX) injections in mice. Hence, abnormal binocular signal interactions in the visual cortex may play a critical role in eliciting OD plasticity. Here, we examined the histochemical changes in the lateral geniculate nucleus (LGN) and the striate cortex (V1) in macaque monkeys that experienced two different monocular sensory deprivations in the same eye beginning at 3 weeks of age: restricted laser lesions in macular or peripheral retina and form deprivation induced by wearing a diffuser lens during the critical period. The monkeys were subsequently reared for 5 years under a normal visual environment. In the LGN, atrophy of neurons and a dramatic increase of GFAP expression were observed in the lesion projection zones (LPZs). In V1, although no obvious shift of the LPZ border was found, the ocular dominance columns (ODCs) for the lesioned eye shrunk and those for the intact eye expanded over the entirety of V1. This ODC size change was larger in the area outside the LPZ and in the region inside the LPZ near the border compared to that in the LPZ center. These developmental changes may reflect abnormal binocular interactions in V1 during early infancy. Our observations provide insights into the nature of degenerative and plastic changes in the LGN and V1 following early chronic monocular sensory deprivations.
Collapse
Affiliation(s)
- Toru Takahata
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Nimesh B Patel
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts
| | - Yuzo M Chino
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, Texas
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
17
|
Singh M, Denny H, Smith C, Granados J, Renden R. Presynaptic loss of dynamin-related protein 1 impairs synaptic vesicle release and recycling at the mouse calyx of Held. J Physiol 2018; 596:6263-6287. [PMID: 30285293 DOI: 10.1113/jp276424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS This study characterizes the mechanisms underlying defects in synaptic transmission when dynamin-related protein 1 (DRP1) is genetically eliminated. Viral-mediated knockout of DRP1 from the presynaptic terminal at the mouse calyx of Held increased initial release probability, reduced the size of the synaptic vesicle recycling pool and impaired synaptic vesicle recycling. Transmission defects could be partially restored by increasing the intracellular calcium buffering capacity with EGTA-AM, implying close coupling of Ca2+ channels to synaptic vesicles was compromised. Acute restoration of ATP to physiological levels in the presynaptic terminal did not reverse the synaptic defects. Loss of DRP1 impairs mitochondrial morphology in the presynaptic terminal, which in turn seems to arrest synaptic maturation. ABSTRACT Impaired mitochondrial biogenesis and function is implicated in many neurodegenerative diseases, and likely affects synaptic neurotransmission prior to cellular loss. Dynamin-related protein 1 (DRP1) is essential for mitochondrial fission and is disrupted in neurodegenerative disease. In this study, we used the mouse calyx of Held synapse as a model to investigate the impact of presynaptic DRP1 loss on synaptic vesicle (SV) recycling and sustained neurotransmission. In vivo viral expression of Cre recombinase in ventral cochlear neurons of floxed-DRP1 mice generated a presynaptic-specific DRP1 knockout (DRP1-preKO), where the innervated postsynaptic cell was unperturbed. Confocal reconstruction of the calyx terminal suggested SV clusters and mitochondrial content were disrupted, and presynaptic terminal volume was decreased. Using postsynaptic voltage-clamp recordings, we found that DRP1-preKO synapses had larger evoked responses at low frequency stimulation. DRP1-preKO synapses also had profoundly altered short-term plasticity, due to defects in SV recycling. Readily releasable pool size, estimated with high-frequency trains, was dramatically reduced in DRP1-preKO synapses, suggesting an important role for DRP1 in maintenance of release-competent SVs at the presynaptic terminal. Presynaptic Ca2+ accumulation in the terminal was also enhanced in DRP1-preKO synapses. Synaptic transmission defects could be partially rescued with EGTA-AM, indicating close coupling of Ca2+ channels to SV distance normally found in mature terminals may be compromised by DRP1-preKO. Using paired recordings of the presynaptic and postsynaptic compartments, recycling defects could not be reversed by acute dialysis of ATP into the calyx terminals. Taken together, our results implicate a requirement for mitochondrial fission to coordinate postnatal synapse maturation.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Henry Denny
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Christina Smith
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Jorge Granados
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| |
Collapse
|
18
|
Scarnati MS, Kataria R, Biswas M, Paradiso KG. Active presynaptic ribosomes in the mammalian brain, and altered transmitter release after protein synthesis inhibition. eLife 2018; 7:e36697. [PMID: 30375975 PMCID: PMC6231766 DOI: 10.7554/elife.36697] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022] Open
Abstract
Presynaptic neuronal activity requires the localization of thousands of proteins that are typically synthesized in the soma and transported to nerve terminals. Local translation for some dendritic proteins occurs, but local translation in mammalian presynaptic nerve terminals is difficult to demonstrate. Here, we show an essential ribosomal component, 5.8S rRNA, at a glutamatergic nerve terminal in the mammalian brain. We also show active translation in nerve terminals, in situ, in brain slices demonstrating ongoing presynaptic protein synthesis in the mammalian brain. Shortly after inhibiting translation, the presynaptic terminal exhibits increased spontaneous release, an increased paired pulse ratio, an increased vesicle replenishment rate during stimulation trains, and a reduced initial probability of release. The rise and decay rates of postsynaptic responses were not affected. We conclude that ongoing protein synthesis can limit excessive vesicle release which reduces the vesicle replenishment rate, thus conserving the energy required for maintaining synaptic transmission.
Collapse
Affiliation(s)
- Matthew S Scarnati
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Rahul Kataria
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Mohana Biswas
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| | - Kenneth G Paradiso
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayUnited States
| |
Collapse
|
19
|
Nunes D, Kuner T. Axonal sodium channel NaV1.2 drives granule cell dendritic GABA release and rapid odor discrimination. PLoS Biol 2018; 16:e2003816. [PMID: 30125271 PMCID: PMC6117082 DOI: 10.1371/journal.pbio.2003816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
Dendrodendritic synaptic interactions between olfactory bulb mitral and granule cells represent a key neuronal mechanism of odor discrimination. Dendritic release of gamma-aminobutyric acid (GABA) from granule cells contributes to stimulus-dependent, rapid, and accurate odor discrimination, yet the physiological mechanisms governing this release and its behavioral relevance are unknown. Here, we show that granule cells express the voltage-gated sodium channel α-subunit NaV1.2 in clusters distributed throughout the cell surface including dendritic spines. Deletion of NaV1.2 in granule cells abolished spiking and GABA release as well as inhibition of synaptically connected mitral cells (MCs). As a consequence, mice required more time to discriminate highly similar odorant mixtures, while odor discrimination learning remained unaffected. In conclusion, we show that expression of NaV1.2 in granule cells is crucial for physiological dendritic GABA release and rapid discrimination of similar odorants with high accuracy. Hence, our data indicate that neurotransmitter-releasing dendritic spines function just like axon terminals. In axonal nerve terminals, neurotransmitter release is triggered by a localized Ca2+ nanodomain generated by voltage-gated calcium channels in response to an action potential, which in turn is mediated by voltage-gated sodium channels. Dendritic neurotransmitter release has been thought to work differently, mainly depending on Ca2+ entering directly through N-methyl-D-aspartate (NMDA) receptors, a subtype of ligand-gated ion channel. To further investigate how dendritic neurotransmitter is released, we studied granule cells in the olfactory bulb of mice, which establish inhibitory dendrodendritic synapses with mitral cells. We show that granule cells express voltage-gated sodium channels predominantly localized in dendrites and spines. Down-regulation of these channels precludes action potential firing in granule cells and strongly reduces mitral cell inhibition. Behaviorally, these mice require more time to discriminate highly similar odorants at maximal accuracy. Therefore, the inhibition of mitral cells relies on neurotransmitter released from the dendrites of granule cells by a mechanism that resembles axonal neurotransmitter release much more than previously thought.
Collapse
Affiliation(s)
- Daniel Nunes
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| | - Thomas Kuner
- Functional Neuroanatomy Department, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- * E-mail: (DN); (TK)
| |
Collapse
|
20
|
Singh M, Miura P, Renden R. Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiol Aging 2018; 67:108-119. [PMID: 29656010 PMCID: PMC5955853 DOI: 10.1016/j.neurobiolaging.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Hearing acuity and sound localization are affected by aging and may contribute to cognitive dementias. Although loss of sensorineural conduction is well documented to occur with age, little is known regarding short-term synaptic plasticity in central auditory nuclei. Age-related changes in synaptic transmission properties were evaluated at the mouse calyx of Held, a sign-inverting relay synapse in the circuit for sound localization, in juvenile adults (1 month old) and late middle-aged (18-21 months old) mice. Synaptic timing and short-term plasticity were severely disrupted in older mice. Surprisingly, acetyl-l-carnitine (ALCAR), an anti-inflammatory agent that facilitates mitochondrial function, fully reversed synaptic transmission delays and defects in short-term plasticity in aged mice to reflect transmission similar to that seen in juvenile adults. These findings support ALCAR supplementation as an adjuvant to improve short-term plasticity and potentially central nervous system performance in animals compromised by age and/or neurodegenerative disease.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
21
|
Parthier D, Kuner T, Körber C. The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held. J Physiol 2018; 596:1485-1499. [PMID: 29194628 DOI: 10.1113/jp274885] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Bassoon and Piccolo do not mediate basal synaptic vesicle release at a high-frequency synapse. Knockdown of Bassoon increases short-term depression at the calyx of Held. Both Bassoon and Piccolo have shared functions in synaptic vesicle replenishment during high-frequency synaptic transmission. Piccolo organizes the readily releasable pool of synaptic vesicles. It safeguards a fraction of them to be not immediately available for action potential-induced release. This enables the synapse to sustain high-frequency synaptic transmission over long periods. ABSTRACT Synaptic vesicles (SVs) are released at the active zone (AZ), a specialized region of the presynaptic plasma membrane organized by a highly interconnected network of multidomain proteins called the cytomatrix of the active zone (CAZ). Two core components of the CAZ are the large, highly homologous scaffolding proteins Bassoon and Piccolo, whose function is not well understood. To investigate their role in synaptic transmission, we established the small hairpin RNA (shRNA)-mediated in vivo knockdown (KD) of Bassoon and Piccolo at the rat calyx of Held synapse. KD of Bassoon and Piccolo, separately or simultaneously, did not affect basic SV release. However, short-term depression (STD) was prominently increased by the KD of Bassoon, whereas KD of Piccolo only had a minor effect. The observed alterations in STD were readily explained by reduced SV replenishment in synapses deficient in either of the proteins. Thus, the regulation of SV refilling during ongoing synaptic activity is a shared function of Bassoon and Piccolo, although Bassoon appears to be more efficient. Moreover, we observed the recruitment of slowly-releasing SVs of the readily-releasable pool (RRP), which are normally not available for action potential-induced release, during high-frequency stimulation in Piccolo-deficient calyces. Therefore, the results obtained in the present study suggest a novel and specific role for Piccolo in the organization of the subpools of the RRP.
Collapse
Affiliation(s)
- Daniel Parthier
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg, Germany.,Present address: Neuroscience Research Center, Charité Universitätsmedizin, Berlin, Germany
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg, Germany
| | - Christoph Körber
- Institute of Anatomy and Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Laghaei R, Ma J, Tarr TB, Homan AE, Kelly L, Tilvawala MS, Vuocolo BS, Rajasekaran HP, Meriney SD, Dittrich M. Transmitter release site organization can predict synaptic function at the neuromuscular junction. J Neurophysiol 2017; 119:1340-1355. [PMID: 29357458 DOI: 10.1152/jn.00168.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have investigated the impact of transmitter release site (active zone; AZ) structure on synaptic function by physically rearranging the individual AZ elements in a previously published frog neuromuscular junction (NMJ) AZ model into the organization observed in a mouse NMJ AZ. We have used this strategy, purposefully without changing the properties of AZ elements between frog and mouse models (even though there are undoubtedly differences between frog and mouse AZ elements in vivo), to directly test how structure influences function at the level of an AZ. Despite a similarly ordered ion channel array substructure within both frog and mouse AZs, frog AZs are much longer and position docked vesicles in a different location relative to AZ ion channels. Physiologically, frog AZs have a lower probability of transmitter release compared with mouse AZs, and frog NMJs facilitate strongly during short stimulus trains in contrast with mouse NMJs that depress slightly. Using our computer modeling approach, we found that a simple rearrangement of the AZ building blocks of the frog model into a mouse AZ organization could recapitulate the physiological differences between these two synapses. These results highlight the importance of simple AZ protein organization to synaptic function. NEW & NOTEWORTHY A simple rearrangement of the basic building blocks in the frog neuromuscular junction model into a mouse transmitter release site configuration predicted the major physiological differences between these two synapses, suggesting that transmitter release site structure and organization is a strong predictor of function.
Collapse
Affiliation(s)
- Rozita Laghaei
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Jun Ma
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University , Pittsburgh, Pennsylvania
| | - Tyler B Tarr
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Anne E Homan
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lauren Kelly
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Megha S Tilvawala
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Blake S Vuocolo
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Harini P Rajasekaran
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Markus Dittrich
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University , Pittsburgh, Pennsylvania.,Department of Neuroscience, Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.,BioTeam Inc., Middleton , Massachusetts
| |
Collapse
|
23
|
Badawi Y, Nishimune H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci Res 2017; 127:78-88. [PMID: 29221906 DOI: 10.1016/j.neures.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/17/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
24
|
Butola T, Wichmann C, Moser T. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse. Front Synaptic Neurosci 2017; 9:14. [PMID: 29118709 PMCID: PMC5660988 DOI: 10.3389/fnsyn.2017.00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
Piccolo and Bassoon are the two largest cytomatrix of the active zone (CAZ) proteins involved in scaffolding and regulating neurotransmitter release at presynaptic active zones (AZs), but have long been discussed as being functionally redundant. We employed genetic manipulation to bring forth and segregate the role of Piccolo from that of Bassoon at central auditory synapses of the cochlear nucleus—the endbulbs of Held. These synapses specialize in high frequency synaptic transmission, ideally poised to reveal even subtle deficits in the regulation of neurotransmitter release upon molecular perturbation. Combining semi-quantitative immunohistochemistry, electron microscopy, and in vitro and in vivo electrophysiology we first studied signal transmission in Piccolo-deficient mice. Our analysis was not confounded by a cochlear deficit, as a short isoform of Piccolo (“Piccolino”) present at the upstream ribbon synapses of cochlear inner hair cells (IHC), is unaffected by the mutation. Disruption of Piccolo increased the abundance of Bassoon at the AZs of endbulbs, while that of RIM1 was reduced and other CAZ proteins remained unaltered. Presynaptic fiber stimulation revealed smaller amplitude of the evoked excitatory postsynaptic currents (eEPSC), while eEPSC kinetics as well as miniature EPSCs (mEPSCs) remained unchanged. Cumulative analysis of eEPSC trains indicated that the reduced eEPSC amplitude of Piccolo-deficient endbulb synapses is primarily due to a reduced readily releasable pool (RRP) of synaptic vesicles (SV), as was corroborated by a reduction of vesicles at the AZ found on an ultrastructural level. Release probability seemed largely unaltered. Recovery from short-term depression was slowed. We then performed a physiological analysis of endbulb synapses from mice which, in addition to Piccolo deficiency, lacked one functional allele of the Bassoon gene. Analysis of the double-mutant endbulbs revealed an increase in release probability, while the synapses still exhibited the reduced RRP, and the impairment in SV replenishment was exacerbated. We propose additive roles of Piccolo and Bassoon in SV replenishment which in turn influences the organization and size of the RRP, and an additional role of Bassoon in regulation of release probability.
Collapse
Affiliation(s)
- Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany
| | - Carolin Wichmann
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Turner EC, Sawyer EK, Kaas JH. Optic nerve, superior colliculus, visual thalamus, and primary visual cortex of the northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus). J Comp Neurol 2017; 525:2109-2132. [PMID: 28188622 DOI: 10.1002/cne.24188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 11/07/2022]
Abstract
The northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus) are members of a diverse clade of carnivorous mammals known as pinnipeds. Pinnipeds are notable for their large, ape-sized brains, yet little is known about their central nervous system. Both the northern elephant seal and California sea lion spend most of their lives at sea, but each also spends time on land to breed and give birth. These unique coastal niches may be reflected in specific evolutionary adaptations to their sensory systems. Here, we report on components of the visual pathway in these two species. We found evidence for two classes of myelinated fibers within the pinniped optic nerve, those with thick myelin sheaths (elephant seal: 9%, sea lion: 7%) and thin myelin sheaths (elephant seal: 91%, sea lion: 93%). In order to investigate the architecture of the lateral geniculate nucleus, superior colliculus, and primary visual cortex, we processed brain sections from seal and sea lion pups for Nissl substance, cytochrome oxidase, and vesicular glutamate transporters. As in other carnivores, the dorsal lateral geniculate nucleus consisted of three main layers, A, A1, and C, while each superior colliculus similarly consisted of seven distinct layers. The sea lion visual cortex is located at the posterior side of cortex between the upper and lower banks of the postlateral sulcus, while the elephant seal visual cortex extends far more anteriorly along the dorsal surface and medial wall. These results are relevant to comparative studies related to the evolution of large brains.
Collapse
Affiliation(s)
- Emily C Turner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Eva K Sawyer
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Department of Bioengineering, University of California, Berkeley, California
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
26
|
Lin KH, Taschenberger H, Neher E. Dynamics of volume-averaged intracellular Ca 2+ in a rat CNS nerve terminal during single and repetitive voltage-clamp depolarizations. J Physiol 2017; 595:3219-3236. [PMID: 27957749 DOI: 10.1113/jp272773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/28/2016] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS The intracellular concentration of free calcium ions ([Ca2+ ]i ) in a nerve terminal controls both transmitter release and synaptic plasticity. The rapid triggering of transmitter release depends on the local micro- or nanodomain of highly elevated [Ca2+ ]i in the vicinity of open voltage-gated Ca2+ channels, whereas short-term synaptic plasticity is often controlled by global changes in residual [Ca2+ ]i , averaged over the whole nerve terminal volume. Here we describe dynamic changes of such global [Ca2+ ]i in the calyx of Held - a giant mammalian glutamatergic nerve terminal, which is particularly suited for biophysical studies. We provide quantitative data on Ca2+ inflow, Ca2+ buffering and Ca2+ clearance. These data allow us to predict changes in [Ca2+ ]i in the nerve terminal in response to a wide range of stimulus protocols at high temporal resolution and provide a basis for the modelling of short-term plasticity of glutamatergic synapses. ABSTRACT Many aspects of short-term synaptic plasticity (STP) are controlled by relatively slow changes in the presynaptic intracellular concentration of free calcium ions ([Ca2+ ]i ) that occur in the time range of a few milliseconds to several seconds. In nerve terminals, [Ca2+ ]i equilibrates diffusionally during such slow changes, such that the globally measured, residual [Ca2+ ]i that persists after the collapse of local domains is often the appropriate parameter governing STP. Here, we study activity-dependent dynamic changes in global [Ca2+ ]i at the rat calyx of Held nerve terminal in acute brainstem slices using patch-clamp and microfluorimetry. We use low concentrations of a low-affinity Ca2+ indicator dye (100 μm Fura-6F) in order not to overwhelm endogenous Ca2+ buffers. We first study voltage-clamped terminals, dialysed with pipette solutions containing minimal amounts of Ca2+ buffers, to determine Ca2+ binding properties of endogenous fixed buffers as well as the mechanisms of Ca2+ clearance. Subsequently, we use pipette solutions including 500 μm EGTA to determine the Ca2+ binding kinetics of this chelator. We provide a formalism and parameters that allow us to predict [Ca2+ ]i changes in calyx nerve terminals in response to a wide range of stimulus protocols. Unexpectedly, the Ca2+ affinity of EGTA under the conditions of our measurements was substantially lower (KD = 543 ± 51 nm) than measured in vitro, mainly as a consequence of a higher than previously assumed dissociation rate constant (2.38 ± 0.20 s-1 ), which we need to postulate in order to model the measured presynaptic [Ca2+ ]i transients.
Collapse
Affiliation(s)
- Kun-Han Lin
- Emeritus Group Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Holger Taschenberger
- Emeritus Group Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany.,DFG-Research Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| | - Erwin Neher
- Emeritus Group Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, 37077, Göttingen, Germany.,DFG-Research Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| |
Collapse
|
27
|
Abstract
Central nervous system tissue contains a high density of synapses each composed of an intricate molecular machinery mediating precise transmission of information. Deciphering the molecular nanostructure of pre- and postsynaptic specializations within such a complex tissue architecture poses a particular challenge for light microscopy. Here, we describe two approaches suitable to examine the molecular nanostructure of synapses at 20-30 nm lateral and 50-70 nm axial resolution within an area of 500 μm × 500 μm and a depth of 0.6 μm to several micrometers. We employ single-molecule localization microscopy (SMLM) on immunolabeled fixed brain tissue slices. tomoSTORM utilizes array tomography to achieve SMLM in 40 nm thick resin-embedded sections. dSTORM of cryo-sectioned slices uses optical sectioning in 0.1-4 μm thick hydrated sections. Both approaches deliver 3D nanolocalization of two or more labeled proteins within a defined tissue volume. We review sample preparation, data acquisition, analysis, and interpretation.
Collapse
|
28
|
Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep 2016; 6:27935. [PMID: 27321892 PMCID: PMC4913281 DOI: 10.1038/srep27935] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/16/2016] [Indexed: 11/08/2022] Open
Abstract
Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.
Collapse
|
29
|
Sawyer EK, Turner EC, Kaas JH. Somatosensory brainstem, thalamus, and cortex of the California sea lion (Zalophus californianus). J Comp Neurol 2016; 524:1957-75. [PMID: 26878587 PMCID: PMC4833517 DOI: 10.1002/cne.23984] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 12/18/2022]
Abstract
Pinnipeds (sea lions, seals, and walruses) are notable for many reasons, including their ape-sized brains, their adaptation to a coastal niche that combines mastery of the sea with strong ties to land, and the remarkable abilities of their trigeminal whisker system. However, little is known about the central nervous system of pinnipeds. Here we report on the somatosensory areas of the nervous system of the California sea lion (Zalophus californianus). Using stains for Nissl, cytochrome oxidase, and vesicular glutamate transporters, we investigated the primary somatosensory areas in the brainstem, thalamus, and cortex in one sea lion pup and the external anatomy of the brain in a second pup. We find that the sea lion's impressive array of whiskers is matched by a large trigeminal representation in the brainstem with well-defined parcellation that resembles the barrelettes found in rodents but scaled upward in size. The dorsal column nuclei are large and distinct. The ventral posterior nucleus of the thalamus has divisions, with a large area for the presumptive head representation. Primary somatosensory cortex is located in the neocortex just anterior to the main vertical fissure, and precisely locating it as we do here is useful for comparing the highly gyrified pinniped cortex with that of other carnivores. To our knowledge this work is the first comprehensive report on the central nervous system areas for any sensory system in a pinniped. The results may be useful both in the veterinary setting and for comparative studies related to brain evolution.
Collapse
Affiliation(s)
- Eva K Sawyer
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37240
| | - Emily C Turner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37240
| |
Collapse
|
30
|
Evolution of mammalian sound localization circuits: A developmental perspective. Prog Neurobiol 2016; 141:1-24. [PMID: 27032475 DOI: 10.1016/j.pneurobio.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above 10kHz, which likely induced positive selection for novel mechanisms of sound localization. How this change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. I will argue that the major VGlut2(+) excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Atoh1(+)/Wnt1(+) cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound localization in all three dimensions. Genetic analyses indicate that auditory nuclei in fish, birds, and mammals receive contributions from the same progenitor lineages. Anatomical and physiological differences and the independent evolution of tympanic ears in vertebrate groups, however, argue for convergent evolution of sound localization circuits in tetrapods (amphibians, reptiles, birds, and mammals). These disparate findings are discussed in the context of the genetic architecture of the developing hindbrain, which facilitates convergent evolution. Yet, it will be critical to decipher the gene regulatory networks underlying development of auditory neurons across vertebrates to explore the possibility of homologous neuronal populations.
Collapse
|
31
|
Nunes D, Kuner T. Disinhibition of olfactory bulb granule cells accelerates odour discrimination in mice. Nat Commun 2015; 6:8950. [PMID: 26592770 PMCID: PMC4673882 DOI: 10.1038/ncomms9950] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/20/2015] [Indexed: 11/13/2022] Open
Abstract
Granule cells are the dominant cell type of the olfactory bulb inhibiting mitral and tufted cells via dendrodendritic synapses; yet the factors regulating the strength of their inhibitory output, and, therefore, their impact on odour discrimination, remain unknown. Here we show that GABAAR β3-subunits are distributed in a somatodendritic pattern, mostly sparing the large granule cell spines also known as gemmules. Granule cell-selective deletion of β3-subunits nearly abolishes spontaneous and muscimol-induced currents mediated by GABAA receptors in granule cells, yet recurrent inhibition of mitral cells is strongly enhanced. Mice with disinhibited granule cells require less time to discriminate both dissimilar as well as highly similar odourants, while discrimination learning remains unaffected. Hence, granule cells are controlled by an inhibitory drive that in turn tunes mitral cell inhibition. As a consequence, the olfactory bulb inhibitory network adjusts the speed of early sensory processing. How odour discrimination is influenced by granule cells in the olfactory bulb is poorly understood. Here, the authors show that disinhibition of granule cells in mice increases mitral cell inhibition and accelerates odour discrimination time, independent of odour similarity.
Collapse
Affiliation(s)
- Daniel Nunes
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Meijer M, Cijsouw T, Toonen RF, Verhage M. Synaptic Effects of Munc18-1 Alternative Splicing in Excitatory Hippocampal Neurons. PLoS One 2015; 10:e0138950. [PMID: 26407320 PMCID: PMC4583478 DOI: 10.1371/journal.pone.0138950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/05/2015] [Indexed: 01/23/2023] Open
Abstract
The munc18-1 gene encodes two splice-variants that vary at the C-terminus of the protein and are expressed at different levels in different regions of the adult mammalian brain. Here, we investigated the expression pattern of these splice variants within the brainstem and tested whether they are functionally different. Munc18-1a is expressed in specific nuclei of the brainstem including the LRN, VII and SOC, while Munc18-1b expression is relatively low/absent in these regions. Furthermore, Munc18-1a is the major splice variant in the Calyx of Held. Synaptic transmission was analyzed in autaptic hippocampal munc18-1 KO neurons re-expressing either Munc18-1a or Munc18-1b. The two splice variants supported synaptic transmission to a similar extent, but Munc18-1b was slightly more potent in sustaining synchronous release during high frequency stimulation. Our data suggest that alternative splicing of Munc18-1 support synaptic transmission to a similar extent, but could modulate presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam and VU University Medical Center, Amsterdam, Netherlands
| | - Tony Cijsouw
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam and VU University Medical Center, Amsterdam, Netherlands
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam and VU University Medical Center, Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam (NCA), VU University Amsterdam and VU University Medical Center, Amsterdam, Netherlands
- * E-mail:
| |
Collapse
|
33
|
Körber C, Horstmann H, Venkataramani V, Herrmannsdörfer F, Kremer T, Kaiser M, Schwenger DB, Ahmed S, Dean C, Dresbach T, Kuner T. Modulation of Presynaptic Release Probability by the Vertebrate-Specific Protein Mover. Neuron 2015. [PMID: 26212709 DOI: 10.1016/j.neuron.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mover, a member of the exquisitely small group of vertebrate-specific presynaptic proteins, has been discovered as an interaction partner of the scaffolding protein Bassoon, yet its function has not been elucidated. We used adeno-associated virus (AAV)-mediated shRNA expression to knock down Mover in the calyx of Held in vivo. Although spontaneous synaptic transmission remained unaffected, we found a strong increase of the evoked EPSC amplitude. The size of the readily releasable pool was unaltered, but short-term depression was accelerated and enhanced, consistent with an increase in release probability after Mover knockdown. This increase in release probability was not caused by alterations in Ca(2+) influx but rather by a higher Ca(2+) sensitivity of the release machinery, as demonstrated by presynaptic Ca(2+) uncaging. We therefore conclude that Mover expression in certain subsets of synapses negatively regulates synaptic release probability, constituting a novel mechanism to tune synaptic transmission.
Collapse
Affiliation(s)
- Christoph Körber
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | - Heinz Horstmann
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Varun Venkataramani
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Frank Herrmannsdörfer
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Thomas Kremer
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Michaela Kaiser
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Darius B Schwenger
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Saheeb Ahmed
- European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Camin Dean
- European Neuroscience Institute, Grisebachstrasse 5, 37077 Göttingen, Germany
| | - Thomas Dresbach
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany; Department of Anatomy and Embryology, Centre of Anatomy, University of Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| |
Collapse
|
34
|
Wichmann C. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information. Hear Res 2015; 330:178-90. [PMID: 26188105 DOI: 10.1016/j.heares.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/21/2015] [Accepted: 07/10/2015] [Indexed: 01/20/2023]
Abstract
Hearing impairment is the most common human sensory deficit. Considering the sophisticated anatomy and physiology of the auditory system, disease-related failures frequently occur. To meet the demands of the neuronal circuits responsible for processing auditory information, the synapses of the lower auditory pathway are anatomically and functionally specialized to process acoustic information indefatigably with utmost temporal precision. Despite sharing some functional properties, the afferent synapses of the cochlea and of auditory brainstem differ greatly in their morphology and employ distinct molecular mechanisms for regulating synaptic vesicle release. Calyceal synapses of the endbulb of Held and the calyx of Held profit from a large number of release sites that project onto one principal cell. Cochlear inner hair cell ribbon synapses exhibit a unique one-to-one relation of the presynaptic active zone to the postsynaptic cell and use hair-cell-specific proteins such as otoferlin for vesicle release. The understanding of the molecular physiology of the hair cell ribbon synapse has been advanced by human genetics studies of sensorineural hearing impairment, revealing human auditory synaptopathy as a new nosological entity.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience & InnerEarLab, University Medical Center, Göttingen, Germany.
| |
Collapse
|
35
|
Nava N, Treccani G, Liebenberg N, Chen F, Popoli M, Wegener G, Nyengaard JR. Chronic desipramine prevents acute stress-induced reorganization of medial prefrontal cortex architecture by blocking glutamate vesicle accumulation and excitatory synapse increase. Int J Neuropsychopharmacol 2015; 18:pyu085. [PMID: 25522419 PMCID: PMC4360240 DOI: 10.1093/ijnp/pyu085] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although a clear negative influence of chronic exposure to stressful experiences has been repeatedly demonstrated, the outcome of acute stress on key brain regions has only just started to be elucidated. Although it has been proposed that acute stress may produce enhancement of brain plasticity and that antidepressants may prevent such changes, we still lack ultrastructural evidence that acute stress-induced changes in neurotransmitter physiology are coupled with structural synaptic modifications. METHODS Rats were pretreated chronically (14 days) with desipramine (10mg/kg) and then subjected to acute foot-shock stress. By means of serial section electron microscopy, the structural remodeling of medial prefrontal cortex glutamate synapses was assessed soon after acute stressor cessation and stress hormone levels were measured. RESULTS Foot-shock stress induced a remarkable increase in the number of docked vesicles and small excitatory synapses, partially and strongly prevented by desipramine pretreatment, respectively. Acute stress-induced corticosterone elevation was not affected by drug treatment. CONCLUSIONS Since desipramine pretreatment prevented the stress-induced structural plasticity but not the hormone level increase, we hypothesize that the preventing action of desipramine is located on pathways downstream of this process and/or other pathways. Moreover, because enhancement of glutamate system remodeling may contribute to overexcitation dysfunctions, this aspect could represent a crucial component in the pathophysiology of stress-related disorders.
Collapse
Affiliation(s)
- Nicoletta Nava
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University Hospital, Aarhus, Denmark (Drs Nava, Chen, and Nyengaard); Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark (Drs Nava, Treccani, Liebenberg, Chen, and Wegener); Pharmaceutical Research Center of Excellence, School of Pharmacy, North-West University, Potchefstroom, South Africa (Dr Wegener); Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy (Drs Treccani and Popoli).
| | | | | | | | | | | | | |
Collapse
|
36
|
Körber C, Dondzillo A, Eisenhardt G, Herrmannsdörfer F, Wafzig O, Kuner T. Gene expression profile during functional maturation of a central mammalian synapse. Eur J Neurosci 2014; 40:2867-77. [PMID: 24995587 DOI: 10.1111/ejn.12661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/19/2022]
Abstract
Calyx of Held giant presynaptic terminals in the auditory brainstem form glutamatergic axosomatic synapses that have advanced to one of the best-studied synaptic connections of the mammalian brain. As the auditory system matures and adjusts to high-fidelity synaptic transmission, the calyx undergoes extensive structural and functional changes - in mice, it is formed at about postnatal day 3 (P3), achieves immature function until hearing onset at about P10 and can be considered mature from P21 onwards. This setting provides a unique opportunity to examine the repertoire of genes driving synaptic structure and function during postnatal maturation. Here, we determined the gene expression profile of globular bushy cells (GBCs), neurons giving rise to the calyx of Held, at different maturational stages (P3, P8, P21). GBCs were retrogradely labelled by stereotaxic injection of fluorescent cholera toxin-B, and their mRNA content was collected by laser microdissection. Microarray profiling, successfully validated with real time quantitative polymerase chain reaction and nCounter approaches, revealed genes regulated during maturation. We found that mostly genes implicated in the general cell biology of the neuron were regulated, while most genes related to synaptic function were regulated around the onset of hearing. Among these, voltage-gated ion channels and calcium-binding proteins were strongly regulated, whereas most genes involved in the synaptic vesicle cycle were only moderately regulated. These results suggest that changes in the expression patterns of ion channels and calcium-binding proteins are a dominant factor in defining key synaptic properties during maturation of the calyx of Held.
Collapse
Affiliation(s)
- Christoph Körber
- Department of Functional Neuroanatomy, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Grande G, Negandhi J, Harrison RV, Wang LY. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss. J Physiol 2014; 592:1581-600. [PMID: 24469075 DOI: 10.1113/jphysiol.2013.268839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are prevalent but the pre- and postsynaptic modifications that occur when hearing symmetry is perturbed are not well understood. We investigated this issue by performing experiments at the large calyx of Held synapse. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are innervated by calyx of Held terminals that originate from the axons of globular bushy cells located in the contralateral ventral cochlear nucleus. We compared populations of synapses in the same animal that were either sound deprived (SD) or sound experienced (SE) after unilateral conductive hearing loss (CHL). Middle ear ossicles were removed 1 week prior to hearing onset (approx. postnatal day (P) 12) and morphological and electrophysiological approaches were applied to auditory brainstem slices taken from these mice at P17-19. Calyces in the SD and SE MNTB acquired their mature digitated morphology but these were structurally more complex than those in normal hearing mice. This was accompanied by bilateral decreases in initial EPSC amplitude and synaptic conductance despite the CHL being unilateral. During high-frequency stimulation, some SD synapses displayed short-term depression whereas others displayed short-term facilitation followed by slow depression similar to the heterogeneities observed in normal hearing mice. However SE synapses predominantly displayed short-term facilitation followed by slow depression which could be explained in part by the decrease in release probability. Furthermore, the excitability of principal cells in the SD MNTB had increased significantly. Despite these unilateral changes in short-term plasticity and excitability, heterogeneities in the spiking fidelity among the population of both SD and SE synapses showed similar continuums to those in normal hearing mice. Our study suggests that preservations in the heterogeneity in spiking fidelity via synaptic remodelling ensures symmetric functional stability which is probably important for retaining the capability to maximally code sound localization cues despite moderate asymmetries in hearing experience.
Collapse
Affiliation(s)
- Giovanbattista Grande
- Corresponding Author L.-Y. Wang, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada M5G 1X8.
| | | | | | | |
Collapse
|
38
|
Oline SN, Burger RM. Short-term synaptic depression is topographically distributed in the cochlear nucleus of the chicken. J Neurosci 2014; 34:1314-24. [PMID: 24453322 PMCID: PMC3898291 DOI: 10.1523/jneurosci.3073-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 11/21/2022] Open
Abstract
In the auditory system, sounds are processed in parallel frequency-tuned circuits, beginning in the cochlea. Activity of auditory nerve fibers reflects this frequency-specific topographic pattern, known as tonotopy, and imparts frequency tuning onto their postsynaptic target neurons in the cochlear nucleus. In birds, cochlear nucleus magnocellularis (NM) neurons encode the temporal properties of acoustic stimuli by "locking" discharges to a particular phase of the input signal. Physiological specializations exist in gradients corresponding to the tonotopic axis in NM that reflect the characteristic frequency (CF) of their auditory nerve fiber inputs. One feature of NM neurons that has not been investigated across the tonotopic axis is short-term synaptic plasticity. NM offers a rather homogeneous population of neurons with a distinct topographical distribution of synaptic properties that is ideal for the investigation of specialized synaptic plasticity. Here we demonstrate for the first time that short-term synaptic depression (STD) is expressed topographically, where unitary high CF synapses are more robust with repeated stimulation. Correspondingly, high CF synapses drive spiking more reliably than their low CF counterparts. We show that postsynaptic AMPA receptor desensitization does not contribute to the observed difference in STD. Further, rate of recovery from depression, a presynaptic property, does not differ tonotopically. Rather, we show that another presynaptic feature, readily releasable pool (RRP) size, is tonotopically distributed and inversely correlated with vesicle release probability. Mathematical model results demonstrate that these properties of vesicle dynamics are sufficient to explain the observed tonotopic distribution of STD.
Collapse
Affiliation(s)
- Stefan N. Oline
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - R. Michael Burger
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
39
|
Mendoza Schulz A, Jing Z, Sánchez Caro JM, Wetzel F, Dresbach T, Strenzke N, Wichmann C, Moser T. Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse. EMBO J 2014; 33:512-27. [PMID: 24442636 DOI: 10.1002/embj.201385887] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endbulb of Held terminals of auditory nerve fibers (ANF) transmit auditory information at hundreds per second to bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). Here, we studied the structure and function of endbulb synapses in mice that lack the presynaptic scaffold bassoon and exhibit reduced ANF input into the AVCN. Endbulb terminals and active zones were normal in number and vesicle complement. Postsynaptic densities, quantal size and vesicular release probability were increased while vesicle replenishment and the standing pool of readily releasable vesicles were reduced. These opposing effects canceled each other out for the first evoked EPSC, which showed unaltered amplitude. We propose that ANF activity deprivation drives homeostatic plasticity in the AVCN involving synaptic upscaling and increased intrinsic BC excitability. In vivo recordings from individual mutant BCs demonstrated a slightly improved response at sound onset compared to ANF, likely reflecting the combined effects of ANF convergence and homeostatic plasticity. Further, we conclude that bassoon promotes vesicular replenishment and, consequently, a large standing pool of readily releasable synaptic vesicles at the endbulb synapse.
Collapse
Affiliation(s)
- Alejandro Mendoza Schulz
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Vasileva M, Renden R, Horstmann H, Gitler D, Kuner T. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area. Front Cell Neurosci 2013; 7:270. [PMID: 24391547 PMCID: PMC3868894 DOI: 10.3389/fncel.2013.00270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/04/2013] [Indexed: 01/10/2023] Open
Abstract
Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa-known to sustain repetitive transmission in glutamatergic terminals-was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs.
Collapse
Affiliation(s)
- Mariya Vasileva
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Robert Renden
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Heinz Horstmann
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Thomas Kuner
- Institute of Anatomy and Cell Biology, Heidelberg University Heidelberg, Germany
| |
Collapse
|
41
|
Dynamic Control of Synaptic Vesicle Replenishment and Short-Term Plasticity by Ca2+-Calmodulin-Munc13-1 Signaling. Neuron 2013; 79:82-96. [DOI: 10.1016/j.neuron.2013.05.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2013] [Indexed: 02/02/2023]
|
42
|
Photooxidation-guided ultrastructural identification and analysis of cells in neuronal tissue labeled with green fluorescent protein. PLoS One 2013; 8:e64764. [PMID: 23741388 PMCID: PMC3669359 DOI: 10.1371/journal.pone.0064764] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/16/2013] [Indexed: 11/19/2022] Open
Abstract
The ultrastructural characterization of neuronal compartments in intact tissue labeled with green fluorescent protein (GFP) remains a frequently encountered challenge, despite work establishing photooxidation of GFP in cultured cells. However, most applications require the detection of GFP or GFP fusion proteins expressed in intact tissue. Here, we report that illumination of GFP variants in oxygen-enriched environment reliably generated electron-dense 3,3'-diaminobenzidine (DAB) precipitates in slices from rat brain. The method is applicable to GFP variants tagged to presynaptic proteins as well as to soluble GFP in various brain regions. Serial section scanning electron microscopy was used to examine genetically labeled presynaptic terminals at high resolution and to generate three-dimensional representations of the synapses. Thus, we introduce a generally applicable correlative approach for the identification of presynaptic terminals genetically labeled with green fluorescent proteins in tissue slices and their ultrastructural characterization.
Collapse
|
43
|
Tissue multicolor STED nanoscopy of presynaptic proteins in the calyx of Held. PLoS One 2013; 8:e62893. [PMID: 23658655 PMCID: PMC3637247 DOI: 10.1371/journal.pone.0062893] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/27/2013] [Indexed: 11/24/2022] Open
Abstract
The calyx of Held, a large glutamatergic terminal in the mammalian auditory brainstem has been extensively employed to study presynaptic structure and function in the central nervous system. Nevertheless, the nanoarchitecture of presynaptic proteins and subcellular components in the calyx terminal and its relation to functional properties of synaptic transmission is only poorly understood. Here, we use stimulated emission depletion (STED) nanoscopy of calyces in thin sections of aldehyde-fixed rat brain tissue to visualize immuno-labeled synaptic proteins including VGluT1, synaptophysin, Rab3A and synapsin with a lateral resolution of approximately 40 nm. Excitation multiplexing of suitable fluorescent dyes deciphered the spatial arrangement of the presynaptic phospho-protein synapsin relative to synaptic vesicles labeled with anti-VGluT1. Both predominantly occupied the same focal volume, yet may exist in exclusive domains containing either VGluT1 or synapsin immunoreactivity. While the latter have been observed with diffraction-limited fluorescence microscopy, STED microscopy for the first time revealed VGluT1-positive domains lacking synapsins. This observation supports the hypothesis that molecularly and structurally distinct synaptic vesicle pools operate in presynaptic nerve terminals.
Collapse
|
44
|
Nishimune H. Active zones of mammalian neuromuscular junctions: formation, density, and aging. Ann N Y Acad Sci 2013; 1274:24-32. [PMID: 23252894 DOI: 10.1111/j.1749-6632.2012.06836.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas Medical School, Kansas City, 66160, USA.
| |
Collapse
|
45
|
Cano R, Torres-Benito L, Tejero R, Biea AI, Ruiz R, Betz WJ, Tabares L. Structural and functional maturation of active zones in large synapses. Mol Neurobiol 2012; 47:209-19. [PMID: 22992975 DOI: 10.1007/s12035-012-8347-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/27/2012] [Indexed: 11/29/2022]
Abstract
Virtually all functions of the nervous system rely upon synapses, the sites of communication between neurons and between neurons and other cells. Synapses are complex structures, each one comprising hundreds of different types of molecules working in concert. They are organized by adhesive and scaffolding molecules that align presynaptic vesicular release sites, namely, active zones, with postsynaptic neurotransmitter receptors, thereby allowing rapid and reliable intercellular communication. Most synapses are relatively small, and acting alone exerts little effect on their postsynaptic partners. Some, however, are much larger and stronger, reliably driving the postsynaptic cell to its action potential threshold, acting essentially as electrical relays of excitation. These large synapses are among the best understood, and two of these are the subject of this review, namely, the vertebrate neuromuscular junction and the calyx of Held synapse in the mammalian auditory pathway of the brain stem. Both synapses undergo through a complex and well-coordinated maturation process, during which time the molecular elements and the biophysical properties of the secretory machinery are continuously adjusted to the synapse size and to the functional requirements. We here review the morphological and functional changes occurring during postnatal maturation, noting particular similarities and differences between these two large synapses.
Collapse
Affiliation(s)
- Raquel Cano
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sanchez Pizjuan 4, 41009, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Cano R, Ruiz R, Shen C, Tabares L, Betz WJ. The functional landscape of a presynaptic nerve terminal. Cell Calcium 2012; 52:321-6. [DOI: 10.1016/j.ceca.2012.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/09/2012] [Accepted: 04/18/2012] [Indexed: 11/16/2022]
|
47
|
Vasileva M, Horstmann H, Geumann C, Gitler D, Kuner T. Synapsin-dependent reserveo pool of synaptic vesicles supports replenishment of the readily releasable pool under intense synaptic transmission. Eur J Neurosci 2012; 36:3005-20. [DOI: 10.1111/j.1460-9568.2012.08225.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nat Neurosci 2012; 15:998-1006. [PMID: 22683682 DOI: 10.1038/nn.3129] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 05/03/2012] [Indexed: 01/11/2023]
Abstract
How synaptic-vesicle release is controlled at the basic release structure, the active zone, is poorly understood. By performing cell-attached current and capacitance recordings predominantly at single active zones in rat calyces, we found that single active zones contained 5-218 (mean, 42) calcium channels and 1-10 (mean, 5) readily releasable vesicles (RRVs) and released 0-5 vesicles during a 2-ms depolarization. Large variation in the number of calcium channels caused wide variation in release strength (measured during a 2-ms depolarization) by regulating the RRV release probability (P(RRV)) and the RRV number. Consequently, an action potential opened ∼1-35 (mean, ∼7) channels, resulting in different release probabilities at different active zones. As the number of calcium-channels determined P(RRV), it critically influenced whether subsequent release would be facilitated or depressed. Regulating calcium channel density at active zones may thus be a major mechanism to yield synapses with different release properties and plasticity. These findings may explain large differences reported at synapses regarding release strength (release of 0, 1 or multiple vesicles), P(RRV), short-term plasticity, calcium transients and the requisite calcium-channel number for triggering release.
Collapse
|
49
|
Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS One 2012; 7:e38098. [PMID: 22662272 PMCID: PMC3360663 DOI: 10.1371/journal.pone.0038098] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/03/2012] [Indexed: 12/25/2022] Open
Abstract
Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 µm×50 µm×2.5 µm. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy.
Collapse
|
50
|
Chen J, Mizushige T, Nishimune H. Active zone density is conserved during synaptic growth but impaired in aged mice. J Comp Neurol 2012; 520:434-52. [PMID: 21935939 DOI: 10.1002/cne.22764] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Presynaptic active zones are essential structures for synaptic vesicle release, but the developmental regulation of their number and maintenance during aging at mammalian neuromuscular junctions (NMJs) remains unknown. Here, we analyzed the distribution of active zones in developing, mature, and aged mouse NMJs by immunohistochemical detection of the active zone-specific protein Bassoon. Bassoon is a cytosolic scaffolding protein essential for the active zone assembly in ribbon synapses and some brain synapses. Bassoon staining showed a punctate pattern in nerve terminals and axons at the nascent NMJ on embryonic days 16.5-18.5. Three-dimensional reconstruction of NMJs revealed that the majority of Bassoon puncta within an NMJ were attached to the presynaptic membrane from postnatal day 0 to adulthood, and colocalized with another active zone protein, Piccolo. During postnatal development, the number of Bassoon puncta increased as the size of the synapses increased. Importantly, the density of Bassoon puncta remained relatively constant from postnatal day 0 to 54 at 2.3 puncta/μm(2) , while the synapse size increased 3.3-fold. However, Bassoon puncta density and signal intensity were significantly attenuated at the NMJs of 27-month-old aged mice. These results suggest that synapses maintain the density of synaptic vesicle release sites while the synapse size changes, but this density becomes impaired during aging.
Collapse
Affiliation(s)
- Jie Chen
- Department of Anatomy and Cell Biology and Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical School, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|